251
|
Jang WS, Lim DH, Yoon J, Kim A, Lim M, Nam J, Yanagihara R, Ryu SW, Jung BK, Ryoo NH, Lim CS. Development of a multiplex Loop-Mediated Isothermal Amplification (LAMP) assay for on-site diagnosis of SARS CoV-2. PLoS One 2021; 16:e0248042. [PMID: 33657176 PMCID: PMC7928493 DOI: 10.1371/journal.pone.0248042] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/18/2021] [Indexed: 12/28/2022] Open
Abstract
A newly identified coronavirus, designated as severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), has spread rapidly from its epicenter in China to more than 150 countries across six continents. In this study, we have designed three reverse-transcription loop-mediated isothermal amplification (RT-LAMP) primer sets to detect the RNA-dependent RNA polymerase (RdRP), Envelope (E) and Nucleocapsid protein (N) genes of SARS CoV-2. For one tube reaction, the detection limits for five combination SARS CoV-2 LAMP primer sets (RdRP/E, RdRP/N, E/N, RdRP/E/N and RdRP/N/Internal control (actin beta)) were evaluated with a clinical nasopharyngeal swab sample. Among the five combination, the RdRP/E and RdRP/N/IC multiplex LAMP assays showed low detection limits. The sensitivity and specificity of the RT-LAMP assay were evaluated and compared to that of the widely used Allplex™ 2019-nCoV Assay (Seegene, Inc., Seoul, South Korea) and PowerChek™ 2019-nCoV Real-time PCR kit (Kogenebiotech, Seoul, South Korea) for 130 clinical samples from 91 SARS CoV-2 patients and 162 NP specimens from individuals with (72) and without (90) viral respiratory infections. The multiplex RdRP (FAM)/N (CY5)/IC (Hex) RT-LAMP assay showed comparable sensitivities (RdRP: 93.85%, N: 94.62% and RdRP/N: 96.92%) to that of the Allplex™ 2019-nCoV Assay (100%) and superior to those of PowerChek™ 2019-nCoV Real-time PCR kit (RdRP: 92.31%, E: 93.85% and RdRP/E: 95.38%).
Collapse
Affiliation(s)
- Woong Sik Jang
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Da Hye Lim
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jung Yoon
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Ahran Kim
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Minsup Lim
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jeonghun Nam
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Richard Yanagihara
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Sook-Won Ryu
- Department of Laboratory Medicine, Kangwon National University, School of Medicine, Kangwondo, Republic of Korea
| | - Bo Kyeung Jung
- Department of Laboratory Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Nam-Hee Ryoo
- Department of Laboratory Medicine, Dongsan Medical Center, Keimyung University, Daegu, Korea
| | - Chae Seung Lim
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
252
|
Kabir MDA, Ahmed R, Iqbal SMA, Chowdhury R, Paulmurugan R, Demirci U, Asghar W. Diagnosis for COVID-19: current status and future prospects. Expert Rev Mol Diagn 2021; 21:269-288. [PMID: 33621145 PMCID: PMC7938658 DOI: 10.1080/14737159.2021.1894930] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023]
Abstract
Introduction: Coronavirus disease 2019 (COVID-19), a respiratory illness caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had its first detection in December 2019 in Wuhan (China) and spread across the world. In March 2020, the World Health Organization (WHO) declared COVID-19 a pandemic disease. The utilization of prompt and accurate molecular diagnosis of SARS-CoV-2 virus, isolating the infected patients, and treating them are the keys to managing this unprecedented pandemic. International travel acted as a catalyst for the widespread transmission of the virus.Areas covered: This review discusses phenotype, structural, and molecular evolution of recognition elements and primers, its detection in the laboratory, and at point of care. Further, market analysis of commercial products and their performance are also evaluated, providing new ways to confront the ongoing global public health emergency.Expert commentary: The outbreak for COVID-19 created mammoth chaos in the healthcare sector, and still, day by day, new epicenters for the outbreak are being reported. Emphasis should be placed on developing more effective, rapid, and early diagnostic devices. The testing laboratories should invest more in clinically relevant multiplexed and scalable detection tools to fight against a pandemic like this where massive demand for testing exists.
Collapse
Affiliation(s)
- MD Alamgir Kabir
- Florida Atlantic University, Boca Raton, FL, USA
- College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Rajib Ahmed
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Sheikh Muhammad Asher Iqbal
- Florida Atlantic University, Boca Raton, FL, USA
- College of Engineering and Computer Science, Boca Raton, FL, USA
| | | | - Ramasamy Paulmurugan
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Waseem Asghar
- Florida Atlantic University, Boca Raton, FL, USA
- College of Engineering and Computer Science, Boca Raton, FL, USA
- Department of Biological Sciences (Courtesy Appointment, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
253
|
Sundah NR, Natalia A, Liu Y, Ho NRY, Zhao H, Chen Y, Miow QH, Wang Y, Beh DLL, Chew KL, Chan D, Tambyah PA, Ong CWM, Shao H. Catalytic amplification by transition-state molecular switches for direct and sensitive detection of SARS-CoV-2. SCIENCE ADVANCES 2021; 7:7/12/eabe5940. [PMID: 33731349 PMCID: PMC7968834 DOI: 10.1126/sciadv.abe5940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Despite the importance of nucleic acid testing in managing the COVID-19 pandemic, current detection approaches remain limited due to their high complexity and extensive processing. Here, we describe a molecular nanotechnology that enables direct and sensitive detection of viral RNA targets in native clinical samples. The technology, termed catalytic amplification by transition-state molecular switch (CATCH), leverages DNA-enzyme hybrid complexes to form a molecular switch. By ratiometric tuning of its constituents, the multicomponent molecular switch is prepared in a hyperresponsive state-the transition state-that can be readily activated upon the binding of sparse RNA targets to turn on substantial enzymatic activity. CATCH thus achieves superior performance (~8 RNA copies/μl), direct fluorescence detection that bypasses all steps of PCR (<1 hour at room temperature), and versatile implementation (high-throughput 96-well format and portable microfluidic assay). When applied for clinical COVID-19 diagnostics, CATCH demonstrated direct and accurate detection in minimally processed patient swab samples.
Collapse
Affiliation(s)
- Noah R Sundah
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Yu Liu
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Nicholas R Y Ho
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Haitao Zhao
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
| | - Yuan Chen
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Qing Hao Miow
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Wang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Darius L L Beh
- Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Ka Lip Chew
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Douglas Chan
- Department of Laboratory Medicine, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Paul A Tambyah
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Catherine W M Ong
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
254
|
Howson ELA, Kidd SP, Armson B, Goring A, Sawyer J, Cassar C, Cross D, Lewis T, Hockey J, Rivers S, Cawthraw S, Banyard A, Anderson P, Rahou S, Andreou M, Morant N, Clark D, Walsh C, Laxman S, Houghton R, Slater-Jefferies J, Costello P, Brown I, Cortes N, Godfrey KM, Fowler VL. Preliminary optimisation of a simplified sample preparation method to permit direct detection of SARS-CoV-2 within saliva samples using reverse-transcription loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 2021; 289:114048. [PMID: 33358911 PMCID: PMC7750029 DOI: 10.1016/j.jviromet.2020.114048] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/28/2020] [Accepted: 12/12/2020] [Indexed: 11/15/2022]
Abstract
We describe the optimisation of a simplified sample preparation method which permits rapid and direct detection of SARS-CoV-2 RNA within saliva, using reverse-transcription loop-mediated isothermal amplification (RT-LAMP). Treatment of saliva samples prior to RT-LAMP by dilution 1:1 in Mucolyse™, followed by dilution in 10 % (w/v) Chelex© 100 Resin and a 98 °C heat step for 2 min enabled detection of SARS-CoV-2 RNA in positive saliva samples. Using RT-LAMP, SARS-CoV-2 RNA was detected in as little as 05:43 min, with no amplification detected in 3097 real-time reverse transcription PCR (rRT-PCR) negative saliva samples from staff tested within a service evaluation study, or for other respiratory pathogens tested (n = 22). Saliva samples can be collected non-invasively, without the need for skilled staff and can be obtained from both healthcare and home settings. Critically, this approach overcomes the requirement for, and validation of, different swabs and the global bottleneck in obtaining access to extraction robots and reagents to enable molecular testing by rRT-PCR. Such testing opens the possibility of public health approaches for effective intervention during the COVID-19 pandemic through regular SARS-CoV-2 testing at a population scale, combined with isolation and contact tracing.
Collapse
Affiliation(s)
- Emma L A Howson
- GeneSys Biotech Limited, Camberley, Surrey, UK; The Pirbright Institute, Ash Road, Woking, Surrey, UK
| | - Stephen P Kidd
- Hampshire Hospitals NHS Foundation Trust, Department of Microbiology, Basingstoke and North Hants Hospital, Basingstoke, UK.
| | - Bryony Armson
- Hampshire Hospitals NHS Foundation Trust, Department of Microbiology, Basingstoke and North Hants Hospital, Basingstoke, UK; vHive, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Alice Goring
- Hampshire Hospitals NHS Foundation Trust, Department of Microbiology, Basingstoke and North Hants Hospital, Basingstoke, UK
| | - Jason Sawyer
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Claire Cassar
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - David Cross
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Tom Lewis
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Jess Hockey
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | | | | | | | - Paul Anderson
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Sabah Rahou
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | | | - Nick Morant
- GeneSys Biotech Limited, Camberley, Surrey, UK
| | | | | | | | - Rebecca Houghton
- Hampshire Hospitals NHS Foundation Trust, Department of Microbiology, Basingstoke and North Hants Hospital, Basingstoke, UK
| | | | - Paula Costello
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Ian Brown
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Nicholas Cortes
- Hampshire Hospitals NHS Foundation Trust, Department of Microbiology, Basingstoke and North Hants Hospital, Basingstoke, UK; Gibraltar Health Authority, Gibraltar, UK
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton, UK
| | - Veronica L Fowler
- Hampshire Hospitals NHS Foundation Trust, Department of Microbiology, Basingstoke and North Hants Hospital, Basingstoke, UK
| |
Collapse
|
255
|
Park JS, Hsieh K, Chen L, Kaushik A, Trick AY, Wang T. Digital CRISPR/Cas-Assisted Assay for Rapid and Sensitive Detection of SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003564. [PMID: 33717855 PMCID: PMC7927608 DOI: 10.1002/advs.202003564] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/11/2020] [Indexed: 05/04/2023]
Abstract
The unprecedented demand for rapid diagnostics in response to the COVID-19 pandemic has brought the spotlight onto clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)-assisted nucleic acid detection assays. Already benefitting from an elegant detection mechanism, fast assay time, and low reaction temperature, these assays can be further advanced via integration with powerful, digital-based detection. Thus motivated, the first digital CRISPR/Cas-assisted assay-coined digitization-enhanced CRISPR/Cas-assisted one-pot virus detection (deCOViD)-is developed and applied toward SARS-CoV-2 detection. deCOViD is realized through tuning and discretizing a one-step, fluorescence-based, CRISPR/Cas12a-assisted reverse transcription recombinase polymerase amplification assay into sub-nanoliter reaction wells within commercially available microfluidic digital chips. The uniformly elevated digital concentrations enable deCOViD to achieve qualitative detection in <15 min and quantitative detection in 30 min with high signal-to-background ratio, broad dynamic range, and high sensitivity-down to 1 genome equivalent (GE) µL-1 of SARS-CoV-2 RNA and 20 GE µL-1 of heat-inactivated SARS-CoV-2, which outstrips its benchtop-based counterpart and represents one of the fastest and most sensitive CRISPR/Cas-assisted SARS-CoV-2 detection to date. Moreover, deCOViD can detect RNA extracts from clinical samples. Taken together, deCOViD opens a new avenue for advancing CRISPR/Cas-assisted assays and combating the COVID-19 pandemic and beyond.
Collapse
Affiliation(s)
- Joon Soo Park
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Kuangwen Hsieh
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Liben Chen
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Aniruddha Kaushik
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Alexander Y. Trick
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Tza‐Huei Wang
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Institute for NanoBioTechnologyJohns Hopkins UniversityBaltimoreMD21218USA
| |
Collapse
|
256
|
Newman CM, Ramuta MD, McLaughlin MT, Wiseman RW, Karl JA, Dudley DM, Stauss MR, Maddox RJ, Weiler AM, Bliss MI, Fauser KN, Haddock LA, Shortreed CG, Haj AK, Accola MA, Heffron AS, Bussan HE, Reynolds MR, Harwood OE, Moriarty RV, Stewart LM, Crooks CM, Prall TM, Neumann EK, Somsen ED, Burmeister CB, Hall KL, Rehrauer WM, Friedrich TC, O’Connor SL, O’Connor DH. Initial evaluation of a mobile SARS-CoV-2 RT-LAMP testing strategy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2020.07.28.20164038. [PMID: 33655260 PMCID: PMC7924282 DOI: 10.1101/2020.07.28.20164038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-CoV-2 RNA. From July 16 to November 19, 2020, 4,704 surveillance samples were collected from volunteers and tested for SARS-CoV-2 at 5 sites. A total of 21 samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, while 8 were negative for SARS-CoV-2 RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We estimated the RT-LAMP assay's false-negative rate from July 16 to September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or less and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP negative pools (2,493 samples) testing positive in the more sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and can effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing modalities.
Collapse
Affiliation(s)
- Christina M. Newman
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Mitchell D. Ramuta
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew T. McLaughlin
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Roger W. Wiseman
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie A. Karl
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Dawn M. Dudley
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | - Mason I. Bliss
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Luis A. Haddock
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Cecilia G. Shortreed
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Amelia K. Haj
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Molly A. Accola
- University of Wisconsin Hospitals and Clinics, Madison, WI, USA
| | - Anna S. Heffron
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Hailey E. Bussan
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew R. Reynolds
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Olivia E. Harwood
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan V. Moriarty
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Laurel M. Stewart
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Chelsea M. Crooks
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Trent M. Prall
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Emma K. Neumann
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth D. Somsen
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Corrie B. Burmeister
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristi L. Hall
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - William M. Rehrauer
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Hospitals and Clinics, Madison, WI, USA
| | - Thomas C. Friedrich
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Shelby L. O’Connor
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - David H. O’Connor
- Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, Madison, WI, USA
| |
Collapse
|
257
|
Yaren O, McCarter J, Phadke N, Bradley KM, Overton B, Yang Z, Ranade S, Patil K, Bangale R, Benner SA. Ultra-rapid detection of SARS-CoV-2 in public workspace environments. PLoS One 2021; 16:e0240524. [PMID: 33626039 PMCID: PMC7904170 DOI: 10.1371/journal.pone.0240524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Managing the pandemic caused by SARS-CoV-2 requires new capabilities in testing, including the possibility of identifying, in minutes, infected individuals as they enter spaces where they must congregate in a functioning society, including workspaces, schools, points of entry, and commercial business establishments. Here, the only useful tests (a) require no sample transport, (b) require minimal sample manipulation, (c) can be performed by unlicensed individuals, (d) return results on the spot in much less than one hour, and (e) cost no more than a few dollars. The sensitivity need not be as high as normally required by the FDA for screening asymptomatic carriers (as few as 10 virions per sample), as these viral loads are almost certainly not high enough for an individual to present a risk for forward infection. This allows tests specifically useful for this pandemic to trade-off unneeded sensitivity for necessary speed, simplicity, and frugality. In some studies, it was shown that viral load that creates forward-infection risk may exceed 105 virions per milliliter, easily within the sensitivity of an RNA amplification architecture, but unattainable by antibody-based architectures that simply target viral antigens. Here, we describe such a test based on a displaceable probe loop amplification architecture.
Collapse
Affiliation(s)
- Ozlem Yaren
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Jacquelyn McCarter
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Nikhil Phadke
- GenePath Diagnostics Inc., Ann Arbor, Michigan, United States of America
- GenePath Diagnostics India Pvt. Ltd., Pune, Maharashtra, India
| | - Kevin M. Bradley
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Benjamin Overton
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
- Firebird Biomolecular Sciences LLC, Alachua, Florida, United States of America
| | | | - Kunal Patil
- GenePath Diagnostics India Pvt. Ltd., Pune, Maharashtra, India
| | | | - Steven A. Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
- Firebird Biomolecular Sciences LLC, Alachua, Florida, United States of America
| |
Collapse
|
258
|
Sivakumar R, Dinh VP, Lee NY. Ultraviolet-induced in situ gold nanoparticles for point-of-care testing of infectious diseases in loop-mediated isothermal amplification. LAB ON A CHIP 2021; 21:700-709. [PMID: 33554994 DOI: 10.1039/d1lc00019e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The present study investigated ultraviolet-induced in situ gold nanoparticles (AuNPs) coupled with loop-mediated isothermal amplification (LAMP) for the point-of-care testing (POCT) of two major infectious pathogens, namely, Coronavirus (COVID-19) and Enterococcus faecium (E. faecium spp.). In the process, gold ions in a gold chloride (HAuCl4) solution were reduced using trisodium citrate (Na3Ct), a reducing agent, and upon UV illumination, red-colored AuNPs were produced in the presence of LAMP amplicons. The nitrogenous bases of the target deoxyribonucleic acid (DNA) acted as a physical support for capturing gold ions dissolved in the sample. The high affinity of gold with the nitrogenous bases enabled facile detection within 10 min, and the detection limit of COVID-19 plasmid DNA was as low as 42 fg μL-1. To ensure POCT, we designed a portable device that contained arrays of reagent chambers and detection chambers. In the portable device, colorimetric reagents such as HAuCl4 and Na3Ct were contained in the reagent chambers; these reagents were subsequently transferred to the detection chambers where LAMP amplicons were present and thus allowed convenient sample delivery and multiplex detection. Owing to the high sensitivity of the in situ AuNPs, simplicity of portable device fabrication, and rapid colorimetric detection, we strongly believe that the fabricated portable device could serve as a kit for rapid POCT for instantaneous detection of infectious diseases, and could be readily usable at the bedside.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Vu Phong Dinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| |
Collapse
|
259
|
Li P, Lee GH, Kim SY, Kwon SY, Kim HR, Park S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS NANO 2021; 15:1960-2004. [PMID: 33534541 DOI: 10.1021/acsnano.0c06688] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Patient-friendly medical diagnostics and treatments have been receiving a great deal of interest due to their rapid and cost-effective health care applications with minimized risk of infection, which has the potential to replace conventional hospital-based medical procedures. In particular, the integration of recently developed materials into health care devices allows the rapid development of point-of-care (POC) sensing platforms and implantable devices with special functionalities. In this review, the recent advances in biosensors for patient-friendly diagnosis and implantable devices for patient-friendly treatment are discussed. Comprehensive analysis of portable and wearable biosensing platforms for patient-friendly health monitoring and disease diagnosis is provided, including topics such as materials selection, device structure and integration, and biomarker detection strategies. Moreover, specific challenges related to each biological fluid for wearable biosensor-based POC applications are presented. Also, advances in implantable devices, including recent materials development and wireless communication strategies, are discussed. Furthermore, various patient-friendly surgical and treatment approaches are reviewed, such as minimally invasive insertion and mounting, in vivo electrical and optical modulations, and post-operation health monitoring. Finally, the challenges and future perspectives toward the development of the patient-friendly diagnosis and treatment are provided.
Collapse
Affiliation(s)
- Pei Li
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gun-Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su Yeong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se Young Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry and Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
260
|
Rhouati A, Teniou A, Badea M, Marty JL. Analysis of Recent Bio-/Nanotechnologies for Coronavirus Diagnosis and Therapy. SENSORS (BASEL, SWITZERLAND) 2021; 21:1485. [PMID: 33672772 PMCID: PMC7924586 DOI: 10.3390/s21041485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022]
Abstract
Despite barrier measures and physical distancing tailored by the populations worldwide, coronavirus continues to spread causing severe health and social-economic problems. Therefore, researchers are focusing on developing efficient detection and therapeutic platforms for SARS-CoV2. In this context, various biotechnologies, based on novel molecules targeting the virus with high specificity and affinity, have been described. In parallel, new approaches exploring nanotechnology have been proposed for enhancing treatments and diagnosis. We discuss in the first part of this review paper, the different biosensing and rapid tests based on antibodies, nucleic acids and peptide probes described since the beginning of the pandemic. Furthermore, given their numerous advantages, the contribution of nanotechnologies is also highlighted.
Collapse
Affiliation(s)
- Amina Rhouati
- Bioengineering Laboratory, Higher National School of Biotechnology, Constantine 25016, Algeria;
| | - Ahlem Teniou
- Bioengineering Laboratory, Higher National School of Biotechnology, Constantine 25016, Algeria;
| | - Mihaela Badea
- Faculty of Medicine, Transilvania University of Brasov, 500039 Brasov, Romania;
| | - Jean Louis Marty
- Laboratoire BAE, Université de Perpignan Via domitia, 66860 Perpignan, France
| |
Collapse
|
261
|
Gao Y, Han Y, Wang C, Qiang L, Gao J, Wang Y, Liu H, Han L, Zhang Y. Rapid and sensitive triple-mode detection of causative SARS-CoV-2 virus specific genes through interaction between genes and nanoparticles. Anal Chim Acta 2021; 1154:338330. [PMID: 33736792 PMCID: PMC7887451 DOI: 10.1016/j.aca.2021.338330] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022]
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19) is highly infectious, which threatens human health and has received increasing attention. So far, there is no specific drug or vaccine for COVID-19. Therefore, it is urgent to establish a rapid and sensitive early diagnosis platform, which is of great significance for physical separation of infected persons after rapid diagnosis. Here, we propose a colorimetric/SERS/fluorescence triple-mode biosensor based on AuNPs for the fast selective detection of viral RNA in 40 min. AuNPs with average size of 17 nm were synthesized, and colorimetric, surface enhanced Raman scattering (SERS), and fluorescence signals of sensors are simultaneously detected based on their basic aggregation property and affinity energy to different bio-molecules. The sensor achieves a limit detection of femtomole level in all triple modes, which is 160 fM in absorbance mode, 259 fM in fluorescence mode, and 395 fM in SERS mode. The triple-mode signals of the sensor are verified with each other to make the experimental results more accurate, and the capacity to recognize single-base mismatch in each working mode minimizes the false negative/positive reading of SARS-CoV-2. The proposed sensing platform provides a new way for the fast, sensitive, and selective detection of COVID-19 and other diseases.
Collapse
Affiliation(s)
- Yakun Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yingkuan Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Le Qiang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Jianwei Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yanhao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
262
|
Kyosei Y, Yamura S, Namba M, Yoshimura T, Watabe S, Ito E. Antigen tests for COVID-19. Biophys Physicobiol 2021; 18:28-39. [PMID: 33954080 PMCID: PMC8049777 DOI: 10.2142/biophysico.bppb-v18.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
PCR diagnosis has been considered as the gold standard for coronavirus disease 2019 (COVID-19) and other many diseases. However, there are many problems in using PCR, such as non-specific (i.e., false-positive) and false-negative amplifications, the limits of a target sample volume, deactivation of the enzymes used, complicated techniques, difficulty in designing probe sequences, and the expense. We, thus, need an alternative to PCR, for example an ultrasensitive antigen test. In the present review, we summarize the following three topics. (1) The problems of PCR are outlined. (2) The antigen tests are surveyed in the literature that was published in 2020, and their pros and cons are discussed for commercially available antigen tests. (3) Our own antigen test on the basis of an ultrasensitive enzyme-linked immunosorbent assay (ELISA) is introduced. Finally, we discuss the possibility that our antigen test by an ultrasensitive ELISA technique will become the gold standard for diagnosis of COVID-19 and other diseases.
Collapse
Affiliation(s)
- Yuta Kyosei
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Sou Yamura
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Mayuri Namba
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Teruki Yoshimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Hokkaido 061-0293, Japan
| | - Satoshi Watabe
- Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.,Graduate Institute of Medicine, Kaohsiung Medical University, Sanmin, Kaohsiung 80756, Taiwan
| |
Collapse
|
263
|
Chaibun T, Puenpa J, Ngamdee T, Boonapatcharoen N, Athamanolap P, O'Mullane AP, Vongpunsawad S, Poovorawan Y, Lee SY, Lertanantawong B. Rapid electrochemical detection of coronavirus SARS-CoV-2. Nat Commun 2021; 12:802. [PMID: 33547323 PMCID: PMC7864991 DOI: 10.1038/s41467-021-21121-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/μL of N and S genes, in less than 2 h. Sensor evaluation with 106 clinical samples, including 41 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19.
Collapse
Affiliation(s)
- Thanyarat Chaibun
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tatchanun Ngamdee
- Department of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Nimaradee Boonapatcharoen
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pornpat Athamanolap
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Anthony Peter O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Su Yin Lee
- Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
| | - Benchaporn Lertanantawong
- Biosensors Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
264
|
Kailasa SK, Mehta VN, Koduru JR, Basu H, Singhal RK, Murthy ZVP, Park TJ. An overview of molecular biology and nanotechnology based analytical methods for the detection of SARS-CoV-2: promising biotools for the rapid diagnosis of COVID-19. Analyst 2021; 146:1489-1513. [PMID: 33543178 DOI: 10.1039/d0an01528h] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Currently, the 2019 novel coronavirus (2019-nCoV) is drastically affecting 214 countries, causing severe pneumonia in patients, which has resulted in lockdown being implemented in several countries to stop its local transmission. Considering this, the rapid screening and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; 2019-nCoV) play an essential role in the diagnosis of COVID-19, which can minimize local transmission and prevent an epidemic. Due to this public health emergency, the development of ultra-fast reliable diagnostic kits is essential for the diagnosis of COVID-19. Recently, molecular biology and nanotechnology based analytical methods have proven to be promising diagnostic tools for the rapid screening of 2019-nCoV with high accuracy and precision. The main aim of this review is to provide a retrospective overview on the molecular biology tools (reverse transcription polymerase chain reaction (RT-PCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP)) and nanotechnology based analytical tools (enzyme-linked immunosorbent assay (ELISA), RT-PCR, and lateral flow assay) for the rapid diagnosis of COVID-19. This review also presents recent reports on other analytical techniques including paper spray mass spectrometry for the diagnosis of COVID-19 in clinical samples. Finally, we provide a quick reference on molecular biology and nanotechnology based analytical tools for COVID-19 diagnosis in clinical samples.
Collapse
Affiliation(s)
- Suresh Kumar Kailasa
- Department of Chemistry, S. V. National Institute of Technology, Surat - 395007, Gujarat, India.
| | | | | | | | | | | | | |
Collapse
|
265
|
Huang D, Shi Z, Qian J, Bi K, Fang M, Xu Z. A CRISPR-Cas12a-derived biosensor enabling portable personal glucose meter readout for quantitative detection of SARS-CoV-2. Biotechnol Bioeng 2021; 118:1587-1596. [PMID: 33410130 DOI: 10.1002/bit.27673] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/18/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the whole world and caused significant difficulties in the prevention and control of the epidemic. In this case, several detection methods have been established based on nucleic acid diagnostic techniques and immunoassays to achieve sensitive and specific detection of SARS-CoV-2. However, most methods are still largely dependent on professional instruments, highly trained operators, and centralized laboratories. These limitations gravely diminish their practicality and portability. Herein, a clustered regularly interspaced short palindromic repeats (CRISPR) Cas12a based assay was developed for portable, rapid and sensitive of SARS-CoV-2. In this assay, samples were quickly pretreated and amplified by reverse transcription recombinase-aided amplification under mild conditions. Then, by combining the CRISPR Cas12a system and a glucose-producing reaction, the signal of the virus was converted to that of glucose, which can be quantitatively read by a personal glucose meter in a few seconds. Nucleocapsid protein gene was tested as a model target, and the sensitivity for quantitative detection was as low as 10 copies/μl, which basically meet the needs of clinical diagnosis. In addition, with the advantages of lower material cost, shorter detection time, and no requirement for professional instrument in comparison with quantitative reverse transcription-polymerase chain reaction, this assay is expected to provide a powerful technical support for the early diagnosis and intervention during epidemic prevention and control.
Collapse
Affiliation(s)
- Di Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhuwei Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiajie Qian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Ke Bi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Mengjun Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
266
|
Chan SK, Du P, Ignacio C, Mehta S, Newton IG, Steinmetz NF. Virus-Like Particles as Positive Controls for COVID-19 RT-LAMP Diagnostic Assays. Biomacromolecules 2021; 22:1231-1243. [PMID: 33539086 DOI: 10.1021/acs.biomac.0c01727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a rapid and inexpensive isothermal alternative to the current gold standard reverse transcription quantitative polymerase chain reaction (RT-qPCR) for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, unlike RT-qPCR, there are no consensus detection regions or optimal RT-LAMP methods, and most protocols do not include internal controls to ensure reliability. Naked RNAs, plasmids, or even RNA from infectious COVID-19 patients have been used as external positive controls for RT-LAMP assays, but such reagents lack the stability required for full-process control. To overcome the lack of proper internal and external positive controls and the instability of the detection RNA, we developed virus-like particles (VLPs) using bacteriophage Qβ and plant virus cowpea chlorotic mottle virus (CCMV) for the encapsidation of target RNA, namely a so-called SARS-CoV-2 LAMP detection module (SLDM). The target RNA is a truncated segment of the SARS-CoV-2 nucleocapsid (N) gene and human RNase P gene (internal control) as positive controls for RT-qPCR and RT-LAMP. Target RNAs stably encapsidated in Qβ and CCMV VLPs were previously shown to function as full-process controls in RT-qPCR assays, and here we show that SLDMs can fulfill the same function for RT-LAMP and swab-to-test (direct RT-LAMP with heat lysis) assays. The SLDM was validated in a clinical setting, highlighting the promise of VLPs as positive controls for molecular assays.
Collapse
|
267
|
Dong Y, Wu X, Li S, Lu R, Li Y, Wan Z, Qin J, Yu G, Jin X, Zhang C. Comparative evaluation of 19 reverse transcription loop-mediated isothermal amplification assays for detection of SARS-CoV-2. Sci Rep 2021; 11:2936. [PMID: 33536475 PMCID: PMC7858603 DOI: 10.1038/s41598-020-80314-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has caused a global pandemics. To facilitate the detection of SARS-CoV-2 infection, various RT-LAMP assays using 19 sets of primers had been developed, but never been compared. We performed comparative evaluation of the 19 sets of primers using 4 RNA standards and 29 clinical samples from COVID-19 patients. Six of 15 sets of primers were firstly identified to have faster amplification when tested with four RNA standards, and were further subjected to parallel comparison with the remaining four primer sets using 29 clinical samples. Among these 10 primer sets, Set-4 had the highest positive detection rate of SARS-CoV-2 (82.8%), followed by Set-10, Set-11, and Set-13 and Set-17 (75.9%). Set-14 showed the fastest amplification speed (Tt value < 8.5 min), followed by Set-17 (Tt value < 12.5 min). Based on the overall detection performance, Set-4, Set-10, Set-11, Set-13, Set-14 and Set-17 that target Nsp3, S, S, E, N and N gene regions of SARS-CoV-2, respectively, were determined to be better than the other primer sets. Two RT-LAMP assays with the Set-4 primers in combination with any one of four other primer sets (Set-14, Set-10, Set-11, and Set-13) were recommended to be used in the COVID-19 surveillance.
Collapse
Affiliation(s)
- Yajuan Dong
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Xiuming Wu
- Pathogen Discovery and Evolution Unit, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center, Shanghai, 200335, China
| | - Renfei Lu
- Clinical Laboratory, Nantong Third Hospital Affiliated To Nantong University, Nantong, 226006, China
| | - Yingxue Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, 225300, China
| | - Jianru Qin
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Guoying Yu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Xia Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
268
|
Shabani E, Dowlatshahi S, Abdekhodaie MJ. Laboratory detection methods for the human coronaviruses. Eur J Clin Microbiol Infect Dis 2021; 40:225-246. [PMID: 32984911 PMCID: PMC7520381 DOI: 10.1007/s10096-020-04001-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Coronaviruses are a group of envelop viruses which lead to diseases in birds and mammals as well as human. Seven coronaviruses have been discovered in humans that can cause mild to lethal respiratory tract infections. HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 are the low-risk members of this family and the reason for some common colds. Besides, SARS-CoV, MERS-CoV, and newly identified SARS-CoV-2, which is also known as 2019-nCoV, are the more dangerous viruses. Due to the rapid spread of this novel coronavirus and its related disease, COVID-19, a reliable, simple, fast, and low-cost detection method is necessary for patient diagnosis and tracking worldwide. Human coronaviruses detection methods were classified and presented in this article. The laboratory detection techniques include RT-PCR, RT-LAMP, electrochemical and optical biosensors for RNA detection, and whole virus or viral proteins detection assays.
Collapse
Affiliation(s)
- Ehsan Shabani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Sayeh Dowlatshahi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
- Yeates School of Graduate Studies, Ryerson University, Toronto, ON, Canada.
| |
Collapse
|
269
|
Anahtar MN, McGrath GEG, Rabe BA, Tanner NA, White BA, Lennerz JKM, Branda JA, Cepko CL, Rosenberg ES. Clinical Assessment and Validation of a Rapid and Sensitive SARS-CoV-2 Test Using Reverse Transcription Loop-Mediated Isothermal Amplification Without the Need for RNA Extraction. Open Forum Infect Dis 2021; 8:ofaa631. [PMID: 34853795 PMCID: PMC7798487 DOI: 10.1093/ofid/ofaa631] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Amid the enduring pandemic, there is an urgent need for expanded access to rapid, sensitive, and inexpensive coronavirus disease 2019 (COVID-19) testing worldwide without specialized equipment. We developed a simple test that uses colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect severe acute resrpiratory syndrome coronavirus 2 (SARS-CoV-2) in 40 minutes from sample collection to result. METHODS We tested 135 nasopharyngeal specimens from patients evaluated for COVID-19 infection at Massachusetts General Hospital. Specimens were either added directly to RT-LAMP reactions, inactivated by a combined chemical and heat treatment step, or inactivated then purified with a silica particle-based concentration method. Amplification was performed with 2 SARS-CoV-2-specific primer sets and an internal specimen control; the resulting color change was visually interpreted. RESULTS Direct RT-LAMP testing of unprocessed specimens could only reliably detect samples with abundant SARS-CoV-2 (>3 000 000 copies/mL), with sensitivities of 50% (95% CI, 28%-72%) and 59% (95% CI, 43%-73%) in samples collected in universal transport medium and saline, respectively, compared with quantitative polymerase chain reaction (qPCR). Adding an upfront RNase inactivation step markedly improved the limit of detection to at least 25 000 copies/mL, with 87.5% (95% CI, 72%-95%) sensitivity and 100% specificity (95% CI, 87%-100%). Using both inactivation and purification increased the assay sensitivity by 10-fold, achieving a limit of detection comparable to commercial real-time PCR-based diagnostics. CONCLUSIONS By incorporating a fast and inexpensive sample preparation step, RT-LAMP accurately detects SARS-CoV-2 with limited equipment for about US$6 per sample, making this a potentially ideal assay to increase testing capacity, especially in resource-limited settings.
Collapse
Affiliation(s)
- Melis N Anahtar
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Graham E G McGrath
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Brian A Rabe
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Benjamin A White
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jochen K M Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John A Branda
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Constance L Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Eric S Rosenberg
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
270
|
Laboratory testing for the diagnosis of COVID-19. Biochem Biophys Res Commun 2021; 538:226-230. [PMID: 33139015 PMCID: PMC7598306 DOI: 10.1016/j.bbrc.2020.10.069] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Rapid and accurate laboratory diagnosis of active COVID-19 infection is one of the cornerstones of pandemic control. With the myriad of tests available in the market, the use of correct specimen type and laboratory-testing technique in the right clinical scenario could be challenging for non-specialists. In this mini-review, we will discuss the difference in diagnostic performance for different upper and lower respiratory tract specimens, and the role of blood and fecal specimens. We will analyze the performance characteristics of laboratory testing techniques of nucleic acid amplification tests, antigen detection tests, antibody detection tests, and point-of-care tests. Finally, the dynamics of viral replication and antibody production, and laboratory results interpretation in conjunction with clinical scenarios will be discussed.
Collapse
|
271
|
Direct diagnostic testing of SARS-CoV-2 without the need for prior RNA extraction. Sci Rep 2021; 11:2402. [PMID: 33510181 PMCID: PMC7844049 DOI: 10.1038/s41598-021-81487-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has resulted in an urgent need for a rapid, point of care diagnostic testing that could be rapidly scaled on a worldwide level. We developed and tested a highly sensitive and robust assay based on reverse transcription loop mediated isothermal amplification (RT-LAMP) that uses readily available reagents and a simple heat block using contrived spike-in and actual clinical samples. RT-LAMP testing on RNA-spiked samples showed a limit of detection (LoD) of 2.5 copies/μl of viral transport media. RT-LAMP testing directly on clinical nasopharyngeal swab samples in viral transport media had an 85% positive percentage agreement (PPA) (17/20), and 100% negative percentage agreement (NPV) and delivered results in 30 min. Our optimized RT-LAMP based testing method is a scalable system that is sufficiently sensitive and robust to test for SARS-CoV-2 directly on clinical nasopharyngeal swab samples in viral transport media in 30 min at the point of care without the need for specialized or proprietary equipment or reagents. This cost-effective and efficient one-step testing method can be readily available for COVID-19 testing world-wide, especially in resource poor settings.
Collapse
|
272
|
Ding S, Chen G, Wei Y, Dong J, Du F, Cui X, Huang X, Tang Z. Sequence-specific and multiplex detection of COVID-19 virus (SARS-CoV-2) using proofreading enzyme-mediated probe cleavage coupled with isothermal amplification. Biosens Bioelectron 2021; 178:113041. [PMID: 33545551 PMCID: PMC7842130 DOI: 10.1016/j.bios.2021.113041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 01/25/2023]
Abstract
The outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been challenging human health worldwide. Loop-mediated isothermal amplification (LAMP) has been promptly applied to the detection of SARS-CoV-2 owing to its high amplification efficacy and less requirement of the thermal cycler. However, the vast majority of these LAMP-based assays depend on the non-specific detection of LAMP products, which can not discern the undesirable amplificons, likely to yield unreliable results. Herein, a sequence-specific LAMP assay was reported to detect SARS-CoV-2 using proofreading enzyme-mediated probe cleavage (named Proofman), which could realize real-time and visual detection without uncapping. This assay, introducing a proofreading enzyme and the fluorogenic probe to reverse-transcription LAMP (RT-Proofman-LAMP), can specifically detect the SARS-CoV-2 RNA with a detection limit of 100 copies. In addition to the real-time analysis, the assay is capable of endpoint visualization under a transilluminator within 50 min, providing a convenient reporting manner under the setting of point-of-care testing (POCT). In combination with different fluorophores, the one-pot multiplex assay was successfully achieved to detect multiple targets of SARS-CoV-2 and inner control simultaneously. In summary, the development of RT-Proofman-LAMP offers a versatile and highly-specific method for fast field screening and laboratory testing of SARS-CoV-2, making it a promising platform in COVID-19 diagnosis.
Collapse
Affiliation(s)
- Sheng Ding
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China.
| | - Yinghua Wei
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, PR China.
| |
Collapse
|
273
|
Huete-Pérez JA, Cabezas-Robelo C, Páiz-Medina L, Hernández-Álvarez CA, Quant-Durán C, McKerrow JH. First report on prevalence of SARS-CoV-2 infection among health-care workers in Nicaragua. PLoS One 2021; 16:e0246084. [PMID: 33503071 PMCID: PMC7840011 DOI: 10.1371/journal.pone.0246084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/13/2021] [Indexed: 01/01/2023] Open
Abstract
The Nicaraguan COVID-19 situation is exceptional for Central America. The government restricts testing and testing supplies, and the true extent of the coronavirus crisis remains unknown. Dozens of deaths have been reported among health-care workers. However, statistics on the crisis' effect on health-care workers and their risk of being infected with SARS-CoV-2 are lacking. We aimed to estimate the prevalence of SARS-CoV-2 infection in health-care workers and to examine correlations with risk factors such as age, sex and comorbidities. Study participants (N = 402, median age 38.48 years) included physicians, nurses and medical assistants, from public and private hospitals, independent of symptom presentation. SARS-CoV-2 was detected on saliva samples using the loop-mediated isothermal amplification assay. A questionnaire was employed to determine subjects' COVID-19-associated symptoms and their vulnerability to complications from risk factors such as age, sex, professional role and comorbidities. The study was performed five weeks into the exponential growth period in Nicaragua. We discovered that 30.35% of health-care workers participating in our study had been infected with SARS-CoV-2. A large percentage (54.92%) of those who tested positive were asymptomatic and were still treating patients. Nearly 50% of health-care workers who tested positive were under 40, an astonishing 30.33% reported having at least one comorbidity. In our study, sex and age are important risk factors for the probability of testing positive for SARS-CoV-2 with significance being greatest among those between 30 and 40 years of age. In general, being male resulted in higher risk. Our data are the first non-governmental data obtained in Nicaragua. They shed light on several important aspects of COVID-19 in an underdeveloped nation whose government has implemented a herd-immunity strategy, while lacking an adequate healthcare system and sufficient PPE for health-care workers. These data are important for creating policies for containing the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Jorge A. Huete-Pérez
- Molecular Biology Center, University of Central America, UCA, Managua, Nicaragua
| | | | - Lucía Páiz-Medina
- Molecular Biology Center, University of Central America, UCA, Managua, Nicaragua
| | | | - Carlos Quant-Durán
- Metabolic and Infectious Diseases, Vivian Pellas Hospital, Masaya, Nicaragua
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
274
|
Moehling TJ, Choi G, Dugan LC, Salit M, Meagher RJ. LAMP Diagnostics at the Point-of-Care: Emerging Trends and Perspectives for the Developer Community. Expert Rev Mol Diagn 2021; 21:43-61. [PMID: 33474990 DOI: 10.1080/14737159.2021.1873769] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Over the past decade, loop-mediated isothermal amplification (LAMP) technology has played an important role in molecular diagnostics. Amongst numerous nucleic acid amplification assays, LAMP stands out in terms of sample-to-answer time, sensitivity, specificity, cost, robustness, and accessibility, making it ideal for field-deployable diagnostics in resource-limited regions.Areas covered: In this review, we outline the front-end LAMP design practices for point-of-care (POC) applications, including sample handling and various signal readout methodologies. Next, we explore existing LAMP technologies that have been validated with clinical samples in the field. We summarize recent work that utilizes reverse transcription (RT) LAMP to rapidly detect SARS-CoV-2 as an alternative to standard PCR protocols. Finally, we describe challenges in translating LAMP from the benchtop to the field and opportunities for future LAMP assay development and performance reporting.Expert opinion: Despite the popularity of LAMP in the academic research community and a recent surge in interest in LAMP due to the COVID-19 pandemic, there are numerous areas for improvement in the fundamental understanding of LAMP, which are needed to elevate the field of LAMP assay development and characterization.
Collapse
Affiliation(s)
- Taylor J Moehling
- Sandia National Laboratories, Biotechnology & Bioengineering Dept., Livermore, CA, USA
| | - Gihoon Choi
- Sandia National Laboratories, Biotechnology & Bioengineering Dept., Livermore, CA, USA
| | - Lawrence C Dugan
- Lawrence Livermore National Laboratory, Biosciences & Biotechnology Div., Livermore, CA, USA
| | - Marc Salit
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Lab and Departments of Bioengineering and Pathology, Stanford University, Stanford, CA, USA
| | - Robert J Meagher
- Sandia National Laboratories, Biotechnology & Bioengineering Dept., Livermore, CA, USA
| |
Collapse
|
275
|
Oyewole AO, Barrass L, Robertson EG, Woltmann J, O’Keefe H, Sarpal H, Dangova K, Richmond C, Craig D. COVID-19 Impact on Diagnostic Innovations: Emerging Trends and Implications. Diagnostics (Basel) 2021; 11:182. [PMID: 33513988 PMCID: PMC7912626 DOI: 10.3390/diagnostics11020182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Diagnostic testing remains the backbone of the coronavirus disease 2019 (COVID-19) response, supporting containment efforts to mitigate the outbreak. The severity of this crisis and increasing capacity issues associated with polymerase chain reaction (PCR)-based testing, accelerated the development of diagnostic solutions to meet demands for mass testing. The National Institute for Health Research (NIHR) Innovation Observatory is the national horizon scanning organization in England. Since March, the Innovation Observatory has applied advanced horizon scanning methodologies and tools to compile a diagnostic landscape, based upon data captured for molecular (MDx) and immunological (IDx) based diagnostics (commercialized/in development), for the diagnosis of SARS-CoV-2. In total we identified and tracked 1608 diagnostics, produced by 1045 developers across 54 countries. Our dataset shows the speed and scale in which diagnostics were produced and provides insights into key periods of development and shifts in trends between MDx and IDx solutions as the pandemic progressed. Stakeholders worldwide required timely and detailed intelligence to respond to major challenges, including testing capacity and regulatory issues. Our intelligence assisted UK stakeholders with assessing priorities and mitigation options throughout the pandemic. Here we present the global evolution of diagnostic innovations devised to meet changing needs, their regulation and trends across geographical regions, providing invaluable insights into the complexity of the COVID-19 phenomena.
Collapse
Affiliation(s)
- Anne O. Oyewole
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
| | - Lucy Barrass
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
| | - Emily G. Robertson
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
| | - James Woltmann
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
| | - Hannah O’Keefe
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, Newcastle NE2 4AX, UK
| | - Harsimran Sarpal
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
| | - Kim Dangova
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
| | - Catherine Richmond
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, Newcastle NE2 4AX, UK
| | - Dawn Craig
- National Institute for Health Research (NIHR) Innovation Observatory, Newcastle University, Newcastle NE4 5TG, UK; (L.B.); (E.G.R.); (J.W.); (H.O.); (H.S.); (K.D.); (C.R.); (D.C.)
- Evidence Synthesis Group, Population Health Sciences Institute, Newcastle University, Newcastle NE2 4AX, UK
| |
Collapse
|
276
|
Blairon L, Piteüs S, Beukinga I, Tré-Hardy M. Development and implementation of a RT-qPCR extraction-free protocol for the detection of SARS-CoV-2 and impact on the turn-around-time. J Med Virol 2021; 93:2538-2542. [PMID: 33415765 DOI: 10.1002/jmv.26782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
The occurrence of the COVID-19 second-wave outbreak in Europe has pushed laboratories performing molecular SARS-CoV-2 tests to increase their throughput and decrease the result rendering time. In this evaluation, we tested for the first time a new, extraction-free, protocol with the Allplex SARS-CoV-2 Assay RT-qPCR kit on a Nimbus platform. Ninety-one samples, of which 71 previously tested positive with RT-qPCR with extraction were immediately analyzed without extraction, using only a dilution and thermal shock protocol. The positive and negative percentage agreements were respectively 97.2% (95% confidence interval [CI]: 0.90-0.99) and 95.0% (95% CI: 0.76-0.99). The two false negatives observed were very weakly positive with the comparison method. Moderate variations in Ct of the targeted genes were observed (median ± 95% CI): E gene, +2.49 ± 0.44; N gene, +0.98 ± 0.54; RdRP/S genes, +2.64 ± 0.48. On the other hand, the number of tests performed within 24 h raised from 86.4% to 97.8%, the turn-around time decreased from 19:18 to 09:03 (p < .0001), and the number of tests that can be performed per day doubled since this technique was introduced routinely in our laboratory.
Collapse
Affiliation(s)
- Laurent Blairon
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium
| | - Sébastien Piteüs
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium
| | - Ingrid Beukinga
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium
| | - Marie Tré-Hardy
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium.,Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium.,Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
277
|
Sachdeva S, Davis RW, Saha AK. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front Bioeng Biotechnol 2021; 8:602659. [PMID: 33520958 PMCID: PMC7843572 DOI: 10.3389/fbioe.2020.602659] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Point-of-care testing (POCT) allows physicians to detect and diagnose diseases at or near the patient site, faster than conventional lab-based testing. The importance of POCT is considerably amplified in the trying times of the COVID-19 pandemic. Numerous point-of-care tests and diagnostic devices are available in the market including, but not limited to, glucose monitoring, pregnancy and infertility testing, infectious disease testing, cholesterol testing and cardiac markers. Integrating microfluidics in POCT allows fluid manipulation and detection in a singular device with minimal sample requirements. This review presents an overview of two technologies - (a.) Lateral Flow Assay (LFA) and (b.) Nucleic Acid Amplification - upon which a large chunk of microfluidic POCT diagnostics is based, some of their applications, and commercially available products. Apart from this, we also delve into other microfluidic-based diagnostics that currently dominate the in-vitro diagnostic (IVD) market, current testing landscape for COVID-19 and prospects of microfluidics in next generation diagnostics.
Collapse
Affiliation(s)
| | | | - Amit K. Saha
- Genome Technology Center, School of Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
278
|
Zhang S, Shin J, Shin S, Chung YJ. Development of reverse transcription loop-mediated isothermal amplification assays for point-of-care testing of avian influenza virus subtype H5 and H9. Genomics Inform 2021; 18:e40. [PMID: 33412756 PMCID: PMC7808867 DOI: 10.5808/gi.2020.18.4.e40] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 12/01/2022] Open
Abstract
Avian influenza (AIV) outbreaks can induce fatal human pulmonary infections in addition to economic losses to the poultry industry. In this study, we aimed to develop a rapid and sensitive point-of-care AIV test using loop-mediated isothermal amplification (LAMP) technology. We designed three sets of reverse transcription LAMP (RT-LAMP) primers targeting the matrix (M) and hemagglutinin (HA) genes of the H5 and H9 subtypes. RT-LAMP targeting the universal M gene was designed to screen for the presence of AIV and RT-LAMP assays targeting H5-HA and H9-HA were designed to discriminate between the H5 and H9 subtypes. All three RT-LAMP assays showed specific amplification results without nonspecific reactions. In terms of sensitivity, the detection limits of our RT-LAMP assays were 100 to 1,000 RNA copies per reaction, which were 10 times more sensitive than the detection limits of the reference reverse‒transcription polymerase chain reaction (RT-PCR) (1,000 to 10,000 RNA copies per reaction). The reaction time of our RT-LAMP assays was less than 30 min, which was approximately four times quicker than that of conventional RT-PCR. Altogether, these assays successfully detected the existence of AIV and discriminated between the H5 or H9 subtypes with higher sensitivity and less time than the conventional RT-PCR assay.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | - Sun Shin
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yeun-Jun Chung
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
279
|
Comparative research on nucleocapsid and spike glycoprotein as the rapid immunodetection targets of COVID-19 and establishment of immunoassay strips. Mol Immunol 2021; 131:6-12. [PMID: 33450670 PMCID: PMC7833923 DOI: 10.1016/j.molimm.2021.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/13/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
The monoclonal antibodies against S protein of COVID-19 have cross-reaction with HCoV-OC43, HCoV-NL63 and HCoV-HKU1. The N protein Ag-mAb system is more specific and accurate, suitable for immunoassay. N protein strips we prepared can quickly and easily screen the swab samples within 11 min with 93.33 % accuracy rate.
The SARS-CoV-2 virus responsible for coronavirus 2019 (COVID-19) poses a significant challenge to healthcare systems worldwide. According to the World Health Organization (WHO), the outbreak of COVID-19 has been a pandemic that infected more than 25.32 million people and caused more than 848.25 thousand deaths worldwide at the time of 1st September 2020. Despite governmental initiatives aimed to contain the spread of the disease, several countries are experiencing unmanageable increases in medical equipment and larger testing capacity. The current diagnosis based on nuclear acid requires specialized instruments, time-consuming, and laborious, the low-cost and convenient technologies were still urgently needed. Both spike and nucleocapsid are key structural proteins of COVID-19 with good immunogenicity, can serve as primary targets for immunoassay. After comparative research, we certified nucleocapsid antigen-monoclonal antibody (mAbs) system was more suitable for the COVID-19 immunodetection. Subsequently, we designed a rapid test strip based on it that can be used in large-scale screening of COVID-19 in population and more suitable for some remote and special needs areas were restricted by a medical condition or for quick and large quantities of screenings.
Collapse
|
280
|
Bukasov R, Dossym D, Filchakova O. Detection of RNA viruses from influenza and HIV to Ebola and SARS-CoV-2: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:34-55. [PMID: 33283798 DOI: 10.1039/d0ay01886d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
RNA-based viruses likely make up the highest pandemic threat among all known pathogens in about the last 100 years, since the Spanish Flu of 1918 with 50 M deaths up to COVID-19. Nowadays, an efficient and affordable testing strategy for such viruses have become the paramount target for the fields of virology and bioanalytical chemistry. The detection of the viruses (influenza, hepatitis, HIV, Zika, SARS, Ebola, SARS-CoV-2, etc.) and human antibodies to these viruses is described and tabulated in terms of the reported methods of detection, time to results, accuracy and specificity, if they are reported. The review is focused, but not limited to publications in the last decade. Finally, the limits of detection for each representative publication are tabulated by detection methods and discussed. These methods include PCR, lateral flow immunoassays, LAMP-based methods, ELISA, electrochemical methods (e.g., amperometry, voltammetry), fluorescence spectroscopy, AFM, SPR and SERS spectroscopy, silver staining and CRISPR-Cas based methods, bio-barcode detection, and resonance light scattering. The review is likely to be interesting for various scientists, and particularly helpful with information for establishing interdisciplinary research.
Collapse
Affiliation(s)
- Rostislav Bukasov
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Dina Dossym
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Olena Filchakova
- Biology Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| |
Collapse
|
281
|
Millioni R, Mortarino C. Test Groups, Not Individuals: A Review of the Pooling Approaches for SARS-CoV-2 Diagnosis. Diagnostics (Basel) 2021; 11:68. [PMID: 33406644 PMCID: PMC7823333 DOI: 10.3390/diagnostics11010068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022] Open
Abstract
Massive molecular testing for SARS-CoV-2 diagnosis is mandatory to manage the spread of COVID-19. Diagnostic screening should be performed at a mass scale, extended to the asymptomatic population, and repeated over time. An accurate diagnostic pipeline for SARS-CoV-2 that could massively increase the laboratory efficiency, while being sustainable in terms of time and costs, should be based on a pooling strategy. In the past few months, researchers from different disciplines had this same idea: test groups, not individuals. This critical review intends to highlight both the general consents-even if the results from different publications have been obtained with different protocols-and the points of disagreement that are creating some interpretative/comprehension difficulties. Different pooling schemes and technical aspects associated to the type of pooling adopted are described and discussed. We hope that this review can consolidate information to support researchers in designing optimized COVID-19 testing protocols based on pooling.
Collapse
Affiliation(s)
- Renato Millioni
- Fascial Manipulation Institute by Stecco, 35129 Padova, Italy
| | - Cinzia Mortarino
- Department of Statistical Sciences, University of Padova, 35121 Padova, Italy;
| |
Collapse
|
282
|
Frediansyah A, Tiwari R, Sharun K, Dhama K, Harapan H. Antivirals for COVID-19: A critical review. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2021; 9:90-98. [PMID: 33521390 PMCID: PMC7831805 DOI: 10.1016/j.cegh.2020.07.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
No specific drugs have been approved for coronavirus disease 2019 (COVID-19) to date as the development of antivirals usually requires time. Therefore, assessment and use of currently available antiviral drugs is critical for a timely response to the current pandemic. Here, we have reviewed anti-SARS-CoV-2 potencies of available antiviral drug groups such as fusion inhibitors, protease inhibitors, neuraminidase inhibitors, and M2 ion-channel protein blockers. Although clinical trials to assess the efficacy of these antivirals are ongoing, this review highlights important information including docking and modeling analyses, in vitro studies, as well as results from clinical uses of these antivirals against COVID-19 pandemic.
Collapse
Affiliation(s)
- Andri Frediansyah
- Research Division for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI), Wonosari, 55861, Indonesia.,Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, 72076, Germany
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Khan Sharun
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia.,Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia.,Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| |
Collapse
|
283
|
Wang Y, Li K, Xu G, Chen C, Song G, Dong Z, Lin L, Wang Y, Xu Z, Yu M, Yu X, Ying B, Fan Y, Chang L, Geng J. Low-Cost and Scalable Platform with Multiplexed Microwell Array Biochip for Rapid Diagnosis of COVID-19. RESEARCH (WASHINGTON, D.C.) 2021; 2021:2813643. [PMID: 33796859 PMCID: PMC7982056 DOI: 10.34133/2021/2813643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/31/2021] [Indexed: 02/05/2023]
Abstract
Sensitive detection of SARS-CoV-2 is of great importance for inhibiting the current pandemic of COVID-19. Here, we report a simple yet efficient platform integrating a portable and low-cost custom-made detector and a novel microwell array biochip for rapid and accurate detection of SARS-CoV-2. The instrument exhibits expedited amplification speed that enables colorimetric read-out within 25 minutes. A polymeric chip with a laser-engraved microwell array was developed to process the reaction between the primers and the respiratory swab RNA extracts, based on reverse transcriptase loop-mediated isothermal amplification (RT-LAMP). To achieve clinically acceptable performance, we synthesized a group of six primers to identify the conserved regions of the ORF1ab gene of SARS-CoV-2. Clinical trials were conducted with 87 PCR-positive and 43 PCR-negative patient samples. The platform demonstrated both high sensitivity (95.40%) and high specificity (95.35%), showing potentials for rapid and user-friendly diagnosis of COVID-19 among many other infectious pathogens.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Kaiju Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Gaolian Xu
- Nano Biomedical Research Centre, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chuan Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Guiqin Song
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Zaizai Dong
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Long Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yu Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Zhiyong Xu
- Wuhan Chain Medical Labs, Wuhan, Hubei 430011, China
| | - Mingxia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, China
| | - Binwu Ying
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| |
Collapse
|
284
|
Dynamic aspects of ORF1ab and N RNA cycle threshold values among COVID-19 patients in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 87:104657. [PMID: 33276148 PMCID: PMC7706417 DOI: 10.1016/j.meegid.2020.104657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 01/12/2023]
Abstract
The dynamics of viral loads among COVID-19 patients in Changzhou, China were evaluated using dynamic random effects models. The models were estimated by maximum likelihood methods allowing for between and within patient variations. Statistical criteria were developed for focusing on viral RNAs for clinical decision making. The empirical results showed that inflammation among patients were significant predictors of cycle threshold values for ORF1ab and N RNAs. Moreover, within subject variations were higher in Ct values of ORF1ab RNA indicating that assessment of N RNA may be adequate in resource-poor settings. The inter-relationships between ORF1ab and N RNAs were investigated and the need for developing comprehensive models for viral load dynamics is emphasized. It is important to account for between and within patient variations in Ct values of ORF1ab and N RNAs. Statistical methods are useful for discriminating between alternative empirical models. Ct values for ORF1ab RNA exhibit higher within-patient variations and N RNA may be adequate in many settings. Inflammation among patients appear more important than their ages for the dynamics of viral loads.
Collapse
|
285
|
Janíková M, Hodosy J, Boor P, Klempa B, Celec P. Loop-mediated isothermal amplification for the detection of SARS-CoV-2 in saliva. Microb Biotechnol 2021; 14:307-316. [PMID: 33497538 PMCID: PMC7888461 DOI: 10.1111/1751-7915.13737] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
In the fight against the recent COVID-19 pandemics, testing is crucial. Nasopharyngeal swabs and real-time RT-PCR are used for the detection of the viral RNA. The collection of saliva is non-invasive, pain-free and does not require trained personnel. An alternative to RT-PCR is loop-mediated isothermal amplification coupled with reverse transcription (RT-LAMP) that is easy to perform, quick and does not require a thermal cycler. The aim of this study was to test whether SARS-CoV-2 RNA can be detected directly in saliva using RT-LAMP. We have tested 16 primer mixes from the available literature in three rounds of sensitivity assays. The selected RT-LAMP primer mix has a limit of detection of 6 copies of viral RNA per reaction in comparison with RT-PCR with 1 copy per reaction. Whole saliva, as well as saliva collected using Salivette collection tubes, interfered with the RT-LAMP analysis. Neither Chelex-100 nor protease treatment of saliva prevented the inhibitory effect of saliva. With the addition of the ribonuclease inhibitor, the sensitivity of the RT-LAMP assay was 12 copies per reaction of RNA in Salivette® saliva samples and 6 copies per reaction of RNA in whole saliva samples. This study shows that it is possible to combine the use of saliva and RT-LAMP for SARS-CoV-2 RNA detection without RNA extraction which was confirmed on a small set of correctly diagnosed clinical samples. Further studies should prove whether this protocol is suitable for point of care testing in the clinical setting.
Collapse
Affiliation(s)
- Monika Janíková
- Institute of Molecular BiomedicineFaculty of MedicineComenius UniversityBratislavaSlovakia
| | - Július Hodosy
- Institute of Molecular BiomedicineFaculty of MedicineComenius UniversityBratislavaSlovakia
- University HospitalBratislavaSlovakia
| | - Peter Boor
- Institute of PathologyDepartment of NephrologyUniversity Clinic of the RWTHAachenGermany
| | - Boris Klempa
- Institute of VirologyBiomedical Research CenterSlovak Academy of SciencesBratislavaSlovakia
| | - Peter Celec
- Institute of Molecular BiomedicineFaculty of MedicineComenius UniversityBratislavaSlovakia
- Institute of PathophysiologyFaculty of MedicineComenius UniversityBratislavaSlovakia
- Department of Molecular BiologyFaculty of Natural SciencesComenius UniversityBratislavaSlovakia
| |
Collapse
|
286
|
Rai P, Kumar BK, Deekshit VK, Karunasagar I, Karunasagar I. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl Microbiol Biotechnol 2021; 105:441-455. [PMID: 33394144 PMCID: PMC7780074 DOI: 10.1007/s00253-020-11061-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
COVID-19 is a disease caused by SARS-CoV-2 capable of causing mild to severe infections in humans. Since its first appearance in China in December 2019, the pandemic has spread rapidly throughout the world. Despite considerable efforts made to contain the disease, the virus has continued its prevalence in many countries with varying degrees of clinical manifestations. To contain this pandemic, collaborative approach involving accurate diagnosis, epidemiology, surveillance, and prophylaxis is essential. However, proper diagnosis using rapid technologies plays a crucial role. With increasing incidence of COVID-19 cases, the accurate and early detection of the SARS-CoV-2 is need of the hour for effective prevention and management of COVID-19 cases as well as to curb its spread. RT-qPCR assay is considered to be the gold standard for the early detection of virus, but this protocol has limited application to use as bedside test because of its technical complexity. To address these challenges, several POC assays have been developed to facilitate the COVID-19 diagnosis outside the centralized testing laboratories as well to accelerate the clinical decision making with a least turnaround time. Hence, in this report, we review different nucleic acid-based and serological techniques available for the diagnosis and effective prevention of COVID-19. KEY POINTS : • Provides comprehensive information on the different diagnostic tools available for COVID-19 • Nucleic acid based tests or antigen detection tests are used for diagnostic purpose • Accurate diagnosis is essential for the efficient management of COVID-19.
Collapse
Affiliation(s)
- Praveen Rai
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India.
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
287
|
Choi H, Chatterjee P, Coppin JD, Martel JA, Hwang M, Jinadatha C, Sharma VK. Current understanding of the surface contamination and contact transmission of SARS-CoV-2 in healthcare settings. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:1935-1944. [PMID: 33613145 PMCID: PMC7877517 DOI: 10.1007/s10311-021-01186-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
The novel coronavirus disease (COVID-19) has rapidly spread across the world and was subsequently declared as a pandemic in 2020. To overcome this public health challenge, comprehensive understanding of the disease transmission is urgently needed. Recent evidences suggest that the most common route of transmission for SARS-CoV-2 is likely via droplet, aerosol, or direct contact in a person-to-person encounter, although the possibility of transmission via fomites from surfaces cannot be ruled out entirely. Environmental contamination in COVID-19 patient rooms is widely observed due to viral shedding from both asymptomatic and symptomatic patients, and SARS-CoV-2 can survive on hospital surfaces for extended periods. Sequence of contact events can spread the virus from one surface to the other in a hospital setting. Here, we review the studies related to viral shedding by COVID-19 patients that can contaminate surfaces and survival of SARS-CoV-2 on different types of surfaces commonly found in healthcare settings, as well as evaluating the importance of surface to person transmission characteristics. Based on recent evidences from the literature, decontamination of hospital surfaces should constitute an important part of the infection control and prevention of COVID-19.
Collapse
Affiliation(s)
- Hosoon Choi
- Department of Research, Central Texas Veterans Health Care System, 1901 Veterans Memorial Drive, Temple, TX USA
| | - Piyali Chatterjee
- Department of Research, Central Texas Veterans Health Care System, 1901 Veterans Memorial Drive, Temple, TX USA
| | - John D. Coppin
- Department of Research, Central Texas Veterans Health Care System, 1901 Veterans Memorial Drive, Temple, TX USA
| | - Julie A. Martel
- Department of Research, Central Texas Veterans Health Care System, 1901 Veterans Memorial Drive, Temple, TX USA
| | - Munok Hwang
- Department of Research, Central Texas Veterans Health Care System, 1901 Veterans Memorial Drive, Temple, TX USA
| | - Chetan Jinadatha
- Department of Research, Central Texas Veterans Health Care System, 1901 Veterans Memorial Drive, Temple, TX USA
| | - Virender K. Sharma
- Program of the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
288
|
Rahimi A, Mirzazadeh A, Tavakolpour S. Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection. Genomics 2021; 113:1221-1232. [PMID: 33007398 PMCID: PMC7525243 DOI: 10.1016/j.ygeno.2020.09.059] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
The outbreak of 2019-novel coronavirus disease (COVID-19), caused by SARS-CoV-2, started in late 2019; in a short time, it has spread rapidly all over the world. Although some possible antiviral and anti-inflammatory medications are available, thousands of people are dying daily. Well-understanding of the SARS-CoV-2 genome is not only essential for the development of new treatments/vaccines, but it also can be used for improving the sensitivity and specificity of current approaches for virus detection. Accordingly, we reviewed the most critical findings related to the genetics of the SARS-CoV-2, with a specific focus on genetic diversity and reported mutations, molecular-based diagnosis assays, using interfering RNA technology for the treatment of patients, and genetic-related vaccination strategies. Additionally, considering the unanswered questions or uncertainties in these regards, different topics were discussed.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azin Mirzazadeh
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Joint Bioinformatics Graduate Program, University of Arkansas Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Soheil Tavakolpour
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
289
|
Tsai SC, Lu CC, Bau DT, Chiu YJ, Yen YT, Hsu YM, Fu CW, Kuo SC, Lo YS, Chiu HY, Juan YN, Tsai FJ, Yang JS. Approaches towards fighting the COVID‑19 pandemic (Review). Int J Mol Med 2021; 47:3-22. [PMID: 33236131 PMCID: PMC7723515 DOI: 10.3892/ijmm.2020.4794] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 11/05/2022] Open
Abstract
The coronavirus disease 2019 (COVID‑19) outbreak, which has caused >46 millions confirmed infections and >1.2 million coronavirus related deaths, is one of the most devastating worldwide crises in recent years. Infection with COVID‑19 results in a fever, dry cough, general fatigue, respiratory symptoms, diarrhoea and a sore throat, similar to those of acute respiratory distress syndrome. The causative agent of COVID‑19, SARS‑CoV‑2, is a novel coronavirus strain. To date, remdesivir has been granted emergency use authorization for use in the management of infection. Additionally, several efficient diagnostic tools are being actively developed, and novel drugs and vaccines are being evaluated for their efficacy as therapeutic agents against COVID‑19, or in the prevention of infection. The present review highlights the prevalent clinical manifestations of COVID‑19, characterizes the SARS‑CoV‑2 viral genome sequence and life cycle, highlights the optimal methods for preventing viral transmission, and discusses possible molecular pharmacological mechanisms and approaches in the development of anti‑SARS‑CoV‑2 therapeutic agents. In addition, the use of traditional Chinese medicines for management of COVID‑19 is discussed. It is expected that novel anti‑viral agents, vaccines or an effective combination therapy for treatment/management of SARS‑CoV‑2 infection and spread therapy will be developed and implemented in 2021, and we would like to extend our best regards to the frontline health workers across the world in their fight against COVID‑19.
Collapse
Affiliation(s)
- Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University
| | - Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354
| | - Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital
- Department of Surgery, School of Medicine, National Yang Ming University, Taipei 11217
| | - Yu-Ting Yen
- Drug Development Center, Institute of New Drug Development, China Medical University, Taichung 40402
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University
| | - Chih-Wei Fu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401
| | - Sheng-Chu Kuo
- School of Pharmacy, China Medical University, Taichung 40402
| | - Yu-Shiang Lo
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 97002
- Master and PhD Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 97004
- General Education Center, Tzu Chi University of Science and Technology, Hualien 97005
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University
- China Medical University Children's Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447
| |
Collapse
|
290
|
Zheng YZ, Chen JT, Li J, Wu XJ, Wen JZ, Liu XZ, Lin LY, Liang XY, Huang HY, Zha GC, Yang PK, Li LJ, Zhong TY, Liu L, Cheng WJ, Song XN, Lin M. Reverse Transcription Recombinase-Aided Amplification Assay With Lateral Flow Dipstick Assay for Rapid Detection of 2019 Novel Coronavirus. Front Cell Infect Microbiol 2021; 11:613304. [PMID: 33598439 PMCID: PMC7882697 DOI: 10.3389/fcimb.2021.613304] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The emerging Coronavirus Disease-2019 (COVID-19) has challenged the public health globally. With the increasing requirement of detection for SARS-CoV-2 outside of the laboratory setting, a rapid and precise Point of Care Test (POCT) is urgently needed. METHODS Targeting the nucleocapsid (N) gene of SARS-CoV-2, specific primers, and probes for reverse transcription recombinase-aided amplification coupled with lateral flow dipstick (RT-RAA/LFD) platform were designed. For specificity evaluation, it was tested with human coronaviruses, human influenza A virus, influenza B viruses, respiratory syncytial virus, and hepatitis B virus, respectively. For sensitivity assay, it was estimated by templates of recombinant plasmid and pseudovirus of SARS-CoV-2 RNA. For clinical assessment, 100 clinical samples (13 positive and 87 negatives for SARS-CoV-2) were tested via quantitative reverse transcription PCR (RT-qPCR) and RT-RAA/LFD, respectively. RESULTS The limit of detection was 1 copies/μl in RT-RAA/LFD assay, which could be conducted within 30 min at 39°C, without any cross-reaction with other human coronaviruses and clinical respiratory pathogens. Compared with RT-qPCR, the established POCT assay offered 100% specificity and 100% sensitivity in the detection of clinical samples. CONCLUSION This work provides a convenient POCT tool for rapid screening, diagnosis, and monitoring of suspected patients in SARS-CoV-2 endemic areas.
Collapse
Affiliation(s)
- Yu-Zhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Jiang-Tao Chen
- Department of Medical Laboratory, Huizhou Central People’s Hospital, Huizhou, China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xian-Jing Wu
- Department of Medical Laboratory, Huizhou Central People’s Hospital, Huizhou, China
| | - Jin-Zhou Wen
- Department of Medical Laboratory, Center for Disease Control and Prevention, Chaozhou, China
| | - Xiang-Zhi Liu
- Department of Medical Laboratory, Chaozhou People’s Hospital, Shantou University Medical College, Chaozhou, China
| | - Li-Yun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Xue-Yan Liang
- Department of Medical Laboratory, Huizhou Central People’s Hospital, Huizhou, China
- Department of Medical Laboratory, Chaozhou People’s Hospital, Shantou University Medical College, Chaozhou, China
| | - Hui-Ying Huang
- Department of Medical Laboratory, Chaozhou People’s Hospital, Shantou University Medical College, Chaozhou, China
| | - Guang-Cai Zha
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Pei-Kui Yang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Lie-Jun Li
- Department of Research and Development, Chaozhou Hybribio Limited Corporation, Chaozhou, China
| | - Tian-Yu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Long Liu
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei-Jia Cheng
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xiao-Nan Song
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
- *Correspondence: Min Lin,
| |
Collapse
|
291
|
Gairolla J, Gupta P, Gupta P, Mathuria Y, Chauhan C, Kaur M, Naithani P, Naithani M, Nagar P. Techno-innovations and molecular methods for diagnosis of COVID-19: Updates from India. JOURNAL OF MARINE MEDICAL SOCIETY 2021. [DOI: 10.4103/jmms.jmms_195_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
292
|
Dudley DM, Newman CM, Weiler AM, Ramuta MD, Shortreed CG, Heffron AS, Accola MA, Rehrauer WM, Friedrich TC, O’Connor DH. Optimizing direct RT-LAMP to detect transmissible SARS-CoV-2 from primary nasopharyngeal swab samples. PLoS One 2020; 15:e0244882. [PMID: 33382861 PMCID: PMC7775089 DOI: 10.1371/journal.pone.0244882] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
SARS-CoV-2 testing is crucial to controlling the spread of this virus, yet shortages of nucleic acid extraction supplies and other key reagents have hindered the response to COVID-19 in the US. Several groups have described loop-mediated isothermal amplification (LAMP) assays for SARS-CoV-2, including testing directly from nasopharyngeal swabs and eliminating the need for reagents in short supply. Frequent surveillance of individuals attending work or school is currently unavailable to most people but will likely be necessary to reduce the ~50% of transmission that occurs when individuals are nonsymptomatic. Here we describe a fluorescence-based RT-LAMP test using direct nasopharyngeal swab samples and show consistent detection in clinically confirmed primary samples with a limit of detection (LOD) of ~625 copies/μl, approximately 100-fold lower sensitivity than qRT-PCR. While less sensitive than extraction-based molecular methods, RT-LAMP without RNA extraction is fast and inexpensive. Here we also demonstrate that adding a lysis buffer directly into the RT-LAMP reaction improves the sensitivity of some samples by approximately 10-fold. Furthermore, purified RNA in this assay achieves a similar LOD to qRT-PCR. These results indicate that high-throughput RT-LAMP testing could augment qRT-PCR in SARS-CoV-2 surveillance programs, especially while the availability of qRT-PCR testing and RNA extraction reagents is constrained.
Collapse
Affiliation(s)
- Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mitchell D. Ramuta
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cecilia G. Shortreed
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna S. Heffron
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Molly A. Accola
- University of Wisconsin Hospitals and Clinics, Madison, Wisconsin, United States of America
| | - William M. Rehrauer
- University of Wisconsin Hospitals and Clinics, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
293
|
Machado BAS, Hodel KVS, Barbosa-Júnior VG, Soares MBP, Badaró R. The Main Molecular and Serological Methods for Diagnosing COVID-19: An Overview Based on the Literature. Viruses 2020; 13:E40. [PMID: 33383888 PMCID: PMC7823618 DOI: 10.3390/v13010040] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Diagnostic tests have been considered as the main alternative for the control of coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as a correct diagnosis allows for decision making when facing the disease, particularly as there is a lack of effective therapeutic protocols and vaccines. Thus, in this review, we summarized the main diagnostic approaches currently available for the diagnosis of SARS-CoV-2 infection in humans based on studies available in article databases. The tests can be organized into two main categories: nucleic acid-based tests, recommended for the initial detection of the virus, and serological tests, recommended for assessing the disease progression. The studies have shown that the performance of diagnostic methods depends on different factors, such as the type of samples and the characteristics of each assay. It was identified that the positivity of the tests is mainly related to the onset of symptoms. We also observed that point-of-care diagnoses are considered as one of the main trends in this area, due to the low-cost and simplicity of the assay; however, the analytical performance must be critically analyzed. Thus, the COVID-19 pandemic has highlighted the critical role of diagnostic technologies in the control of infectious diseases.
Collapse
Affiliation(s)
- Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil; (K.V.S.H.); (V.G.B.-J.); (M.B.P.S.); (R.B.)
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil; (K.V.S.H.); (V.G.B.-J.); (M.B.P.S.); (R.B.)
| | - Valdir Gomes Barbosa-Júnior
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil; (K.V.S.H.); (V.G.B.-J.); (M.B.P.S.); (R.B.)
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil; (K.V.S.H.); (V.G.B.-J.); (M.B.P.S.); (R.B.)
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil
| | - Roberto Badaró
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil; (K.V.S.H.); (V.G.B.-J.); (M.B.P.S.); (R.B.)
| |
Collapse
|
294
|
Kimura M, Baba M, Maruyama S, Ogura S, Yamamuro R, Sakoh T, Kishida T, Nagamine Y, Endo Y, Okada C, Takahashi N, Araoka H. Reverse Transcription Loop-Mediated Isothermal Amplification Assay-Based Infection Control Strategies for COVID-19 in a Hospital Under the State of Emergency in Tokyo, Japan in Spring 2020. Jpn J Infect Dis 2020; 74:325-332. [PMID: 33390432 DOI: 10.7883/yoken.jjid.2020.808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studies describing reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay-based infection control strategies (LAMP-based ICSs) for coronavirus disease 2019 (COVID-19) are limited. We reviewed the medical records of cases in which RT-LAMP was performed. Standard ICSs and LAMP-based ICSs were implemented during the study period. The strategies were intended to impose longer periods of infection control precautions (ICPs) for specific patients, such as those with a history of exposure to COVID-19 patients and/or bilateral ground glass opacities (bGGO) on chest computed tomography (CT). Of 212 patients, which included 13 confirmed COVID-19 patients in the diagnostic cohort, exposure to COVID-19 patients (P <0.0001) and chest CT bGGO (P = 0.0022) were identified as significant predictors of COVID-19. In the 173 hospitalized patients in which the results of the first RT-LAMP were negative, the duration of ICPs was significantly longer in patients with exposure to COVID-19 and/or a high clinical index of suspicion and patients with bGGO than in the remaining patients (P = 0.00046 and P = 0.0067, respectively). Additionally, no confirmed COVID-19 cases indicating nosocomial spread occurred during the study period. Establishing a comprehensive system that combines rational LAMP-based ICSs with standard ICSs might be useful for preventing nosocomial spread.
Collapse
Affiliation(s)
- Muneyoshi Kimura
- Department of Infectious Diseases, Toranomon Hospital, Japan.,Department of Infection Control and Prevention, Toranomon Hospital, Japan
| | - Masaru Baba
- Department of Infectious Diseases, Toranomon Hospital, Japan.,Department of Infection Control and Prevention, Toranomon Hospital, Japan
| | - Shunichiro Maruyama
- Department of Infection Control and Prevention, Toranomon Hospital, Japan.,Nursing Department, Toranomon Hospital, Japan
| | - Sho Ogura
- Department of Infectious Diseases, Toranomon Hospital, Japan.,Department of Infection Control and Prevention, Toranomon Hospital, Japan
| | - Ryosuke Yamamuro
- Department of Infectious Diseases, Toranomon Hospital, Japan.,Department of Infection Control and Prevention, Toranomon Hospital, Japan
| | - Takashi Sakoh
- Department of Infectious Diseases, Toranomon Hospital, Japan.,Department of Infection Control and Prevention, Toranomon Hospital, Japan
| | - Toshiyuki Kishida
- Department of Infectious Diseases, Toranomon Hospital, Japan.,Department of Infection Control and Prevention, Toranomon Hospital, Japan
| | - Yumi Nagamine
- Department of Infection Control and Prevention, Toranomon Hospital, Japan.,Department of Pharmacy, Toranomon Hospital, Japan
| | - Yusuke Endo
- Department of Infectious Diseases, Toranomon Hospital, Japan
| | - Chikako Okada
- Department of Infectious Diseases, Toranomon Hospital, Japan.,Department of Infection Control and Prevention, Toranomon Hospital, Japan
| | - Namiko Takahashi
- Department of Infection Control and Prevention, Toranomon Hospital, Japan.,Nursing Department, Toranomon Hospital, Japan
| | - Hideki Araoka
- Department of Infectious Diseases, Toranomon Hospital, Japan.,Department of Infection Control and Prevention, Toranomon Hospital, Japan.,Okinaka Memorial Institute for Medical Research, Japan
| |
Collapse
|
295
|
Mattioli IA, Hassan A, Oliveira ON, Crespilho FN. On the Challenges for the Diagnosis of SARS-CoV-2 Based on a Review of Current Methodologies. ACS Sens 2020; 5:3655-3677. [PMID: 33267587 PMCID: PMC7724986 DOI: 10.1021/acssensors.0c01382] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Diagnosis of COVID-19 has been challenging owing to the need for mass testing and for combining distinct types of detection to cover the different stages of the infection. In this review, we have surveyed the most used methodologies for diagnosis of COVID-19, which can be basically categorized into genetic-material detection and immunoassays. Detection of genetic material with real-time polymerase chain reaction (RT-PCR) and similar techniques has been achieved with high accuracy, but these methods are expensive and require time-consuming protocols which are not widely available, especially in less developed countries. Immunoassays for detecting a few antibodies, on the other hand, have been used for rapid, less expensive tests, but their accuracy in diagnosing infected individuals has been limited. We have therefore discussed the strengths and limitations of all of these methodologies, particularly in light of the required combination of tests owing to the long incubation periods. We identified the bottlenecks that prevented mass testing in many countries, and proposed strategies for further action, which are mostly associated with materials science and chemistry. Of special relevance are the methodologies which can be integrated into point-of-care (POC) devices and the use of artificial intelligence that do not require products from a well-developed biotech industry.
Collapse
Affiliation(s)
- Isabela A. Mattioli
- São Carlos Institute of
Chemistry, University of São Paulo,
São Carlos 13560-970, São Paulo,
Brazil
| | - Ayaz Hassan
- São Carlos Institute of
Chemistry, University of São Paulo,
São Carlos 13560-970, São Paulo,
Brazil
| | - Osvaldo N. Oliveira
- São Carlos Institute of
Physics, University of São Paulo,
São Carlos 13560-590, São Paulo,
Brazil
| | - Frank N. Crespilho
- São Carlos Institute of
Chemistry, University of São Paulo,
São Carlos 13560-970, São Paulo,
Brazil
| |
Collapse
|
296
|
Xu Y, Rather AM, Song S, Fang JC, Dupont RL, Kara UI, Chang Y, Paulson JA, Qin R, Bao X, Wang X. Ultrasensitive and Selective Detection of SARS-CoV-2 Using Thermotropic Liquid Crystals and Image-Based Machine Learning. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100276. [PMID: 33225318 PMCID: PMC7670228 DOI: 10.1016/j.xcrp.2020.100276] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/01/2020] [Accepted: 11/06/2020] [Indexed: 05/03/2023]
Abstract
Rapid, robust virus-detection techniques with ultrahigh sensitivity and selectivity are required for the outbreak of the pandemic coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Here, we report that the femtomolar concentrations of single-stranded ribonucleic acid (ssRNA) of SARS-CoV-2 trigger ordering transitions in liquid crystal (LC) films decorated with cationic surfactant and complementary 15-mer single-stranded deoxyribonucleic acid (ssDNA) probe. More importantly, the sensitivity of the LC to the SARS ssRNA, with a 3-bp mismatch compared to the SARS-CoV-2 ssRNA, is measured to decrease by seven orders of magnitude, suggesting that the LC ordering transitions depend strongly on the targeted oligonucleotide sequence. Finally, we design a LC-based diagnostic kit and a smartphone-based application (app) to enable automatic detection of SARS-CoV-2 ssRNA, which could be used for reliable self-test of SARS-CoV-2 at home without the need for complex equipment or procedures.
Collapse
Affiliation(s)
- Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Adil M Rather
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shuang Song
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Robert L Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ufuoma I Kara
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Joel A Paulson
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
- Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Rongjun Qin
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
- Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
297
|
Araujo FAGDR. Uses and limits of the clinical laboratory in the COVID-19 pandemic: a didactic review. ACTA ACUST UNITED AC 2020; 66:1718-1724. [PMID: 33331583 DOI: 10.1590/1806-9282.66.12.1718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/20/2020] [Indexed: 11/21/2022]
Abstract
The world is currently experiencing an unprecedented pandemic of a new disease, the coronavirus disease (COVID-19), which has unusual clinical and immunological presentations. This is especially true regarding the choice and interpretation of laboratory test results. In this review, we have provided didactic information for physicians on the current concepts and practical guidance regarding COVID-19.
Collapse
Affiliation(s)
- Fernando Antonio Glasner da Rocha Araujo
- Professor Associado, Departamento de Medicina Interna e Apoio ao Diagnóstico, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BA, Brasil
| |
Collapse
|
298
|
Subsoontorn P, Lohitnavy M, Kongkaew C. The diagnostic accuracy of isothermal nucleic acid point-of-care tests for human coronaviruses: A systematic review and meta-analysis. Sci Rep 2020; 10:22349. [PMID: 33339871 PMCID: PMC7749114 DOI: 10.1038/s41598-020-79237-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023] Open
Abstract
Many recent studies reported coronavirus point-of-care tests (POCTs) based on isothermal amplification. However, the performances of these tests have not been systematically evaluated. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy was used as a guideline for conducting this systematic review. We searched peer-reviewed and preprint articles in PubMed, BioRxiv and MedRxiv up to 28 September 2020 to identify studies that provide data to calculate sensitivity, specificity and diagnostic odds ratio (DOR). Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was applied for assessing quality of included studies and Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) was followed for reporting. We included 81 studies from 65 research articles on POCTs of SARS, MERS and COVID-19. Most studies had high risk of patient selection and index test bias but low risk in other domains. Diagnostic specificities were high (> 0.95) for included studies while sensitivities varied depending on type of assays and sample used. Most studies (n = 51) used reverse transcription loop-mediated isothermal amplification (RT-LAMP) to diagnose coronaviruses. RT-LAMP of RNA purified from COVID-19 patient samples had pooled sensitivity at 0.94 (95% CI: 0.90-0.96). RT-LAMP of crude samples had substantially lower sensitivity at 0.78 (95% CI: 0.65-0.87). Abbott ID Now performance was similar to RT-LAMP of crude samples. Diagnostic performances by CRISPR and RT-LAMP on purified RNA were similar. Other diagnostic platforms including RT- recombinase assisted amplification (RT-RAA) and SAMBA-II also offered high sensitivity (> 0.95). Future studies should focus on the use of un-bias patient cohorts, double-blinded index test and detection assays that do not require RNA extraction.
Collapse
Affiliation(s)
- Pakpoom Subsoontorn
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Manupat Lohitnavy
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chuenjid Kongkaew
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Research Centre for Safety and Quality in Health, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Research Department of Practice and Policy, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| |
Collapse
|
299
|
Xu L, Li D, Ramadan S, Li Y, Klein N. Facile biosensors for rapid detection of COVID-19. Biosens Bioelectron 2020; 170:112673. [PMID: 33038584 PMCID: PMC7528898 DOI: 10.1016/j.bios.2020.112673] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/26/2020] [Accepted: 09/30/2020] [Indexed: 01/12/2023]
Abstract
Currently the world is being challenged by a public health emergency caused by the coronavirus pandemic (COVID-19). Extensive efforts in testing for coronavirus infection, combined with isolating infected cases and quarantining those in contact, have proven successful in bringing the epidemic under control. Rapid and facile screening of this disease is in high demand. This review summarises recent advances in strategies reported by international researchers and engineers concerning how to tackle COVID-19 via rapid testing, mainly through nucleic acid- and antibody- testing. The roles of biosensors as powerful analytical tools are emphasized for the detection of viral RNAs, surface antigens, whole viral particles, antibodies and other potential biomarkers in human specimen. We critically review in depth newly developed biosensing methods especially for in-field and point-of-care detection of SARS-CoV-2. Additionally, this review describes possible future strategies for virus rapid detection. It helps researchers working on novel sensor technologies to tailor their technologies in a way to address the challenge for effective detection of COVID-19.
Collapse
Affiliation(s)
- Lizhou Xu
- Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Danyang Li
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Sami Ramadan
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Norbert Klein
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
300
|
Eckel F, Küsters F, Drossel B, Konert M, Mattes H, Schopf S. Variplex™ test system fails to reliably detect SARS-CoV-2 directly from respiratory samples without RNA extraction. Eur J Clin Microbiol Infect Dis 2020; 39:2373-2377. [PMID: 32681309 PMCID: PMC7367510 DOI: 10.1007/s10096-020-03983-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022]
Abstract
Diagnosis of COVID is performed by PCR methods, but their capacity is limited by the requirement of high-level facilities and instruments. The loop-mediated isothermal amplification (LAMP) method has been utilized for the detection of isolated virus-specific RNA. Preliminary data suggest the possibility of isothermal amplification directly from respiratory samples without RNA extraction. All patients admitted to our hospital were screened for SARS-CoV-2 by routine. Respiratory samples were tested by variplex system based on LAMP method directly without RNA extraction and by PCR. Primary endpoint was the false-negative rate of variplex test compared with PCR as gold standard. In 109 patients variplex test and PCR assay were performed simultaneously. Median age was 80 years and male/female ratio was 40/60%. The prevalence of PCR-confirmed COVID diagnosis was 43.1%. Variplex test was positive in 13.8%. False-negative rate of variplex test compared with PCR was 83.0%. The potential of LAMP technology using isolated RNA has been demonstrated impressively by others, and excellent sensitivity and specificity of detecting SARS-CoV-2 has been reported. However, without RNA extraction, the variplex test system failed to reliably detect SARS-CoV-2 directly in respiratory samples.
Collapse
Affiliation(s)
- Florian Eckel
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- Medical Department, RoMed Klink Bad Aibling, Harthauser Str. 16, 83043, Bad Aibling, Germany.
| | - Franziska Küsters
- Medical Department, RoMed Klink Bad Aibling, Harthauser Str. 16, 83043, Bad Aibling, Germany
| | - Bernhard Drossel
- Hospital Laboratory, RoMed Klink Bad Aibling, Harthauser Str. 16, 83043, Bad Aibling, Germany
| | - Markus Konert
- Department of Anesthesia, RoMed Klink Bad Aibling, Harthauser Str. 16, 83043, Bad Aibling, Germany
| | - Hans Mattes
- Hospital Hygiene, RoMed Klinikum Rosenheim, Pettenkoferstr. 10, 83022, Rosenheim, Germany
| | - Stefan Schopf
- Surgical Department, RoMed Klink Bad Aibling, Harthauser Str. 16, 83043, Bad Aibling, Germany
| |
Collapse
|