251
|
Ketteler J, Panic A, Reis H, Wittka A, Maier P, Herskind C, Yagüe E, Jendrossek V, Klein D. Progression-Related Loss of Stromal Caveolin 1 Levels Mediates Radiation Resistance in Prostate Carcinoma via the Apoptosis Inhibitor TRIAP1. J Clin Med 2019; 8:jcm8030348. [PMID: 30871022 PMCID: PMC6462938 DOI: 10.3390/jcm8030348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Tumour resistance to chemo- and radiotherapy, as well as molecularly targeted therapies, limits the effectiveness of current cancer treatments. We previously reported that the radiation response of human prostate tumours is critically regulated by CAV1 expression in stromal fibroblasts and that loss of stromal CAV1 expression in advanced tumour stages may contribute to tumour radiotherapy resistance. Here we investigated whether fibroblast secreted anti-apoptotic proteins could induce radiation resistance of prostate cancer cells in a CAV1-dependent manner and identified TRIAP1 (TP53 Regulated Inhibitor of Apoptosis 1) as a resistance-promoting CAV1-dependent factor. TRIAP1 expression and secretion was significantly higher in CAV1-deficient fibroblasts and secreted TRIAP1 was able to induce radiation resistance of PC3 and LNCaP prostate cancer cells in vitro, as well as of PC3 prostate xenografts derived from co-implantation of PC3 cells with TRIAP1-expressing fibroblasts in vivo. Immunohistochemical analyses of irradiated PC3 xenograft tumours, as well as of human prostate tissue specimen, confirmed that the characteristic alterations in stromal-epithelial CAV1 expression were accompanied by increased TRIAP1 levels after radiation in xenograft tumours and within advanced prostate cancer tissues, potentially mediating resistance to radiation treatment. In conclusion, we have determined the role of CAV1 alterations potentially induced by the CAV1-deficient, and more reactive, stroma in radio sensitivity of prostate carcinoma at a molecular level. We suggest that blocking TRIAP1 activity and thus avoiding drug resistance may offer a promising drug development strategy for inhibiting resistance-promoting CAV1-dependent signals.
Collapse
Affiliation(s)
- Julia Ketteler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| | - Andrej Panic
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
- Department of Urology and Urooncology, University of Duisburg-Essen, University Hospital, Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | - Henning Reis
- Institute of Pathology, University of Duisburg-Essen, University Hospital, Hufelandstr. 55, 45122 Essen, Germany.
| | - Alina Wittka
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| | - Patrick Maier
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Carsten Herskind
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Ernesto Yagüe
- Cancer Research Center, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| |
Collapse
|
252
|
Brun S, Bassissi F, Serdjebi C, Novello M, Tracz J, Autelitano F, Guillemot M, Fabre P, Courcambeck J, Ansaldi C, Raymond E, Halfon P. GNS561, a new lysosomotropic small molecule, for the treatment of intrahepatic cholangiocarcinoma. Invest New Drugs 2019; 37:1135-1145. [DOI: 10.1007/s10637-019-00741-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
|
253
|
Motevalli SM, Eltahan AS, Liu L, Magrini A, Rosato N, Guo W, Bottini M, Liang XJ. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-018-0079-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
254
|
Yang C, Mi X, Su H, Yang J, Gu Y, Zhang L, Sun W, Liang X, Zhang C. GE11-PDA-Pt@USPIOs nano-formulation for relief of tumor hypoxia and MRI/PAI-guided tumor radio-chemotherapy. Biomater Sci 2019; 7:2076-2090. [DOI: 10.1039/c8bm01492b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
GE11-PDA-Pt@USPIOs can relieve tumor hypoxic conditions efficiently and are highly effective for radio-chemotherapy of EGFR-positive tumors.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| | - Xuan Mi
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| | - Huilan Su
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jingxing Yang
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Yiyun Gu
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Lu Zhang
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Wenshe Sun
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200230
- China
| | - Xiaowen Liang
- The University of Queensland Diamantina Institute
- The University of Queensland
- QLD 4102
- Australia
| | - Chunfu Zhang
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200025
| |
Collapse
|
255
|
Endolysosomal Ca 2+ Signalling and Cancer Hallmarks: Two-Pore Channels on the Move, TRPML1 Lags Behind! Cancers (Basel) 2018; 11:cancers11010027. [PMID: 30591696 PMCID: PMC6356888 DOI: 10.3390/cancers11010027] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
The acidic vesicles of the endolysosomal (EL) system are emerging as an intracellular Ca2+ store implicated in the regulation of multiple cellular functions. The EL Ca2+ store releases Ca2+ through a variety of Ca2+-permeable channels, including Transient Receptor Potential (TRP) Mucolipin 1-3 (TRPML1-3) and two-pore channels 1-2 (TPC1-2), whereas EL Ca2+ refilling is sustained by the proton gradient across the EL membrane and/or by the endoplasmic reticulum (ER). EL Ca2+ signals may be either spatially restricted to control vesicle trafficking, autophagy and membrane repair or may be amplified into a global Ca2+ signal through the Ca2+-dependent recruitment of ER-embedded channels. Emerging evidence suggested that nicotinic acid adenine dinucleotide phosphate (NAADP)-gated TPCs sustain multiple cancer hallmarks, such as migration, invasiveness and angiogenesis. Herein, we first survey the EL Ca2+ refilling and release mechanisms and then focus on the oncogenic role of EL Ca2+ signaling. While the evidence in favor of TRPML1 involvement in neoplastic transformation is yet to be clearly provided, TPCs are emerging as an alternative target for anticancer therapies.
Collapse
|
256
|
Wang Y, Niu H, Hu Z, Zhu M, Wang L, Han L, Qian L, Tian K, Yuan H, Lou H. Targeting the lysosome by an aminomethylated Riccardin D triggers DNA damage through cathepsin B-mediated degradation of BRCA1. J Cell Mol Med 2018; 23:1798-1812. [PMID: 30565390 PMCID: PMC6378192 DOI: 10.1111/jcmm.14077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
RD-N, an aminomethylated derivative of riccardin D, is a lysosomotropic agent that can trigger lysosomal membrane permeabilization followed by cathepsin B (CTSB)-dependent apoptosis in prostate cancer (PCa) cells, but the underlying mechanisms remain unknown. Here we show that RD-N treatment drives CTSB translocation from the lysosomes to the nucleus where it promotes DNA damage by suppression of the breast cancer 1 protein (BRCA1). Inhibition of CTSB activity with its specific inhibitors, or by CTSB-targeting siRNA or CTSB with enzyme-negative domain attenuated activation of BRCA1 and DNA damage induced by RD-N. Conversely, CTSB overexpression resulted in inhibition of BRCA1 and sensitized PCa cells to RD-N-induced cell death. Furthermore, RD-N-induced cell death was exacerbated in BRCA1-deficient cancer cells. We also demonstrated that CTSB/BRCA1-dependent DNA damage was critical for RD-N, but not for etoposide, reinforcing the importance of CTSB/BRCA1 in RD-N-mediated cell death. In addition, RD-N synergistically increased cell sensitivity to cisplatin, and this effect was more evidenced in BRCA1-deficient cancer cells. This study reveals a novel molecular mechanism that RD-N promotes CTSB-dependent DNA damage by the suppression of BRCA1 in PCa cells, leading to the identification of a potential compound that target lysosomes for cancer treatment.
Collapse
Affiliation(s)
- Yanyan Wang
- Key Lab of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical sciences, Shandong University, Jinan, China
| | - Huanmin Niu
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Zhongyi Hu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Mengyuan Zhu
- Key Lab of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical sciences, Shandong University, Jinan, China
| | - Lining Wang
- Key Lab of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical sciences, Shandong University, Jinan, China
| | - Lili Han
- School of Medicine, Shandong Yingcai University, Jinan, China
| | - Lilin Qian
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Keli Tian
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Huiqing Yuan
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Hongxiang Lou
- Key Lab of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical sciences, Shandong University, Jinan, China
| |
Collapse
|
257
|
Zhitomirsky B, Yunaev A, Kreiserman R, Kaplan A, Stark M, Assaraf YG. Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death Dis 2018; 9:1191. [PMID: 30546014 PMCID: PMC6294013 DOI: 10.1038/s41419-018-1227-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
Transcription factor EB (TFEB) is a master transcriptional regulator playing a key role in lysosomal biogenesis, autophagy and lysosomal exocytosis. TFEB activity is inhibited following its phosphorylation by mammalian target of rapamycin complex 1 (mTORC1) on the surface of the lysosome. Phosphorylated TFEB is bound by 14-3-3 proteins, resulting in its cytoplasmic retention in an inactive state. It was suggested that the calcium-dependent phosphatase calcineurin is responsible for dephosphorylation and subsequent activation of TFEB under conditions of lysosomal stress. We have recently demonstrated that TFEB is activated following exposure of cancer cells to lysosomotropic anticancer drugs, resulting in lysosome-mediated cancer drug resistance via increased lysosomal biogenesis, lysosomal drug sequestration, and drug extrusion through lysosomal exocytosis. Herein, we studied the molecular mechanism underlying lysosomotropic-drug-induced activation of TFEB. We demonstrate that accumulation of lysosomotropic drugs results in membrane fluidization of lysosome-like liposomes, which is strictly dependent on the acidity of the liposomal lumen. Lysosomal accumulation of lysosomotropic drugs and the consequent fluidization of the lysosomal membrane, facilitated the dissociation of mTOR from the lysosomal membrane and inhibited the kinase activity of mTORC1, which is necessary and sufficient for the rapid translocation of TFEB to the nucleus. We further show that while lysosomotropic drug sequestration induces Ca2+ release into the cytoplasm, facilitating calcineurin activation, chelation of cytosolic Ca2+, or direct inhibition of calcineurin activity, do not interfere with drug-induced nuclear translocation of TFEB. We thus suggest that lysosomotropic drug-induced activation of TFEB is mediated by mTORC1 inhibition due to lysosomal membrane fluidization and not by calcineurin activation. We further postulate that apart from calcineurin, other constitutively active phosphatase(s) partake in TFEB dephosphorylation and consequent activation. Moreover, a rapid export of TFEB from the nucleus to the cytosol occurs upon relief of mTORC1 inhibition, suggesting that dephosphorylated TFEB constantly travels between the nucleus and the cytosol, acting as a rapidly responding sensor of mTORC1 activity.
Collapse
Affiliation(s)
- Benny Zhitomirsky
- The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anna Yunaev
- The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Roman Kreiserman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel Kaplan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel. .,Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
258
|
Transporter and Lysosomal Mediated (Multi)drug Resistance to Tyrosine Kinase Inhibitors and Potential Strategies to Overcome Resistance. Cancers (Basel) 2018; 10:cancers10120503. [PMID: 30544701 PMCID: PMC6315453 DOI: 10.3390/cancers10120503] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosine kinase inhibitors are a class of chemotherapeutic drugs that target specific protein kinases. These tyrosine kinase inhibitors constitute a relatively new class of drugs which target for instance Bcr-Abl, Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Despite some initial successes, the overall therapeutic benefit of tyrosine kinase inhibitors in the clinic has been mixed. Next to mutations in the target, multidrug resistance is a major obstacle for which still no clinically effective strategies have been developed. Major mechanisms of multidrug resistance are mediated by drug efflux transporter proteins. Moreover, there is accumulating evidence that multidrug resistance can also be caused by lysosomal sequestration of drugs, effectively trapping tyrosine kinase inhibitors and preventing them from reaching their target. Lysosomal drug sequestration seems to work together with ATP-binding cassette transporters, increasing the capacity of lysosomes to mediate sequestration. Both membrane efflux transporter proteins and lysosomes present potential therapeutic targets that could reverse multidrug resistance and increase drug efficacy in combination therapy. This review describes both mechanisms and discusses a number of proposed strategies to circumvent or reverse tyrosine kinase inhibitor-related multidrug resistance.
Collapse
|
259
|
Englinger B, Kallus S, Senkiv J, Laemmerer A, Moser P, Gabler L, Groza D, Kowol CR, Heffeter P, Grusch M, Berger W. Lysosomal Sequestration Impairs the Activity of the Preclinical FGFR Inhibitor PD173074. Cells 2018; 7:E259. [PMID: 30544798 PMCID: PMC6315953 DOI: 10.3390/cells7120259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022] Open
Abstract
Knowledge of intracellular pharmacokinetics of anticancer agents is imperative for understanding drug efficacy as well as intrinsic and acquired cellular resistance mechanisms. However, the factors driving subcellular drug distribution are complex and poorly understood. Here, we describe for the first time the intrinsic fluorescence properties of the fibroblast growth factor receptor inhibitor PD1703074 as well as utilization of this physicochemical feature to investigate intracellular accumulation and compartmentalization of this compound in human lung cancer cells. Cell-free PD173074 fluorescence, intracellular accumulation and distribution were investigated using analytical chemistry and molecular biology approaches. Analyses on a subcellular scale revealed selective drug accumulation in lysosomes. Coincubation with inhibitors of lysosomal acidification strongly enhanced PD173074-mediated fibroblast growth factor receptor (FGFR) inhibition and cytotoxicity. In conclusion, intrinsic fluorescence enables analysis of molecular factors influencing intracellular pharmacokinetics of PD173074. Lysosome-alkalinizing agents might represent candidates for rational combination treatment, preventing cancer cell-intrinsic PD173074 resistance based on lysosomal trapping.
Collapse
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Sebastian Kallus
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", A-1090 Vienna, Austria.
| | - Julia Senkiv
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, A-1090 Vienna, Austria.
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine.
| | - Anna Laemmerer
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Patrick Moser
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Lisa Gabler
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Diana Groza
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", A-1090 Vienna, Austria.
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, A-1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", A-1090 Vienna, Austria.
| | - Michael Grusch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, A-1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", A-1090 Vienna, Austria.
| |
Collapse
|
260
|
Shao M, Zhu W, Lv X, Yang Q, Liu X, Xie Y, Tang P, Sun L. Encapsulation of chloroquine and doxorubicin by MPEG-PLA to enhance anticancer effects by lysosomes inhibition in ovarian cancer. Int J Nanomedicine 2018; 13:8231-8245. [PMID: 30584297 PMCID: PMC6284531 DOI: 10.2147/ijn.s174300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose As the deadliest gynecological malignancy, ovarian cancer ranks as a major cause of disease-related deaths to women worldwide and is treated with transurethral resection or systemic chemotherapy. However, traditional chemotherapeutic drug in antitumor therapy has shown unavoidable limitations, such as poor curative effects, systemic toxicity and development of drug resistance, leading to failure of tumor inhibition and recurrence. This study aims to explore an innovative method to enhance the clinical efficiency of ovarian cancer. Materials and methods Using MTT assay, the cell viability was detected under different culture systems. Western blot was used to examine the expression of P-gp in doxorubicin-resistant and wild-type A2780/SKOV3 cells. We used confocal to examine the drug concentration under different culture conditions. Also, flow cytometry was used to detect the drug absorption at the determined time points under different culture systems. Using nude mice model, we evaluated the killing efficacy of chemotherapeutic drugs with or without nanoparticle encapsulation. ELISA was used to examine the levels of creatinine, alanine aminotransferase and aspartate aminotransferase in plasma. Results We found that pretreatment of chloroquine (CQ) as chemosensitizer markedly enhanced the anticancer effects in ovarian cancer. We also provided evidence that CQ efficiently increase the pH value of lysosomes in tumor cells, leading to the reverse of drug sequestration induced by lysosomes. To further improve the pharmacokinetics profiles and avoid the systemic toxicity caused by chemotherapeutic agents, we encapsulated CQ and chemotherapeutic drugs by polymeric nanoparticles methoxy poly(ethylene glycol)-poly(l-lactic acid). Codelivery of CQ and chemotherapeutic agents by nanocarrier revealed enhanced anticancer effects compared with the free drug delivery by tail vein injection. More importantly, accumulated drugs, prolonged drug circulation and reduced organic damages were observed in nanoparticles delivery. Conclusion Codelivery of CQ and chemotherapeutic drugs by methoxy poly(ethylene glycol)-poly(l-lactic acid) could significantly improve the anticancer effects and might have important potency in clinical applications for ovarian cancer therapy.
Collapse
Affiliation(s)
- Ming Shao
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Weitao Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Xianping Lv
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Qiankun Yang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Xin Liu
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Ying Xie
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Ping Tang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China,
| | - Ling Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China,
| |
Collapse
|
261
|
Denecke S, Swevers L, Douris V, Vontas J. How do oral insecticidal compounds cross the insect midgut epithelium? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:22-35. [PMID: 30366055 DOI: 10.1016/j.ibmb.2018.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The use of oral insecticidal molecules (small molecules, peptides, dsRNA) via spray or plant mediated applications represents an efficient way to manage damaging insect species. With the exception of Bt toxins that target the midgut epithelium itself, most of these compounds have targets that lie within the hemocoel (body) of the insect. Because of this, one of the greatest factors in determining the effectiveness of an oral insecticidal compound is its ability to traverse the gut epithelium and enter the hemolymph. However, for many types of insecticidal compounds, neither the pathway taken across the gut nor the specific genes which influence uptake are fully characterized. Here, we review how different types of insecticidal compounds enter or cross the midgut epithelium through passive (diffusion) or active (transporter based, endocytosis) routes. A deeper understanding of how insecticidal molecules cross the gut will help to best utilize current insecticides and also provide for more rational design of future ones.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences & Applications, NCSR "Demokritos", Athens, Greece
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
262
|
Alharbi M, Zuñiga F, Elfeky O, Guanzon D, Lai A, Rice GE, Perrin L, Hooper J, Salomon C. The potential role of miRNAs and exosomes in chemotherapy in ovarian cancer. Endocr Relat Cancer 2018; 25:R663-R685. [PMID: 30400025 DOI: 10.1530/erc-18-0019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Chemoresistance is one of the major obstacles in the treatment of cancer patients. It poses a fundamental challenge to the effectiveness of chemotherapy and is often linked to relapse in patients. Chemoresistant cells can be identified in different types of cancers; however, ovarian cancer has one of the highest rates of chemoresistance-related relapse (50% of patients within 5 years). Resistance in cells can either develop through prolonged cycles of treatment or through intrinsic pathways. Mechanistically, the problem of drug resistance is complex mainly because numerous factors are involved, such as overexpression of drug efflux pumps, drug inactivation, DNA repair mechanisms and alterations to and/or mutations in the drug target. Additionally, there is strong evidence that circulating miRNAs participate in the development of chemoresistance. Recently, miRNAs have been identified in exosomes, where they are encapsulated and hence protected from degradation. These miRNAs within exosomes (exo-miRNAs) can regulate the gene expression of target cells both locally and systemically. Exo-miRNAs play an important role in disease progression and can potentially facilitate chemoresistance in cancer cells. In addition, and from a diagnostic perspective, exo-miRNAs profiles may contribute to the development of predictive models to identify responder and non-responder chemotherapy. Such model may also be used for monitoring treatment response and disease progression. Exo-miRNAs may ultimately serve as both a predictive biomarker for cancer response to therapy and as a prognostic marker for the development of chemotherapy resistance. Therefore, this review examines the potential role of exo-miRNAs in chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Mona Alharbi
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Felipe Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Omar Elfeky
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Gregory E Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
- Perinatology Research Branch, NICHD/NIH, Wayne State University, Detroit, Michigan, USA
| | - Lewis Perrin
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - John Hooper
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| |
Collapse
|
263
|
Leonetti A, Assaraf YG, Veltsista PD, El Hassouni B, Tiseo M, Giovannetti E. MicroRNAs as a drug resistance mechanism to targeted therapies in EGFR-mutated NSCLC: Current implications and future directions. Drug Resist Updat 2018; 42:1-11. [PMID: 30544036 DOI: 10.1016/j.drup.2018.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/20/2022]
Abstract
The introduction of EGFR-tyrosine kinase inhibitors (TKIs) has revolutionized the treatment and prognosis of non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) mutations. However, these patients display disease progression driven by the onset of acquired mechanisms of drug resistance that limit the efficacy of EGFR-TKI to no longer than one year. Moreover, a small fraction of EGFR-mutated NSCLC patients does not benefit from this targeted treatment due to primary (i.e. intrinsic) mechanisms of resistance that preexist prior to TKI drug treatment. Research efforts are focusing on deciphering the distinct molecular mechanisms underlying drug resistance, which should prompt the development of novel antitumor agents that surmount such chemoresistance modalities. The capability of microRNAs (miRNAs) to regulate the expression of many oncogenic pathways and their central role in lung cancer progression, provided new directions for research on prognostic biomarkers, as well as innovative tools for predicting patients' response to systemic therapies. Recent evidence suggests that modulation of key miRNAs may also reverse oncogenic signaling pathways, and potentiate the cytotoxic effect of anti-cancer therapies. In this review, we focus on the putative emerging role of miRNAs in modulating drug resistance to EGFR-TKI treatment in EGFR-mutated NSCLC. Moreover, we discuss the current implications of miRNAs analyses in the clinical setting, using both tissue and liquid biopsies, as well as the future potential use of miRNA-based therapies in overcoming resistance to targeted agents like TKIs.
Collapse
Affiliation(s)
- Alessandro Leonetti
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy; Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200000, Israel
| | - Paraskevi D Veltsista
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Btissame El Hassouni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa and Fondazione Pisana per la Scienza, 56100 Pisa, Italy.
| |
Collapse
|
264
|
Zhou JX, Wink M. Reversal of Multidrug Resistance in Human Colon Cancer and Human Leukemia Cells by Three Plant Extracts and Their Major Secondary Metabolites. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E123. [PMID: 30428619 PMCID: PMC6313689 DOI: 10.3390/medicines5040123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 01/04/2023]
Abstract
Background: We studied the effect of three plant extracts (Glycyrrhiza glabra, Paeonia lactiflora, Eriobotrya japonica) and six of their major secondary metabolites (glycyrrhizic acid, 18β glycyrrhetinic acid, liquiritigenin, isoliquiritigenin, paeoniflorin, ursolic acid) on the multidrug resistant human colon cancer cell line Caco-2 and human leukemia cell line CEM/ADR 5000 as compared to the corresponding sensitive cell line CCRF-CEM, and human colon cancer cells HCT-116, which do not over-express ATP-binding cassette (ABC) transporters. Methods: The cytotoxicity of single substances in sensitive and resistant cells was investigated by MTT assay. We also applied combinations of extracts or single compounds with the chemotherapeutic agent doxorubicin or doxorubicin plus the saponin digitonin. The intracellular retention of the ABC transporter substrates rhodamine 123 and calcein was examined by flow cytometry to explore the effect of the substances on the activity of ABC transporters P-glycoprotein and MRP1. Real-time PCR was applied to analyse the gene expression changes of ABCB1, ABCC1, caspase 3, caspase 8, AhR, CYP1A1, and GSTP1 in resistant cells under the treatment of the substances. Results: All the substances moderately inhibited cell growth in sensitive and resistant cells to some degree. Whereas ursolic acid showed IC50 of 14 and 22 µM in CEM/ADR 5000 and Caco-2 cells, respectively, glycyrrhizic acid and paeoniflorin were inactive with IC50 values above 400 μM. Except for liquiritigenin and isoliquiritigenin, all the other substances reversed MDR in CEM/ADR 5000 and Caco-2 cells to doxorubicin. Ue, ga, 18ga, and urs were powerful reversal agents. In CEM/ADR 5000 cells, high concentrations of all the substances, except Paeonia lactiflora extract, increased calcein or rhodamine 123 retention in a dose-dependent manner. In Caco-2 cells, all the substances, except liquiritigenin, retained rhodamine 123 in a dose-dependent manner. We also examined the effect of the plant secondary metabolite (PSM) panel on the expression of ABCB1, ABCC1, caspase 3, caspase 8, AhR, CYP1A1, and GSTP1 genes in MDR cells. Conclusions: The extracts and individual PSM could reverse MDR in CEM/ADR 5000 and Caco-2 cells, which overexpress ABC transporters, in two- and three-drug combinations. Most of the PSM also inhibited the activity of ABC transporters to some degree, albeit at high concentrations. Ue, ga, 18ga, and urs were identified as potential multidrug resistance (MDR) modulator candidates, which need to be characterized and validated in further studies.
Collapse
Affiliation(s)
- Jun-Xian Zhou
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
265
|
Schmitt MV, Lienau P, Fricker G, Reichel A. Quantitation of Lysosomal Trapping of Basic Lipophilic Compounds Using In Vitro Assays and In Silico Predictions Based on the Determination of the Full pH Profile of the Endo-/Lysosomal System in Rat Hepatocytes. Drug Metab Dispos 2018; 47:49-57. [PMID: 30409837 DOI: 10.1124/dmd.118.084541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022] Open
Abstract
Lysosomal sequestration may affect the pharmacokinetics, efficacy, and safety of new basic lipophilic drug candidates potentially impacting their intracellular concentrations and tissue distribution. It may also be involved in drug-drug interactions, drug resistance, and phospholipidosis. However, currently there are no assays to evaluate the lysosomotropic behavior of compounds in a setting fully meeting the needs of drug discovery. We have, therefore, integrated a set of methods to reliably rank order, quantify, and calculate the extent of lysosomal sequestration in rat hepatocytes. An indirect fluorescence-based assay monitors the displacement of the fluorescence probe LysoTracker Red by test compounds. Using a lysosomal-specific evaluation algorithm allows one to generate IC50 values at lower than previously reported concentrations. The concentration range directly agrees with the concentration dependency of the lysosomal drug content itself directly quantified by liquid chromatography-tandem mass spectrometry and thus permits a quantitative link between the indirect and the direct trapping assay. Furthermore, we have determined the full pH profile and corresponding volume fractions of the endo-/lysosomal system in plated rat hepatocytes, enabling a more accurate in silico prediction of the extent of lysosomal trapping based only on pK a values as input, allowing early predictions even prior to chemical synthesis. The concentration dependency-i.e., the saturability of the trapping-can then be determined by the IC50 values generated in vitro. Thereby, a more quantitative assessment of the susceptibility of basic lipophilic compounds for lysosomal trapping is possible.
Collapse
Affiliation(s)
- Maximilian V Schmitt
- Bayer AG, Pharmaceuticals R&D, Translational Sciences, Research Pharmacokinetics, Berlin, Germany (M.V.S., P.L., A.R.); and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany (M.V.S., G.F.)
| | - Philip Lienau
- Bayer AG, Pharmaceuticals R&D, Translational Sciences, Research Pharmacokinetics, Berlin, Germany (M.V.S., P.L., A.R.); and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany (M.V.S., G.F.)
| | - Gert Fricker
- Bayer AG, Pharmaceuticals R&D, Translational Sciences, Research Pharmacokinetics, Berlin, Germany (M.V.S., P.L., A.R.); and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany (M.V.S., G.F.)
| | - Andreas Reichel
- Bayer AG, Pharmaceuticals R&D, Translational Sciences, Research Pharmacokinetics, Berlin, Germany (M.V.S., P.L., A.R.); and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany (M.V.S., G.F.)
| |
Collapse
|
266
|
Lin F, Wen D, Wang X, Mahato RI. Dual responsive micelles capable of modulating miRNA-34a to combat taxane resistance in prostate cancer. Biomaterials 2018; 192:95-108. [PMID: 30447399 DOI: 10.1016/j.biomaterials.2018.10.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
Abstract
There is a direct correlation between increase in the number of cancer stem cells CSCs and chemoresistance that impedes successful chemotherapy. Synergistic therapy by targeting both bulk tumor cells and CSCs has shown promise in reversing chemoresistance and treating resistant prostate cancer. Herein, we demonstrated the fabrication of a pH and glutathione (GSH) sensitive nanocarrier for co-delivery of docetaxel (DTX) and rubone (RUB), a miR-34 activator for targeting CSCs, for the treatment of taxane resistant (TXR) prostate cancer. DTX loaded P-RUB (DTX/P-RUB) micelles were prepared by encapsulating DTX into pH responsive diisopropylaminoethanol (DIPAE) and GSH responsive RUB prodrug conjugated polycarbonate based micelles. The self-assembled DTX/P-RUB micelles displayed good stability in vitro and could efficiently target to tumors by enhanced permeability and retention (EPR) effect. After endocytosis by tumor cells, the micelles underwent expansion and disassembly due to the protonation of DIPAE and GSH induced cleavage of disulfide bond in acidic endocytic vesicles, resulting in fast release of DTX and RUB. The released RUB then upregulated the intracellular miR-34a, which then affected the expression of proteins involved in chemoresistance, thus sensitizing the tumor cells towards DTX and further leading to significant inhibition of TXR tumor progression. Thus, DTX/P-RUB micelles have the potential to treat TXR prostate cancer. By taking advantage of this dual responsive strategy, the successful delivery of many other hydrophobic drugs can be achieved for cancer treatment.
Collapse
Affiliation(s)
- Feng Lin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Di Wen
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Xiaofang Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| |
Collapse
|
267
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|
268
|
Abdul KU, Houweling M, Svensson F, Narayan RS, Cornelissen FMG, Küçükosmanoglu A, Metzakopian E, Watts C, Bailey D, Wurdinger T, Westerman BA. WINDOW consortium: A path towards increased therapy efficacy against glioblastoma. Drug Resist Updat 2018; 40:17-24. [PMID: 30439622 DOI: 10.1016/j.drup.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/04/2023]
Abstract
Glioblastoma is the most common and malignant form of brain cancer, for which the standard treatment is maximal surgical resection, radiotherapy and chemotherapy. Despite these interventions, mean overall survival remains less than 15 months, during which extensive tumor infiltration throughout the brain occurs. The resulting metastasized cells in the brain are characterized by chemotherapy resistance and extensive intratumoral heterogeneity. An orthogonal approach attacking both intracellular resistance mechanisms as well as intercellular heterogeneity is necessary to halt tumor progression. For this reason, we established the WINDOW Consortium (Window for Improvement for Newly Diagnosed patients by Overcoming disease Worsening), in which we are establishing a strategy for rational selection and development of effective therapies against glioblastoma. Here, we overview the many challenges posed in treating glioblastoma, including selection of drug combinations that prevent therapy resistance, the need for drugs that have improved blood brain barrier penetration and strategies to counter heterogeneous cell populations within patients. Together, this forms the backbone of our strategy to attack glioblastoma.
Collapse
Affiliation(s)
- Kulsoom U Abdul
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands
| | - Megan Houweling
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands
| | - Fredrik Svensson
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS, United Kingdom
| | - Ravi S Narayan
- Department of Radiation Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands
| | - Fleur M G Cornelissen
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands
| | - Asli Küçükosmanoglu
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands
| | | | - Colin Watts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - David Bailey
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS, United Kingdom
| | - Tom Wurdinger
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands
| | - Bart A Westerman
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, Netherlands.
| |
Collapse
|
269
|
Mechanism of drug extrusion by brain endothelial cells via lysosomal drug trapping and disposal by neutrophils. Proc Natl Acad Sci U S A 2018; 115:E9590-E9599. [PMID: 30254169 PMCID: PMC6187170 DOI: 10.1073/pnas.1719642115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Located at the apical (blood-facing) site of brain capillary endothelial cells that form the blood–brain barrier (BBB), the efflux transporter P-glycoprotein (Pgp) restricts the brain entry of various lipophilic xenobiotics, which contributes to BBB function. Pgp may become saturated if exposed to too-high drug concentrations. Here, we demonstrate a second-line defense mechanism in human brain capillary endothelial cells—that is, Pgp-mediated intracellular lysosomal drug trapping. Furthermore, we describe a mechanism of drug disposal at the BBB, which is shedding of lysosomal Pgp/substrate complexes at the apical membrane of human and porcine BBB endothelial cells and subsequent phagocytosis by neutrophils. Thus, we have discovered a fascinating mechanism of how Pgp might contribute to brain protection. The blood–brain barrier protects the brain against a variety of potentially toxic compounds. Barrier function results from tight junctions between brain capillary endothelial cells and high expression of active efflux transporters, including P-glycoprotein (Pgp), at the apical membrane of these cells. In addition to actively transporting drugs out of the cell, Pgp mediates lysosomal sequestration of chemotherapeutic drugs in cancer cells, thus contributing to drug resistance. Here, we describe that lysosomal sequestration of Pgp substrates, including doxorubicin, also occurs in human and porcine brain endothelial cells that form the blood–brain barrier. This is followed by shedding of drug-sequestering vesicular structures, which stay attached to the apical side of the plasma membrane and form aggregates (“barrier bodies”) that ultimately undergo phagocytosis by neutrophils, thus constituting an as-yet-undescribed mechanism of drug disposal. These findings introduce a mechanism that might contribute to brain protection against potentially toxic xenobiotics, including therapeutically important chemotherapeutic drugs.
Collapse
|
270
|
Zhang X, Wang J, Li X, Wang D. Lysosomes contribute to radioresistance in cancer. Cancer Lett 2018; 439:39-46. [PMID: 30217567 DOI: 10.1016/j.canlet.2018.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/05/2018] [Accepted: 08/30/2018] [Indexed: 01/02/2023]
Abstract
Radiotherapy is one of the most widely used methods to treat human tumors. Efficacy is due mainly to the DNA damage it induces. However, tumor cells often develop responsive adaptiveness to radiation treatment to survive, which leads to radioresistance. Many cellular processes, such as DNA damage repair, cell cycle arrest and autophagy, are involved in the development of radioresistance. Few interventions to combat radioresistance exist to date. In recent years, the lysosome has been reported to contribute to chemo- and radioresistance. Although for many years, the lysosome was known as an organelle that degrades waste materials, we now know it is also involved in important signaling pathways regulating cellular homeostasis. Although an increasing number of preclinical studies show that lysosome-related factors promote radioresistance, the role of the lysosome in radioresistance has not been systematically demonstrated. Here, we combine an updated understanding of lysosomes with a review of current studies regarding the role of lysosomes in mediating radioresistance.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, PR China; Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, PR China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
271
|
Cathepsin B contributes to radioresistance by enhancing homologous recombination in glioblastoma. Biomed Pharmacother 2018; 107:390-396. [PMID: 30099343 DOI: 10.1016/j.biopha.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/19/2023] Open
Abstract
Resistance to adjuvant radiotherapy is a major cause of treatment failure in patients with glioblastoma (GBM). Recently, the role of lysosome, especially lysosomal proteases, in radioresistance is being paid more and more attention to. Here, we investigated the radioresistant role of Cathepsin B (CTSB), one important member of cysteine proteases, in GBM cell lines. A protease array kit was used to test GBM cells before and after irradiation. Nude mice were implanted with GBM cells to generate orthotopic xenografts for in vivo studies. Response of U87 and U251 cells to treatment was examined using cell viability, flow cytometry. Cells were transfected with siRNA knockdown and gene expression constructs and molecules potentially mediating response were examined through western blot analysis, PCR and EdU assay. The results from protease array kit showed that CTSB was up-regulated the most among all proteases after irradiation. And this was verified by western blot analysis and immunohistochemistry of tumor samples both from in vivo study and clinical patients. Compared to negative control group, knocking down CTSB led to radiosensitivity. And this radiosensitive effect was achieved by decreasing homologous recombination (HR) efficiency. Further study showed that knocking down CTSB caused cell cycle arrested in G0/G1 phases, in which HR efficiency was impaired. Knocking down CTSB contributed to radiosensitivity in GBM cells by causing cell cycle arrest and down-regulating HR efficiency.
Collapse
|
272
|
Ridinger J, Koeneke E, Kolbinger FR, Koerholz K, Mahboobi S, Hellweg L, Gunkel N, Miller AK, Peterziel H, Schmezer P, Hamacher-Brady A, Witt O, Oehme I. Dual role of HDAC10 in lysosomal exocytosis and DNA repair promotes neuroblastoma chemoresistance. Sci Rep 2018; 8:10039. [PMID: 29968769 PMCID: PMC6030077 DOI: 10.1038/s41598-018-28265-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Drug resistance is a leading cause for treatment failure in many cancers, including neuroblastoma, the most common solid extracranial childhood malignancy. Previous studies from our lab indicate that histone deacetylase 10 (HDAC10) is important for the homeostasis of lysosomes, i.e. acidic vesicular organelles involved in the degradation of various biomolecules. Here, we show that depleting or inhibiting HDAC10 results in accumulation of lysosomes in chemotherapy-resistant neuroblastoma cell lines, as well as in the intracellular accumulation of the weakly basic chemotherapeutic doxorubicin within lysosomes. Interference with HDAC10 does not block doxorubicin efflux from cells via P-glycoprotein inhibition, but rather via inhibition of lysosomal exocytosis. In particular, intracellular doxorubicin does not remain trapped in lysosomes but also accumulates in the nucleus, where it promotes neuroblastoma cell death. Our data suggest that lysosomal exocytosis under doxorubicin treatment is important for cell survival and that inhibition of HDAC10 further induces DNA double-strand breaks (DSBs), providing additional mechanisms that sensitize neuroblastoma cells to doxorubicin. Taken together, we demonstrate that HDAC10 inhibition in combination with doxorubicin kills neuroblastoma, but not non-malignant cells, both by impeding drug efflux and enhancing DNA damage, providing a novel opportunity to target chemotherapy resistance.
Collapse
Affiliation(s)
- Johannes Ridinger
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Emily Koeneke
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,University of Heidelberg, Heidelberg, Germany
| | - Fiona R Kolbinger
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Katharina Koerholz
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Lars Hellweg
- Research Group Cancer Drug Development, German Cancer Research Center, Heidelberg, Germany
| | - Nikolas Gunkel
- Research Group Cancer Drug Development, German Cancer Research Center, Heidelberg, Germany
| | - Aubry K Miller
- Research Group Cancer Drug Development, German Cancer Research Center, Heidelberg, Germany
| | - Heike Peterziel
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Peter Schmezer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | - Anne Hamacher-Brady
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, United States
| | - Olaf Witt
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ina Oehme
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany. .,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
273
|
Schunselaar LM, Monkhorst K, van der Noort V, Wijdeven R, Peters D, Zwart W, Neefjes J, Baas P. Trophoblast Glycoprotein is Associated With a Favorable Outcome for Mesothelioma and a Target for Antibody Drug Conjugates. J Thorac Oncol 2018; 13:1577-1587. [PMID: 29959059 DOI: 10.1016/j.jtho.2018.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION The prognosis for patients with mesothelioma is poor, which prompts the need for the development of better treatment options. Antibody drug conjugates (ADCs) are gaining interest as a therapeutic strategy in mesothelioma. Trophoblast glycoprotein (5T4) is an oncofetal protein overexpressed in mesothelioma with low expression in normal tissue and therefore a good candidate for ADC treatment. Here, we evaluated and manipulated 5T4 as a suitable antigen for ADC targeted therapy in patients with mesothelioma. METHODS Expression of the 5T4 antigen is evaluated in (primary) mesothelioma cell lines and biopsy specimens, and correlated with clinical outcome. Internalization was assessed in 5T4 expressing cells. The cytotoxicity of three different 5T4-targeting ADCs was tested on (primary) mesothelioma cells. RESULTS 5T4 was expressed in 10 of 12 (primary) cell lines. Most biopsy specimens stained positive for the 5T4 antigen, with marked differences in staining intensity and percentage of positive cells. High expression correlated with long progression-free survival. Both free antibody and ADCs targeting 5T4 were internalized and entered lysosomal compartments. Cytotoxicity experiments showed that cell lines with a high expression for 5T4 were sensitive to two of three ADCs. Lack of efficacy for the third ADC could be restored by neutralizing lysosomal compartments with chloroquine. CONCLUSIONS The 5T4 antigen is expressed in mesothelioma and 5T4-based ADCs are internalized in lysosomes. Two of three ADCs were capable of killing the mesothelioma cells; the third ADC required additional lysosomal neutralization for its effect. 5T4-based ADCs would be a selective strategy for the treatment of mesothelioma.
Collapse
Affiliation(s)
- Laurel M Schunselaar
- Division of Oncogenomics, Oncode Institute within Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ruud Wijdeven
- Department of Cell and Chemical Biology, Oncode Institute within Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis Peters
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute within Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute within Leiden University Medical Center, Leiden, The Netherlands
| | - Paul Baas
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
274
|
Docetaxel enhances lysosomal function through TFEB activation. Cell Death Dis 2018; 9:614. [PMID: 29795139 PMCID: PMC5966422 DOI: 10.1038/s41419-018-0571-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 11/14/2022]
Abstract
Docetaxel is an effective and commonly used chemotherapeutic drug for cancer. Autophagy has been reported to be involved in the anticancer mechanism of docetaxel. However, the effect of docetaxel on lysosomal function remains elusive. In the present study, we first found that docetaxel treatment enhances autophagic flux in different cancer cells. Moreover, docetaxel treatment activates lysosomal function and promotes its fusion with autophagosome. Second, doctaxel treatment activates TFEB (transcription factor EB), a key nuclear transcription factor in control of lysosome biogenesis and function. We found that docetaxel promotes TFEB nuclear translocation and increases its transcriptional activity while knockdown of TFEB impairs lysosomal activation by docetaxel. Thirdly, TFEB activation by docetaxel is mediated by ROS (reactive oxygen species) generation and scavenging of ROS suppresses TFEB activity and lysosomal function in docetaxel-treated cells. Finally, inhibition of lysosomal function leads to increased docetaxel-induced cell death, suggesting that lysosomal activation protects against docetaxel-mediated apoptosis. Taken together, our results provide novel insights into the regulatory mechanisms of docetaxel on lysosomes, which could facilitate the development of novel potential cancer therapeutic agents via lysosomal inhibition.
Collapse
|
275
|
Meirson T, Gil-Henn H. Targeting invadopodia for blocking breast cancer metastasis. Drug Resist Updat 2018; 39:1-17. [PMID: 30075834 DOI: 10.1016/j.drup.2018.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
Dissemination of cancer cells from the primary tumor and their spread to distant sites of the body is the leading cause of mortality in metastatic cancer patients. Metastatic cancer cells invade surrounding tissues and blood vessels by forming F-actin-rich protrusions known as invadopodia, which degrade the extracellular matrix and enable invasion of tumor cells through it. Invadopodia have now been observed in vivo, and recent evidence demonstrates direct molecular links between assembly of invadopodia and cancer metastasis in both mouse models and in human patients. While significant progress has been achieved in the last decade in understanding the molecular mechanisms and signaling pathways regulating invadopodia formation and function, the application of this knowledge to development of prognostic and therapeutic approaches for cancer metastasis has not been discussed before. Here, we provide a detailed overview of current prognostic markers and tests for cancer metastasis and discuss their advantages, disadvantages, and their predicted efficiency. Using bioinformatic patient database analysis, we demonstrate, for the first time, a significant correlation between invadopodia-associated genes to breast cancer metastasis, suggesting that invadopodia could be used as both a prognostic marker and as a therapeutic target for blocking cancer metastasis. We include here a novel network interaction map of invadopodia-associated proteins with currently available inhibitors, demonstrating a central role for the recently identified EGFR-Pyk2-Src-Arg-cortactin invadopodial pathway, to which re-purposing of existent inhibitors could be used to block breast cancer metastasis. We then present an updated overview of current cancer-related clinical trials, demonstrating the negligible number of trials focusing on cancer metastasis. We also discuss the difficulties and complexity of performing cancer metastasis clinical trials, and the possible development of anti-metastasis drug resistance when using a prolonged preventive treatment with invadopodia inhibitors. This review presents a new perspective on invadopodia-mediated tumor invasiveness and may lead to the development of novel prognostic and therapeutic approaches for cancer metastasis.
Collapse
Affiliation(s)
- Tomer Meirson
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| |
Collapse
|
276
|
Zhitomirsky B, Assaraf YG. Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis. Oncotarget 2018; 8:45117-45132. [PMID: 28187461 PMCID: PMC5542171 DOI: 10.18632/oncotarget.15155] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
We have recently shown that hydrophobic weak base anticancer drugs are highly sequestered in acidic lysosomes, inducing TFEB-mediated lysosomal biogenesis and markedly increased lysosome numbers per cell. This enhanced lysosomal sequestration of chemotherapeutics, away from their intracellular targets, provoked cancer multidrug resistance. However, little is known regarding the fate of lysosome-sequestered drugs. While we suggested that sequestered drugs might be expelled from cancer cells via lysosomal exocytosis, no actual drug-induced lysosomal exocytosis was demonstrated. By following the subcellular localization of lysosomes during exposure to lysosomotropic chemotherapeutics, we herein demonstrate that lysosomal drug accumulation results in translocation of lysosomes from the perinuclear zone towards the plasma membrane via movement on microtubule tracks. Furthermore, following translocation to the plasma membrane in drug-treated cells, lysosomes fused with the plasma membrane and released their cargo to the extracellular milieu, as also evidenced by increased levels of the lysosomal enzyme cathepsin D in the extracellular milieu. These findings suggest that lysosomal exocytosis of chemotherapeutic drug-loaded lysosomes is a crucial component of lysosome-mediated cancer multidrug resistance. We further argue that drug-induced lysosomal exocytosis bears important implications on tumor progression, as several lysosomal enzymes were found to play a key role in tumor cell invasion, angiogenesis and metastasis.
Collapse
Affiliation(s)
- Benny Zhitomirsky
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
277
|
Stiewe T, Haran TE. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist Updat 2018; 38:27-43. [PMID: 29857816 DOI: 10.1016/j.drup.2018.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022]
Abstract
The tumor suppressive transcription factor p53 regulates a wide array of cellular processes that confer upon cells an essential protection against cancer development. Wild-type p53 regulates gene expression by directly binding to DNA in a sequence-specific manner. p53 missense mutations are the most common mutations in malignant cells and can be regarded as synonymous with anticancer drug resistance and poor prognosis. The current review provides an overview of how the extraordinary variety of more than 2000 different mutant p53 proteins, known as the p53 mutome, affect the interaction of p53 with DNA. We discuss how the classification of p53 mutations to loss of function (LOF), gain of function (GOF), and dominant-negative (DN) inhibition of a remaining wild-type allele, hides a complex p53 mutation spectrum that depends on the distinctive nature of each mutant protein, requiring different therapeutic strategies for each mutant p53 protein. We propose to regard the different mutant p53 categories as continuous variables, that may not be independent of each other. In particular, we suggest here to consider GOF mutations as a special subset of LOF mutations, especially when mutant p53 binds to DNA through cooperation with other transcription factors, and we present a model for GOF mechanism that consolidates many observations on the GOF phenomenon. We review how novel mutant p53 targeting approaches aim to restore a wild-type-like DNA interaction and to overcome resistance to cancer therapy.
Collapse
Affiliation(s)
- Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35037 Marburg, Germany.
| | - Tali E Haran
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
278
|
Kolb-Lenz D, Fuchs R, Lohberger B, Heitzer E, Meditz K, Pernitsch D, Pritz E, Groselj-Strele A, Leithner A, Liegl-Atzwanger B, Rinner B. Characterization of the endolysosomal system in human chordoma cell lines: is there a role of lysosomes in chemoresistance of this rare bone tumor? Histochem Cell Biol 2018; 150:83-92. [PMID: 29725750 DOI: 10.1007/s00418-018-1673-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
Chordoma is a rare tumor of the bone derived from remnants of the notochord with pronounced chemoresistance. A common feature of the notochord and chordoma cells is distinct vacuolization. Recently, the notochord vacuole was described as a lysosome-related organelle. Since lysosomes are considered as mediators of drug resistance in cancer, we were interested whether they may also play a role in chemoresistance of chordoma. We characterized the lysosomal compartment in chordoma cell lines by cytochemistry, electron microscopy (ELMI) and mutational analysis of genes essential for the physiology of lysosomes. Furthermore, we tested for the first time the cytotoxicity of chloroquine, which targets lysosomes, on chordoma. Cytochemical stainings clearly demonstrated a huge mass of lysosomes in chordoma cell lines with perinuclear accumulation. Also vacuoles in chordoma cells were positive for the lysosomal marker LAMP1 but showed no acidic pH. Genetic analysis detected no apparent mutation associated with known lysosomal pathologies suggesting that vacuolization and the huge lysosomal mass of chordoma cell lines is rather a relict of the notochord than a result of transformation. ELMI investigation of chordoma cells confirmed the presence of large vacuoles, lysosomes and autophagosomes with heterogeneous ultrastructure embedded in glycogen. Interestingly, chordoma cells seem to mobilize cellular glycogen stores via autophagy. Our first preclinical data suggested no therapeutically benefit of chloroquine for chordoma. Even though, chordoma cells are crammed with lysosomes which are according to their discoverer de Duve "cellular suicide bags". Destabilizing these "suicide bags" might be a promising strategy for the treatment of chordoma.
Collapse
Affiliation(s)
- Dagmar Kolb-Lenz
- Center of Medical Research, Medical University of Graz, Stiftingtalstraße 24, 8010, Graz, Austria.,Chair of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Robert Fuchs
- Chair of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstraße 31, 8010, Graz, Austria.
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Ellen Heitzer
- Diagnostic & Research Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Katharina Meditz
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, 8010, Graz, Austria
| | - Dominique Pernitsch
- Center of Medical Research, Medical University of Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Elisabeth Pritz
- Center of Medical Research, Medical University of Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Andrea Groselj-Strele
- Center of Medical Research, Medical University of Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Bernadette Liegl-Atzwanger
- Diagnostic & Research Institute of Pathology, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, 8010, Graz, Austria
| |
Collapse
|
279
|
Stark M, Assaraf YG. Structural recognition of tubulysin B derivatives by multidrug resistance efflux transporters in human cancer cells. Oncotarget 2018. [PMID: 28637003 PMCID: PMC5564821 DOI: 10.18632/oncotarget.18385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance (MDR) is a major hindrance to curative chemotherapy of various human malignancies. Hence, novel chemotherapeutics must be evaluated for their recognition by MDR efflux transporters. Herein we explored the cytotoxic activity of synthetic tubulysin B (Tub-B, EC1009) derivatives (Tub-B-hydrazide/EC0347 and Tub-B bis-ether/EC1820), and their recognition by the MDR efflux transporters P-glycoprotein 1 (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP). Originally isolated from Myxobacteria, tubulysins exhibited potent cytotoxic activity via microtubule depolymerization, and evaded recognition by these MDR efflux pumps. We show that subtle modifications in the natural Tub-B structure enhance its cytotoxicity and drug efflux efficiency. Whereas increasing the lipophilicity of Tub-B drugs enhanced their diffusion into the cell and consequently decreased the IC50 values (≥ 0.27 nM), increasing drug polarity enhanced their recognition by P-gp (>200-fold resistance in P-gp-overexpressing cells). Furthermore, restricting drug exposure time to the clinically relevant 4 h pulse, markedly enhanced efflux by P-gp, resulting in a 1000-fold increased resistance, which was further enhanced upon increased P-gp levels (i.e. an additional 3-fold increase in P-gp levels resulted in >6,000-fold resistance). The unique ability of EC1009 to evade recognition by MDR efflux pumps warrants drug development of tubulysin B derivatives as potent antitumor agents which overcome MDR in cancer.
Collapse
Affiliation(s)
- Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
280
|
Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles. Oncotarget 2018; 9:20993-21006. [PMID: 29765515 PMCID: PMC5940367 DOI: 10.18632/oncotarget.24772] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/26/2018] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide, resulting in 88% deaths of all diagnosed patients. Hence, novel therapeutic modalities are urgently needed. Single-stranded oligonucleotide-based aptamers (APTs) are excellent ligands for tumor cell targeting. However, the molecular mechanisms underlying their internalization into living cells have been poorly studied. Towards the application of APTs for active drug targeting to cancer cells, we herein studied the mechanism underlying S15-APT internalization into human non-small cell lung cancer A549 cells. We thus delineated the mode of entry of a model nanomedical system based on quantum dots (QDs) decorated with S15-APTs as a selective targeting moiety for uptake by A549 cells. These APT-decorated QDs displayed selective binding to, and internalization by target A549 cells, but not by normal human bronchial epithelial BEAS2B, cervical carcinoma (HeLa) and colon adenocarcinoma CaCo-2 cells, hence demonstrating high specificity. Flow cytometric analysis revealed a remarkably low dissociation constant of S15-APTs-decorated QDs to A549 cells (Kd = 13.1 ± 1.6 nM). Through the systematic application of a series of established inhibitors of known mechanisms of endocytosis, we show that the uptake of S15-APTs proceeds via a classical clathrin-dependent receptor-mediated endocytosis. This cancer cell-selective mode of entry could possibly be used in the future to evade plasma membrane-localized multidrug resistance efflux pumps, thereby overcoming an important mechanism of cancer multidrug resistance.
Collapse
|
281
|
Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat 2018; 38:1-11. [PMID: 29857814 DOI: 10.1016/j.drup.2018.03.001] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
Cancer cells employ both conventional oxidative metabolism and glycolytic anaerobic metabolism. However, their proliferation is marked by a shift towards increasing glycolytic metabolism even in the presence of O2 (Warburg effect). HIF1, a major hypoxia induced transcription factor, promotes a dissociation between glycolysis and the tricarboxylic acid cycle, a process limiting the efficient production of ATP and citrate which otherwise would arrest glycolysis. The Warburg effect also favors an intracellular alkaline pH which is a driving force in many aspects of cancer cell proliferation (enhancement of glycolysis and cell cycle progression) and of cancer aggressiveness (resistance to various processes including hypoxia, apoptosis, cytotoxic drugs and immune response). This metabolism leads to epigenetic and genetic alterations with the occurrence of multiple new cell phenotypes which enhance cancer cell growth and aggressiveness. In depth understanding of these metabolic changes in cancer cells may lead to the development of novel therapeutic strategies, which when combined with existing cancer treatments, might improve their effectiveness and/or overcome chemoresistance.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment, BioTICLA axis (Biology and Innovative Therapeutics for Ovarian Cancers), Caen, France; UNICANCER, Comprehensive Cancer Center François Baclesse, BioTICLA lab, Caen, France; Department of Thoracic Surgery, University Hospital of Caen, France
| | | | - Diana Farhat
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), France; Université Lyon Claude Bernard 1, Lyon, France; Department of Chemistry-Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, EDST-PRASE, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Jean-Marc Steyaert
- Ecole Polytechnique, Laboratoire d'Informatique (LIX), Palaiseau, France
| | - Marco Alifano
- Department of Thoracic Surgery, Paris Center University Hospital, AP-HP, Paris, France; Paris Descartes University, Paris, France
| | - Hubert Lincet
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), France; Université Lyon Claude Bernard 1, Lyon, France; ISPB, Faculté de Pharmacie, Lyon, France.
| |
Collapse
|
282
|
Comparative studies on the human serum albumin binding of the clinically approved EGFR inhibitors gefitinib, erlotinib, afatinib, osimertinib and the investigational inhibitor KP2187. J Pharm Biomed Anal 2018; 154:321-331. [PMID: 29567575 DOI: 10.1016/j.jpba.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 11/27/2022]
Abstract
Binding interactions between human serum albumin (HSA) and four approved epidermal growth factor receptor (EGFR) inhibitors gefitinib (GEF), erlotinib (ERL), afatinib (AFA), osimertinib (OSI), as well as the experimental drug KP2187, were investigated by means of spectrofluorometric and molecular modelling methods. Steady-state and time resolved spectrofluorometric techniques were carried out, including direct quenching of protein fluorescence and site marker displacement measurements. Proton dissociation processes and solvent dependent fluorescence properties were investigated as well. The EGFR inhibitors were predominantly presented in their single protonated form (HL+) at physiological pH except ERL, which is charge-neutral. Significant solvent dependent fluorescence properties were found for GEF, ERL and KP2187, namely their emission spectra show strong dependence on the polarity and the hydrogen bonding ability of the solvents. The inhibitors proved to be bound at site I of HSA (in subdomain IIA) in a weak-to-moderate fashion (logK' 3.9-4.9) using spectrofluorometry. OSI (logK' 4.3) and KP2187 can additionally bind in site II (in subdomain IIIA), while GEF, ERL and AFA clearly show no interaction here. Docking methods qualitatively confirmed binding site preferences of compounds GEF and KP2187, and indicated that they probably bind to HSA in their neutral forms. Binding constants calculated on the basis of the various experimental data indicate a weak-to-moderate binding on HSA, only OSI exhibits somewhat higher affinity towards this protein. However, model calculations performed at physiological blood concentrations of HSA resulted in high (ca. 90%) bound fractions for the inhibitors, highlighting the importance of plasma protein binding.
Collapse
|
283
|
Giuffrida ML, Trusso Sfrazzetto G, Satriano C, Zimbone S, Tomaselli GA, Copani A, Rizzarelli E. A New Ratiometric Lysosomal Copper(II) Fluorescent Probe To Map a Dynamic Metallome in Live Cells. Inorg Chem 2018; 57:2365-2368. [DOI: 10.1021/acs.inorgchem.7b02720] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Maria Laura Giuffrida
- Institute of Biostructures and Bioimages, National Council of Research, Via P. Gaifami 18, Catania 95126, Italy
| | | | | | - Stefania Zimbone
- Institute of Biostructures and Bioimages, National Council of Research, Via P. Gaifami 18, Catania 95126, Italy
| | | | - Agata Copani
- Institute of Biostructures and Bioimages, National Council of Research, Via P. Gaifami 18, Catania 95126, Italy
| | - Enrico Rizzarelli
- Institute of Biostructures and Bioimages, National Council of Research, Via P. Gaifami 18, Catania 95126, Italy
| |
Collapse
|
284
|
Sastry J, Mohammed H, Campos MM, Uetrecht J, Abu-Asab M. Nevirapine-induced liver lipid-SER inclusions and other ultrastructural aberrations. Ultrastruct Pathol 2018; 42:108-115. [PMID: 29424579 DOI: 10.1080/01913123.2017.1422831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nevirapine (NVP) therapy is associated with a high risk of serious liver injury and skin rash. Treatment of Brown Norway rats with NVP causes an immune-mediated skin rash. Even though NVP does not cause serious liver injury in wildtype animals, incubation of hepatocytes with NVP leads to the release of presumably danger-associated molecular pattern molecules (DAMPs), which activate macrophages. In this study, we examined the liver biopsies of Brown Norway rats treated with NVP to determine the histologic correlate to the release of DAMPs by hepatocytes. In vivo, debris from necrotic hepatocytes and endothelial cells were present in the liver sinusoids, a condition that can trigger an immune response. In addition to mitochondrial, hepatocytic, and endothelial damage, the drug induced large hepatocytic inclusions composed of lipid droplets surrounded by concentric whorls of smooth endoplasmic reticulum (SER) cisternae-lipid-SER (LSER) inclusions, which were deposited in the sinusoids. NVP is lipid soluble, and these LSER inclusions may be sinks of NVP or its metabolites. LSERs are deposited in the blood stream where they may be picked up by lymph nodes and contribute to initiation of an immune response leading to serious liver injury or skin rash. LSERs migration from liver to the blood stream may signify a novel mechanism of drug exocytosis.
Collapse
Affiliation(s)
- Jayram Sastry
- a Section of Histopathology , National Eye Institute, NIH , Bethesda , Maryland, USA
| | - Heba Mohammed
- a Section of Histopathology , National Eye Institute, NIH , Bethesda , Maryland, USA
| | - Maria Mercedes Campos
- a Section of Histopathology , National Eye Institute, NIH , Bethesda , Maryland, USA
| | - Jack Uetrecht
- b Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Ontario , Canada
| | - Mones Abu-Asab
- a Section of Histopathology , National Eye Institute, NIH , Bethesda , Maryland, USA
| |
Collapse
|
285
|
Zhang W, Tung CH. Lysosome Enlargement Enhanced Photochemotherapy Using a Multifunctional Nanogel. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4343-4348. [PMID: 29356498 DOI: 10.1021/acsami.7b16575] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Large lysosomes are susceptible toward rupture because of an increased membrane tension. Here we report a strategy to first enlarge and weaken the lysosome and then destroy it to boost the efficiency of photochemotherapy using a hyaluronan nanogel, carrying chloroquine as a lysosomal expander, rhodamine B as a photosensitive lysosomal destroyer, and cisplatin as a chemotherapeutic. This all-in-one nanogel provides a facile approach and new insight into improve the photochemotherapy, by making use of lysosome's size, as a risk factor in lysosomal destabilization.
Collapse
Affiliation(s)
- Weiqi Zhang
- Molecular Imaging Innovations Institute, Department of Radiology , Weill Cornell Medicine, New York, New York 10065, United States
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology , Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
286
|
β-casein nanovehicles for oral delivery of chemotherapeutic Drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget 2018; 7:23322-34. [PMID: 26989076 PMCID: PMC5029629 DOI: 10.18632/oncotarget.8019] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/21/2016] [Indexed: 02/02/2023] Open
Abstract
Multidrug resistance (MDR) is a primary obstacle to curative cancer therapy. We have previously demonstrated that β-casein (β-CN) micelles (β-CM) can serve as nanovehicles for oral delivery and target-activated release of hydrophobic drugs in the stomach. Herein we introduce a novel nanosystem based on β-CM, to orally deliver a synergistic combination of a chemotherapeutic drug (Paclitaxel) and a P-glycoprotein-specific transport inhibitor (Tariquidar) individually encapsulated within β-CM, for overcoming MDR in gastric cancer. Light microscopy, dynamic light scattering and zeta potential analyses revealed solubilization of these drugs by β-CN, suppressing drug crystallization. Spectrophotometry demonstrated high loading capacity and good encapsulation efficiency, whereas spectrofluorometry revealed high affinity of these drugs to β-CN. In vitro cytotoxicity assays exhibited remarkable synergistic efficacy against human MDR gastric carcinoma cells with P-glycoprotein overexpression. Oral delivery of β-CN - based nanovehicles carrying synergistic drug combinations to the stomach constitutes a novel efficacious therapeutic system that may overcome MDR in gastric cancer.
Collapse
|
287
|
Zhang W, Tung CH. Real-Time Visualization of Lysosome Destruction Using a Photosensitive Toluidine Blue Nanogel. Chemistry 2018; 24:2089-2093. [PMID: 29314346 DOI: 10.1002/chem.201705697] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 01/08/2023]
Abstract
Breaking the lysosome helps its sequestered payloads access their molecular targets in cells and thus enhances the intracellular drug delivery. Current strategies for lysosomal escape involve direct physical interactions with the lipid membrane. These interactions pose a systemic toxicity and uncontrolled membrane rupture risk. Here, we report a light-detonated lysosome disruption using a hyaluronan (HA) nanogel packed with toludine blue (TB). The HA/TB nanogel is concentrated within the lysosomes. The applied light assists TB in generating reactive oxygen species and destroying the lysosome in situ, both in cells and isolated lysosomes. Real time fluorescent tracking reveals that quenched TB fluorescence recovers along with lysosome explosion, relocates to the nucleus, and is presented as a fluorescent sparkling in cells. This HA/TB, composed of all clinically approved materials, represents a biocompatible and facile strategy to "bomb" lysosomes in a spatiotemporally controlled fashion.
Collapse
Affiliation(s)
- Weiqi Zhang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY, 10021, USA
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY, 10021, USA
| |
Collapse
|
288
|
Gui L, Zhou J, Zhou L, Wei S. A smart copper-phthalocyanine framework nanoparticle for enhancing photodynamic therapy in hypoxic conditions by weakening cells through ATP depletion. J Mater Chem B 2018; 6:2078-2088. [DOI: 10.1039/c8tb00334c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypoxic tumor treatment by synergistic of photodynamic therapy and ATP deprivation.
Collapse
Affiliation(s)
- Li Gui
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry, Nanjing Normal University
- Nanjing 210023
| | - Jiahong Zhou
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry, Nanjing Normal University
- Nanjing 210023
| | - Lin Zhou
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry, Nanjing Normal University
- Nanjing 210023
| | - Shaohua Wei
- College of Chemistry and Materials Science
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- Key Laboratory of Applied Photochemistry, Nanjing Normal University
- Nanjing 210023
| |
Collapse
|
289
|
Redundant angiogenic signaling and tumor drug resistance. Drug Resist Updat 2018; 36:47-76. [DOI: 10.1016/j.drup.2018.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
|
290
|
Goto H, Nishioka Y. Fibrocytes: A Novel Stromal Cells to Regulate Resistance to Anti-Angiogenic Therapy and Cancer Progression. Int J Mol Sci 2017; 19:E98. [PMID: 29286323 PMCID: PMC5796048 DOI: 10.3390/ijms19010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 12/23/2022] Open
Abstract
An adequate blood supply is essential for cancer cells to survive and grow; thus, the concept of inhibiting tumor angiogenesis has been applied to cancer therapy, and several drugs are already in clinical use. It has been shown that treatment with those anti-angiogenic drugs improved the response rate and prolonged the survival of patients with various types of cancer; however, it is also true that the effect was mostly limited. Currently, the disappointing clinical results are explained by the existence of intrinsic or acquired resistance to the therapy mediated by both tumor cells and stromal cells. This article reviews the mechanisms of resistance mediated by stromal cells such as endothelial cells, pericytes, fibroblasts and myeloid cells, with an emphasis on fibrocytes, which were recently identified as the cell type responsible for regulating acquired resistance to anti-angiogenic therapy. In addition, the other emerging role of fibrocytes as mediator-producing cells in tumor progression is discussed.
Collapse
Affiliation(s)
- Hisatsugu Goto
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
291
|
Dishevelled1-3 contribute to multidrug resistance in colorectal cancer via activating Wnt/β-catenin signaling. Oncotarget 2017; 8:115803-115816. [PMID: 29383202 PMCID: PMC5777814 DOI: 10.18632/oncotarget.23253] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance is a great obstacle in successful chemotherapy of colorectal cancer. However, the molecular mechanism underlying multidrug resistance is not fully understood. Dishevelled, a pivot in Wnt signaling, has been linked to cancer progression, while its role in chemoresistance remains unclear. Here, we found that Dishevelled1-3 was over-expressed in multidrug-resistant colorectal cancer cells (HCT-8/VCR) compared to their parental cells. Silencing Dishevelled1-3 resensitized HCT-8/VCR cells to multiple drugs including vincristine, 5-fluorouracil and oxaliplatin. Moreover, Dishevelled1-3 increased the protein levels of multidrug resistance protein 1 (P-gp/MDR1), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP), Survivin and Bcl-2 which are correlated with multidrug resistance. shβ-catenin abolished Dishevelled-mediated these protein expressions. Unexpectedly, none of Dishevelled1-3 controlled β-catenin accumulation and nuclear translocation. Furthermore, the nuclear translocations of Dishevelled1-3 were promoted in HCT-8/VCR cells compared to HCT-8. Dishevelled1-3 bound to β-catenin in nucleus, and promoted nuclear complex formation and transcription activity of β-catenin/TCF. Taken together, Dishevelled1-3 contributed to multidrug resistance in colorectal cancer via activating Wnt/β-catenin signaling and inducing the expressions of P-gp, MRP2, BCRP, Survivin and Bcl-2, independently of β-catenin accumulation and nuclear translocation. Silencing Dishevelled1-3 resensitized multidrug-resistant colorectal cancer cells, providing a novel therapeutic target for successful chemotherapy of colorectal cancer.
Collapse
|
292
|
Santoro R, Carbone C, Piro G, Chiao PJ, Melisi D. TAK -ing aim at chemoresistance: The emerging role of MAP3K7 as a target for cancer therapy. Drug Resist Updat 2017; 33-35:36-42. [DOI: 10.1016/j.drup.2017.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/21/2017] [Indexed: 01/08/2023]
|
293
|
Owyong M, Hosseini-Nassab N, Efe G, Honkala A, van den Bijgaart RJE, Plaks V, Smith BR. Cancer Immunotherapy Getting Brainy: Visualizing the Distinctive CNS Metastatic Niche to Illuminate Therapeutic Resistance. Drug Resist Updat 2017; 33-35:23-35. [PMID: 29145972 DOI: 10.1016/j.drup.2017.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The advent of cancer immunotherapy (CIT) and its success in treating primary and metastatic cancer may offer substantially improved outcomes for patients. Despite recent advancements, many malignancies remain resistant to CIT, among which are brain metastases, a particularly virulent disease with no apparent cure. The immunologically unique niche of the brain has prompted compelling new questions in immuno-oncology such as the effects of tissue-specific differences in immune response, heterogeneity between primary tumors and distant metastases, and the role of spatiotemporal dynamics in shaping an effective anti-tumor immune response. Current methods to examine the immunobiology of metastases in the brain are constrained by tissue processing methods that limit spatial data collection, omit dynamic information, and cannot recapitulate the heterogeneity of the tumor microenvironment. In the current review, we describe how high-resolution, live imaging tools, particularly intravital microscopy (IVM), are instrumental in answering these questions. IVM of pre-clinical cancer models enables short- and long-term observations of critical immunobiology and metastatic growth phenomena to potentially generate revolutionary insights into the spatiotemporal dynamics of brain metastasis, interactions of CIT with immune elements therein, and influence of chemo- and radiotherapy. We describe the utility of IVM to study brain metastasis in mice by tracking the migration and growth of fluorescently-labeled cells, including cancer cells and immune subsets, while monitoring the physical environment within optical windows using imaging dyes and other signal generation mechanisms to illuminate angiogenesis, hypoxia, and/or CIT drug expression within the metastatic niche. Our review summarizes the current knowledge regarding brain metastases and the immune milieu, presents the current status of CIT and its prospects in targeting brain metastases to circumvent therapeutic resistance, and proposes avenues to utilize IVM to study CIT drug delivery and therapeutic efficacy in preclinical models that will ultimately facilitate novel drug discovery and innovative combination therapies.
Collapse
Affiliation(s)
- Mark Owyong
- Department of Anatomy, University of California, San Francisco, CA 94143-0452, USA
| | | | - Gizem Efe
- Department of Anatomy, University of California, San Francisco, CA 94143-0452, USA
| | - Alexander Honkala
- Department of Radiology, Stanford University, Stanford, CA 94306, USA
| | - Renske J E van den Bijgaart
- Department of Radiation Oncology, Radiotherapy and Oncoimmunology Laboratory, Radboudumc, Geert Grooteplein Zuid 32, 6525, GA, Nijmegen, The Netherlands
| | - Vicki Plaks
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
294
|
Englinger B, Kallus S, Senkiv J, Heilos D, Gabler L, van Schoonhoven S, Terenzi A, Moser P, Pirker C, Timelthaler G, Jäger W, Kowol CR, Heffeter P, Grusch M, Berger W. Intrinsic fluorescence of the clinically approved multikinase inhibitor nintedanib reveals lysosomal sequestration as resistance mechanism in FGFR-driven lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:122. [PMID: 28882160 PMCID: PMC5590147 DOI: 10.1186/s13046-017-0592-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
Background Studying the intracellular distribution of pharmacological agents, including anticancer compounds, is of central importance in biomedical research. It constitutes a prerequisite for a better understanding of the molecular mechanisms underlying drug action and resistance development. Hyperactivated fibroblast growth factor receptors (FGFRs) constitute a promising therapy target in several types of malignancies including lung cancer. The clinically approved small-molecule FGFR inhibitor nintedanib exerts strong cytotoxicity in FGFR-driven lung cancer cells. However, subcellular pharmacokinetics of this compound and its impact on therapeutic efficacy remain obscure. Methods 3-dimensional fluorescence spectroscopy was conducted to asses cell-free nintedanib fluorescence properties. MTT assay was used to determine the impact of the lysosome-targeting agents bafilomycin A1 and chloroquine combined with nintedanib on lung cancer cell viability. Flow cytometry and live cell as well as confocal microscopy were performed to analyze uptake kinetics as well as subcellular distribution of nintedanib. Western blot was conducted to investigate protein expression. Cryosections of subcutaneous tumor allografts were generated to detect intratumoral nintedanib in mice after oral drug administration. Results Here, we report for the first time drug-intrinsic fluorescence properties of nintedanib in living and fixed cancer cells as well as in cryosections derived from allograft tumors of orally treated mice. Using this feature in conjunction with flow cytometry and confocal microscopy allowed to determine cellular drug accumulation levels, impact of the ABCB1 efflux pump and to uncover nintedanib trapping into lysosomes. Lysosomal sequestration - resulting in an organelle-specific and pH-dependent nintedanib fluorescence - was identified as an intrinsic resistance mechanism in FGFR-driven lung cancer cells. Accordingly, combination of nintedanib with agents compromising lysosomal acidification (bafilomycin A1, chloroquine) exerted distinctly synergistic growth inhibitory effects. Conclusion Our findings provide a powerful tool to dissect molecular factors impacting organismal and intracellular pharmacokinetics of nintedanib. Regarding clinical application, prevention of lysosomal trapping via lysosome-alkalization might represent a promising strategy to circumvent cancer cell-intrinsic nintedanib resistance. Electronic supplementary material The online version of this article (10.1186/s13046-017-0592-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Sebastian Kallus
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria
| | - Julia Senkiv
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.,Institute of Cell Biology NAS of Ukraine, Drahomanova str 14/16, 79005, Lviv, Ukraine
| | - Daniela Heilos
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.,Department of Pharmacology and Toxicology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Lisa Gabler
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Sushilla van Schoonhoven
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria
| | - Patrick Moser
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria. .,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, A-1090, Vienna, Austria.
| |
Collapse
|
295
|
Bingel C, Koeneke E, Ridinger J, Bittmann A, Sill M, Peterziel H, Wrobel JK, Rettig I, Milde T, Fernekorn U, Weise F, Schober A, Witt O, Oehme I. Three-dimensional tumor cell growth stimulates autophagic flux and recapitulates chemotherapy resistance. Cell Death Dis 2017; 8:e3013. [PMID: 28837150 PMCID: PMC5596581 DOI: 10.1038/cddis.2017.398] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022]
Abstract
Current preclinical models in tumor biology are limited in their ability to recapitulate relevant (patho-) physiological processes, including autophagy. Three-dimensional (3D) growth cultures have frequently been proposed to overcome the lack of correlation between two-dimensional (2D) monolayer cell cultures and human tumors in preclinical drug testing. Besides 3D growth, it is also advantageous to simulate shear stress, compound flux and removal of metabolites, e.g., via bioreactor systems, through which culture medium is constantly pumped at a flow rate reflecting physiological conditions. Here we show that both static 3D growth and 3D growth within a bioreactor system modulate key hallmarks of cancer cells, including proliferation and cell death as well as macroautophagy, a recycling pathway often activated by highly proliferative tumors to cope with metabolic stress. The autophagy-related gene expression profiles of 2D-grown cells are substantially different from those of 3D-grown cells and tumor tissue. Autophagy-controlling transcription factors, such as TFEB and FOXO3, are upregulated in tumors, and 3D-grown cells have increased expression compared with cells grown in 2D conditions. Three-dimensional cultures depleted of the autophagy mediators BECN1, ATG5 or ATG7 or the transcription factor FOXO3, are more sensitive to cytotoxic treatment. Accordingly, combining cytotoxic treatment with compounds affecting late autophagic flux, such as chloroquine, renders the 3D-grown cells more susceptible to therapy. Altogether, 3D cultures are a valuable tool to study drug response of tumor cells, as these models more closely mimic tumor (patho-)physiology, including the upregulation of tumor relevant pathways, such as autophagy.
Collapse
Affiliation(s)
- Corinna Bingel
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany
| | - Emily Koeneke
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany.,Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Johannes Ridinger
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany.,Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Annika Bittmann
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany.,Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Martin Sill
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heike Peterziel
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany.,Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Jagoda K Wrobel
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany.,Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Inga Rettig
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany
| | - Till Milde
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany.,Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Center for Individualized Pediatric Oncology (ZIPO) and Brain Tumors, Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Uta Fernekorn
- Department of Nano-Biosystem Technology, Technische Universität Ilmenau, Ilmenau, Germany
| | - Frank Weise
- Department of Nano-Biosystem Technology, Technische Universität Ilmenau, Ilmenau, Germany
| | - Andreas Schober
- Department of Nano-Biosystem Technology, Technische Universität Ilmenau, Ilmenau, Germany
| | - Olaf Witt
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany.,Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Ina Oehme
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany.,Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| |
Collapse
|
296
|
Jia H, Truica CI, Wang B, Wang Y, Ren X, Harvey HA, Song J, Yang JM. Immunotherapy for triple-negative breast cancer: Existing challenges and exciting prospects. Drug Resist Updat 2017; 32:1-15. [PMID: 29145974 DOI: 10.1016/j.drup.2017.07.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
Patients with breast tumors that do not express the estrogen receptor, the progesterone receptor, nor Her-2/neu are hence termed "triple negatives", and generally have a poor prognosis, with high rates of systemic recurrence and refractoriness to conventional therapy regardless of the choice of adjuvant treatment. Thus, more effective therapeutic options are sorely needed for triple-negative breast cancer (TNBC), which occurs in approximately 20% of diagnosed breast cancers. In recent years, exploiting intrinsic mechanisms of the host immune system to eradicate cancer cells has achieved impressive success, and the advances in immunotherapy have yielded potential new therapeutic strategies for the treatment of this devastating subtype of breast cancer. It is anticipated that the responses initiated by immunotherapeutic interventions will explicitly target and annihilate tumor cells, while at the same time spare normal cells. Various immunotherapeutic approaches have been already developed and tested, which include the blockade of immune checkpoints using neutralizing or blocking antibodies, induction of cytotoxic T lymphocytes (CTLs), adoptive cell transfer-based therapy, and modulation of the tumor microenvironment to enhance the activity of CTLs. One of the most important areas of breast cancer research today is understanding the immune features and profiles of TNBC and devising novel immune-modulatory strategies to tackling TNBC, a subtype of breast cancer notorious for its poor prognosis and its imperviousness to conventional treatments. On the optimal side, one can anticipate that novel, effective, and personalized immunotherapy for TNBC will soon achieve more success and impact clinical treatment of this disease which afflicts approximately 20% of patients with breast cancer. In the present review, we highlight the current progress and encouraging developments in cancer immunotherapy, with a goal to discuss the challenges and to provide future perspectives on how to exploit a variety of new immunotherapeutic approaches including checkpoint inhibitors and neoadjuvant immunotherapy for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Hongyan Jia
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 03001, China.
| | - Cristina I Truica
- Department of Medicine, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Bin Wang
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 03001, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, 03001, China
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Harold A Harvey
- Department of Medicine, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jianxun Song
- Department of Microbiology and Immunology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
297
|
Zheng K, Jiang Y, Liao C, Hu X, Li Y, Zeng Y, Zhang J, Wu X, Wu H, Liu L, Wang Y, He Z. NOX2-Mediated TFEB Activation and Vacuolization Regulate Lysosome-Associated Cell Death Induced by Gypenoside L, a Saponin Isolated from Gynostemma pentaphyllum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6625-6637. [PMID: 28697598 DOI: 10.1021/acs.jafc.7b02296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Downregulation of apoptotic signal pathway and activation of protective autophagy mainly contribute to the chemoresistance of tumor cells. Therefore, exploring efficient chemotherapeutic agents or isolating novel natural products that can trigger nonapoptotic and nonautophagic cell death such as lysosome-associated death is emergently required. We have recently extracted a saponin, gypenoside L (Gyp-L), from Gynostemma pentaphyllum and showed that Gyp-L was able to induce nonapoptotic cell death of esophageal cancer cells associated with lysosome swelling. However, contributions of vacuolization and lysosome to cell death remain unclear. Herein, we reveal a critical role for NADPH oxidase NOX2-mediated vacuolization and transcription factor EB (TFEB) activation in lysosome-associated cell death. We found that Gyp-L initially induced the abnormal enlarged and alkalized vacuoles, which were derived from lipid rafts dependent endocytosis. Besides, NOX2 was activated to promote vacuolization and mTORC1-independent TFEB-mediated lysosome biogenesis. Finally, raising lysosome pH could enhance Gyp-L induced cell death. These findings suggest a protective role of NOX2-TFEB-mediated lysosome biogenesis in cancer drug resistance and the tight interaction between lipid rafts and vacuolization. In addition, Gyp-L can be utilized as an alternative option to overcome drug-resistance though inducing lysosome associated cell death.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Pharmacy, School of Medicine; Shenzhen Key Laboratory of Novel Natural Health Care Products; Innovation Platform for Natural Small Molecule Drugs; Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University , Shenzhen 518060, China
- College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Yingchun Jiang
- Department of Pharmacy, School of Medicine; Shenzhen Key Laboratory of Novel Natural Health Care Products; Innovation Platform for Natural Small Molecule Drugs; Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University , Shenzhen 518060, China
| | - Chenghui Liao
- Department of Pharmacy, School of Medicine; Shenzhen Key Laboratory of Novel Natural Health Care Products; Innovation Platform for Natural Small Molecule Drugs; Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University , Shenzhen 518060, China
| | - Xiaopeng Hu
- Department of Pharmacy, School of Medicine; Shenzhen Key Laboratory of Novel Natural Health Care Products; Innovation Platform for Natural Small Molecule Drugs; Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University , Shenzhen 518060, China
| | - Yan Li
- The First Affiliated Hospital of Kunming Medical University , Kunming 650032, China
| | - Yong Zeng
- The First Affiliated Hospital of Kunming Medical University , Kunming 650032, China
| | - Jian Zhang
- Department of Pharmacy, School of Medicine; Shenzhen Key Laboratory of Novel Natural Health Care Products; Innovation Platform for Natural Small Molecule Drugs; Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University , Shenzhen 518060, China
| | - Xuli Wu
- Department of Pharmacy, School of Medicine; Shenzhen Key Laboratory of Novel Natural Health Care Products; Innovation Platform for Natural Small Molecule Drugs; Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University , Shenzhen 518060, China
| | - Haiqiang Wu
- Department of Pharmacy, School of Medicine; Shenzhen Key Laboratory of Novel Natural Health Care Products; Innovation Platform for Natural Small Molecule Drugs; Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University , Shenzhen 518060, China
| | - Lizhong Liu
- Department of Pharmacy, School of Medicine; Shenzhen Key Laboratory of Novel Natural Health Care Products; Innovation Platform for Natural Small Molecule Drugs; Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University , Shenzhen 518060, China
| | - Yifei Wang
- College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Zhendan He
- Department of Pharmacy, School of Medicine; Shenzhen Key Laboratory of Novel Natural Health Care Products; Innovation Platform for Natural Small Molecule Drugs; Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Shenzhen University , Shenzhen 518060, China
| |
Collapse
|
298
|
Coppola S, Carnevale I, Danen EHJ, Peters GJ, Schmidt T, Assaraf YG, Giovannetti E. A mechanopharmacology approach to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2017; 31:43-51. [PMID: 28867243 DOI: 10.1016/j.drup.2017.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly chemoresistant malignancy. This chemoresistant phenotype has been historically associated with genetic factors. Major biomedical research efforts were concentrated that resulted in the identification of subtypes characterized by specific genetic lesions and gene expression signatures that suggest important biological differences. However, to date, these distinct differences could not be exploited for therapeutic interventions. Apart from these genetic factors, desmoplasia and tumor microenvironment have been recognized as key contributors to PDAC chemoresistance. However, while several strategies targeting tumor-stroma have been explored including drugs against members of the Hedgehog family, they failed to meet the expectations in the clinical setting. These unsatisfactory clinical results suggest that, an important link between genetics and the influence of tumor microenvironment on PDAC chemoresistance remains to be elucidated. In this respect, mechanobiology is an emerging multidisciplinary field that encompasses cell and developmental biology as well as biophysics and bioengineering. Herein we provide a comprehensive overview of the key players in pancreatic cancer chemoresistance from the perspective of mechanobiology, and discuss novel experimental avenues such as elastic micropillar arrays that could provide fresh insights for the development of mechanobiology-targeted therapeutic approaches (know as mechanopharmacology) to overcome anticancer drug resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Stefano Coppola
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Ilaria Carnevale
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University Hospital of Pisa, Pisa, Italy
| | - Erik H J Danen
- Division of Toxicology, LACDR, Leiden University, Leiden, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University Hospital of Pisa, Pisa, Italy; Institute for Nanoscience and Nanotechnologies, CNR-Nano, Pisa.
| |
Collapse
|
299
|
Lysosomes as Oxidative Targets for Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3749157. [PMID: 28757908 PMCID: PMC5516749 DOI: 10.1155/2017/3749157] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/31/2017] [Indexed: 01/13/2023]
Abstract
Lysosomes are membrane-bound vesicles that contain hydrolases for the degradation and recycling of essential nutrients to maintain homeostasis within cells. Cancer cells have increased lysosomal function to proliferate, metabolize, and adapt to stressful environments. This has made cancer cells susceptible to lysosomal membrane permeabilization (LMP). There are many factors that mediate LMP such as Bcl-2 family member, p53; sphingosine; and oxidative stress which are often altered in cancer. Upon lysosomal disruption, reactive oxygen species (ROS) levels increase leading to lipid peroxidation, mitochondrial dysfunction, autophagy, and reactive iron. Cathepsins are also released causing degradation of macromolecules and cellular structures. This ultimately kills the cancer cell through different types of cell death (apoptosis, autosis, or ferroptosis). In this review, we will explore the contributions lysosomes play in inducing cell death, how this is regulated by ROS in cancer, and how lysosomotropic agents might be utilized to treat cancers.
Collapse
|
300
|
Wang H, Wang W, Xu Y, Yang Y, Chen X, Quan H, Lou L. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci 2017; 108:1458-1468. [PMID: 28388007 PMCID: PMC5497802 DOI: 10.1111/cas.13253] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
Trastuzumab emtansine (T-DM1), an antibody-drug conjugate (ADC) consisting of human epidermal growth factor receptor 2 (HER2)-targeted mAb trastuzumab linked to antimicrotubule agent mertansine (DM1), has been approved for the treatment of HER2-positive metastatic breast cancer. Acquired resistance has been a major obstacle to T-DM1 treatment, and mechanisms remain incompletely understood. In the present study, we established a T-DM1-resistant N87-KR cell line from HER2-positive N87 gastric cancer cells to investigate mechanisms of acquired resistance and develop strategies for overcoming it. Although the kinetics of binding, internalization, and externalization of T-DM1 were the same in N87-KR cells and N87 cells, N87-KR was strongly resistant to T-DM1, but remained sensitive to both trastuzumab and DM1. T-DM1 failed to inhibit microtubule polymerization in N87-KR cells. Consistently, lysine-MCC-DM1, the active T-DM1 metabolite that inhibits microtubule polymerization, accumulated much less in N87-KR cells than in N87 cells. Furthermore, lysosome acidification, achieved by vacuolar H+ -ATPase (V-ATPase), was much diminished in N87-KR cells. Notably, treatment of sensitive N87 cells with the V-ATPase selective inhibitor bafilomycin A1 induced T-DM1 resistance, suggesting that aberrant V-ATPase activity decreases T-DM1 metabolism, leading to T-DM1 resistance in N87-KR cells. Interestingly, HER2-targeted ADCs containing a protease-cleavable linker, such as hertuzumab-vc-monomethyl auristatin E, were capable of efficiently overcoming this resistance. Our results show for the first time that a decrease in T-DM1 metabolites induced by aberrant V-ATPase activity contributes to T-DM1 resistance, which could be overcome by HER2-targeted ADCs containing different linkers, including a protease-cleavable linker. Accordingly, we propose that V-ATPase activity in lysosomes is a novel biomarker for predicting T-DM1 resistance.
Collapse
MESH Headings
- Ado-Trastuzumab Emtansine
- Animals
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Drug Resistance, Neoplasm/physiology
- Humans
- Immunoconjugates/metabolism
- Immunoconjugates/pharmacology
- Maytansine/analogs & derivatives
- Maytansine/metabolism
- Maytansine/pharmacology
- Mice
- Mice, Nude
- Microscopy, Fluorescence
- Receptor, ErbB-2/biosynthesis
- Stomach Neoplasms/metabolism
- Trastuzumab
- Vacuolar Proton-Translocating ATPases/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hongbin Wang
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenqian Wang
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Yongping Xu
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Yong Yang
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Xiaoyan Chen
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Haitian Quan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Liguang Lou
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| |
Collapse
|