251
|
Impaired function of the Tie-2 receptor contributes to vascular leakage and lethality in anthrax. Proc Natl Acad Sci U S A 2012; 109:10024-9. [PMID: 22665799 DOI: 10.1073/pnas.1120755109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anthrax lethal toxin (LT) enters host cells and enzymatically cleaves MAPKKs or MEKs. How these molecular events lead to death from anthrax remains poorly understood, but published reports suggest a direct effect of LT on vascular permeability. We have found that LT challenge in mice disrupts signaling through Tie-2, a tonically activated receptor tyrosine kinase in the endothelium. Genetic manipulations favoring Tie-2 activation enhanced interendothelial junctional contacts, prevented vascular leakage, and promoted survival following a lethal dose of LT. Cleavage of MEK1/2 was necessary for LT to induce endothelial barrier dysfunction, and activated Tie-2 signaled through the uncleaved fraction of MEKs to prevent LT's effects on the endothelium. Finally, primates infected with toxin-secreting Bacillus anthracis bacilli developed a rapid and marked imbalance in the endogenous ligands that signal Tie-2, similar to that seen in LT-challenged mice. Our results show that B. anthracis LT blunts signaling through Tie-2, thereby weakening the vascular barrier and contributing to lethality of the disease. Measurement of circulating Tie-2 ligands and manipulation of Tie-2 activity may represent future prognostic and therapeutic avenues for humans exposed to B. anthracis.
Collapse
|
252
|
Kayakabe K, Kuroiwa T, Sakurai N, Ikeuchi H, Kadiombo AT, Sakairi T, Matsumoto T, Maeshima A, Hiromura K, Nojima Y. Interleukin-6 promotes destabilized angiogenesis by modulating angiopoietin expression in rheumatoid arthritis. Rheumatology (Oxford) 2012; 51:1571-9. [DOI: 10.1093/rheumatology/kes093] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
253
|
Specific inhibition of SRC kinase impairs malignant glioma growth in vitro and in vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e19. [PMID: 23344000 PMCID: PMC3390242 DOI: 10.1038/mtna.2012.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Malignant glioma is a severe cancer with a poor prognosis. Local occurrence and rare metastases of malignant glioma make it a suitable target for gene therapy. Several studies have demonstrated the importance of Src kinase in different cancers. However, these studies have focused mainly on Src-deficient mice or pharmacological inhibitors of Src. In this study we have used Src small hairpin RNAs (shRNAs) in a lentiviral backbone to mimic a long-term stable treatment and determined the role of Src in tumor tissues. Efficacy of Src shRNAs was confirmed in vitro demonstrating up to 90% target gene inhibition. In a mouse malignant glioma model, Src shRNA tumors were almost 50-fold smaller in comparison to control tumors and had significantly reduced vascularity. In a syngenic rat intracranial glioma model, Src shRNA-transduced tumors were smaller and these rats had a survival benefit over the control rats. In vivo treatment was enhanced by chemotherapy and histone deacetylase inhibition. Our results emphasise the importance of Src in tumorigenesis and demonstrate that it can be efficiently inhibited in vitro and in vivo in two independent malignant glioma models. In conclusion, Src is a potential target for RNA interference-mediated treatment of malignant glioma.
Collapse
|
254
|
Molnar N, Siemann DW. Inhibition of endothelial/smooth muscle cell contact loss by the investigational angiopoietin-2 antibody MEDI3617. Microvasc Res 2012; 83:290-7. [PMID: 22387475 DOI: 10.1016/j.mvr.2012.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 02/05/2023]
Abstract
A tumor's dependence on angiogenesis for survival and growth has led to the advancement of a variety of blood vessel directed anticancer treatment strategies. Overexpression of angiopoietin-2 (Ang-2) in tumor vasculature and its crucial role in angiogenesis, i.e. the destabilization of endothelial/peri-endothelial cell interactions, now raises the possibility of additional novel anti-angiogenic therapeutics. The present study utilized a co-culture sphere model to (i) demonstrate the destabilizing effect of Ang-2 on endothelial/smooth muscle cell contact and (ii) evaluate the impact of the investigational Ang-2 antibody MEDI3617 on endothelial/smooth muscle cell dissociation. Real time imaging of spheres showed both exogenous Ang-2 and PMA induced endogenous Ang-2 secretion resulted in sphere destabilization (loss of endothelial cells from smooth muscle cell core). The presence of MEDI3617 inhibited this process. To assess the anti-angiogenic potential of MEDI3617 in vivo, nude mice were injected intradermally with human renal cell carcinoma cells (Caki-1, Caki-2) and the number of blood vessels induced over a 3 day period was scored. MEDI3617 (2, 10, 20 mg/kg) significantly reduced the initiation of blood vessels for both tumor models at all doses investigated. These data indicate that MEDI3617 treatment significantly impairs the initiation of angiogenesis by inhibiting the Ang-2 mediated disruption of endothelial/muscle cell interaction associated with blood vessel destabilization and thereby reduces tumor cell induced angiogenesis. The results support the notion that targeting the angiopoietin/Tie2 axis may offer novel anti-angiogenic strategies for cancer treatment.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Angiopoietin-2/biosynthesis
- Angiopoietin-2/chemistry
- Animals
- Antibodies/chemistry
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Carcinoma, Renal Cell/metabolism
- Coculture Techniques
- Dose-Response Relationship, Drug
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Enzyme-Linked Immunosorbent Assay/methods
- Human Umbilical Vein Endothelial Cells
- Humans
- Mice
- Mice, Nude
- Microcirculation
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Neoplasm Transplantation
- Neoplasms/drug therapy
- Neovascularization, Pathologic
Collapse
Affiliation(s)
- Nikolett Molnar
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | |
Collapse
|
255
|
Abstract
Chronic kidney disease is characterized by progressive loss of the renal microvasculature, which leads to local areas of hypoxia and induction of profibrotic responses, scarring and deterioration of renal function. Revascularization alone might be sufficient to restore kidney function and regenerate the structure of the diseased kidney. For revascularization to be successful, however, the underlying disease process needs to be halted or alleviated and there must remain a sufficient number of surviving nephron units that can serve as a scaffold for kidney regeneration. This Perspectives article describes how revascularization might be achieved using vascular growth factors or adoptive transfer of endothelial progenitor cells and provides a brief outline of the studies performed to date. An overview of how therapeutic strategies targeting the microvasculature could be enhanced in the future is also presented.
Collapse
|
256
|
Mizukami Y, Sasajima J, Ashida T, Kohgo Y. Abnormal tumor vasculatures and bone marrow-derived pro-angiogenic cells in cancer. Int J Hematol 2012; 95:125-30. [PMID: 22311464 DOI: 10.1007/s12185-012-1017-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 11/30/2022]
Abstract
Tumor-derived factors affect the stroma of cancer tissue by activating pro-angiogenic signals. One of the key components of this response is the mobilization of the pro-angiogenic cells from bone marrow (BM), which contribute to the development of abnormal tumor vasculature. Evidence is accumulating that the pro-angiogenic cells derived from BM are involved in the physiological processes of tissue repair and wound healing. However, vascular structure in cancer tissue is impaired, resulting in the formation of chaotic neo-vessels and hypoxic microenvironments. Ultimately, these structural and functional abnormalities result in the limited delivery of chemotherapeutic agents and create regions of metabolic derangement, both of which enhance resistance to chemotherapy. In spite of recent advances in targeted therapy using anti-vascular agents, clinical results from studies using individual agents have unsatisfactory, necessitating the combinatorial use of anti-cancer drugs and a targeting agent. We suggest the possibility of a new therapeutic approach in which aberrant tumor vessels are normalized by BM-derived pro-angiogenic cells, and the delivery of anti-cancer drugs is maximized. In this review, we focus on the current understanding of the structure and function of tumor vessels, and an alternative approach to the repair of abnormal tumor vasculature by the use of BM-derived pro-angiogenic cells. This approach may improve both the delivery and the efficacy of anti-cancer drugs by restoring aberrant tumor vascularization and hypoxia.
Collapse
Affiliation(s)
- Yusuke Mizukami
- Gastrointestinal Unit, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, GRJ-825, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
257
|
Jumping the barrier: VE-cadherin, VEGF and other angiogenic modifiers in cancer. Biol Cell 2012; 103:593-605. [PMID: 22054419 DOI: 10.1042/bc20110069] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The endothelial barrier controls the passage of fluids, nutrients and cells through the vascular wall. This physiological function is closely related to developmental and adult angiogenesis, blood pressure control, as well as immune responses. Moreover, cancer progression is frequently characterized by disorganized and leaky blood vessels. In this context, vascular permeability drives tumour-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration and tumour cell extravasation. Although various molecules have been implicated, the vascular endothelial adhesion molecule, VE-cadherin (vascular endothelial cadherin), has emerged as a critical player involved in maintaining endothelial barrier integrity and homoeostasis. Indeed, VE-cadherin coordinates the endothelial cell-cell junctions through its adhesive and signalling properties. Of note, many angiogenic and inflammatory mediators released into the tumour microenvironment influence VE-cadherin behaviour. Therefore restoring VE-cadherin function could be one very promising target for vascular normalization in cancer therapies. In this review, we will mainly focus on recent discoveries concerning the molecular mechanisms involved in modulating VE-cadherin plasticity in cancer.
Collapse
|
258
|
Protection Against Myocardial Infarction and No-Reflow Through Preservation of Vascular Integrity by Angiopoietin-Like 4. Circulation 2012; 125:140-9. [DOI: 10.1161/circulationaha.111.049072] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background—
Increased permeability, predominantly controlled by endothelial junction stability, is an early event in the deterioration of vascular integrity in ischemic disorders. Hemorrhage, edema, and inflammation are the main features of reperfusion injuries, as observed in acute myocardial infarction (AMI). Thus, preservation of vascular integrity is fundamental in ischemic heart disease. Angiopoietins are pivotal modulators of cell–cell junctions and vascular integrity. We hypothesized that hypoxic induction of angiopoietin-like protein 4 (ANGPTL4) might modulate vascular damage, infarct size, and no-reflow during AMI.
Methods and Results—
We showed that vascular permeability, hemorrhage, edema, inflammation, and infarct severity were increased in
angptl4
-deficient mice. We determined that decrease in vascular endothelial growth factor receptor 2 (VEGFR2) and VE-cadherin expression and increase in Src kinase phosphorylation downstream of VEGFR2 were accentuated after ischemia-reperfusion in the coronary microcirculation of
angptl4
-deficient mice. Both events led to altered VEGFR2/VE-cadherin complexes and to disrupted adherens junctions in the endothelial cells of
angptl4
-deficient mice that correlated with increased no-reflow. In vivo injection of recombinant human ANGPTL4 protected VEGF-driven dissociation of the VEGFR2/VE-cadherin complex, reduced myocardial infarct size, and the extent of no-reflow in mice and rabbits.
Conclusions—
These data showed that ANGPTL4 might constitute a relevant target for therapeutic vasculoprotection aimed at counteracting the effects of VEGF, thus being crucial for preventing no-reflow and conferring secondary cardioprotection during AMI.
Collapse
|
259
|
Signaling required for blood vessel maintenance: molecular basis and pathological manifestations. Int J Vasc Med 2011; 2012:293641. [PMID: 22187650 PMCID: PMC3236483 DOI: 10.1155/2012/293641] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/24/2011] [Accepted: 09/01/2011] [Indexed: 01/08/2023] Open
Abstract
As our understanding of molecular mechanisms leading to vascular formation increases, vessel maintenance including stabilization of new vessels and prevention of vessel regression began to be considered as an active process that requires specific cellular signaling. While signaling pathways such as VEGF, FGF, and angiopoietin-Tie2 are important for endothelial cell survival and junction stabilization, PDGF and TGF-β signaling modify mural cell (vascular smooth muscle cells and pericytes) functions, thus they fortify vessel integrity. Breakdown of these signaling systems results in pathological hyperpermeability and/or genetic vascular abnormalities such as vascular malformations, ultimately progressing to hemorrhage and edema. Hence, blood vessel maintenance is fundamental to controlling vascular homeostasis and tissue functions. This paper discusses signaling pathways essential for vascular maintenance and clinical conditions caused by deterioration of vessel integrity.
Collapse
|
260
|
Ren J, Liu H, Yan L, Tian S, Li D, Xu Z. Microvessel density and heparanase over-expression in clear cell renal cell cancer: correlations and prognostic significances. World J Surg Oncol 2011. [PMID: 22133010 DOI: 10.1186/1477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Tumor angiogenesis is important in the progression of malignancies, and heparanase plays an important role in sustaining the pathology of clear cell renal cell cancer (ccRCC). The study was carried out to investigate the correlations between microvessel density (MVD) and heparanase expression containing prognostic significances in the patients with ccRCC. METHODS Specimens from 128 patients with ccRCC were investigated by immunohistochemistry for MVD. RT-PCR and immunohistochemistry were used to detect heparanase expression. Correlations between MVD, heparanase expression, and various clinico-pathological factors were studied. The prognostic significances of MVD and heparanase expression were also analysed. RESULTS We discovered a statistically significant prevalence of higher MVD in ccRCC compared with adjacent normal renal tissues. MVD was positively correlated with TNM stage and distant metastasis in ccRCC patients, and was also correlated with the expression level of heparanase.Heparanase is over-expressed and correlated with TNM stage, histologic grade, distant metastasis and lymphatic metastasis in ccRCC. High MVD and heparanase over-expression inversely correlate with the survival of ccRCC patients. CONCLUSIONS Heparanase contributes to angiogenesis of ccRCC and over-expression of heparanase is an independent predictors of prognosis for ccRCC. MVD is correlated with tumor development and metastasis in ccRCC.
Collapse
Affiliation(s)
- Juchao Ren
- Department of Urology, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan, 250012 PR China
| | | | | | | | | | | |
Collapse
|
261
|
Ren J, Liu H, Yan L, Tian S, Li D, Xu Z. Microvessel density and heparanase over-expression in clear cell renal cell cancer: correlations and prognostic significances. World J Surg Oncol 2011; 9:158. [PMID: 22133010 PMCID: PMC3268110 DOI: 10.1186/1477-7819-9-158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 12/02/2011] [Indexed: 11/24/2022] Open
Abstract
Background Tumor angiogenesis is important in the progression of malignancies, and heparanase plays an important role in sustaining the pathology of clear cell renal cell cancer (ccRCC). The study was carried out to investigate the correlations between microvessel density (MVD) and heparanase expression containing prognostic significances in the patients with ccRCC. Methods Specimens from 128 patients with ccRCC were investigated by immunohistochemistry for MVD. RT-PCR and immunohistochemistry were used to detect heparanase expression. Correlations between MVD, heparanase expression, and various clinico-pathological factors were studied. The prognostic significances of MVD and heparanase expression were also analysed. Results We discovered a statistically significant prevalence of higher MVD in ccRCC compared with adjacent normal renal tissues. MVD was positively correlated with TNM stage and distant metastasis in ccRCC patients, and was also correlated with the expression level of heparanase. Heparanase is over-expressed and correlated with TNM stage, histologic grade, distant metastasis and lymphatic metastasis in ccRCC. High MVD and heparanase over-expression inversely correlate with the survival of ccRCC patients. Conclusions Heparanase contributes to angiogenesis of ccRCC and over-expression of heparanase is an independent predictors of prognosis for ccRCC. MVD is correlated with tumor development and metastasis in ccRCC.
Collapse
Affiliation(s)
- Juchao Ren
- Department of Urology, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan, 250012 PR China
| | | | | | | | | | | |
Collapse
|
262
|
Angiogenesis is Regulated by Angiopoietins During Experimental Autoimmune Encephalomyelitis and is Indirectly Related to Vascular Permeability. J Neuropathol Exp Neurol 2011; 70:1107-23. [DOI: 10.1097/nen.0b013e31823a8b6a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
263
|
Do viral infections mimic bacterial sepsis? The role of microvascular permeability: A review of mechanisms and methods. Antiviral Res 2011; 93:2-15. [PMID: 22068147 DOI: 10.1016/j.antiviral.2011.10.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/12/2011] [Accepted: 10/22/2011] [Indexed: 12/13/2022]
Abstract
A dysregulated immune response and functional immunosuppression have been considered the major mechanisms of the bacterial sepsis syndrome. More recently, the loss of endothelial barrier function and resultant microvascular leak have been found to be a key determinant of the pathogenesis of bacterial sepsis. Whether a similar paradigm applies to systemic viral syndromes is not known. Answering this question has far-reaching implications for the development of future anti-viral therapeutic strategies. In this review, we provide an overview of the structure and function of the endothelium and how its barrier integrity is compromised in bacterial sepsis. The various in vitro and in vivo methodologies available to investigate vascular leak are reviewed. Emphasis is placed on the advantages and limitations of cell culture techniques, which represent the most commonly used methods. Within this context, we appraise recent studies of three viruses - hantavirus, human herpes virus 8 and dengue virus - that suggest microvascular leak may play a role in the pathogenesis of these viral infections. We conclude with a discussion of how endothelial barrier breakdown may occur in other viral infections such as H5N1 avian influenza virus.
Collapse
|
264
|
Abstract
PURPOSE OF REVIEW Over the last few years, there have been major advances in our understanding of the role of the microvascular endothelium in the pathogenesis of severe, systemic infections. RECENT FINDINGS Endothelial activation and dysfunction contribute directly to the morbidity and mortality of sepsis and other, severe systemic infections. The end-result of diffuse endothelial activation and dysfunction may be the loss of microvascular barrier integrity, leading to tissue edema, shock and multiple organ failure. Endothelial activation also leads to an increase in angiopoietin-2, which is known to destabilize barrier function and promote inflammation. SUMMARY The ratio of the secreted endothelial growth factors, angiopoietin-2 and angiopoietin-1 appears to be a useful prognostic tool during severe infections. Finally, agents that enhance endothelial barrier integrity may prove useful as therapies for sepsis.
Collapse
|
265
|
van der Heijden M, van Nieuw Amerongen GP, van Bezu J, Paul MA, Groeneveld ABJ, van Hinsbergh VWM. Opposing effects of the angiopoietins on the thrombin-induced permeability of human pulmonary microvascular endothelial cells. PLoS One 2011; 6:e23448. [PMID: 21858121 PMCID: PMC3156229 DOI: 10.1371/journal.pone.0023448] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/18/2011] [Indexed: 01/25/2023] Open
Abstract
Background Angiopoietin-2 (Ang-2) is associated with lung injury in ALI/ARDS. As endothelial activation by thrombin plays a role in the permeability of acute lung injury and Ang-2 may modulate the kinetics of thrombin-induced permeability by impairing the organization of vascular endothelial (VE-)cadherin, and affecting small Rho GTPases in human pulmonary microvascular endothelial cells (HPMVECs), we hypothesized that Ang-2 acts as a sensitizer of thrombin-induced hyperpermeability of HPMVECs, opposed by Ang-1. Methodology/Principal Findings Permeability was assessed by measuring macromolecule passage and transendothelial electrical resistance (TEER). Angiopoietins did not affect basal permeability. Nevertheless, they had opposing effects on the thrombin-induced permeability, in particular in the initial phase. Ang-2 enhanced the initial permeability increase (passage, P = 0.010; TEER, P = 0.021) in parallel with impairment of VE-cadherin organization without affecting VE-cadherin Tyr685 phosphorylation or increasing RhoA activity. Ang-2 also increased intercellular gap formation. Ang-1 preincubation increased Rac1 activity, enforced the VE-cadherin organization, reduced the initial thrombin-induced permeability (TEER, P = 0.027), while Rac1 activity simultaneously normalized, and reduced RhoA activity at 15 min thrombin exposure (P = 0.039), but not at earlier time points. The simultaneous presence of Ang-2 largely prevented the effect of Ang-1 on TEER and macromolecule passage. Conclusions/Significance Ang-1 attenuated thrombin-induced permeability, which involved initial Rac1 activation-enforced cell-cell junctions, and later RhoA inhibition. In addition to antagonizing Ang-1, Ang-2 had also a direct effect itself. Ang-2 sensitized the initial thrombin-induced permeability accompanied by destabilization of VE-cadherin junctions and increased gap formation, in the absence of increased RhoA activity.
Collapse
Affiliation(s)
- Melanie van der Heijden
- Department of Intensive Care, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Geerten P. van Nieuw Amerongen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
- * E-mail:
| | - Jan van Bezu
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Marinus A. Paul
- Department of Cardiothoracic Surgery, VU University Medical Centre, Amsterdam, The Netherlands
| | - A. B. Johan Groeneveld
- Department of Intensive Care, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Victor W. M. van Hinsbergh
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
266
|
Goldenberg NM, Steinberg BE, Slutsky AS, Lee WL. Broken Barriers: A New Take on Sepsis Pathogenesis. Sci Transl Med 2011; 3:88ps25. [DOI: 10.1126/scitranslmed.3002011] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
267
|
Jeansson M, Gawlik A, Anderson G, Li C, Kerjaschki D, Henkelman M, Quaggin SE. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Invest 2011; 121:2278-89. [PMID: 21606590 DOI: 10.1172/jci46322] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/20/2011] [Indexed: 12/19/2022] Open
Abstract
Angiopoietin-1/Tek signaling is a critical regulator of blood vessel development, with conventional knockout of angiopoietin-1 or Tek in mice being embryonically lethal due to vascular defects. In addition, angiopoietin-1 is thought to be required for the stability of mature vessels. Using a Cre-Lox conditional gene targeting approach, we have studied the role of angiopoietin-1 in embryonic and adult vasculature. We report here that angiopoietin-1 is critical for regulating both the number and diameter of developing vessels but is not required for pericyte recruitment. Cardiac-specific knockout of angiopoietin-1 reproduced the phenotype of the conventional knockout, demonstrating that the early vascular abnormalities arise from flow-dependent defects. Strikingly, deletion in the entire embryo after day E13.5 produced no immediate vascular phenotype. However, when combined with injury or microvascular stress, angiopoietin-1 deficiency resulted in profound organ damage, accelerated angiogenesis, and fibrosis. These findings redefine our understanding of the biological roles of angiopoietin-1: it is dispensable in quiescent vessels but has a powerful ability to modulate the vascular response after injury.
Collapse
Affiliation(s)
- Marie Jeansson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
268
|
Affiliation(s)
- Janaka Karalliedde
- Unit for Metabolic Medicine, Cardiovascular Division, King's College, London, UK
| | | |
Collapse
|
269
|
|
270
|
Le Guelte A, Gavard J. Role of endothelial cell-cell junctions in endothelial permeability. Methods Mol Biol 2011; 763:265-79. [PMID: 21874458 DOI: 10.1007/978-1-61779-191-8_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The endothelial barrier separates the inner blood compartment from the surrounding tissues. At the molecular level, adhesion molecules accumulate at the endothelial cell-cell junction and contribute to maintain vascular integrity. An increase in the endothelial permeability is frequently associated with the deregulation of junctional adhesion. Here, we review how to evaluate the in vitro functions of endothelial cell-cell contacts. We focus this chapter on cell imagery and biochemical analysis of VE-cadherin, the main constituent of adherens junction, and we also provide description of endothelial cell models and methods for studying tight junctions.
Collapse
Affiliation(s)
- Armelle Le Guelte
- Institut Cochin, Université Paris Descartes, UMR-CNRS 8104, Paris, France
| | | |
Collapse
|
271
|
VEGFR2 and Src kinase inhibitors suppress Andes virus-induced endothelial cell permeability. J Virol 2010; 85:2296-303. [PMID: 21177802 DOI: 10.1128/jvi.02319-10] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hantaviruses predominantly infect human endothelial cells and, in the absence of cell lysis, cause two diseases resulting from increased vascular permeability. Andes virus (ANDV) causes a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). ANDV infection enhances the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF) by increasing signaling responses directed by the VEGFR2-Src-VE-cadherin pathway, which directs adherens junction (AJ) disassembly. Here we demonstrate that inhibiting pathway-specific VEGFR2 and Src family kinases (SFKs) blocks ANDV-induced endothelial cell permeability. Small interfering RNA (siRNA) knockdown of Src within ANDV-infected endothelial cells resulted in an ∼70% decrease in endothelial cell permeability compared to that for siRNA controls. This finding suggested that existing FDA-approved small-molecule kinase inhibitors might similarly block ANDV-induced permeability. The VEGFR2 kinase inhibitor pazopanib as well as SFK inhibitors dasatinib, PP1, bosutinib, and Src inhibitor 1 dramatically inhibited ANDV-induced endothelial cell permeability. Consistent with their kinase-inhibitory concentrations, dasatinib, PP1, and pazopanib inhibited ANDV-induced permeability at 1, 10, and 100 nanomolar 50% inhibitory concentrations (IC(50)s), respectively. We further demonstrated that dasatinib and pazopanib blocked VE-cadherin dissociation from the AJs of ANDV-infected endothelial cells by >90%. These findings indicate that VEGFR2 and Src kinases are potential targets for therapeutically reducing ANDV-induced endothelial cell permeability and, as a result, capillary permeability during HPS. Since the functions of VEGFR2 and SFK inhibitors are already well defined and FDA approved for clinical use, these findings rationalize their therapeutic evaluation for efficacy in reducing HPS disease. Endothelial cell barrier functions are disrupted by a number of viruses that cause hemorrhagic, edematous, or neurologic disease, and as a result, our findings suggest that VEGFR2 and SFK inhibitors should be considered for regulating endothelial cell barrier functions altered by additional viral pathogens.
Collapse
|
272
|
Acute Lung Injury: The Injured Lung Endothelium, Therapeutic Strategies for Barrier Protection, and Vascular Biomarkers. TEXTBOOK OF PULMONARY VASCULAR DISEASE 2010. [PMCID: PMC7120335 DOI: 10.1007/978-0-387-87429-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
273
|
Santel A, Aleku M, Röder N, Möpert K, Durieux B, Janke O, Keil O, Endruschat J, Dames S, Lange C, Eisermann M, Löffler K, Fechtner M, Fisch G, Vank C, Schaeper U, Giese K, Kaufmann J. Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models. Clin Cancer Res 2010; 16:5469-80. [PMID: 21062934 DOI: 10.1158/1078-0432.ccr-10-1994] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Atu027, a novel RNA interference therapeutic, has been shown to inhibit lymph node metastasis in orthotopic prostate cancer mouse models. The aim of this study is to elucidate the pharmacologic activity of Atu027 in inhibiting hematogenous metastasis to the target organ lung in four different preclinical mouse models. EXPERIMENTAL DESIGN Atu027 compared with vehicle or control small interfering RNA lipoplexes was tested in two experimental lung metastasis models (Lewis lung carcinoma, B16V) and spontaneous metastasis mouse models (MDA-MB-435, MDA-MB-231, mammary fat pad). Different dosing schedules (repeated low volume tail vein injections) were applied to obtain insight into effective Atu027 treatment. Primary tumor growth and lung metastasis were measured, and tissues were analyzed by immunohistochemistry and histology. In vitro studies in human umbilical vein endothelial cells were carried out to provide an insight into molecular changes on depletion of PKN3, in support of efficacy results. RESULTS Intravenous administration of Atu027 prevents pulmonary metastasis. In particular, formation of spontaneous lung metastasis was significantly inhibited in animals with large tumor grafts as well as in mice with resected primary mammary fat pad tumors. In addition, we provide evidence that an increase in VE-cadherin protein levels as a downstream result of PKN3 target gene inhibition may change endothelial function, resulting in reduced colonization and micrometastasis formation. CONCLUSION Atu027 can be considered as a potent drug for preventing lung metastasis formation, which might be suitable for preventing hematogenous metastasis in addition to standard cancer therapy.
Collapse
Affiliation(s)
- Ansgar Santel
- Silence Therapeutics AG, Robert-Rössle-Strasse 10, Otto-Warburg-Haus 80, Berlin,Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Das A, Lauffenburger D, Asada H, Kamm R. Determining Cell Fate Transition Probabilities to VEGF/Ang 1 Levels: Relating Computational Modeling to Microfluidic Angiogenesis Studies. Cell Mol Bioeng 2010. [DOI: 10.1007/s12195-010-0146-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
275
|
Chiu L, Radisic M, Vunjak-Novakovic G. Bioactive scaffolds for engineering vascularized cardiac tissues. Macromol Biosci 2010; 10:1286-301. [PMID: 20857391 PMCID: PMC3627738 DOI: 10.1002/mabi.201000202] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Functional vascularization is a key requirement for the development and function of most tissues, and most critically cardiac muscle. Rapid and irreversible loss of cardiomyocytes during cardiac infarction directly results from the lack of blood supply. Contractile cardiac grafts, engineered using cardiovascular cells in conjunction with biomaterial scaffolds, are an actively studied method for cardiac repair. In this article, we focus on biomaterial scaffolds designed to mediate the development and maturation of vascular networks, by immobilized growth factors. The interactive effects of multiple vasculogenic factors are discussed in the context of cardiac tissue engineering.
Collapse
Affiliation(s)
- Loraine Chiu
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 164 College Street, Room 407, Toronto, Ontario, Canada M5S 3G9
| | - Milica Radisic
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 164 College Street, Room 407, Toronto, Ontario, Canada M5S 3G9
| | - Gordana Vunjak-Novakovic
- Columbia University, Department of Biomedical Engineering, 622 west 168 Street, VC12=234, New York NY 10032, U.S.A
| |
Collapse
|
276
|
Gjini E, Hekking LH, Küchler A, Saharinen P, Wienholds E, Post JA, Alitalo K, Schulte-Merker S. Zebrafish Tie-2 shares a redundant role with Tie-1 in heart development and regulates vessel integrity. Dis Model Mech 2010; 4:57-66. [PMID: 21045210 PMCID: PMC3014345 DOI: 10.1242/dmm.005033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tie-2 is a member of the receptor tyrosine kinase family and is required for vascular remodeling and maintenance of mammalian vessel integrity. A number of mutations in the human TIE2 gene have been identified in patients suffering from cutaneomucosal venous malformations and ventricular septal defects. How exactly Tie-2 signaling pathways play different roles in both vascular development and vascular stability is unknown. We have generated a zebrafish line carrying a stop mutation in the kinase domain of the Tie-2 receptor. Mutant embryos lack Tie-2 protein, but do not display any defect in heart and vessel development. Simultaneous loss of Tie-1 and Tie-2, however, leads to a cardiac phenotype. Our study shows that Tie-1 and Tie-2 are not required for early heart development, yet they have redundant roles for the maintenance of endocardial-myocardial connection in later stages. Tie-2 and its ligand Angiopoietin-1 have also been reported to play an important role in vessel stability. We used atorvastatin and simvastatin, drugs that cause bleeding in wild-type zebrafish larvae, to challenge vessel stability in tie-2 mutants. Interestingly, recent clinical studies have reported hemorrhagic stroke as a side effect of atorvastatin treatment. Exposure of embryos to statins revealed that tie-2 mutants are significantly protected from statin-induced bleeding. Furthermore, tie-2 mutants became less resistant to bleeding after VE-cadherin knockdown. Taken together, these data show that atorvastatin affects vessel stability through Tie-2, and that VE-cadherin and Tie-2 act in concert to allow vessel remodeling while playing a role in vessel stability. Our study introduces an additional vertebrate model to study in vivo the function of Tie-2 in development and disease.
Collapse
Affiliation(s)
- Evisa Gjini
- Hubrecht Institute-KNAW and University Medical Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Rampersad SN, Ovens JD, Huston E, Umana MB, Wilson LS, Netherton SJ, Lynch MJ, Baillie GS, Houslay MD, Maurice DH. Cyclic AMP phosphodiesterase 4D (PDE4D) Tethers EPAC1 in a vascular endothelial cadherin (VE-Cad)-based signaling complex and controls cAMP-mediated vascular permeability. J Biol Chem 2010; 285:33614-22. [PMID: 20732872 PMCID: PMC2962459 DOI: 10.1074/jbc.m110.140004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/17/2010] [Indexed: 12/28/2022] Open
Abstract
Vascular endothelial cell (VEC) permeability is largely dependent on the integrity of vascular endothelial cadherin (VE-cadherin or VE-Cad)-based intercellular adhesions. Activators of protein kinase A (PKA) or of exchange protein activated by cAMP (EPAC) reduce VEC permeability largely by stabilizing VE-Cad-based intercellular adhesions. Currently, little is known concerning the nature and composition of the signaling complexes that allow PKA or EPAC to regulate VE-Cad-based structures and through these actions control permeability. Using pharmacological, biochemical, and cell biological approaches we identified and determined the composition and functionality of a signaling complex that coordinates cAMP-mediated control of VE-Cad-based adhesions and VEC permeability. Thus, we report that PKA, EPAC1, and cyclic nucleotide phosphodiesterase 4D (PDE4D) enzymes integrate into VE-Cad-based signaling complexes in human arterial endothelial cells. Importantly, we show that protein-protein interactions between EPAC1 and PDE4D serve to foster their integration into VE-Cad-based complexes and allow robust local regulation of EPAC1-based stabilization of VE-Cad-based adhesions. Of potential translational importance, we mapped the EPAC1 peptide motif involved in binding PDE4D and show that a cell-permeable variant of this peptide antagonizes EPAC1-PDE4D binding and directly alters VEC permeability. Collectively, our data indicate that PDE4D regulates both the activity and subcellular localization of EPAC1 and identify a novel mechanism for regulated EPAC1 signaling in these cells.
Collapse
Affiliation(s)
| | | | - Elaine Huston
- the Molecular Pharmacology Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - M. Bibiana Umana
- Pharmacology & Toxicology, Queen's University, Kingston, Ontario K7L 3N6, Canada and
| | | | - Stuart J. Netherton
- Pharmacology & Toxicology, Queen's University, Kingston, Ontario K7L 3N6, Canada and
| | - Martin J. Lynch
- the Molecular Pharmacology Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - George S. Baillie
- the Molecular Pharmacology Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Miles D. Houslay
- the Molecular Pharmacology Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Donald H. Maurice
- From the Departments of Pathology & Molecular Medicine and
- Pharmacology & Toxicology, Queen's University, Kingston, Ontario K7L 3N6, Canada and
| |
Collapse
|
278
|
London NR, Zhu W, Bozza FA, Smith MCP, Greif DM, Sorensen LK, Chen L, Kaminoh Y, Chan AC, Passi SF, Day CW, Barnard DL, Zimmerman GA, Krasnow MA, Li DY. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med 2010; 2:23ra19. [PMID: 20375003 DOI: 10.1126/scitranslmed.3000678] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The innate immune system provides a first line of defense against invading pathogens by releasing multiple inflammatory cytokines, such as interleukin-1beta and tumor necrosis factor-alpha, which directly combat the infectious agent and recruit additional immune responses. This exuberant cytokine release paradoxically injures the host by triggering leakage from capillaries, tissue edema, organ failure, and shock. Current medical therapies target individual pathogens with antimicrobial agents or directly either blunt or boost the host's immune system. We explored a third approach: activating with the soluble ligand Slit an endothelium-specific, Robo4-dependent signaling pathway that strengthens the vascular barrier, diminishing deleterious aspects of the host's response to the pathogen-induced cytokine storm. This approach reduced vascular permeability in the lung and other organs and increased survival in animal models of bacterial endotoxin exposure, polymicrobial sepsis, and H5N1 influenza. Thus, enhancing the resilience of the host vascular system to the host's innate immune response may provide a therapeutic strategy for treating multiple infectious agents.
Collapse
Affiliation(s)
- Nyall R London
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Remodeling of VE-cadherin junctions by the human herpes virus 8 G-protein coupled receptor. Oncogene 2010; 30:190-200. [DOI: 10.1038/onc.2010.411] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
280
|
Andes virus disrupts the endothelial cell barrier by induction of vascular endothelial growth factor and downregulation of VE-cadherin. J Virol 2010; 84:11227-34. [PMID: 20810734 DOI: 10.1128/jvi.01405-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS) are severe diseases associated with hantavirus infection. High levels of virus replication occur in microvascular endothelial cells but without a virus-induced cytopathic effect. However, virus infection results in microvascular leakage, which is the hallmark of these diseases. VE-cadherin is a major component of adherens junctions, and its interaction with the vascular endothelial growth factor (VEGF) receptor, VEGF-R2, is important for maintaining the integrity of the endothelial barrier. Here we report that increased secreted VEGF and concomitant decreased VE-cadherin are seen at early times postinfection of human primary lung endothelial cells with an HPS-associated hantavirus, Andes virus. Furthermore, active virus replication results in increased permeability and loss of the integrity of the endothelial cell barrier. VEGF binding to VEGF-R2 is known to result in dissociation of VEGF-R2 from VE-cadherin and in VE-cadherin activation, internalization, and degradation. Consistent with this, we showed that an antibody which blocks VEGF-R2 activation resulted in inhibition of the Andes virus-induced VE-cadherin reduction. These data implicate virus induction of VEGF and reduction in VE-cadherin in the endothelial cell permeability seen in HPS and suggest potential immunotherapeutic targets for the treatment of the disease.
Collapse
|
281
|
Harris ES, Nelson WJ. VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Curr Opin Cell Biol 2010; 22:651-8. [PMID: 20708398 DOI: 10.1016/j.ceb.2010.07.006] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 11/19/2022]
Abstract
Endothelial cells form cell-cell adhesive structures, called adherens and tight junctions, which maintain tissue integrity, but must be dynamic for leukocyte transmigration during the inflammatory response and cellular remodeling during angiogenesis. This review will focus on Vascular Endothelial (VE)-cadherin, an endothelial-specific cell-cell adhesion protein of the adherens junction complex. VE-cadherin plays a key role in endothelial barrier function and angiogenesis, and consequently VE-cadherin availability and function are tightly regulated. VE-cadherin also participates directly and indirectly in intracellular signaling pathways that control cell dynamics and cell cycle progression. Here we highlight recent work that has advanced our understanding of multiple regulatory and signaling mechanisms that converge on VE-cadherin and have consequences for endothelial barrier function and angiogenic remodeling.
Collapse
Affiliation(s)
- Elizabeth S Harris
- Department of Biology, The James H. Clark Center, Bio-X Program, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
282
|
Qiu Y, Ferguson J, Oltean S, Neal CR, Kaura A, Bevan H, Wood E, Sage LM, Lanati S, Nowak DG, Salmon AHJ, Bates D, Harper SJ. Overexpression of VEGF165b in podocytes reduces glomerular permeability. J Am Soc Nephrol 2010; 21:1498-509. [PMID: 20688932 DOI: 10.1681/asn.2009060617] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The observation that therapeutic agents targeting vascular endothelial growth factor-A (VEGF-A) associate with renal toxicity suggests that VEGF plays a role in the maintenance of the glomerular filtration barrier. Alternative mRNA splicing produces the VEGF(xxx)b family, which consists of antiangiogenic peptides that reduce permeability and inhibit tumor growth; the contribution of these peptides to normal glomerular function is unknown. Here, we established and characterized heterozygous and homozygous transgenic mice that overexpress VEGF(165)b specifically in podocytes. We confirmed excess production of glomerular VEGF(165)b by reverse transcriptase-PCR, immunohistochemistry, and ELISA in both heterozygous and homozygous animals. Macroscopically, the mice seemed normal up to 18 months of age, unlike the phenotype of transgenic podocyte-specific VEGF(164)-overexpressing mice. Animals overexpressing VEGF(165)b, however, had a significantly reduced normalized glomerular ultrafiltration fraction with accompanying changes in ultrastructure of the glomerular filtration barrier on the vascular side of the glomerular basement membrane. These data highlight the contrasting properties of VEGF splice variants and their impact on glomerular function and phenotype.
Collapse
Affiliation(s)
- Yan Qiu
- Microvascular Research Laboratories, Department Physiology and Pharmacology, Bristol Heart Institute, Preclinical Veterinary School, Southwell Street, Bristol, BS2 8EJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Abstract
Angiopoietins (ANGPTs) are ligands of the endothelial cell receptor TIE2 and have crucial roles in the tumour angiogenic switch. Increased expression of ANGPT2 relative to ANGPT1 in tumours correlates with poor prognosis. The biological effects of the ANGPT-TIE system are context dependent, which brings into question what the best strategy is to target this pathway. This Review presents an encompassing picture of what we know about this important axis in tumour biology. The various options for therapeutic intervention are discussed to identify the best path forwards.
Collapse
|
284
|
Abstract
PURPOSE OF REVIEW Proper control of endothelial cell contacts is the basis for maintenance of the vascular barrier function. Loss of this function leads to leak of fluid and protein from the vasculature and extensive leaks cause shock and death. The endothelial barrier also controls the entry of leukocytes into tissue and it is believed that leukocytes target endothelial cell contacts to reach sites of inflammation. RECENT FINDINGS Within the last 2 years several new molecular players and molecular interactions have been identified that either help in stabilizing the endothelial contacts or mediate their opening if triggered by the appropriate stimuli. Novel signaling mechanisms have been identified that regulate endothelial cell contacts. Whether, how and to what extent the complex of the endothelial specific adhesion molecule vascular endothelial-cadherin and its associated catenins is involved in these processes will be a major focus of this article. SUMMARY Endothelial cell contacts are regulated by a complex interplay between various receptors and signaling mediators that control the plasticity of the cytoskeleton and the function of junctional adhesion molecules. Knowing and understanding the essential players of this network will allow development of agents that could prevent breakdown of the vascular permeability barrier in shock or that could block leukocyte extravasation and thereby antagonize inflammation.
Collapse
|
285
|
Fukuhara S, Mochizuki N. [Vascular stabilization by angiopoietin-1.]. Nihon Yakurigaku Zasshi 2010; 136:26-30. [PMID: 20628210 DOI: 10.1254/fpj.136.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
286
|
Suzuki H, Hasegawa Y, Kanamaru K, Zhang JH. Mechanisms of osteopontin-induced stabilization of blood-brain barrier disruption after subarachnoid hemorrhage in rats. Stroke 2010; 41:1783-90. [PMID: 20616319 DOI: 10.1161/strokeaha.110.586537] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Osteopontin (OPN) is an inducible, multifunctional, extracellular matrix protein that may be protective against blood-brain barrier (BBB) disruption after subarachnoid hemorrhage (SAH). However, the protective mechanisms remain unclear. METHODS We produced the endovascular perforation model of SAH in rats and studied the time course of OPN induction in brains by Western blotting and immunofluorescence (n=50). Then, 34 rats were randomly assigned to sham (n=3), sham+OPN small interfering RNA (siRNA, n=3), SAH+negative control siRNA (n=14), and SAH+OPN siRNA (n=14) groups, and 109 rats were allocated to sham+vehicle (n=17), sham+recombinant OPN (n=17), SAH+vehicle (n=33), SAH+recombinant OPN (n=31), and SAH+recombinant OPN+L-arginyl-glycyl-L-aspartate motif-containing hexapeptide (n=11) groups. The effects of OPN siRNA or recombinant OPN on BBB disruption and related proteins were studied. RESULTS OPN was significantly induced in reactive astrocytes and capillary endothelial cells, peaking at 72 hours after SAH, during the recovery phase of BBB disruption. Blockage of endogenous OPN induction exacerbated BBB disruption and was associated with a reduction of angiopoietin-1 and mitogen-activated protein kinase (MAPK) phosphatase-1 (an endogenous MAPK inhibitor), activation of MAPKs, and induction of vascular endothelial growth factor-A at 72 hours after SAH, whereas recombinant OPN treatment improved it and was associated with MAPK phosphatase-1 induction, MAPK inactivation, and vascular endothelial growth factor-A reduction, which was blocked by L-arginyl-glycyl-L-aspartate motif-containing hexapeptide at 24 hours after SAH. Vascular endothelial growth factor-B and angiopoietin-2 levels were unchanged. CONCLUSIONS OPN may increase MAPK phosphatase-1 that inactivates MAPKs, upstream and downstream of vascular endothelial growth factor-A, by binding to L-arginyl-glycyl-L-aspartate-dependent integrin receptors, suggesting a novel mechanism of OPN-induced post-SAH BBB protection.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, Calif 92354, USA
| | | | | | | |
Collapse
|
287
|
Pathogenic hantaviruses Andes virus and Hantaan virus induce adherens junction disassembly by directing vascular endothelial cadherin internalization in human endothelial cells. J Virol 2010; 84:7405-11. [PMID: 20463083 DOI: 10.1128/jvi.00576-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hantaviruses infect endothelial cells and cause 2 vascular permeability-based diseases. Pathogenic hantaviruses enhance the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF). However, the mechanism by which hantaviruses hyperpermeabilize endothelial cells has not been defined. The paracellular permeability of endothelial cells is uniquely determined by the homophilic assembly of vascular endothelial cadherin (VE-cadherin) within adherens junctions, which is regulated by VEGF receptor-2 (VEGFR2) responses. Here, we investigated VEGFR2 phosphorylation and the internalization of VE-cadherin within endothelial cells infected by pathogenic Andes virus (ANDV) and Hantaan virus (HTNV) and nonpathogenic Tula virus (TULV) hantaviruses. We found that VEGF addition to ANDV- and HTNV-infected endothelial cells results in the hyperphosphorylation of VEGFR2, while TULV infection failed to increase VEGFR2 phosphorylation. Concomitant with the VEGFR2 hyperphosphorylation, VE-cadherin was internalized to intracellular vesicles within ANDV- or HTNV-, but not TULV-, infected endothelial cells. Addition of angiopoietin-1 (Ang-1) or sphingosine-1-phosphate (S1P) to ANDV- or HTNV-infected cells blocked VE-cadherin internalization in response to VEGF. These findings are consistent with the ability of Ang-1 and S1P to inhibit hantavirus-induced endothelial cell permeability. Our results suggest that pathogenic hantaviruses disrupt fluid barrier properties of endothelial cell adherens junctions by enhancing VEGFR2-VE-cadherin pathway responses which increase paracellular permeability. These results provide a pathway-specific mechanism for the enhanced permeability of hantavirus-infected endothelial cells and suggest that stabilizing VE-cadherin within adherens junctions is a primary target for regulating endothelial cell permeability during pathogenic hantavirus infection.
Collapse
|
288
|
Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 2010; 72:463-93. [PMID: 20148685 DOI: 10.1146/annurev-physiol-021909-135833] [Citation(s) in RCA: 480] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endothelium functions as a semipermeable barrier regulating tissue fluid homeostasis and transmigration of leukocytes and providing essential nutrients across the vessel wall. Transport of plasma proteins and solutes across the endothelium involves two different routes: one transcellular, via caveolae-mediated vesicular transport, and the other paracellular, through interendothelial junctions. The permeability of the endothelial barrier is an exquisitely regulated process in the resting state and in response to extracellular stimuli and mediators. The focus of this review is to provide a comprehensive overview of molecular and signaling mechanisms regulating endothelial barrier permeability with emphasis on the cross-talk between paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Yulia Komarova
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | |
Collapse
|
289
|
Abstract
Abstract
The efficacy of therapeutic angiogenesis for revascularization in ischemia using genes, proteins, and cells has been established. For further improvement, processes allowing enlargement of the luminal cavity to facilitate efficient blood flow need to be facilitated. Recently, we found that expression of APJ and its specific ligand, apelin, is seen in endothelial cells when angiogenesis is taking place during embryogenesis. Apelin-deficient mice are viable but have narrow intersomitic vessels during embryogenesis and narrow blood vessels in the trachea and skin after birth. Apelin induces the formation of larger cords of endothelial cells, mainly mediated by cell-cell aggregation, resulting in the generation of larger blood vessels. Here we report that transgenic overexpression of apelin in keratinocytes induces enlarged but not leaky blood vessels in the dermis. In the hind limb ischemia model, apelin together with vascular endothelial growth factor (VEGF) effectively induced functional vessels larger than with VEGF alone. Endogenous apelin is required for the suppression of VEGF-, histamine-, or inflammation-induced vascular hyperpermeability. Apelin inhibited the down-modulation of vascular endothelial-cadherin by VEGF, resulting in suppression of hyperpermeability. Our results suggest apelin efficacy for therapeutic angiogenesis.
Collapse
|
290
|
Terry S, Nie M, Matter K, Balda MS. Rho signaling and tight junction functions. Physiology (Bethesda) 2010; 25:16-26. [PMID: 20134025 DOI: 10.1152/physiol.00034.2009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tight junctions are heteromeric protein complexes that act as signaling centers by mediating the bidirectional transmission of information between the environment and the cell interior to control paracellular permeability and differentiation. Insight into tight junction-associated signaling mechanisms is of fundamental importance for our understanding of the physiology of epithelia and endothelia in health and disease.
Collapse
Affiliation(s)
- Steve Terry
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
291
|
Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells. J Virol 2010; 84:4832-9. [PMID: 20181715 DOI: 10.1128/jvi.02405-09] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hantavirus infections are noted for their ability to infect endothelial cells, cause acute thrombocytopenia, and trigger 2 vascular-permeability-based diseases. However, hantavirus infections are not lytic, and the mechanisms by which hantaviruses cause capillary permeability and thrombocytopenia are only partially understood. The role of beta(3) integrins in hemostasis and the inactivation of beta(3) integrin receptors by pathogenic hantaviruses suggest the involvement of hantaviruses in altered platelet and endothelial cell functions that regulate permeability. Here, we determined that pathogenic hantaviruses bind to quiescent platelets via a beta(3) integrin-dependent mechanism. This suggests that platelets may contribute to hantavirus dissemination within infected patients and provides a means by which hantavirus binding to beta(3) integrin receptors prevents platelet activation. The ability of hantaviruses to bind platelets further suggested that cell-associated hantaviruses might recruit platelets to the endothelial cell surface. Our findings indicate that Andes virus (ANDV)- or Hantaan virus (HTNV)-infected endothelial cells specifically direct the adherence of calcein-labeled platelets. In contrast, cells comparably infected with nonpathogenic Tula virus (TULV) failed to recruit platelets to the endothelial cell surface. Platelet adherence was dependent on endothelial cell beta(3) integrins and neutralized by the addition of the anti-beta(3) Fab fragment, c7E3, or specific ANDV- or HTNV-neutralizing antibodies. These findings indicate that pathogenic hantaviruses displayed on the surface of infected endothelial cells bind platelets and that a platelet layer covers the surface of infected endothelial cells. This fundamentally changes the appearance of endothelial cells and has the potential to alter cellular immune responses, platelet activation, and endothelial cell functions that affect vascular permeability. Hantavirus-directed platelet quiescence and recruitment to vast endothelial cell beds further suggests mechanisms by which hantaviruses may cause thrombocytopenia and induce hypoxia. These findings are fundamental to our understanding of pathogenic-hantavirus regulation of endothelial cell responses that contribute to vascular permeability.
Collapse
|
292
|
Liu R, Linardopoulou EV, Osborn GE, Parkhurst SM. Formins in development: orchestrating body plan origami. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:207-25. [PMID: 18996154 PMCID: PMC2838992 DOI: 10.1016/j.bbamcr.2008.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 08/21/2008] [Accepted: 09/26/2008] [Indexed: 01/21/2023]
Abstract
Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development.
Collapse
Affiliation(s)
- Raymond Liu
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Elena V. Linardopoulou
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Gregory E. Osborn
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Susan M. Parkhurst
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| |
Collapse
|
293
|
Young KG, Copeland JW. Formins in cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:183-90. [PMID: 18977250 DOI: 10.1016/j.bbamcr.2008.09.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 06/20/2008] [Accepted: 09/26/2008] [Indexed: 12/11/2022]
|
294
|
Chiu LLY, Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials 2010; 31:226-41. [PMID: 19800684 DOI: 10.1016/j.biomaterials.2009.09.039] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/07/2009] [Indexed: 11/24/2022]
Abstract
The aim of this study was to engineer a biomaterial capable of supporting vascularization in vitro and in vivo. We covalently immobilized vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang1) onto three-dimensional porous collagen scaffolds using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) chemistry. Over both 3 and 7 days in vitro, seeded endothelial cells (ECs) had increased proliferation on scaffolds with immobilized VEGF and/or Ang1 compared to unmodified scaffolds and soluble growth factor controls. Notably, the group with co-immobilized VEGF and Ang1 showed significantly higher cell number (P=0.0079), higher overall lactate production rate (P=0.0044) and higher overall glucose consumption rate (P=0.0034) at Day 3, compared to its corresponding soluble control for which growth factors were added to culture medium. By Day 7, hematoxylin and eosin, live/dead, CD31, and von Willebrand factor staining all showed improved tube formation by ECs when cultivated on scaffolds with co-immobilized growth factors. Interestingly, scaffolds with co-immobilized VEGF and Ang1 showed increased EC infiltration in the chorioallantoic membrane (CAM) assay, compared to scaffolds with independently immobilized VEGF/Ang1. This study presents an alternative method for promoting the formation of vascular structures, via covalent immobilization of angiogenic growth factors that are more stable than soluble ones and have a localized effect.
Collapse
Affiliation(s)
- Loraine L Y Chiu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S 3E5, Canada
| | | |
Collapse
|
295
|
Abstract
The formation of new blood vessels plays an important role during the development and progression of a disease. In recent years, there has been a tremendous effort to uncover the molecular mechanisms that drive blood vessel growth in adult tissues. Angiopoietins belong to a family of growth factors that are critically involved in blood vessel formation during developmental and pathological angiogenesis. The importance of Angiopoietin signaling has been recognized in transgenic mouse models as the genetic ablation of Ang-1, and its primary receptor Tie2 has led to early embryonic lethality. Interesting and unusual for a family of ligands, Ang-2 has been identified as an antagonist of Ang-1 in endothelial cells as evidenced by a similar embryonic phenotype when Ang-2 was overexpressed in transgenic mice. In this review, we focus on the functional consequences of autocrine Angiopoietin signaling in endothelial cells.
Collapse
|
296
|
Abstract
Angiogenesis recapitulates the growth of blood vessels that progressively expand and remodel into a highly organized and stereotyped vascular network. During adulthood, endothelial cells that formed the vascular wall retain their plasticity and can be engaged in neo-vascularization in response to physiological stimuli, such as hypoxia, wound healing and tissue repair, ovarian cycle and pregnancy. In addition, numerous human diseases and pathological conditions are characterized by an excessive, uncontrolled and aberrant angiogenesis. The signalling pathways involving the small Rho GTPase, Rac and its downstream effector the p21-activated serine/threonine kinase (PAK) had recently emerged as pleiotropic modulators in these processes. Indeed, Rac and PAK were found to modulate endothelial cell biology, such as sprouting, migration, polarity, proliferation, lumen formation, and maturation. Elucidating the Rac/PAK molecular circuitry will provide essential information for the development of new therapeutic agents designed to normalize the blood vasculature in human diseases.
Collapse
|
297
|
Hou Y, Mao Z, Wei X, Lin L, Chen L, Wang H, Fu X, Zhang J, Yu C. Effects of transforming growth factor-β1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing. Matrix Biol 2009; 28:324-35. [DOI: 10.1016/j.matbio.2009.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 03/26/2009] [Accepted: 04/10/2009] [Indexed: 01/04/2023]
|
298
|
Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med 2009; 11:e19. [PMID: 19563700 DOI: 10.1017/s1462399409001112] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endothelial hyperpermeability is a significant problem in vascular inflammation associated with trauma, ischaemia-reperfusion injury, sepsis, adult respiratory distress syndrome, diabetes, thrombosis and cancer. An important mechanism underlying this process is increased paracellular leakage of plasma fluid and protein. Inflammatory stimuli such as histamine, thrombin, vascular endothelial growth factor and activated neutrophils can cause dissociation of cell-cell junctions between endothelial cells as well as cytoskeleton contraction, leading to a widened intercellular space that facilitates transendothelial flux. Such structural changes initiate with agonist-receptor binding, followed by activation of intracellular signalling molecules including calcium, protein kinase C, tyrosine kinases, myosin light chain kinase, and small Rho-GTPases; these kinases and GTPases then phosphorylate or alter the conformation of different subcellular components that control cell-cell adhesion, resulting in paracellular hypermeability. Targeting key signalling molecules that mediate endothelial-junction-cytoskeleton dissociation demonstrates a therapeutic potential to improve vascular barrier function during inflammatory injury.
Collapse
|
299
|
Phosphorylation of endothelial nitric oxide synthase by atypical PKC zeta contributes to angiopoietin-1-dependent inhibition of VEGF-induced endothelial permeability in vitro. Blood 2009; 114:3343-51. [PMID: 19564638 DOI: 10.1182/blood-2008-12-196584] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent angiogenic cytokine that also increases vascular permeability. Nitric oxide (NO) released from endothelial cells, after activation of endothelial NO synthase (eNOS), contributes to proangiogenic and permeability effects of VEGF. Angiopoietin-1 (Ang-1), via Tie2 receptors, shares many of the proangiogenic properties of VEGF on endothelial cells. However, in contrast to VEGF, Ang-1 protects blood vessels from increased plasma leakage, which contributes to their stabilization. Because eNOS-derived NO is central to increased permeability in response to VEGF, we investigated whether Ang-1 interferes with VEGF signaling to eNOS. We demonstrate that Ang-1 stimulation of endothelial cells inhibits VEGF-induced NO release and transendothelial permeability. In contrast to VEGF stimulation, Ang-1 causes a marked protein kinase C (PKC)-dependent increase in phosphorylation of eNOS on the inhibitory Thr(497). Furthermore, using pharmacologic inhibitors, overexpression studies, and small interfering RNA-mediated gene silencing, we demonstrate that atypical PKC zeta is responsible for phosphorylation of eNOS on Thr(497) in response to Ang-1. In addition, PKC zeta knockdown abrogates the capacity of Ang-1 to inhibit VEGF-induced NO release and endothelial permeability. Thus, inhibition of NO production by Ang-1, via phosphorylation of eNOS on Thr(497) by PKC zeta, is responsible, at least in part, for inhibition of VEGF-stimulated endothelial permeability by Ang-1.
Collapse
|
300
|
Thomas M, Augustin HG. The role of the Angiopoietins in vascular morphogenesis. Angiogenesis 2009; 12:125-37. [PMID: 19449109 DOI: 10.1007/s10456-009-9147-3] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 04/24/2009] [Indexed: 01/20/2023]
Abstract
The Angiopoietin/Tie system acts as a vascular specific ligand/receptor system to control endothelial cell survival and vascular maturation. The Angiopoietin family includes four ligands (Angiopoietin-1, Angiopoietin-2 and Angiopoietin-3/4) and two corresponding tyrosine kinase receptors (Tie1 and Tie2). Ang-1 and Ang-2 are specific ligands of Tie2 binding the receptor with similar affinity. Tie2 activation promotes vessel assembly and maturation by mediating survival signals for endothelial cells and regulating the recruitment of mural cells. Ang-1 acts in a paracrine agonistic manner inducing Tie2 phosphorylation and subsequent vessel stabilization. In contrast, Ang-2 is produced by endothelial cells and acts as an autocrine antagonist of Ang-1-mediated Tie2 activation. Ang-2 thereby primes the vascular endothelium to exogenous cytokines and induces vascular destabilization at higher concentrations. Ang-2 is strongly expressed in the vasculature of many tumors and it has been suggested that Ang-2 may act synergistically with other cytokines such as vascular endothelial growth factor to promote tumor-associated angiogenesis and tumor progression. The better mechanistic understanding of the Ang/Tie system is gradually paving the way toward the rationale exploitation of this vascular signaling system as a therapeutic target for neoplastic and non-neoplastic diseases.
Collapse
Affiliation(s)
- Markus Thomas
- Joint Research Division Vascular Biology, Medical Faculty Mannheim (CBTM), University of Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|