251
|
Rodrigues JS, Lima V, Araújo LCP, Botaro VR. Lignin Fractionation Methods: Can Lignin Fractions Be Separated in a True Industrial Process? Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jéssica S. Rodrigues
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| | - Vitor Lima
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| | - Luísa C. P. Araújo
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| | - Vagner R. Botaro
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| |
Collapse
|
252
|
Kriegshauser L, Knosp S, Grienenberger E, Tatsumi K, Gütle DD, Sørensen I, Herrgott L, Zumsteg J, Rose JKC, Reski R, Werck-Reichhart D, Renault H. Function of the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE is evolutionarily conserved in embryophytes. THE PLANT CELL 2021; 33:1472-1491. [PMID: 33638637 PMCID: PMC8254490 DOI: 10.1093/plcell/koab044] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/31/2021] [Indexed: 05/04/2023]
Abstract
The plant phenylpropanoid pathway generates a major class of specialized metabolites and precursors of essential extracellular polymers that initially appeared upon plant terrestrialization. Despite its evolutionary significance, little is known about the complexity and function of this major metabolic pathway in extant bryophytes, which represent the non-vascular stage of embryophyte evolution. Here, we report that the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE (HCT) gene, which plays a critical function in the phenylpropanoid pathway during seed plant development, is functionally conserved in Physcomitrium patens (Physcomitrella), in the moss lineage of bryophytes. Phylogenetic analysis indicates that bona fide HCT function emerged in the progenitor of embryophytes. In vitro enzyme assays, moss phenolic pathway reconstitution in yeast and in planta gene inactivation coupled to targeted metabolic profiling, collectively indicate that P. patens HCT (PpHCT), similar to tracheophyte HCT orthologs, uses shikimate as a native acyl acceptor to produce a p-coumaroyl-5-O-shikimate intermediate. Phenotypic and metabolic analyses of loss-of-function mutants show that PpHCT is necessary for the production of caffeate derivatives, including previously reported caffeoyl-threonate esters, and for the formation of an intact cuticle. Deep conservation of HCT function in embryophytes is further suggested by the ability of HCT genes from P. patens and the liverwort Marchantia polymorpha to complement an Arabidopsis thaliana CRISPR/Cas9 hct mutant, and by the presence of phenolic esters of shikimate in representative species of the three bryophyte lineages.
Collapse
Affiliation(s)
- Lucie Kriegshauser
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Samuel Knosp
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Etienne Grienenberger
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Kanade Tatsumi
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Desirée D Gütle
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Laurence Herrgott
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Julie Zumsteg
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Danièle Werck-Reichhart
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Hugues Renault
- Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, 67084 Strasbourg, France
- Author for correspondence:
| |
Collapse
|
253
|
Abstract
Thermal degradation of lignin in nitrogen atmosphere is evaluated by linear heating and isothermal tests. While linear heating suggests that thermal decomposition in the 200–400 °C range mainly consists of a single step, a careful analysis of isothermal tests points to different lignin fractions having different stabilities. This is an important point for practical predictions, since kinetics obtained as if the degradations at different temperatures were the same would lack practical utility. Instead, stairway type tests are proposed to evaluate the degradation rates and sample quantities involved at the temperatures of interest.
Collapse
|
254
|
Keplinger T, Wittel FK, Rüggeberg M, Burgert I. Wood Derived Cellulose Scaffolds-Processing and Mechanics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001375. [PMID: 32797688 DOI: 10.1002/adma.202001375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/19/2020] [Indexed: 05/16/2023]
Abstract
Wood-derived cellulose materials obtained by structure-retaining delignification are attracting increasing attention due to their excellent mechanical properties and great potential to serve as renewable and CO2 storing cellulose scaffolds for advanced hybrid materials with embedded functionality. Various delignification protocols and a multitude of further processing steps including polymer impregnation and densification are applied resulting in a large range of properties. However, treatment optimization requires a more comprehensive characterization of the developed materials in terms of structure, chemical composition, and mechanical properties for faster progress in the field. Herein, the current protocols for structure-retaining delignification are reviewed and the emphasis is placed on the mechanical characterization at different hierarchical levels of the cellulose scaffolds by experiments and modeling to reveal the underlying structure-property relationships.
Collapse
Affiliation(s)
- Tobias Keplinger
- ETH Zürich, Institute for Building Materials, Stefano-Franscini-Platz 3, Zurich, 8093, Switzerland
- Empa-Swiss Federal Laboratories for Material Testing and Research, Cellulose & Wood Materials Laboratory, Dübendorf, 8600, Switzerland
| | - Falk K Wittel
- ETH Zürich, Institute for Building Materials, Stefano-Franscini-Platz 3, Zurich, 8093, Switzerland
| | - Markus Rüggeberg
- ETH Zürich, Institute for Building Materials, Stefano-Franscini-Platz 3, Zurich, 8093, Switzerland
- Empa-Swiss Federal Laboratories for Material Testing and Research, Cellulose & Wood Materials Laboratory, Dübendorf, 8600, Switzerland
| | - Ingo Burgert
- ETH Zürich, Institute for Building Materials, Stefano-Franscini-Platz 3, Zurich, 8093, Switzerland
- Empa-Swiss Federal Laboratories for Material Testing and Research, Cellulose & Wood Materials Laboratory, Dübendorf, 8600, Switzerland
| |
Collapse
|
255
|
Zhou S, Jin K, Buehler MJ. Understanding Plant Biomass via Computational Modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003206. [PMID: 32945027 DOI: 10.1002/adma.202003206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Plant biomass, especially wood, has been used for structural materials since ancient times. It is also showing great potential for new structural materials and it is the major feedstock for the emerging biorefineries for building a sustainable society. The plant cell wall is a hierarchical matrix of mainly cellulose, hemicellulose, and lignin. Herein, the structure, properties, and reactions of cellulose, lignin, and wood cell walls, studied using density functional theory (DFT) and molecular dynamics (MD), which are the widely used computational modeling approaches, are reviewed. Computational modeling, which has played a crucial role in understanding the structure and properties of plant biomass and its nanomaterials, may serve a leading role on developing new hierarchical materials from biomass in the future.
Collapse
Affiliation(s)
- Shengfei Zhou
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Kai Jin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| |
Collapse
|
256
|
El Houari I, Van Beirs C, Arents HE, Han H, Chanoca A, Opdenacker D, Pollier J, Storme V, Steenackers W, Quareshy M, Napier R, Beeckman T, Friml J, De Rybel B, Boerjan W, Vanholme B. Seedling developmental defects upon blocking CINNAMATE-4-HYDROXYLASE are caused by perturbations in auxin transport. THE NEW PHYTOLOGIST 2021; 230:2275-2291. [PMID: 33728703 DOI: 10.1111/nph.17349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/06/2021] [Indexed: 05/20/2023]
Abstract
The phenylpropanoid pathway serves a central role in plant metabolism, providing numerous compounds involved in diverse physiological processes. Most carbon entering the pathway is incorporated into lignin. Although several phenylpropanoid pathway mutants show seedling growth arrest, the role for lignin in seedling growth and development is unexplored. We use complementary pharmacological and genetic approaches to block CINNAMATE-4-HYDROXYLASE (C4H) functionality in Arabidopsis seedlings and a set of molecular and biochemical techniques to investigate the underlying phenotypes. Blocking C4H resulted in reduced lateral rooting and increased adventitious rooting apically in the hypocotyl. These phenotypes coincided with an inhibition in AUX transport. The upstream accumulation in cis-cinnamic acid was found to be likely to cause polar AUX transport inhibition. Conversely, a downstream depletion in lignin perturbed phloem-mediated AUX transport. Restoring lignin deposition effectively reestablished phloem transport and, accordingly, AUX homeostasis. Our results show that the accumulation of bioactive intermediates and depletion in lignin jointly cause the aberrant phenotypes upon blocking C4H, and demonstrate that proper deposition of lignin is essential for the establishment of AUX distribution in seedlings. Our data position the phenylpropanoid pathway and lignin in a new physiological framework, consolidating their importance in plant growth and development.
Collapse
Affiliation(s)
- Ilias El Houari
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Caroline Van Beirs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Helena E Arents
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Huibin Han
- Institute of Science and Technology (IST) Austria, Klosterneuburg, 3400, Austria
| | - Alexandra Chanoca
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Davy Opdenacker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Metabolomics Core, Ghent, 9052, Belgium
| | - Véronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Ward Steenackers
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, Klosterneuburg, 3400, Austria
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| |
Collapse
|
257
|
Hiraide H, Tobimatsu Y, Yoshinaga A, Lam PY, Kobayashi M, Matsushita Y, Fukushima K, Takabe K. Localised laccase activity modulates distribution of lignin polymers in gymnosperm compression wood. THE NEW PHYTOLOGIST 2021; 230:2186-2199. [PMID: 33570753 PMCID: PMC8252379 DOI: 10.1111/nph.17264] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 05/26/2023]
Abstract
The woody stems of coniferous gymnosperms produce specialised compression wood to adjust the stem growth orientation in response to gravitropic stimulation. During this process, tracheids develop a compression-wood-specific S2 L cell wall layer with lignins highly enriched with p-hydroxyphenyl (H)-type units derived from H-type monolignol, whereas lignins produced in the cell walls of normal wood tracheids are exclusively composed of guaiacyl (G)-type units from G-type monolignol with a trace amount of H-type units. We show that laccases, a class of lignin polymerisation enzymes, play a crucial role in the spatially organised polymerisation of H-type and G-type monolignols during compression wood formation in Japanese cypress (Chamaecyparis obtusa). We performed a series of chemical-probe-aided imaging analysis on C. obtusa compression wood cell walls, together with gene expression, protein localisation and enzymatic assays of C. obtusa laccases. Our data indicated that CoLac1 and CoLac3 with differential oxidation activities towards H-type and G-type monolignols were precisely localised to distinct cell wall layers in which H-type and G-type lignin units were preferentially produced during the development of compression wood tracheids. We propose that, not only the spatial localisation of laccases, but also their biochemical characteristics dictate the spatial patterning of lignin polymerisation in gymnosperm compression wood.
Collapse
Affiliation(s)
- Hideto Hiraide
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Arata Yoshinaga
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| | - Pui Ying Lam
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Masaru Kobayashi
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural SciencesNagoya UniversityFuro‐choNagoya464‐8601Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural SciencesNagoya UniversityFuro‐choNagoya464‐8601Japan
| | - Keiji Takabe
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| |
Collapse
|
258
|
Abstract
A novel stochastic model is proposed to characterize the adsorption kinetics of pollutants including dyes (direct red 80 and direct blue 1), fluoride ions, and cadmium ions removed by calcium pectinate (Pec-Ca), aluminum xanthanate (Xant-Al), and reed leaves, respectively. The model is based on a transformation over time following the Ornstein–Uhlenbeck stochastic process, which explicitly includes the uncertainty involved in the adsorption process. The model includes stochastic versions of the pseudo-first-order (PFO), pseudo-second-order (PSO), and pseudo-
-order (PNO) models. It also allows the estimation of the adsorption parameters, including the maximum removal capacity (
), the adsorption rate constant (
), the reaction pseudoorder (
), and the variability
. The model fitted produced
values similar to those of the nonstochastic versions of the PFO, PSO, and PNO models; however, the obtained values for each parameter indicate that the stochastic model better reproduces the experimental data. The
values of the Pec-Ca-dye, Xant-Al-fluoride, and reed leaf-Cd+2 systems ranged from 2.0 to 9.7, 0.41 to 1.9, and 0.04 and 0.29 mg/g, respectively, whereas the values of
ranged from 0.051 to 0.286, 0.743 to 75.73, and 0.756 to 8.861 (mg/g)1-n/min, respectively. These results suggest a variability in the parameters
and
inherent to the natures of the adsorbate and adsorbent. The obtained
values ranged from 1.13 to 2.02 for the Pec-Ca-dye system, 1.0–3.5 for the Xant-Al-fluoride system, and 1.8–3.8 for the reed leaf-Cd+2 system. These ranges indicate the flexibility of the stochastic model to obtain fractional
values, resulting in high
values. The variability in each system was evaluated based on
. The developed model is the first to describe pollutant removal kinetics based on a stochastic differential equation.
Collapse
|
259
|
Factors Affecting Detoxification of Softwood Enzymatic Hydrolysates Using Sodium Dithionite. Processes (Basel) 2021. [DOI: 10.3390/pr9050887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conditioning of lignocellulosic hydrolysates with sulfur oxyanions, such as dithionite, is one of the most potent methods to improve the fermentability by counteracting effects of inhibitory by-products generated during hydrothermal pretreatment under acidic conditions. The effects of pH, treatment temperature, and dithionite dosage were explored in experiments with softwood hydrolysates, sodium dithionite, and Saccharomyces cerevisiae yeast. Treatments with dithionite at pH 5.5 or 8.5 gave similar results with regard to ethanol productivity and yield on initial glucose, and both were always at least ~20% higher than for treatment at pH 2.5. Experiments in the dithionite concentration range 5.0–12.5 mM and the temperature range 23–110 °C indicated that treatment at around 75 °C and using intermediate dithionite dosage was the best option (p ≤ 0.05). The investigation indicates that selection of the optimal temperature and dithionite dosage offers great benefits for the efficient fermentation of hydrolysates from lignin-rich biomass, such as softwood residues.
Collapse
|
260
|
Zijlstra DS, de Korte J, de Vries EPC, Hameleers L, Wilbers E, Jurak E, Deuss PJ. Highly Efficient Semi-Continuous Extraction and In-Line Purification of High β-O-4 Butanosolv Lignin. Front Chem 2021; 9:655983. [PMID: 34041222 PMCID: PMC8141753 DOI: 10.3389/fchem.2021.655983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Innovative biomass fractionation is of major importance for economically competitive biorefineries. Lignin is currently severely underutilized due to the use of high severity fractionation methodologies that yield complex condensed lignin that limits high-value applicability. Mild lignin fractionation conditions can lead to lignin with a more regular C-O bonded structure that has increased potential for higher value applications. Nevertheless, such extraction methodologies typically suffer from inadequate lignin extraction efficiencies and yield. (Semi)-continuous flow extractions are a promising method to achieve improved extraction efficiency of such C-O linked lignin. Here we show that optimized organosolv extraction in a flow-through setup resulted in 93-96% delignification of 40 g walnut shells (40 wt% lignin content) by applying mild organosolv extraction conditions with a 2 g/min flowrate of a 9:1 n-butanol/water mixture with 0.18 M H2SO4 at 120°C in 2.5 h. 85 wt% of the lignin (corrected for alcohol incorporation, moisture content and carbohydrate impurities) was isolated as a powder with a high retention of the β-aryl ether (β-O-4) content of 63 linking motifs per 100 C9 units. Close examination of the isolated lignin showed that the main carbohydrate contamination in the recovered lignin was butyl-xyloside and other butoxylate carbohydrates. The work-up and purification procedure were investigated and improved by the implementation of a caustic soda treatment step and phase separation with a continuous integrated mixer/separator (CINC). This led to a combined 75 wt% yield of the lignin in 3 separate fractions with 3% carbohydrate impurities and a very high β-O-4 content of 67 linking motifs per 100 C9 units. Analysis of all the mass flows showed that 98% of the carbohydrate content was removed with the inline purification step, which is a significant improvement to the 88% carbohydrate removal for the traditional lignin precipitation work-up procedure. Overall we show a convenient method for inline extraction and purification to obtain high β-O-4 butanosolv lignin in excellent yields.
Collapse
Affiliation(s)
- Douwe Sjirk Zijlstra
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Joren de Korte
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Ernst P. C. de Vries
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Lisanne Hameleers
- Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Erwin Wilbers
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Edita Jurak
- Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| | - Peter Joseph Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands
| |
Collapse
|
261
|
Wang X, Xia Q, Jing S, Li C, Chen Q, Chen B, Pang Z, Jiang B, Gan W, Chen G, Cui M, Hu L, Li T. Strong, Hydrostable, and Degradable Straws Based on Cellulose-Lignin Reinforced Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008011. [PMID: 33759326 DOI: 10.1002/smll.202008011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Indexed: 05/23/2023]
Abstract
The huge consumption of single-use plastic straws has brought a long-lasting environmental problem. Paper straws, the current replacement for plastic straws, suffer from drawbacks, such as a high cost of the water-proof wax layer and poor water stability due to the easy delamination of the wax layer. It is therefore crucial to find a high-performing alternative to mitigate the environmental problems brought by plastic straws. In this paper, all natural, degradable, cellulose-lignin reinforced composite straws, inspired by the reinforcement principle of cellulose and lignin in natural wood are developed. The cellulose-lignin reinforced composite straw is fabricated by rolling up a wet film made of homogeneously mixed cellulose microfibers, cellulose nanofibers, and lignin powders, which is then baked in oven at 150 °C. When baked, lignin melts and infiltrates the micro-nanocellulose network, acting as a polyphenolic binder to improve the mechanical strength and hydrophobicity performance of the resulting straw. The obtained straws demonstrate several advantageous properties over paper straws, including 1) excellent mechanical performance, 2) high hydrostability, and 3) low cost. Moreover, the natural degradability of the cellulose-lignin reinforced composite straws makes them promising candidates to replace plastic straws and suggests possible substitutes for other petroleum-based plastics.
Collapse
Affiliation(s)
- Xizheng Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Qinqin Xia
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shuangshuang Jing
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Claire Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Qiongyu Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Bo Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Zhenqian Pang
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Bo Jiang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Wentao Gan
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gang Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Mingjin Cui
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
262
|
Kang Y, Yang X, Liu Y, Shi M, Zhang W, Fan Y, Yao Y, Zhang J, Qin S. Integration of mRNA and miRNA analysis reveals the molecular mechanism of potato (Solanum tuberosum L.) response to alkali stress. Int J Biol Macromol 2021; 182:938-949. [PMID: 33878362 DOI: 10.1016/j.ijbiomac.2021.04.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
The continuing increase in the global saline-alkali land area has made saline-alkali stress the principal abiotic stress limiting plant growth. Potato is the most important non-grain crop, and its production is also severely limited by saline-alkali stress. However, few studies have addressed the mechanism of saline-alkali tolerance of potato with a focus on its response to neutral salt NaCl stress, or its response to alkali stress. Recently, miRNA-mRNA analyses have helped advance our understanding of how plants respond to stress. Here, we have characterized the morphological, physiological, and transcriptome changes of tissue culture seedlings of potato variety "Qingshu No. 9" treated with NaHCO3 (for 0, 2, 6, and 24 h). We found that the leaves of tissue culture seedlings wilted and withered under alkali stress, and the contents of ABA, BRs, trehalose, and lignin in roots increased significantly. The contents of GAs decreased significantly. Subsequently, miRNA-seq analysis results identified 168 differentially expressed miRNAs (DEMIs) under alkali stress, including 21 exist miRNAs and 37 known miRNAs from 47 families and 110 novel miRNAs. The mRNA-seq results identified 5731 differentially expressed mRNAs (DEMs) under alkali stress. By miRNA-mRNA integrated analysis, were obtained 33 miRNA-target gene pairs composed of 20 DEMIs and 33 DEMs. Next, we identified the "phenylpropanoid biosynthesis", "plant hormone signal transduction", and "starch and sucrose metabolism" pathways as necessary for potato to respond to alkali stress. miR4243-x and novel-m064-5p were involved in the response of potato to alkali stress by their negative regulatory effects on shikimate O-hydroxycinnamoyltransferase (HCT) and sucrose-phosphate synthase (SPS) genes, respectively. The expression results of miRNA and mRNA were verified by quantitative real-time PCR (qRT-PCR). Our results clarify the mechanism of potato response to alkali stress at the miRNA level, providing new insights into the molecular mechanisms of potato's response to alkali stress. We report many candidate miRNAs and mRNAs for molecular-assisted screening and salt-alkali resistance breeding.
Collapse
Affiliation(s)
- Yichen Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Xinyu Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Mingfu Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weina Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanling Fan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - YanHong Yao
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Junlian Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Shuhao Qin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| |
Collapse
|
263
|
DeVree BT, Steiner LM, Głazowska S, Ruhnow F, Herburger K, Persson S, Mravec J. Current and future advances in fluorescence-based visualization of plant cell wall components and cell wall biosynthetic machineries. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:78. [PMID: 33781321 PMCID: PMC8008654 DOI: 10.1186/s13068-021-01922-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/05/2021] [Indexed: 05/18/2023]
Abstract
Plant cell wall-derived biomass serves as a renewable source of energy and materials with increasing importance. The cell walls are biomacromolecular assemblies defined by a fine arrangement of different classes of polysaccharides, proteoglycans, and aromatic polymers and are one of the most complex structures in Nature. One of the most challenging tasks of cell biology and biomass biotechnology research is to image the structure and organization of this complex matrix, as well as to visualize the compartmentalized, multiplayer biosynthetic machineries that build the elaborate cell wall architecture. Better knowledge of the plant cells, cell walls, and whole tissue is essential for bioengineering efforts and for designing efficient strategies of industrial deconstruction of the cell wall-derived biomass and its saccharification. Cell wall-directed molecular probes and analysis by light microscopy, which is capable of imaging with a high level of specificity, little sample processing, and often in real time, are important tools to understand cell wall assemblies. This review provides a comprehensive overview about the possibilities for fluorescence label-based imaging techniques and a variety of probing methods, discussing both well-established and emerging tools. Examples of applications of these tools are provided. We also list and discuss the advantages and limitations of the methods. Specifically, we elaborate on what are the most important considerations when applying a particular technique for plants, the potential for future development, and how the plant cell wall field might be inspired by advances in the biomedical and general cell biology fields.
Collapse
Affiliation(s)
- Brian T DeVree
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Lisa M Steiner
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Sylwia Głazowska
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Felix Ruhnow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Staffan Persson
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
264
|
Yonekura-Sakakibara K, Yamamura M, Matsuda F, Ono E, Nakabayashi R, Sugawara S, Mori T, Tobimatsu Y, Umezawa T, Saito K. Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis. THE PLANT CELL 2021; 33:129-152. [PMID: 33751095 PMCID: PMC8136895 DOI: 10.1093/plcell/koaa014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/20/2020] [Indexed: 05/03/2023]
Abstract
Lignans/neolignans are generally synthesized from coniferyl alcohol (CA) in the cinnamate/monolignol pathway by oxidation to generate the corresponding radicals with subsequent stereoselective dimerization aided by dirigent proteins (DIRs). Genes encoding oxidases and DIRs for neolignan biosynthesis have not been identified previously. In Arabidopsis thaliana, the DIR AtDP1/AtDIR12 plays an essential role in the 8-O-4' coupling in neolignan biosynthesis by unequivocal structural determination of the compound missing in the atdp1 mutant as a sinapoylcholine (SC)-conjugated neolignan, erythro-3-{4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-hydroxymethylethoxy]-3,5-dimethoxyphenyl}acryloylcholine. Phylogenetic analyses showed that AtDP1/AtDIR12 belongs to the DIR-a subfamily composed of DIRs for 8-8' coupling of monolignol radicals. AtDP1/AtDIR12 is specifically expressed in outer integument 1 cells in developing seeds. As a putative oxidase for neolignan biosynthesis, we focused on AtLAC5, a laccase gene coexpressed with AtDP1/AtDIR12. In lac5 mutants, the abundance of feruloylcholine (FC)-conjugated neolignans decreased to a level comparable to those in the atdp1 mutant. In addition, SC/FC-conjugated neolignans were missing in the seeds of mutants defective in SCT/SCPL19, an enzyme that synthesizes SC. These results strongly suggest that AtDP1/AtDIR12 and AtLAC5 are involved in neolignan biosynthesis via SC/FC. A tetrazolium penetration assay showed that seed coat permeability increased in atdp1 mutants, suggesting a protective role of neolignans in A. thaliana seeds.
Collapse
Affiliation(s)
- Keiko Yonekura-Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Fumio Matsuda
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika, Soraku-gun, Kyoto 619-0284, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Satoko Sugawara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Research Unit for Development of Global Sustainability, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
- Author for correspondence: ,
| |
Collapse
|
265
|
Chao N, Qi Q, Li S, Ruan B, Jiang X, Gai Y. Characterization and functional analysis of the Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) gene family in poplar. PeerJ 2021; 9:e10741. [PMID: 33665007 PMCID: PMC7916539 DOI: 10.7717/peerj.10741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) divides the mass flux to H, G and S units in monolignol biosynthesis and affects lignin content. Ten HCT homologs were identified in the Populus trichocarpa (Torr. & Gray) genome. Both genome duplication and tandem duplication resulted in the expansion of HCT orthologs in Populus. Comprehensive analysis including motif analysis, phylogenetic analysis, expression profiles and co-expression analysis revealed the divergence and putative function of these candidate PoptrHCTs. PoptrHCT1 and 2 were identified as likely involved in lignin biosynthesis. PoptrHCT9 and 10- are likely to be involved in plant development and the response to cold stress. Similar functional divergence was also identified in Populus tomentosa Carr. Enzymatic assay of PtoHCT1 showed that PtoHCT1 was able to synthesize caffeoyl shikimate using caffeoyl-CoA and shikimic acid as substrates.
Collapse
Affiliation(s)
- Nan Chao
- School of Life Science, Tsinghua University, Beijing, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qi Qi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,College of Horticulture, China Agricultural University, Beijing, China
| | - Shuang Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Brent Ruan
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Urbana Champaign, IL, USA
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, the Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, the Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing, China
| |
Collapse
|
266
|
Elder T, Rencoret J, del Río JC, Kim H, Ralph J. Radical Coupling Reactions of Hydroxystilbene Glucosides and Coniferyl Alcohol: A Density Functional Theory Study. FRONTIERS IN PLANT SCIENCE 2021; 12:642848. [PMID: 33737945 PMCID: PMC7960926 DOI: 10.3389/fpls.2021.642848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The monolignols, p-coumaryl, coniferyl, and sinapyl alcohol, arise from the general phenylpropanoid biosynthetic pathway. Increasingly, however, authentic lignin monomers derived from outside this process are being identified and found to be fully incorporated into the lignin polymer. Among them, hydroxystilbene glucosides, which are produced through a hybrid process that combines the phenylpropanoid and acetate/malonate pathways, have been experimentally detected in the bark lignin of Norway spruce (Picea abies). Several interunit linkages have been identified and proposed to occur through homo-coupling of the hydroxystilbene glucosides and their cross-coupling with coniferyl alcohol. In the current work, the thermodynamics of these coupling modes and subsequent rearomatization reactions have been evaluated by the application of density functional theory (DFT) calculations. The objective of this paper is to determine favorable coupling and cross-coupling modes to help explain the experimental observations and attempt to predict other favorable pathways that might be further elucidated via in vitro polymerization aided by synthetic models and detailed structural studies.
Collapse
Affiliation(s)
- Thomas Elder
- USDA-Forest Service, Southern Research Station, Auburn, AL, United States
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
267
|
Zhu X, Jiang L, Cai Y, Cao Y. Functional analysis of four Class III peroxidases from Chinese pear fruit: a critical role in lignin polymerization. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:515-522. [PMID: 33854280 PMCID: PMC7981345 DOI: 10.1007/s12298-021-00949-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 06/01/2023]
Abstract
Pear fruit could be used as good medicine to relieve coughs, promote salivation, nourish lungs, and reduce the risk of many diseases for its phytochemical action. Lignin is a major secondary metabolite in Chinese pear fruit. Class III peroxidase (Class III PRX) is an important enzyme in the biosynthesis of lignin in plants. However, we poorly understand the role of PRXs in lignin biosynthesis in Chinese pear fruit. In our study, we cloned five PRXs from Chinese pear (Pyrus bretschneideri), namely PbPRX2, PbPRX22, PbPRX34, PbPRX64, and PbPRX75, which contained 978 bp encoded 326 amino acids (AA), 2607 bp encoded 869 AA, 972 bp encoded 324 AA, 687 bp encoded 229 AA, and 1020 bp encoded 340 AA, respectively. Enzyme activity analysis showed that four recombinant PbPRX proteins had catalytic activities for pyrogallol, guaiacol, ferulic acid, coniferyl alcohol, and sinapyl alcohol. Subcellular localization experiments showed that these genes were located in the cell wall or cell membrane. Enzyme activity and kinetics of PbPRX2 revealed its role in polymerization of lignin in Chinese pear fruit. The present study suggested that PbPRXs played critical roles in lignin biosynthesis in Chinese pear fruit. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00949-9.
Collapse
Affiliation(s)
- Xi Zhu
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Lan Jiang
- Yijishan Hospital of Wannan Medical College, Wuhu, 241000 Anhui China
| | - Yongping Cai
- Key Lab of Non-Wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| | - Yunpeng Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- Key Lab of Non-Wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- School of Life Science, Anhui Agricultural University, Hefei, 230036 Anhui China
| |
Collapse
|
268
|
Vibrational Spectroscopic Analyses and Imaging of the Early Middle Ages Hemp Bast Fibres Recovered from Lake Sediments. Molecules 2021; 26:molecules26051314. [PMID: 33804535 PMCID: PMC7957794 DOI: 10.3390/molecules26051314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023] Open
Abstract
Fourier Transform Infrared (FT-IR) spectroscopy and imaging combined with hierarchical cluster analysis (HCA) was applied to analyse biochemical properties of Early Middle Ages hemp (Cannabis sativa L.) bast fibres collected from lake bottom sediment of lake Słone. The examined plant macrofossil material constitutes residues of the hemp retting process that took place in the 7th–8th century. By comparison of three samples: untreated isolated bast fibres, and fibres incubated overnight at 4 and 37 °C, we were able to mimic the retting conditions. Using FT-IR qualitative and semi-quantitative assessment of the primary polysaccharides content, total protein content, and their spatial distribution was performed within the hemp fibres. The concentration of cellulose remained vastly unchanged, while the concentration of lignin and pectin was the highest in the untreated sample. The spatial distributions of compounds were heterogeneous in the untreated and 4 °C-incubated samples, and homogenous in the specimen processed at 37 °C. Interestingly, a higher amide content was detected in the latter sample indicating the highest degree of enzymatic degradation. In this study, we show that the spectroscopic methods allow for a non-destructive evaluation of biochemical composition of plant fibres without preparation, which can be an appropriate approach for studying ancient plant remains.
Collapse
|
269
|
Liu X, Van Acker R, Voorend W, Pallidis A, Goeminne G, Pollier J, Morreel K, Kim H, Muylle H, Bosio M, Ralph J, Vanholme R, Boerjan W. Rewired phenolic metabolism and improved saccharification efficiency of a Zea mays cinnamyl alcohol dehydrogenase 2 (zmcad2) mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1240-1257. [PMID: 33258151 DOI: 10.1111/tpj.15108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Lignocellulosic biomass is an abundant byproduct from cereal crops that can potentially be valorized as a feedstock to produce biomaterials. Zea mays CINNAMYL ALCOHOL DEHYDROGENASE 2 (ZmCAD2) is involved in lignification, and is a promising target to improve the cellulose-to-glucose conversion of maize stover. Here, we analyzed a field-grown zmcad2 Mutator transposon insertional mutant. Zmcad2 mutant plants had an 18% lower Klason lignin content, whereas their cellulose content was similar to that of control lines. The lignin in zmcad2 mutants contained increased levels of hydroxycinnamaldehydes, i.e. the substrates of ZmCAD2, ferulic acid and tricin. Ferulates decorating hemicelluloses were not altered. Phenolic profiling further revealed that hydroxycinnamaldehydes are partly converted into (dihydro)ferulic acid and sinapic acid and their derivatives in zmcad2 mutants. Syringyl lactic acid hexoside, a metabolic sink in CAD-deficient dicot trees, appeared not to be a sink in zmcad2 maize. The enzymatic cellulose-to-glucose conversion efficiency was determined after 10 different thermochemical pre-treatments. Zmcad2 yielded significantly higher conversions compared with controls for almost every pre-treatment. However, the relative increase in glucose yields after alkaline pre-treatment was not higher than the relative increase when no pre-treatment was applied, suggesting that the positive effect of the incorporation of hydroxycinnamaldehydes was leveled off by the negative effect of reduced p-coumarate levels in the cell wall. Taken together, our results reveal how phenolic metabolism is affected in CAD-deficient maize, and further support mutating CAD genes in cereal crops as a promising strategy to improve lignocellulosic biomass for sugar-platform biorefineries.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wannes Voorend
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Andreas Pallidis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hoon Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, 53726, USA
| | - Hilde Muylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - John Ralph
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, 53726, USA
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
270
|
Pathway discovery and engineering for cleavage of a β-1 lignin-derived biaryl compound. Metab Eng 2021; 65:1-10. [PMID: 33636323 DOI: 10.1016/j.ymben.2021.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
Lignin biosynthesis typically results in a polymer with several inter-monomer bond linkages, and the heterogeneity of linkages presents a challenge for depolymerization processes. While several enzyme classes have been shown to cleave common dimer linkages in lignin, the pathway of bacterial β-1 spirodienone linkage cleavage has not been elucidated. Here, we identified a pathway for cleavage of 1,2-diguaiacylpropane-1,3-diol (DGPD), a β-1 linked biaryl representative of a ring-opened spirodienone linkage, in Novosphingobium aromaticivorans DSM12444. In vitro assays using cell lysates demonstrated that RS14230 (LsdE) converts DGPD to a lignostilbene intermediate, which the carotenoid oxygenase, LsdA, then converts to vanillin. A Pseudomonas putida KT2440 strain engineered with lsdEA expression catabolizes erythro-DGPD, but not threo-DGPD. We further engineered P. putida to convert DGPD to a product, cis,cis-muconic acid. Overall, this work demonstrates the potential to identify new enzymatic reactions in N. aromaticivorans and expands the biological funnel of P. putida for microbial lignin valorization.
Collapse
|
271
|
Paulsen Thoresen P, Lange H, Crestini C, Rova U, Matsakas L, Christakopoulos P. Characterization of Organosolv Birch Lignins: Toward Application-Specific Lignin Production. ACS OMEGA 2021; 6:4374-4385. [PMID: 33623848 PMCID: PMC7893791 DOI: 10.1021/acsomega.0c05719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Organosolv pretreatment represents one of the most promising biomass valorization strategies for renewable carbon-based products; meanwhile, there is an overall lack of holistic approach to how extraction conditions affect the suitable end-usages. In this context, lignin extracted from silver birch (Betula pendula L.) by a novel hybrid organosolv/steam-explosion treatment at varying process conditions (EtOH %; time; catalyst %) was analyzed by quantitative NMR (1H-13C HSQC; 13C NMR; 31P NMR), gel permeation chromatography, Fourier transform infrared (FT-IR), Pyr-gas chromatography-mass spectroscopy (GC/MS), and thermogravimetric analysis, and the physicochemical characteristics of the lignins were discussed regarding their potential usages. Characteristic lignin interunit bonding motifs, such as β-O-4', β-β', and β-5', were found to dominate in the extracted lignins, with their abundance varying with treatment conditions. Low-molecular-weight lignins with fairly unaltered characteristics were generated via extraction with the highest ethanol content potentially suitable for subsequent production of free phenolics. Furthermore, β-β' and β-5' structures were predominant at higher acid catalyst contents and prolonged treatment times. Higher acid catalyst content led to oxidation and ethoxylation of side-chains, with the concomitant gradual disappearance of p-hydroxycinnamyl alcohol and cinnamaldehyde. This said, the increasing application of acid generated a broad set of lignin characteristics with potential applications such as antioxidants, carbon fiber, nanoparticles, and water remediation purposes.
Collapse
Affiliation(s)
- Petter Paulsen Thoresen
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971-87 Luleå, Sweden
| | - Heiko Lange
- Department
of Pharmacy, University of Naples’Federico
II’, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Claudia Crestini
- Department
of Molecular Science and Nanosystems, University
of Venice Ca’ Foscari, Via Torino 155, 30170 Venice Mestre, Italy
| | - Ulrika Rova
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971-87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971-87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971-87 Luleå, Sweden
| |
Collapse
|
272
|
Yan Z, Wu T, Fang G, Ran M, Shen K, Liao G. Self-assembly preparation of lignin-graphene oxide composite nanospheres for highly efficient Cr(vi) removal. RSC Adv 2021; 11:4713-4722. [PMID: 35424380 PMCID: PMC8694538 DOI: 10.1039/d0ra09190a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Recently, research interest in the application of lignin is growing, especially as adsorbent material. However, single lignin shows unsatisfactory adsorption performance, and thus, construction of lignin-based nanocomposites is worth considering. Herein, we introduced graphene oxide (GO) into lignin to form lignin/GO (LGNs) composite nanospheres by a self-assembly method. FTIR and 1H NMR spectroscopy illustrated that lignin and GO are tightly connected by hydrogen bonds. The LGNs as an environmental friendly material, also exhibit excellent performance for Cr(vi) removal. The maximum sorption capacity of LGNs is 368.78 mg g-1, and the sorption efficiency is 1.5 times than that of lignin nanospheres (LNs). The removal process of Cr(vi) via LGNs mainly relies on electrostatic interaction, and it also involves the reduction of Cr(vi) to Cr(iii). Moreover, LGNs still have high adsorption performance after repeating five times with the sorption capacity of 150.4 mg g-1 in 200 mg g-1 Cr(vi) solution. Therefore, the prepared lignin-GO composite nanospheres have enormous potential as a low-cost, high-absorbent and recyclable adsorbent, and can be used in wastewater treatment.
Collapse
Affiliation(s)
- Zhenyu Yan
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210042 Jiangsu China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210042 Jiangsu China
| | - Miao Ran
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
| | - Kuizhong Shen
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
| | - Guangfu Liao
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| |
Collapse
|
273
|
Breeding Targets to Improve Biomass Quality in Miscanthus. Molecules 2021; 26:molecules26020254. [PMID: 33419100 PMCID: PMC7825460 DOI: 10.3390/molecules26020254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 01/02/2023] Open
Abstract
Lignocellulosic crops are attractive bioresources for energy and chemicals production within a sustainable, carbon circular society. Miscanthus is one of the perennial grasses that exhibits great potential as a dedicated feedstock for conversion to biobased products in integrated biorefineries. The current biorefinery strategies are primarily focused on polysaccharide valorization and require severe pretreatments to overcome the lignin barrier. The need for such pretreatments represents an economic burden and impacts the overall sustainability of the biorefinery. Hence, increasing its efficiency has been a topic of great interest. Inversely, though pretreatment will remain an essential step, there is room to reduce its severity by optimizing the biomass composition rendering it more exploitable. Extensive studies have examined the miscanthus cell wall structures in great detail, and pinpointed those components that affect biomass digestibility under various pretreatments. Although lignin content has been identified as the most important factor limiting cell wall deconstruction, the effect of polysaccharides and interaction between the different constituents play an important role as well. The natural variation that is available within different miscanthus species and increased understanding of biosynthetic cell wall pathways have specified the potential to create novel accessions with improved digestibility through breeding or genetic modification. This review discusses the contribution of the main cell wall components on biomass degradation in relation to hydrothermal, dilute acid and alkaline pretreatments. Furthermore, traits worth advancing through breeding will be discussed in light of past, present and future breeding efforts.
Collapse
|
274
|
Ferreira SS, Antunes MS. Re-engineering Plant Phenylpropanoid Metabolism With the Aid of Synthetic Biosensors. FRONTIERS IN PLANT SCIENCE 2021; 12:701385. [PMID: 34603348 PMCID: PMC8481569 DOI: 10.3389/fpls.2021.701385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 05/03/2023]
Abstract
Phenylpropanoids comprise a large class of specialized plant metabolites with many important applications, including pharmaceuticals, food nutrients, colorants, fragrances, and biofuels. Therefore, much effort has been devoted to manipulating their biosynthesis to produce high yields in a more controlled manner in microbial and plant systems. However, current strategies are prone to significant adverse effects due to pathway complexity, metabolic burden, and metabolite bioactivity, which still hinder the development of tailor-made phenylpropanoid biofactories. This gap could be addressed by the use of biosensors, which are molecular devices capable of sensing specific metabolites and triggering a desired response, as a way to sense the pathway's metabolic status and dynamically regulate its flux based on specific signals. Here, we provide a brief overview of current research on synthetic biology and metabolic engineering approaches to control phenylpropanoid synthesis and phenylpropanoid-related biosensors, advocating for the use of biosensors and genetic circuits as a step forward in plant synthetic biology to develop autonomously-controlled phenylpropanoid-producing plant biofactories.
Collapse
|
275
|
Pramod S, Saha T, Rekha K, Kavi Kishor PB. Hevea brasiliensis coniferaldehyde-5-hydroxylase (HbCAld5H) regulates xylogenesis, structure and lignin chemistry of xylem cell wall in Nicotiana tabacum. PLANT CELL REPORTS 2021; 40:127-142. [PMID: 33068174 PMCID: PMC7811508 DOI: 10.1007/s00299-020-02619-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE The HbCAld5H1 gene cloned from Hevea brasiliensis regulates the cambial activity, xylem differentiation, syringyl-guaiacyl ratio, secondary wall structure, lignification pattern and xylan distribution in xylem fibres of transgenic tobacco plants. Molecular characterization of lignin biosynthesis gene coniferaldehyde-5-hydroxylase (CAld5H) from Hevea brasiliensis and its functional validation was performed. Both sense and antisense constructs of HbCAld5H1 gene were introduced into tobacco through Agrobacterium-mediated genetic transformation for over expression and down-regulation of this key enzyme to understand its role affecting structural and cell wall chemistry. The anatomical studies of transgenic tobacco plants revealed the increase of cambial activity leading to xylogenesis in sense lines and considerable reduction in antisense lines. The ultra-structural studies showed that the thickness of secondary wall (S2 layer) of fibre had been decreased with non-homogenous lignin distribution in antisense lines, while sense lines showed an increase in S2 layer thickness. Maule color reaction revealed that syringyl lignin distribution in the xylem elements was increased in sense and decreased in antisense lines. The immunoelectron microscopy revealed a reduction in LM 10 and LM 11 labelling in the secondary wall of antisense tobacco lines. Biochemical studies showed a radical increase in syringyl lignin in sense lines without any significant change in total lignin content, while S/G ratio decreased considerably in antisense lines. Our results suggest that CAld5H gene plays an important role in xylogenesis stages such as cambial cell division, secondary wall thickness, xylan and syringyl lignin distribution in tobacco. Therefore, CAld5H gene could be considered as a promising target for lignin modification essential for timber quality improvement in rubber.
Collapse
Affiliation(s)
- S Pramod
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board, Kottayam, Kerala, 686009, India.
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre, Swedish University of Agricultural Sciences, 901-87, Umea, Sweden.
| | - Thakurdas Saha
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board, Kottayam, Kerala, 686009, India
| | - K Rekha
- Advanced Centre for Molecular Biology and Biotechnology, Rubber Research Institute of India, Rubber Board, Kottayam, Kerala, 686009, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| |
Collapse
|
276
|
Reynoud N, Petit J, Bres C, Lahaye M, Rothan C, Marion D, Bakan B. The Complex Architecture of Plant Cuticles and Its Relation to Multiple Biological Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:782773. [PMID: 34956280 PMCID: PMC8702516 DOI: 10.3389/fpls.2021.782773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/18/2021] [Indexed: 05/20/2023]
Abstract
Terrestrialization of vascular plants, i.e., Angiosperm, is associated with the development of cuticular barriers that prevent biotic and abiotic stresses and support plant growth and development. To fulfill these multiple functions, cuticles have developed a unique supramolecular and dynamic assembly of molecules and macromolecules. Plant cuticles are not only an assembly of lipid compounds, i.e., waxes and cutin polyester, as generally presented in the literature, but also of polysaccharides and phenolic compounds, each fulfilling a role dependent on the presence of the others. This mini-review is focused on recent developments and hypotheses on cuticle architecture-function relationships through the prism of non-lipid components, i.e., cuticle-embedded polysaccharides and polyester-bound phenolics.
Collapse
Affiliation(s)
- Nicolas Reynoud
- INRAE, Unité Biopolymères, Interactions, Assemblages, Nantes, France
| | - Johann Petit
- INRAE, University of Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - Cécile Bres
- INRAE, University of Bordeaux, UMR BFP, Villenave d’Ornon, France
| | - Marc Lahaye
- INRAE, Unité Biopolymères, Interactions, Assemblages, Nantes, France
| | | | - Didier Marion
- INRAE, Unité Biopolymères, Interactions, Assemblages, Nantes, France
| | - Bénédicte Bakan
- INRAE, Unité Biopolymères, Interactions, Assemblages, Nantes, France
- *Correspondence: Bénédicte Bakan,
| |
Collapse
|
277
|
Eugene A, Lapierre C, Ralph J. Improved analysis of arabinoxylan-bound hydroxycinnamate conjugates in grass cell walls. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:202. [PMID: 33303001 PMCID: PMC7731738 DOI: 10.1186/s13068-020-01841-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Arabinoxylan in grass cell walls is acylated to varying extents by ferulate and p-coumarate at the 5-hydroxy position of arabinosyl residues branching off the xylan backbone. Some of these hydroxycinnamate units may then become involved in cell wall radical coupling reactions, resulting in ether and other linkages amongst themselves or to monolignols or oligolignols, thereby crosslinking arabinoxylan chains with each other and/or with lignin polymers. This crosslinking is assumed to increase the strength of the cell wall, and impedes the utilization of grass biomass in natural and industrial processes. A method for quantifying the degree of acylation in various grass tissues is, therefore, essential. We sought to reduce the incidence of hydroxycinnamate ester hydrolysis in our recently introduced method by utilizing more anhydrous conditions. RESULTS The improved methanolysis method minimizes the undesirable ester-cleavage of arabinose from ferulate and p-coumarate esters, and from diferulate dehydrodimers, and produces more methanolysis vs. hydrolysis of xylan-arabinosides, improving the yields of the desired feruloylated and p-coumaroylated methyl arabinosides and their diferulate analogs. Free ferulate and p-coumarate produced by ester-cleavage were reduced by 78% and 68%, respectively, and 21% and 39% more feruloyl and p-coumaroyl methyl arabinosides were detected in the more anhydrous method. The new protocol resulted in an estimated 56% less combined diferulate isomers in which only one acylated arabinosyl unit remained, and 170% more combined diferulate isomers conjugated to two arabinosyl units. CONCLUSIONS Overall, the new protocol for mild acidolysis of grass cell walls is both recovering more ferulate- and p-coumarate-arabinose conjugates from the arabinoxylan and cleaving less of them down to free ferulic acid, p-coumaric acid, and dehydrodiferulates with just one arabinosyl ester. This cleaner method, especially when coupled with the orthogonal method for measuring monolignol hydroxycinnamate conjugates that have been incorporated into lignin, provides an enhanced tool to measure the extent of crosslinking in grass arabinoxylan chains, assisting in identification of useful grasses for biomass applications.
Collapse
Affiliation(s)
- Alexis Eugene
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA
| | - Catherine Lapierre
- Institute Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - John Ralph
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, USA.
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
278
|
Gard Timmerfors J, Gandla ML, Sjölund T, Jönsson LJ. Evaluation of chipping and impregnation of Scots pine heartwood with sulfite cooking liquor. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
AbstractHeartwood and sapwood of Scots pine were procured and chipped using a newly developed pilot drum chipper, which for the heartwood resulted in a combined fraction of pin chips and fines of ~ 3%. Heartwood wood chips were processed using a set of 15 different reaction conditions that differed with respect to impregnation and cooking procedures. The result was evaluated with regard to absorption of impregnation liquid, pulp yield, fraction of reject, viscosity, kappa number, brightness, fiber properties, and chemical composition measured using two different techniques (compositional analysis using two-step hydrolysis with sulfuric acid and Py-GC/MS). The chemical analyses provided detailed information about how all main organic constituents of the wood, cellulose, hemicelluloses, and lignin, were affected by operational parameters. Inclusion of a pressurized (9 bar) impregnation step resulted in a more efficient cook, but the duration of the impregnation step (five minutes and four hours were compared) was not decisive for the outcome. Omission of the impregnation step or using low-pressure impregnation resulted in high fractions of reject, poor delignification, and, with a cooking time of two hours, no advantages with regard to fiber length and fraction of fines. The results indicate that the conditions used during impregnation, such as pressure, temperature, and acidity of impregnation liquid, warrant further attention in future studies.
Collapse
|
279
|
El-Azazy M, El-Shafie AS, Elgendy A, Issa AA, Al-Meer S, Al-Saad KA. A Comparison between Different Agro-Wastes and Carbon Nanotubes for Removal of Sarafloxacin from Wastewater: Kinetics and Equilibrium Studies. Molecules 2020; 25:E5429. [PMID: 33228258 PMCID: PMC7699551 DOI: 10.3390/molecules25225429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 01/16/2023] Open
Abstract
In the current study, eco-structured and efficient removal of the veterinary fluoroquinolone antibiotic sarafloxacin (SARA) from wastewater has been explored. The adsorptive power of four agro-wastes (AWs) derived from pistachio nutshells (PNS) and Aloe vera leaves (AV) as well as the multi-walled carbon nanotubes (MWCNTs) has been assessed. Adsorbent derived from raw pistachio nutshells (RPNS) was the most efficient among the four tested AWs (%removal '%R' = 82.39%), while MWCNTs showed the best adsorptive power amongst the five adsorbents (%R = 96.20%). Plackett-Burman design (PBD) was used to optimize the adsorption process. Two responses ('%R' and adsorption capacity 'qe') were optimized as a function of four variables (pH, adsorbent dose 'AD' (dose of RPNS and MWCNTs), adsorbate concentration [SARA] and contact time 'CT'). The effect of pH was similar for both RPNS and MWCNTs. Morphological and textural characterization of the tested adsorbents was carried out using FT-IR spectroscopy, SEM and BET analyses. Conversion of waste-derived materials into carbonaceous material was investigated by Raman spectroscopy. Equilibrium studies showed that Freundlich isotherm is the most suitable isotherm to describe the adsorption of SARA onto RPNS. Kinetics' investigation shows that the adsorption of SARA onto RPNS follows a pseudo-second order (PSO) model.
Collapse
Affiliation(s)
- Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (A.S.E.-S.); (A.E.); (A.A.I.); (S.A.-M.); (K.A.A.-S.)
| | | | | | | | | | | |
Collapse
|
280
|
Carpita NC, McCann MC. Redesigning plant cell walls for the biomass-based bioeconomy. J Biol Chem 2020; 295:15144-15157. [PMID: 32868456 PMCID: PMC7606688 DOI: 10.1074/jbc.rev120.014561] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/30/2020] [Indexed: 01/28/2023] Open
Abstract
Lignocellulosic biomass-the lignin, cellulose, and hemicellulose that comprise major components of the plant cell well-is a sustainable resource that could be utilized in the United States to displace oil consumption from heavy vehicles, planes, and marine-going vessels and commodity chemicals. Biomass-derived sugars can also be supplied for microbial fermentative processing to fuels and chemicals or chemically deoxygenated to hydrocarbons. However, the economic value of biomass might be amplified by diversifying the range of target products that are synthesized in living plants. Genetic engineering of lignocellulosic biomass has previously focused on changing lignin content or composition to overcome recalcitrance, the intrinsic resistance of cell walls to deconstruction. New capabilities to remove lignin catalytically without denaturing the carbohydrate moiety have enabled the concept of the "lignin-first" biorefinery that includes high-value aromatic products. The structural complexity of plant cell-wall components also provides substrates for polymeric and functionalized target products, such as thermosets, thermoplastics, composites, cellulose nanocrystals, and nanofibers. With recent advances in the design of synthetic pathways, lignocellulosic biomass can be regarded as a substrate at various length scales for liquid hydrocarbon fuels, chemicals, and materials. In this review, we describe the architectures of plant cell walls and recent progress in overcoming recalcitrance and illustrate the potential for natural or engineered biomass to be used in the emerging bioeconomy.
Collapse
Affiliation(s)
- Nicholas C Carpita
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA; Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA; Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
281
|
Osorio-González CS, Hegde K, Brar SK, Vezina P, Gilbert D, Avalos-Ramírez A. Pulsed-ozonolysis assisted oxidative treatment of forestry biomass for lignin fractionation. BIORESOURCE TECHNOLOGY 2020; 313:123638. [PMID: 32534757 DOI: 10.1016/j.biortech.2020.123638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 05/22/2023]
Abstract
Lignocellulosic biomass has been used to produce biomolecules of industrial interest through thermochemical, biological, and chemical transformation. However, few works have been developed over lignin fractionation to obtain monolignols with commercial potentials, such as sinapyl, coniferyl, and p-coumaryl alcohols. This study is focused on developing a thermochemical method to delignify biomass. Additionally, an oxidative treatment with ozone was studied to increase the release of monolignol compounds. The results showed that with 30 sec of ozonation in liquid samples from softwood sawdust a total concentration of 368.50 ± 0.73 mg/kg of monolignols was released after microwave-assisted extraction (256.5 ± 0.51 mg/kg of sinapyl alcohol and 112 ± 0.22 mg/kg of coniferyl alcohol) and 629.20 ± 0.21 mg/kg was released after thermal treatment (453.70 ± 0.15 mg/kg of sinapyl alcohol and 175.5 ± 0.06 mg/kg of coniferyl alcohol). For p-coumaryl alcohol, 16.32 mg/kg was obtained only in hardwood samples. The results of the present study showed that ozonolysis improves monolignols release from forestry residues.
Collapse
Affiliation(s)
- Carlos S Osorio-González
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Krishnamoorthy Hegde
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Satinder K Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Pierre Vezina
- Directeur énergie et environnement, Conseil de l'industrie Forestière du Québec, 1175 Avenue Lavigerie Suite 200, Québec G1V 4P1, QC, Canada
| | - Dave Gilbert
- EMO3 Director, 945, Newton Avenue, Suite 134, Québec G1P 4M3, QC, Canada
| | - Antonio Avalos-Ramírez
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada; Centre National en Électrochimie et en Technologies Environnementales, 2263, Avenue du Collège, Shawinigan G9N 6V8, QC, Canada
| |
Collapse
|
282
|
Abstract
This article is a Commentary on Lui et al. (2020), 228: 269–284.
Collapse
Affiliation(s)
- John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of WisconsinMadisonWI53726USA
| |
Collapse
|
283
|
Van Aelst K, Van Sinay E, Vangeel T, Cooreman E, Van den Bossche G, Renders T, Van Aelst J, Van den Bosch S, Sels BF. Reductive catalytic fractionation of pine wood: elucidating and quantifying the molecular structures in the lignin oil. Chem Sci 2020; 11:11498-11508. [PMID: 34094394 PMCID: PMC8162782 DOI: 10.1039/d0sc04182c] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
In-depth structural analysis of biorefined lignin is imperative to understand its physicochemical properties, essential for its efficient valorization to renewable materials and chemicals. Up to now, research on Reductive Catalytic Fractionation (RCF) of lignocellulose biomass, an emerging biorefinery technology, has strongly focused on the formation, separation and quantitative analysis of the abundant lignin-derived phenolic monomers. However, detailed structural information on the linkages in RCF lignin oligomers, constituting up to 50 wt% of RCF lignin, and their quantification, is currently lacking. This study discloses new detailed insights into the pine wood RCF lignin oil's molecular structure through the combination of fractionation and systematic analysis, resulting in the first assignment of the major RCF-derived structural units in the 1H-13C HSQC NMR spectrum of the RCF oligomers. Specifically, β-5 γ-OH, β-5 ethyl, β-1 γ-OH, β-1 ethyl, β-β 2x γ-OH, β-β THF, and 5-5 inter-unit linkages were assigned unambiguously, resulting in the quantification of over 80% of the lignin inter-unit linkages and end-units. Detailed inspection of the native lignin inter-unit linkages and their conversion reveals the occurring hydrogenolysis chemistry and the unambiguous proof of absence of lignin fragment condensation during proper RCF processing. Overall, the study offers an advanced analytical toolbox for future RCF lignin conversion and lignin structural analysis research, and valuable insights for lignin oil valorization purposes.
Collapse
Affiliation(s)
- K Van Aelst
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - E Van Sinay
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - T Vangeel
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - E Cooreman
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - G Van den Bossche
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - T Renders
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - J Van Aelst
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - S Van den Bosch
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - B F Sels
- Centre for Sustainable Catalysis and Engineering, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
284
|
Arefmanesh M, Vuong TV, Mobley JK, Alinejad M, Master ER, Nejad M. Bromide-Based Ionic Liquid Treatment of Hardwood Organosolv Lignin Yielded a More Reactive Biobased Polyol. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Maryam Arefmanesh
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Thu V. Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Justin K. Mobley
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Mona Alinejad
- Department of Forestry, Michigan State University, 480 Wilson Road, East Lansing, Michigan 48824, United States
| | - Emma R. Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Kemistintie 1, Espoo FI-00076, Finland
| | - Mojgan Nejad
- Department of Forestry, Michigan State University, 480 Wilson Road, East Lansing, Michigan 48824, United States
| |
Collapse
|
285
|
Vendamme R, Behaghel de Bueren J, Gracia-Vitoria J, Isnard F, Mulunda MM, Ortiz P, Wadekar M, Vanbroekhoven K, Wegmann C, Buser R, Héroguel F, Luterbacher JS, Eevers W. Aldehyde-Assisted Lignocellulose Fractionation Provides Unique Lignin Oligomers for the Design of Tunable Polyurethane Bioresins. Biomacromolecules 2020; 21:4135-4148. [PMID: 32845140 DOI: 10.1021/acs.biomac.0c00927] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thanks to chemical stabilization, aldehyde-assisted fractionation (AAF) of lignocellulosic biomass has recently emerged as a powerful tool for the production of largely uncondensed lignin. Depolymerization of AAF lignin via ether cleavage provides aromatic monomers at near theoretical yields based on ether cleavage and an oligomeric fraction that remains largely unexploited despite its unique material properties. Here, we present an in-depth analytical characterization of AAF oligomers derived from hardwood and softwood in order to elucidate their molecular structures. These bioaromatic oligomers surpass technical Kraft lignin in terms of purity, solubility, and functionality and thus cannot even be compared to this common feedstock directly for material production. Instead, we performed comparative experiments with Kraft oligomers of similar molecular weight (Mn ∼ 1000) obtained through solvent extraction. These oligomers were then formulated into polyurethane materials. Substantial differences in material properties were observed depending on the amount of lignin, the botanical origin, and the biorefining process (AAF vs Kraft), suggesting new design principles for lignin-derived biopolymers with tailored properties. These results highlight the surprising versatility of AAF oligomers towards the design of new biomaterials and further demonstrate that AAF can enable the conversion of all biomass fractions into value-added products.
Collapse
Affiliation(s)
- Richard Vendamme
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium.,Department of Materials and Chemistry, Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jean Behaghel de Bueren
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Jaime Gracia-Vitoria
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium
| | - Florence Isnard
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium
| | - Mikael Monga Mulunda
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium.,Department of Chemistry, University of Lubumbashi, 1825 Lubumbashi, D. R. Congo
| | - Pablo Ortiz
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium
| | - Mohan Wadekar
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium
| | - Karolien Vanbroekhoven
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium
| | - Chloé Wegmann
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Raymond Buser
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Florent Héroguel
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Walter Eevers
- Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, 2400 Mol, Belgium.,Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
286
|
Liu X, Bouxin FP, Fan J, Budarin VL, Hu C, Clark JH. Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. CHEMSUSCHEM 2020; 13:4296-4317. [PMID: 32662564 PMCID: PMC7540457 DOI: 10.1002/cssc.202001213] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/12/2020] [Indexed: 05/05/2023]
Abstract
The efficient valorization of lignin could dictate the success of the 2nd generation biorefinery. Lignin, accounting for on average a third of the lignocellulosic biomass, is the most promising candidate for sustainable production of value-added phenolics. However, the structural alteration induced during lignin isolation is often depleting its potential for value-added chemicals. Recently, catalytic reductive depolymerization of lignin has appeared to be a promising and effective method for its valorization to obtain phenolic monomers. The present study systematically summarizes the far-reaching and state-of-the-art lignin valorization strategies during different stages, including conventional catalytic depolymerization of technical lignin, emerging reductive catalytic fractionation of protolignin, stabilization strategies to inhibit the undesired condensation reactions, and further catalytic upgrading of lignin-derived monomers. Finally, the potential challenges for the future researches on the efficient valorization of lignin and possible solutions are proposed.
Collapse
Affiliation(s)
- Xudong Liu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationDepartment of ChemistrySichuan UniversityWangjiang RoadChengdu610064P.R. China
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Florent P. Bouxin
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Jiajun Fan
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Vitaliy L. Budarin
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Changwei Hu
- Key Laboratory of Green Chemistry and TechnologyMinistry of EducationDepartment of ChemistrySichuan UniversityWangjiang RoadChengdu610064P.R. China
| | - James H. Clark
- Green Chemistry Center of ExcellenceDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
287
|
Li Y, Karlen SD, Demir B, Kim H, Luterbacher J, Dumesic JA, Stahl SS, Ralph J. Mechanistic Study of Diaryl Ether Bond Cleavage during Palladium-Catalyzed Lignin Hydrogenolysis. CHEMSUSCHEM 2020; 13:4487-4494. [PMID: 32202385 DOI: 10.1002/cssc.202000753] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 06/10/2023]
Abstract
Hydrogenolysis has emerged as one of the most effective means of converting polymeric lignin into monoaromatic fragments of value. Reported yields may be higher than for other methods and can exceed the theoretical yields estimated from measures of the content of lignin's most readily cleaved alkyl-aryl ether bonds in β-ether units. The high yields suggest that other units in lignin are being cleaved. Diaryl ether units are important units in lignin, and their cleavage has been examined previously using simple model compounds, such as diphenyl ether. Herein, the hydrogenolysis of model compounds that closely resemble the native lignin 4-O-5 diaryl ether units was analyzed. The results provided unexpected insights into the reactivity and partial cleavage of these compounds. The models and lignin polymer produced not only monomers, but also unusual 1,3,5-meta-substituted aromatics that appear to be diagnostic for the presence and the cleavage of the 4-O-5 diaryl ether unit in lignin.
Collapse
Affiliation(s)
- Yanding Li
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Steven D Karlen
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Benginur Demir
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hoon Kim
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jeremy Luterbacher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| | - James A Dumesic
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shannon S Stahl
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John Ralph
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
288
|
Terrell E, Carré V, Dufour A, Aubriet F, Le Brech Y, Garcia-Pérez M. Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI-FT-ICR-MS Results. CHEMSUSCHEM 2020; 13:4428-4445. [PMID: 32174017 DOI: 10.1002/cssc.202000239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High-resolution mass spectrometry-specifically, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS)-offers new opportunities for analysis of oligomers with the assignment of formulae (Cx Hy Oz ) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT-ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT-ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin.
Collapse
Affiliation(s)
- Evan Terrell
- Biological Systems Engineering, Washington State University, Pullman, Washington, 99163, USA
| | - Vincent Carré
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 57078, Metz Cedex 03, France
| | - Anthony Dufour
- LRGP, CNRS, Université de Lorraine, ENSIC, 54000, Nancy, France
| | - Frédéric Aubriet
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 57078, Metz Cedex 03, France
| | - Yann Le Brech
- LRGP, CNRS, Université de Lorraine, ENSIC, 54000, Nancy, France
| | - Manuel Garcia-Pérez
- Biological Systems Engineering, Washington State University, Pullman, Washington, 99163, USA
- Bioproducts, Sciences, & Engineering Laboratory, Washington State University Tri-Cities, Richland, Washington, 99354, USA
| |
Collapse
|
289
|
Musl O, Sulaeva I, Bacher M, Mahler AK, Rosenau T, Potthast A. Hydrophobic Interaction Chromatography in 2 D Liquid Chromatography Characterization of Lignosulfonates. CHEMSUSCHEM 2020; 13:4595-4604. [PMID: 32441817 PMCID: PMC7540692 DOI: 10.1002/cssc.202000849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 05/18/2023]
Abstract
Lignosulfonates are bulk-scale byproducts of industrial sulfite pulping. Their amphiphilic character plays a central role in their successful application in large-scale materials production. As an inherent feature of the chemical structure, this amphiphilic character poses a major analytical challenge. In this study, the amphiphilic behavior of an industrial lignosulfonate was investigated by hydrophobic interaction chromatography (HIC). This technique exploits hydrophobic regions present on the surface of lignosulfonates. Extensive characterization of the obtained fractions from preparative HIC, in terms of elemental composition, functional-group content, chemical structure, and molecular weight distribution, revealed a detailed picture of the chemical composition distribution. The charge-to-size ratio, that is, differences in the degree of sulfonation, was the dominant factor governing separation in HIC. A combination of HIC with size exclusion chromatography showed good orthogonality of separation and demonstrated the power of this 2 D liquid chromatography approach for an in-depth characterization, in general, and amphiphilicity, in particular.
Collapse
Affiliation(s)
- Oliver Musl
- Institute of Chemistry of Renewable ResourcesDepartment of ChemistryUniversity of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 243430TullnAustria
| | - Irina Sulaeva
- Institute of Chemistry of Renewable ResourcesDepartment of ChemistryUniversity of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 243430TullnAustria
| | - Markus Bacher
- Institute of Chemistry of Renewable ResourcesDepartment of ChemistryUniversity of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 243430TullnAustria
| | - A. Kai Mahler
- Sappi EuropeSappi Papier Holding GmbHBruckner Strasse 218101GratkornAustria
| | - Thomas Rosenau
- Institute of Chemistry of Renewable ResourcesDepartment of ChemistryUniversity of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 243430TullnAustria
| | - Antje Potthast
- Institute of Chemistry of Renewable ResourcesDepartment of ChemistryUniversity of Natural Resources and Life Sciences, Vienna (BOKU)Konrad-Lorenz-Strasse 243430TullnAustria
| |
Collapse
|
290
|
Sun RC, Samec JSM, Ragauskas AJ. Preface to Special Issue of ChemSusChem on Lignin Valorization: From Theory to Practice. CHEMSUSCHEM 2020; 13:4175-4180. [PMID: 32783394 DOI: 10.1002/cssc.202001755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 06/11/2023]
Abstract
In this Editorial, Guest Editors Run-Cang Sun, Joseph S. M. Samec, and Arthur J. Ragauskas introduce the Special Issue of ChemSusChem on Lignin Valorization: From Theory to Practice. The significance of and enormous challenges for the utilization of lignin are reviewed, and the contents of the Special Issue with highly interesting contributions from scientists around the world are outlined.
Collapse
Affiliation(s)
- Run-Cang Sun
- Center for Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, 116034, Dalian, P.R. China
| | - Joseph S M Samec
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering), University of Tennessee, 37996, Knoxville, TN, USA
| |
Collapse
|
291
|
Sun RC. Lignin Source and Structural Characterization. CHEMSUSCHEM 2020; 13:4385-4393. [PMID: 32638547 DOI: 10.1002/cssc.202001324] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Lignin is a primary component of lignocellulosic biomass and an underutilized feedstock in the growing pulping and biofuel industries. Currently, over 50 million tons of industrial lignin are produced annually from pulping and bioethanol processes in the world. Around 95 % of industrial lignin is burned as fuel in heat and power plants due to its complicated, destructive, and condensed structures hindering direct industrial utilization, while the remaining 5 % of lignin is used for potential applications, such as additives, binders, dispersants, and surfactants, through modification. Meanwhile, different biorefinery processes also produce a considerable amount of lignin with various structural features and properties. The development of technologies for its structural characterization is currently desirable for lignin valorization, which will improve the techno-economics of applications of lignins in industries.
Collapse
Affiliation(s)
- Run-Cang Sun
- Center for Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
292
|
Bartolomei E, Le Brech Y, Dufour A, Carre V, Aubriet F, Terrell E, Garcia-Perez M, Arnoux P. Lignin Depolymerization: A Comparison of Methods to Analyze Monomers and Oligomers. CHEMSUSCHEM 2020; 13:4633-4648. [PMID: 32515876 DOI: 10.1002/cssc.202001126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Catalytic liquefaction of lignin is an attractive process to produce fuels and chemicals, but it forms a wide range of liquid products from monomers to oligomers. Oligomers represent an important fraction of the products and their analysis is complex. Therefore, rapid characterization methods are needed to screen liquefaction conditions based on the distribution in monomers and oligomers. For this purpose, UV spectroscopy is proposed as a fast and simple method to assess the composition of lignin-derived liquids. UV absorption and fluorescence were studied on various model compounds and liquefaction products. Liquefaction of Soda lignin was conducted in an autoclave, in ethanol and with Pt/C catalyst (H2 , 250 °C, 110 bar). Liquids were sampled at isothermal conditions every 30 min for 4 h. UV fluorescence spectroscopy is related to GC-MS, gel-permeation chromatography (GPC), MALDI-TOF MS, and NMR characterizations. A depolymerization index is proposed from UV spectroscopy to rapidly assess the relative distribution of monomers and oligomers.
Collapse
Affiliation(s)
- Erika Bartolomei
- LRGP, CNRS, Université de Lorraine, 1 rue Grandville, 54000, Nancy, France
| | - Yann Le Brech
- LRGP, CNRS, Université de Lorraine, 1 rue Grandville, 54000, Nancy, France
| | - Anthony Dufour
- LRGP, CNRS, Université de Lorraine, 1 rue Grandville, 54000, Nancy, France
| | - Vincent Carre
- LCP-A2MC, Université de Lorraine, 1 Boulevard Arago, 57078, Metz, France
| | - Frederic Aubriet
- LCP-A2MC, Université de Lorraine, 1 Boulevard Arago, 57078, Metz, France
| | - Evan Terrell
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Manuel Garcia-Perez
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Philippe Arnoux
- LRGP, CNRS, Université de Lorraine, 1 rue Grandville, 54000, Nancy, France
| |
Collapse
|
293
|
Perkins ML, Schuetz M, Unda F, Smith RA, Sibout R, Hoffmann NJ, Wong DCJ, Castellarin SD, Mansfield SD, Samuels L. Dwarfism of high-monolignol Arabidopsis plants is rescued by ectopic LACCASE overexpression. PLANT DIRECT 2020; 4:e00265. [PMID: 33005856 PMCID: PMC7520647 DOI: 10.1002/pld3.265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 05/24/2023]
Abstract
Lignin is a key secondary cell wall chemical constituent, and is both a barrier to biomass utilization and a potential source of bioproducts. The Arabidopsis transcription factors MYB58 and MYB63 have been shown to upregulate gene expression of the general phenylpropanoid and monolignol biosynthetic pathways. The overexpression of these genes also results in dwarfism. The vascular integrity, soluble phenolic profiles, cell wall lignin, and transcriptomes associated with these MYB-overexpressing lines were characterized. Plants with high expression of MYB58 and MYB63 had increased ectopic lignin and the xylem vessels were regular and open, suggesting that the stunted growth is not associated with loss of vascular conductivity. MYB58 and MYB63 overexpression lines had characteristic soluble phenolic profiles with large amounts of monolignol glucosides and sinapoyl esters, but decreased flavonoids. Because loss of function lac4 lac17 mutants also accumulate monolignol glucosides, we hypothesized that LACCASE overexpression might decrease monolignol glucoside levels in the MYB-overexpressing plant lines. When laccases related to lignification (LAC4 or LAC17) were co-overexpressed with MYB63 or MYB58, the dwarf phenotype was rescued. Moreover, the overexpression of either LAC4 or LAC17 led to wild-type monolignol glucoside levels, as well as wild-type lignin levels in the rescued plants. Transcriptomes of the rescued double MYB63-OX/LAC17-OX overexpression lines showed elevated, but attenuated, expression of the MYB63 gene itself and the direct transcriptional targets of MYB63. Contrasting the dwarfism from overabundant monolignol production with dwarfism from lignin mutants provides insight into some of the proposed mechanisms of lignin modification-induced dwarfism.
Collapse
Affiliation(s)
| | - Mathias Schuetz
- Department of BotanyUniversity of British ColumbiaVancouverCanada
| | - Faride Unda
- Department of Wood ScienceUniversity of British ColumbiaVancouverCanada
| | - Rebecca A. Smith
- Department of BotanyUniversity of British ColumbiaVancouverCanada
- Department of Energy's Great Lakes Bioenergy Research CenterDepartment of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Richard Sibout
- Department of BotanyUniversity of British ColumbiaVancouverCanada
- UR1268 BIA (Biopolymères Interactions Assemblages)INRANantesFrance
| | | | | | | | | | - Lacey Samuels
- Department of BotanyUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
294
|
Kocheva LS, Karmanov AP, Mironov MV, Belyy VA, Polina IN, Pokryshkin SA. Characteristics of chemical structure of lignin biopolymer from Araucaria relict plant. Questions and answers of evolution. Int J Biol Macromol 2020; 159:896-903. [DOI: 10.1016/j.ijbiomac.2020.05.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
|
295
|
Oliveira DM, Mota TR, Salatta FV, Sinzker RC, Končitíková R, Kopečný D, Simister R, Silva M, Goeminne G, Morreel K, Rencoret J, Gutiérrez A, Tryfona T, Marchiosi R, Dupree P, Del Río JC, Boerjan W, McQueen-Mason SJ, Gomez LD, Ferrarese-Filho O, Dos Santos WD. Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. PLANT, CELL & ENVIRONMENT 2020; 43:2172-2191. [PMID: 32441772 DOI: 10.1111/pce.13805] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 05/15/2023]
Abstract
Although cell wall polymers play important roles in the tolerance of plants to abiotic stress, the effects of salinity on cell wall composition and metabolism in grasses remain largely unexplored. Here, we conducted an in-depth study of changes in cell wall composition and phenolic metabolism induced upon salinity in maize seedlings and plants. Cell wall characterization revealed that salt stress modulated the deposition of cellulose, matrix polysaccharides and lignin in seedling roots, plant roots and stems. The extraction and analysis of arabinoxylans by size-exclusion chromatography, 2D-NMR spectroscopy and carbohydrate gel electrophoresis showed a reduction of arabinoxylan content in salt-stressed roots. Saponification and mild acid hydrolysis revealed that salinity also reduced the feruloylation of arabinoxylans in roots of seedlings and plants. Determination of lignin content and composition by nitrobenzene oxidation and 2D-NMR confirmed the increased incorporation of syringyl units in lignin of maize roots. Salt stress also induced the expression of genes and the activity of enzymes enrolled in phenylpropanoid biosynthesis. The UHPLC-MS-based metabolite profiling confirmed the modulation of phenolic profiling by salinity and the accumulation of ferulate and its derivatives 3- and 4-O-feruloyl quinate. In conclusion, we present a model for explaining cell wall remodeling in response to salinity.
Collapse
Affiliation(s)
- Dyoni M Oliveira
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Thatiane R Mota
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Fábio V Salatta
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Renata C Sinzker
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Radka Končitíková
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Mariana Silva
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Seville, Spain
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Leonardo D Gomez
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
296
|
Matsushita Y, Yagami S, Kato A, Mitsuda H, Aoki D, Fukushima K. Combinations of the Aromatic Rings in β-1 Structure Formation of Lignin Based on Quantitative Analysis by Thioacidolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9245-9251. [PMID: 32806114 DOI: 10.1021/acs.jafc.0c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The amount of β-1 structures in lignin is small; however, they are assumed to significantly affect the reactivity of lignin because they form dienone structures. A method employing thioacidolysis and subsequent desulfurization yields products that can be analyzed via gas chromatography-mass spectrometry (GC-MS) to quantify these β-1 structures. However, the retention times and response factors of the reaction products have not been accurately determined thus far. Here, 12 standard compounds combined with p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units were synthesized, and their retention times and response factors were determined through GC-MS, using selective ions. Based on these data, we also investigated the β-1 structures of lignocellulosic lignin samples. Our results clarified that the successful formation of the β-1 structure was dependent on the type of aromatic rings present; there were very few β-1 structures containing H units; and the amount of G-G type was higher and that of the heterotype, i.e., G-S type, was lower than the stochastic value.
Collapse
Affiliation(s)
- Yasuyuki Matsushita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Sachie Yagami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ayano Kato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hayato Mitsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Dan Aoki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
297
|
Feghali E, van de Pas DJ, Parrott AJ, Torr KM. Biobased Epoxy Thermoset Polymers from Depolymerized Native Hardwood Lignin. ACS Macro Lett 2020; 9:1155-1160. [PMID: 35653206 DOI: 10.1021/acsmacrolett.0c00424] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biobased epoxy thermoset polymers were prepared from lignin hydrogenolysis oils produced from native hardwood lignin. Native lignin in Eucalyptus nitens and Eucalyptus saligna wood was reacted in situ under Pd-catalyzed mild hydrogenolysis conditions to give depolymerized lignin oils in yields up to 98 wt %. Reacting these lignin oils with epichlorohydrin produced biobased epoxy resins. Blending these resins with nonrenewable bisphenol A diglycidyl ether (BADGE) in different proportions, and curing with diethylenetriamine, produced a series of epoxy thermoset polymers with varying biobased content. Up to 67% of the BADGE could be replaced with hardwood lignin-derived epoxy resins while achieving superior or equivalent mechanical properties to the BADGE control polymer. Comparing the performance of lignin-based epoxy polymers from eucalyptus and pine wood provided insights into the advantages and disadvantages of using hardwood versus softwood native lignins in the quest for high performance biobased thermoset polymers.
Collapse
Affiliation(s)
- Elias Feghali
- Chemical Engineering Program, Notre Dame University−Louaize, P.O. Box 72 Zouk Mikael, 1211 Zouk Mosbeh, Lebanon
| | | | | | - Kirk M. Torr
- Scion, Private Bag 3020, Rotorua 3046, New Zealand
| |
Collapse
|
298
|
Tymchyshyn M, Rezayan A, Yuan Z, Zhang Y, Xu CC. Reductive Hydroprocessing of Hydrolysis Lignin over Efficient Bimetallic Catalyst MoRu/AC. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Matthew Tymchyshyn
- Department of Chemical & Biochemical Engineering, Institute of Chemicals and Fuels from Alternative Resources, Western University, London, N6A 5B9, Canada
| | - Armin Rezayan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhongshun Yuan
- Department of Chemical & Biochemical Engineering, Institute of Chemicals and Fuels from Alternative Resources, Western University, London, N6A 5B9, Canada
| | - Yongsheng Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chunbao Charles Xu
- Department of Chemical & Biochemical Engineering, Institute of Chemicals and Fuels from Alternative Resources, Western University, London, N6A 5B9, Canada
| |
Collapse
|
299
|
Kramer CAC, da Silva ARL, de Carvalho LS. Influence of phenylpropanoid units of lignin and its oxidized derivatives on the stability and βO4 binding properties: DFT and QTAIM approach. Org Biomol Chem 2020; 18:5897-5905. [PMID: 32685944 DOI: 10.1039/d0ob01171a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obtaining lignin products is currently one of the great challenges, mainly because of its stable and poorly reactive structure. This work used a DFT and QTAIM approach, seeking to understand the influence of lignin structure on the reactivity and βO4 binding properties of 18 model structures. The computational modeling used confirmed that lignins derived from more oxygenated monomers have a smaller HOMO-LUMO gap, and therefore are less stable. In the developed study, the replacement of alpha hydroxyl with a carbonyl was able to abruptly change the electron topology, reducing binding energy in βO4 indicating which SHOX model is more susceptible to breakage.
Collapse
Affiliation(s)
- Carlos Augusto Cabral Kramer
- Energy Technology Laboratory, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59075-000, Brazil.
| | - Amison Rick Lopes da Silva
- Theory Chemistry Group, Analytical Chemistry and Chemical Physics Department, Federal University of Ceará, Fortaleza, Ceará 60455-900, Brazil.
| | - Luciene Santos de Carvalho
- Energy Technology Laboratory, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59075-000, Brazil
| |
Collapse
|
300
|
Kitin P, Nakaba S, Hunt CG, Lim S, Funada R. Direct fluorescence imaging of lignocellulosic and suberized cell walls in roots and stems. AOB PLANTS 2020; 12:plaa032. [PMID: 32793329 PMCID: PMC7415075 DOI: 10.1093/aobpla/plaa032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/21/2020] [Indexed: 05/05/2023]
Abstract
Investigating plant structure is fundamental in botanical science and provides crucial knowledge for the theories of plant evolution, ecophysiology and for the biotechnological practices. Modern plant anatomy often targets the formation, localization and characterization of cellulosic, lignified or suberized cell walls. While classical methods developed in the 1960s are still popular, recent innovations in tissue preparation, fluorescence staining and microscopy equipment offer advantages to the traditional practices for investigation of the complex lignocellulosic walls. Our goal is to enhance the productivity and quality of microscopy work by focusing on quick and cost-effective preparation of thick sections or plant specimen surfaces and efficient use of direct fluorescent stains. We discuss popular histochemical microscopy techniques for visualization of cell walls, such as autofluorescence or staining with calcofluor, Congo red (CR), fluorol yellow (FY) and safranin, and provide detailed descriptions of our own approaches and protocols. Autofluorescence of lignin in combination with CR and FY staining can clearly differentiate between lignified, suberized and unlignified cell walls in root and stem tissues. Glycerol can serve as an effective clearing medium as well as the carrier of FY for staining of suberin and lipids allowing for observation of thick histological preparations. Three-dimensional (3D) imaging of all cell types together with chemical information by wide-field fluorescence or confocal laser scanning microscopy (CLSM) was achieved.
Collapse
Affiliation(s)
- Peter Kitin
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
| | - Satoshi Nakaba
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
| | | | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ryo Funada
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
| |
Collapse
|