251
|
Giannoula Y, Kroemer G, Pietrocola F. Cellular senescence and the host immune system in aging and age-related disorders. Biomed J 2023; 46:100581. [PMID: 36746349 PMCID: PMC10210012 DOI: 10.1016/j.bj.2023.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Cellular senescence is a complex process involving a close-to-irreversible arrest of the cell cycle, the acquisition of the senescence-associated secretory phenotype (SASP), as well as profound changes in the expression of cell surface proteins that determine the recognition of senescent cells by innate and cognate immune effectors including macrophages, NK, NKT and T cells. It is important to note that senescence can occur in a transient fashion to improve the homeostatic response of tissues to stress. Moreover, both the excessive generation and the insufficient elimination of senescent cells may contribute to pathological aging. Attempts are being made to identify the mechanisms through which senescent cell avoid their destruction by immune effectors. Such mechanisms involve the cell surface expression of immunosuppressive molecules including PD-L1 and PD-L2 to ligate PD-1 on T cells, as well as tolerogenic MHC class-I variants. In addition, senescent cells can secrete factors that attract immunosuppressive and pro-inflammatory cells into the microenvironment. Each of these immune evasion mechanism offers a target for therapeutic intervention, e.g., by blocking the interaction between PD-1 and PD-L1 or PD-L2, upregulating immunogenic MHC class-I molecules and eliminating immunosuppressive cell types. In addition, senescent cells differ in their antigenic makeup and immunopeptidome from their normal counterparts, hence offering the opportunity to stimulate immune response against senescence-associated antigens. Ideally, immunological anti-senescence strategies should succeed in selectively eliminating pathogenic senescent cells but spare homeostatic senescence.
Collapse
Affiliation(s)
- Yvonne Giannoula
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisé Par La Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut Du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| |
Collapse
|
252
|
Lee HJ, Zhang M, Doan TP, Park EJ, Nghiem DT, Pham HTT, Pan CH, Oh WK. Chemical constituents with senolytic activity from the stems of Limacia scandens. PHYTOCHEMISTRY 2023:113740. [PMID: 37236331 DOI: 10.1016/j.phytochem.2023.113740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
While screening senotherapeutics from natural products, seven undescribed chemicals, two syringylglycerol derivatives, two cyclopeptides, one tigliane analogue, and two chromone derivatives, as well as six known compounds were isolated from the stems of Limacia scandens. The structures of compounds were elucidated through spectroscopic data analysis, including 1D and 2D NMR, HRESIMS, and CD data. All compounds were tested in replicative senescent human dermal fibroblasts (HDFs) to determine their potential as senotherapeutic agents to specifically target senescent cells. One tigliane and two chromones derivatives showed senolytic activity, indicating that senescent cells were selectively removed. Especially, 2-{2-[(3'-O-β-d-glucopyranosyl)phenyl]ethyl}chromone is expected to be a potential senotherapeutics by inducing HDF death, inhibiting the activity of senescence-associated β-galactosidase (SA-β-gal) and expressing senescence-associated secretory phenotype (SASP) factors.
Collapse
Affiliation(s)
- Hee Ju Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea; Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Mi Zhang
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Thi Phuong Doan
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Jin Park
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Duc-Trong Nghiem
- Department of Botany, Hanoi University of Pharmacy, 000084, Hanoi, Viet Nam
| | | | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
253
|
Yang Y, Li Y, Du X, Liu Z, Zhu C, Mao W, Liu G, Jiang Q. Anti-Aging Effects of Quercetin in Cladocera Simocephalus vetulus Using Proteomics. ACS OMEGA 2023; 8:17609-17619. [PMID: 37251128 PMCID: PMC10210174 DOI: 10.1021/acsomega.2c08242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/21/2023] [Indexed: 05/31/2023]
Abstract
Quercetin is a flavonoid widely found in food and traditional herbs. In this study, we evaluated the anti-aging effects of quercetin on Simocephalus vetulus (S. vetulus) by assessing lifespan and growth parameters and analyzed the differentially expressed proteins and crucial pathways associated with quercetin activity using proteomics. The results demonstrated that, at a concentration of 1 mg/L, quercetin significantly prolonged the average and maximal lifespans of S. vetulus and increased the net reproduction rate slightly. The proteomics-based analysis revealed 156 differently expressed proteins, with 84 being significantly upregulated and 72 significantly downregulated. The protein functions were identified as being associated with glycometabolism, energy metabolism, and sphingolipid metabolism pathways, and the key enzyme activity and related gene expression, such that of AMPK, supported the importance of these pathways in the anti-aging activity of quercetin. In addition, quercetin was found to regulate the anti-aging-related proteins Lamin A and Klotho directly. Our results increased the understanding of quercetin's anti-aging effects.
Collapse
Affiliation(s)
- Ying Yang
- Freshwater
Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
- Institute
of Biochemistry and Biological Products, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yiming Li
- Fishery
Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinglin Du
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhiquan Liu
- School of
Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, Zhejiang, China
- School
of Engineering, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China
| | - Chenxi Zhu
- Institute
of Biochemistry and Biological Products, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Weiping Mao
- Institute
of Biochemistry and Biological Products, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Guoxing Liu
- Freshwater
Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
- The
Low Temperature Germplasm Bank of Important Economic Fish of Jiangsu
Provincial Science and Technology Resources (Agricultural Germplasm
Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Qichen Jiang
- Freshwater
Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| |
Collapse
|
254
|
Li S, Cao P, Chen T, Ding C. Latest insights in disease-modifying osteoarthritis drugs development. Ther Adv Musculoskelet Dis 2023; 15:1759720X231169839. [PMID: 37197024 PMCID: PMC10184265 DOI: 10.1177/1759720x231169839] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/29/2023] [Indexed: 05/19/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent and severely debilitating disease with an unmet medical need. In order to alleviate OA symptoms or prevent structural progression of OA, new drugs, particularly disease-modifying osteoarthritis drugs (DMOADs), are required. Several drugs have been reported to attenuate cartilage loss or reduce subchondral bone lesions in OA and thus potentially be DMOADs. Most biologics (including interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibitors), sprifermin, and bisphosphonates failed to yield satisfactory results when treating OA. OA clinical heterogeneity is one of the primary reasons for the failure of these clinical trials, which can require different therapeutic approaches based on different phenotypes. This review describes the latest insights into the development of DMOADs. We summarize in this review the efficacy and safety profiles of various DMOADs targeting cartilage, synovitis, and subchondral bone endotypes in phase 2 and 3 clinical trials. To conclude, we summarize the reasons for clinical trial failures in OA and suggest possible solutions.
Collapse
Affiliation(s)
- Shengfa Li
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peihua Cao
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tianyu Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, 261 Industry Road, Guangzhou 510515, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Clinical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
255
|
Odama M, Maegawa E, Suzuki K, Fujii Y, Maeda R, Murakami S, Ito T. Effects of Betulinic Acid on the Proliferation, Cellular Senescence, and Type 1 Interferon-Related Signaling Pathways in Human Dermal Fibroblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6935-6943. [PMID: 37116884 PMCID: PMC10177962 DOI: 10.1021/acs.jafc.2c08563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
Pentacyclic triterpenoids, including betulinic acid (BA), and their glycosides are abundant in fruits such as Zizyphus sp., Dillenia sp., and Azanza sp. These compounds exhibit various pharmacological activities in human cells. Here, we investigated the effects of BA on the cellular proliferation and senescence of cultured normal human dermal fibroblasts (NHDFs). BA treatment for 24-48 h increased the proliferation of low-passage young fibroblasts. Furthermore, BA reduced the proportion of senescent cells, as determined via the β-galactosidase assay of high-passage NHDFs. DNA microarray analysis and subsequent validations via quantitative real-time polymerase chain reaction revealed that BA downregulates interferon (IFN)-inducible genes, including IFIT1, IFITM1, IFI6, MX1, and OAS2, which are upregulated in replicative senescent cells compared with the low-passage young cells (control). Enrichment analysis based on the microarray data predicted BA-induced suppression of the type I IFN signaling pathway. BA downregulated the expression of the IRF9 transcriptional factor downstream of the type 1 IFN signaling pathway. IFN-inducible genes were downregulated via IRF9 silencing using siRNA compared with the negative control treated with siRNA. Consistently, BA treatment reduced the proportion of senescent cells and IFN-inducible genes in etoposide-treated fibroblasts. Hence, BA alleviates cellular senescence via the inhibition of the type 1 IFN signaling pathway in dermal fibroblasts.
Collapse
Affiliation(s)
- Mao Odama
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Eiji Maegawa
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Kohsuke Suzuki
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Yujiro Fujii
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Reika Maeda
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Shigeru Murakami
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| | - Takashi Ito
- Department
of Biosciences and Biotechnology, Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun 910-1195, Fukui, Japan
| |
Collapse
|
256
|
Du PY, Gandhi A, Bawa M, Gromala J. The ageing immune system as a potential target of senolytics. OXFORD OPEN IMMUNOLOGY 2023; 4:iqad004. [PMID: 37255929 PMCID: PMC10191675 DOI: 10.1093/oxfimm/iqad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Ageing leads to a sharp decline in immune function, precipitating the development of inflammatory conditions. The combined impact of these processes renders older individuals at greater risk of inflammatory and immune-related diseases, such as cancer and infections. This is compounded by reduced efficacy in interventions aiming to limit disease impact, for instance vaccines being less effective in elderly populations. This state of diminished cellular function is driven by cellular senescence, a process where cells undergo stable growth arrest following exposure to stressful stimuli, and the associated pro-inflammatory secretory phenotype. Removing harmful senescent cells (SnCs) using senolytic therapies is an emerging field holding promise for patient benefit. Current senolytics have been developed either to specifically target SnCs, or repurposed from cancer therapies or vaccination protocols. Herein, we discuss recent developments in senolytic therapies, focusing on how senolytics could be used to combat the age-associated diminution of the immune system. In particular, exploring how these drugs may be used to promote immunity in the elderly, and highlighting recent trials of senolytics in idiopathic pulmonary fibrosis and diabetic kidney disease. Novel immunotherapeutic approaches including chimeric antigen receptor T-cells or monoclonal antibodies targeting SnCs are being investigated to combat the shortcomings of current senolytics and their adverse effects. The flexible nature of senolytic treatment modalities and their efficacy in safely removing harmful SnCs could have great potential to promote healthy immune function in ageing populations.
Collapse
Affiliation(s)
- Peter Yandi Du
- Correspondence address. Faculty of Medicine, Imperial College London, Level 2, Faculty Building, South Kensington Campus, London SW7 2AZ, UK. Tel: +44 (0)20 3313 8213, E-mail:
| | | | | | | |
Collapse
|
257
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
258
|
Kim SG, Sung JY, Kang YJ, Choi HC. Fisetin alleviates cellular senescence through PTEN mediated inhibition of PKCδ-NOX1 pathway in vascular smooth muscle cells. Arch Gerontol Geriatr 2023; 108:104927. [PMID: 36645971 DOI: 10.1016/j.archger.2023.104927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Reactive oxygen species (ROS) are a key risk factor of cellular senescence and age-related diseases, and protein kinase C (PKC) has been shown to activate NADPH oxidases (NOXs), which generate ROS. Although PKC activation induces oxidative stress, leading to the cellular dysfunction in various cell types, the correlation between PKC and senescence has not been reported in vascular smooth muscle cell (VSMC). Several studies have indicated cellular senescence is accompanied by phosphatase and tensin homolog (PTEN) loss and that an interaction exists between PTEN and PKC. Therefore, we aimed to determine whether PTEN and PKC are associated with VSMC senescence and to investigate the mechanism involved. We found hydrogen peroxide (H2O2) decreased PTEN expression and increased PKCδ phosphorylation. Moreover, H2O2 upregulated the NOX1 subunits, p22phox and p47phox, and induced VSMC senescence via p53-p21 signaling pathway. We identified PKCδ activation contributed to VSMC senescence through activation of NOX1 and ROS production. However, fisetin inhibited cellular senescence induced by the PTEN-PKCδ-NOX1-ROS signaling pathway, and this anti-aging effect was attributed to reduced ROS production caused by suppressing NOX1 activation. These results suggest that the PTEN-PCKδ signaling pathway is directly related to senescence via NOX1 activation and that the downregulation of PKCδ by flavonoids provides a potential means of treating age-associated diseases.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
259
|
Rogers RS, Wang H, Durham TJ, Stefely JA, Owiti NA, Markhard AL, Sandler L, To TL, Mootha VK. Hypoxia extends lifespan and neurological function in a mouse model of aging. PLoS Biol 2023; 21:e3002117. [PMID: 37220109 PMCID: PMC10204955 DOI: 10.1371/journal.pbio.3002117] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/07/2023] [Indexed: 05/25/2023] Open
Abstract
There is widespread interest in identifying interventions that extend healthy lifespan. Chronic continuous hypoxia delays the onset of replicative senescence in cultured cells and extends lifespan in yeast, nematodes, and fruit flies. Here, we asked whether chronic continuous hypoxia is beneficial in mammalian aging. We utilized the Ercc1 Δ/- mouse model of accelerated aging given that these mice are born developmentally normal but exhibit anatomic, physiological, and biochemical features of aging across multiple organs. Importantly, they exhibit a shortened lifespan that is extended by dietary restriction, the most potent aging intervention across many organisms. We report that chronic continuous 11% oxygen commenced at 4 weeks of age extends lifespan by 50% and delays the onset of neurological debility in Ercc1 Δ/- mice. Chronic continuous hypoxia did not impact food intake and did not significantly affect markers of DNA damage or senescence, suggesting that hypoxia did not simply alleviate the proximal effects of the Ercc1 mutation, but rather acted downstream via unknown mechanisms. To the best of our knowledge, this is the first study to demonstrate that "oxygen restriction" can extend lifespan in a mammalian model of aging.
Collapse
Affiliation(s)
- Robert S Rogers
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hong Wang
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Timothy J Durham
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan A Stefely
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norah A Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Andrew L Markhard
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lev Sandler
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tsz-Leung To
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
260
|
Lu Y, Jarrahi A, Moore N, Bartoli M, Brann DW, Baban B, Dhandapani KM. Inflammaging, cellular senescence, and cognitive aging after traumatic brain injury. Neurobiol Dis 2023; 180:106090. [PMID: 36934795 PMCID: PMC10763650 DOI: 10.1016/j.nbd.2023.106090] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration. Inflammation correlates with neurodegenerative changes and cognitive dysfunction for years post-TBI, suggesting a potential association between immune activation and both age- and TBI-induced cognitive decline. Inflammaging, a chronic, low-grade sterile inflammation associated with natural aging, promotes cognitive decline. Cellular senescence and the subsequent development of a senescence associated secretory phenotype (SASP) promotes inflammaging and cognitive aging, although the functional association between senescent cells and neurodegeneration is poorly defined after TBI. In this mini-review, we provide an overview of the pre-clinical and clinical evidence linking cellular senescence with poor TBI outcomes. We also discuss the current knowledge and future potential for senotherapeutics, including senolytics and senomorphics, which kill and/or modulate senescent cells, as potential therapeutics after TBI.
Collapse
Affiliation(s)
- Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| | - Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Nicholas Moore
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Darrell W Brann
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Babak Baban
- Department of Oral Biology and Diagnostic Services, Dental College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
261
|
Budamagunta V, Kumar A, Rani A, Bean L, Manohar‐Sindhu S, Yang Y, Zhou D, Foster TC. Effect of peripheral cellular senescence on brain aging and cognitive decline. Aging Cell 2023; 22:e13817. [PMID: 36959691 PMCID: PMC10186609 DOI: 10.1111/acel.13817] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
We examine similar and differential effects of two senolytic treatments, ABT-263 and dasatinib + quercetin (D + Q), in preserving cognition, markers of peripheral senescence, and markers of brain aging thought to underlie cognitive decline. Male F344 rats were treated from 12 to 18 months of age with D + Q, ABT-263, or vehicle, and were compared to young (6 months). Both senolytic treatments rescued memory, preserved the blood-brain barrier (BBB) integrity, and prevented the age-related decline in hippocampal N-methyl-D-aspartate receptor (NMDAR) function associated with impaired cognition. Senolytic treatments decreased senescence-associated secretory phenotype (SASP) and inflammatory cytokines/chemokines in the plasma (IL-1β, IP-10, and RANTES), with some markers more responsive to D + Q (TNFα) or ABT-263 (IFNγ, leptin, EGF). ABT-263 was more effective in decreasing senescence genes in the spleen. Both senolytic treatments decreased the expression of immune response and oxidative stress genes and increased the expression of synaptic genes in the dentate gyrus (DG). However, D + Q influenced twice as many genes as ABT-263. Relative to D + Q, the ABT-263 group exhibited increased expression of DG genes linked to cell death and negative regulation of apoptosis and microglial cell activation. Furthermore, D + Q was more effective at decreasing morphological markers of microglial activation. The results indicate that preserved cognition was associated with the removal of peripheral senescent cells, decreasing systemic inflammation that normally drives neuroinflammation, BBB breakdown, and impaired synaptic function. Dissimilarities associated with brain transcription indicate divergence in central mechanisms, possibly due to differential access.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
- Genetics and Genomics Graduate Program, Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Asha Rani
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Linda Bean
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Sahana Manohar‐Sindhu
- Genetics and Genomics Graduate Program, Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Yang Yang
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Daohong Zhou
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
- Genetics and Genomics Graduate Program, Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
262
|
Musa M, Zeppieri M, Atuanya GN, Enaholo ES, Topah EK, Ojo OM, Salati C. Nutritional Factors: Benefits in Glaucoma and Ophthalmologic Pathologies. Life (Basel) 2023; 13:1120. [PMID: 37240765 PMCID: PMC10222847 DOI: 10.3390/life13051120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Glaucoma is a chronic optic neuropathy that can lead to irreversible functional and morphological damage if left untreated. The gold standard therapeutic approaches in managing patients with glaucoma and limiting progression include local drops, laser, and/or surgery, which are all geared at reducing intraocular pressure (IOP). Nutrients, antioxidants, vitamins, organic compounds, and micronutrients have been gaining increasing interest in the past decade as integrative IOP-independent strategies to delay or halt glaucomatous retinal ganglion cell degeneration. In our minireview, we examine the various nutrients and compounds proposed in the current literature for the management of ophthalmology diseases, especially for glaucoma. With respect to each substance considered, this minireview reports the molecular and biological characteristics, neuroprotective activities, antioxidant properties, beneficial mechanisms, and clinical studies published in the past decade in the field of general medicine. This study highlights the potential benefits of these substances in glaucoma and other ophthalmologic pathologies. Nutritional supplementation can thus be useful as integrative IOP-independent strategies in the management of glaucoma and in other ophthalmologic pathologies. Large multicenter clinical trials based on functional and morphologic data collected over long follow-up periods in patients with IOP-independent treatments can pave the way for alternative and/or coadjutant therapeutic options in the management of glaucoma and other ocular pathologies.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | | | | | - Efioshiomoshi Kings Topah
- Department of Optometry, Faculty of Allied Health Sciences, College of Health Sciences Bayero University, Kano 700006, Kano State, Nigeria
| | - Oluwasola Michael Ojo
- School of Optometry and Vision Sciences, College of Health Sciences, University of Ilorin, Ilorin 240003, Kwara State, Nigeria
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
263
|
Li S, Livingston MJ, Ma Z, Hu X, Wen L, Ding HF, Zhou D, Dong Z. Tubular cell senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin nephrotoxicity. JCI Insight 2023; 8:e166643. [PMID: 36917180 PMCID: PMC10243740 DOI: 10.1172/jci.insight.166643] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Cisplatin is a widely used chemotherapy drug; however, it induces both acute and chronic kidney diseases (CKD) in patients with cancer. The pathogenesis of cisplatin-induced CKD is unclear, and effective renoprotective approaches are not available. Here, we report that repeated low-dose cisplatin (RLDC) treatment of C57BL/6 mice induced chronic cellular senescence in kidney tubules, accompanied with tubular degeneration and profibrotic phenotype transformation that culminated in maladaptive repair and renal fibrosis. Suppression of tubular senescence by senolytic drugs ABT-263 and Fisetin attenuated renal fibrosis and improved tubular repair, as indicated by restoration of tubular regeneration and renal function. In vitro, RLDC also induced senescence in mouse proximal tubular (BUMPT) cells. ABT-263 eliminated senescent BUMPT cells following RLDC treatment, reversed the profibrotic phenotype of the cells, and increased their clonogenic activity. Moreover, ABT-263 alleviated the paracrine effect of RLDC-treated BUMPT cells on fibroblasts for fibrosis. Consistently, knockdown of p16 suppressed post-RLDC senescence and fibrotic changes in BUMPT cells and alleviated their paracrine effects on renal fibroblast proliferation. These results indicate that persistent induction of tubular senescence plays an important role in promoting cisplatin-induced CKD. Targeting senescent tubular cells may be efficient for improvement of kidney repair and for the prevention and treatment of cisplatin-induced CKD.
Collapse
Affiliation(s)
- Siyao Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Man J. Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Xiaoru Hu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Lu Wen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Han-Fei Ding
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| | - Daohong Zhou
- Center for Innovative Drug Development and Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|
264
|
Hobson S, Arefin S, Witasp A, Hernandez L, Kublickiene K, Shiels PG, Stenvinkel P. Accelerated Vascular Aging in Chronic Kidney Disease: The Potential for Novel Therapies. Circ Res 2023; 132:950-969. [PMID: 37053277 DOI: 10.1161/circresaha.122.321751] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The pathophysiology of vascular disease is linked to accelerated biological aging and a combination of genetic, lifestyle, biological, and environmental risk factors. Within the scenario of uncontrolled artery wall aging processes, CKD (chronic kidney disease) stands out as a valid model for detailed structural, functional, and molecular studies of this process. The cardiorenal syndrome relates to the detrimental bidirectional interplay between the kidney and the cardiovascular system. In addition to established risk factors, this group of patients is subjected to a plethora of other emerging vascular risk factors, such as inflammation, oxidative stress, mitochondrial dysfunction, vitamin K deficiency, cellular senescence, somatic mutations, epigenetic modifications, and increased apoptosis. A better understanding of the molecular mechanisms through which the uremic milieu triggers and maintains early vascular aging processes, has provided important new clues on inflammatory pathways and emerging risk factors alike, and to the altered behavior of cells in the arterial wall. Advances in the understanding of the biology of uremic early vascular aging opens avenues to novel pharmacological and nutritional therapeutic interventions. Such strategies hold promise to improve future prevention and treatment of early vascular aging not only in CKD but also in the elderly general population.
Collapse
Affiliation(s)
- S Hobson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - S Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - A Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - L Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - K Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| | - P G Shiels
- School of Molecular Biosciences, MVLS, University of Glasgow, United Kingdom (P.G.S.)
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden (S.H., S.A., A.W., L.H., K.K., P.S.)
| |
Collapse
|
265
|
Ren J, Barton CD, Zhan J. Engineered production of bioactive polyphenolic O-glycosides. Biotechnol Adv 2023; 65:108146. [PMID: 37028465 DOI: 10.1016/j.biotechadv.2023.108146] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from nucleotide-activated diphosphate sugar (NDP-sugar) donors to sugar acceptors such as polyphenolic compounds. In this review, we systematically review and summarize the representative polyphenolic O-glycosides with various bioactivities and their engineered biosynthesis in microbes with different biotechnological strategies. We also review the major routes towards NDP-sugar formation in microbes, which is significant for producing unusual or novel glycosides. Finally, we discuss the trends in NDP-sugar based glycosylation research to promote the development of prodrugs that positively impact human health and wellness.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
266
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
267
|
Schmitt CA, Tchkonia T, Niedernhofer LJ, Robbins PD, Kirkland JL, Lee S. COVID-19 and cellular senescence. Nat Rev Immunol 2023; 23:251-263. [PMID: 36198912 PMCID: PMC9533263 DOI: 10.1038/s41577-022-00785-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
The clinical severity of coronavirus disease 2019 (COVID-19) is largely determined by host factors. Recent advances point to cellular senescence, an ageing-related switch in cellular state, as a critical regulator of SARS-CoV-2-evoked hyperinflammation. SARS-CoV-2, like other viruses, can induce senescence and exacerbates the senescence-associated secretory phenotype (SASP), which is comprised largely of pro-inflammatory, extracellular matrix-degrading, complement-activating and pro-coagulatory factors secreted by senescent cells. These effects are enhanced in elderly individuals who have an increased proportion of pre-existing senescent cells in their tissues. SASP factors can contribute to a 'cytokine storm', tissue-destructive immune cell infiltration, endothelialitis (endotheliitis), fibrosis and microthrombosis. SASP-driven spreading of cellular senescence uncouples tissue injury from direct SARS-CoV-2-inflicted cellular damage in a paracrine fashion and can further amplify the SASP by increasing the burden of senescent cells. Preclinical and early clinical studies indicate that targeted elimination of senescent cells may offer a novel therapeutic opportunity to attenuate clinical deterioration in COVID-19 and improve resilience following infection with SARS-CoV-2 or other pathogens.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
- Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany.
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Soyoung Lee
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
268
|
Zhang Y, Gao D, Yuan Y, Zheng R, Sun M, Jia S, Liu J. Cycloastragenol: A Novel Senolytic Agent That Induces Senescent Cell Apoptosis and Restores Physical Function in TBI-Aged Mice. Int J Mol Sci 2023; 24:ijms24076554. [PMID: 37047529 PMCID: PMC10095196 DOI: 10.3390/ijms24076554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Accumulating evidence indicates that the increased burden of senescent cells (SCs) in aged organisms plays an important role in many age-associated diseases. The pharmacological elimination of SCs with “senolytics” has been emerging as a new therapy for age-related diseases and extending the healthy lifespan. In the present study, we identified that cycloastragenol (CAG), a secondary metabolite isolated from Astragalus membrananceus, delays age-related symptoms in mice through its senolytic activity against SCs. By screening a series of compounds, we found that CAG selectively kills SCs by inducing SCs apoptosis and that this process is associated with the inhibition of Bcl-2 antiapoptotic family proteins and the PI3K/AKT/mTOR pathway. In addition, CAG treatment also suppressed the development of the senescence-associated secretory phenotype (SASP) in SCs, thereby inhibiting cell migration mediated by the SASP. Furthermore, the administration of CAG for 2 weeks to mice with irradiation-induced aging alleviated the burden of SCs and improved the animals’ age-related physical dysfunction. Overall, our studies demonstrate that CAG is a novel senolytic agent with in vivo activity that has the potential to be used in the treatment of age-related diseases.
Collapse
Affiliation(s)
- Yanghuan Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxiao Gao
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Yuan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Manting Sun
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
269
|
Khalil R, Diab-Assaf M, Lemaitre JM. Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies. Cells 2023; 12:915. [PMID: 36980256 PMCID: PMC10047596 DOI: 10.3390/cells12060915] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Life expectancy has drastically increased over the last few decades worldwide, with important social and medical burdens and costs. To stay healthy longer and to avoid chronic disease have become essential issues. Organismal aging is a complex process that involves progressive destruction of tissue functionality and loss of regenerative capacity. One of the most important aging hallmarks is cellular senescence, which is a stable state of cell cycle arrest that occurs in response to cumulated cell stresses and damages. Cellular senescence is a physiological mechanism that has both beneficial and detrimental consequences. Senescence limits tumorigenesis, lifelong tissue damage, and is involved in different biological processes, such as morphogenesis, regeneration, and wound healing. However, in the elderly, senescent cells increasingly accumulate in several organs and secrete a combination of senescence associated factors, contributing to the development of various age-related diseases, including cancer. Several studies have revealed major molecular pathways controlling the senescent phenotype, as well as the ones regulating its interactions with the immune system. Attenuating the senescence-associated secretory phenotype (SASP) or eliminating senescent cells have emerged as attractive strategies aiming to reverse or delay the onset of aging diseases. Here, we review current senotherapies designed to suppress the deleterious effect of SASP by senomorphics or to selectively kill senescent cells by "senolytics" or by immune system-based approaches. These recent investigations are promising as radical new controls of aging pathologies and associated multimorbidities.
Collapse
Affiliation(s)
- Roula Khalil
- IRMB, University Montpellier, INSERM, 34090 Montpellier, France;
| | - Mona Diab-Assaf
- Fanar Faculty of Sciences II, Lebanese University, Beirut P.O. Box 90656, Lebanon;
| | | |
Collapse
|
270
|
The Role of Selective Flavonoids on Triple-Negative Breast Cancer: An Update. SEPARATIONS 2023. [DOI: 10.3390/separations10030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Among the many types of breast cancer (BC), Triple-Negative Breast Cancer (TNBC) is the most alarming. It lacks receptors for the three main biomarkers: estrogen, progesterone, and human epidermal growth factor, hence the name TNBC. This makes its treatment a challenge. Surgical procedures and chemotherapy, performed either alone or in combination, seem to be the primary therapeutic possibilities; however, they are accompanied by severe complications. Currently, the formulation of drugs using natural products has been playing an important role in the pharmaceutical industries, owing to the drugs’ increased efficacies and significantly lessened side effects. Hence, treating TNBC with chemotherapeutic drugs developed using natural products such as flavonoids in the near future is much warranted. Flavonoids are metabolic compounds largely present in all plants, vegetables, and fruits, such as blueberries, onions, (which are widely used to make red wine,) chocolates, etc. Flavonoids are known to have enormous health benefits, such as anticancer, antiviral, anti-inflammatory, and antiallergic properties. They are known to arrest the cell cycle of the tumor cells and induces apoptosis by modulating Bcl-2, Bax, and Caspase activity. They show a considerable effect on cell proliferation and viability and angiogenesis. Various studies were performed at both the biochemical and molecular levels. The importance of flavonoids in cancer treatment and its methods of extraction and purification to date have been reported as individual publications. However, this review article explains the potentiality of flavonoids against TNBC in the preclinical levels and also emphasizes their molecular mechanism of action, along with a brief introduction to its methods of extraction, isolation, and purification in general, emphasizing the fact that its quantum of yield if enhanced and its possible synergistic effects with existing chemotherapeutics may pave the way for better anticancer agents of natural origin and significantly lessened side-effects.
Collapse
|
271
|
Arangia A, Marino Y, Fusco R, Siracusa R, Cordaro M, D’Amico R, Macrì F, Raffone E, Impellizzeri D, Cuzzocrea S, Di Paola R. Fisetin, a Natural Polyphenol, Ameliorates Endometriosis Modulating Mast Cells Derived NLRP-3 Inflammasome Pathway and Oxidative Stress. Int J Mol Sci 2023; 24:ijms24065076. [PMID: 36982152 PMCID: PMC10049430 DOI: 10.3390/ijms24065076] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
A chronic, painful, and inflammatory condition known as endometriosis is defined by the extra-uterine development of endometrial tissue. The aim of this study was to evaluate the beneficial effects of fisetin, a naturally occurring polyphenol that is frequently present in a variety of fruits and vegetables. Uterine fragments were injected intraperitoneally to cause endometriosis, and fisetin was given orally every day. At 14 days of treatment, laparotomy was performed, and the endometrial implants and peritoneal fluids were collected for histological, biochemical, and molecular analyses. Rats subjected to endometriosis presented important macroscopic and microscopic changes, increased mast cell (MC) infiltration, and fibrosis. Fisetin treatment reduced endometriotic implant area, diameter, and volumes, as well as histological alterations, neutrophil infiltration, cytokines release, the number of MCs together with the expression of chymase and tryptase, and diminished α smooth muscle actin (α-sma) and transforming growth factor beta (TGF β) expressions. In addition, fisetin was able to reduce markers of oxidative stress as well as nitrotyrosine and Poly ADP ribose expressions and increase apoptosis in endometrial lesions. In conclusion, fisetin could represent a new therapeutic strategy to control endometriosis perhaps by targeting the MC-derived NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway and oxidative stress.
Collapse
Affiliation(s)
- Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Consolare Valeria, 98100 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Emanuela Raffone
- Department of Maternal and Child Obstetrics and Gynecology, Papardo Hospital, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-4734
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
272
|
Shi D, Liu W, Gao Y, Li X, Huang Y, Li X, James TD, Guo Y, Li J. Photoactivatable senolysis with single-cell resolution delays aging. NATURE AGING 2023; 3:297-312. [PMID: 37118423 DOI: 10.1038/s43587-023-00360-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/03/2023] [Indexed: 04/30/2023]
Abstract
Strategies that can selectively eliminate senescent cells (SnCs), namely senolytics, have been shown to promote healthy lifespan. However, it is challenging to achieve precise, broad-spectrum and tractable senolysis. Here, we integrate multiple technologies that combine the enzyme substrate of senescence-associated β-galactosidase (SA-β-gal) with fluorescence tag for the precise tracking of SnCs, construction of a bioorthogonal receptor triggered by SA-β-gal to target and anchor SnCs with single-cell resolution and incorporation of a selenium atom to generate singlet oxygen and achieve precise senolysis through controllable photodynamic therapy (PDT). We generate KSL0608-Se, a photosensitive senolytic prodrug, which is selectively activated by SA-β-gal. In naturally-aged mice, KSL0608-Se-mediated PDT prevented upregulation of age-related SnCs markers and senescence-associated secretory phenotype factors. This treatment also countered age-induced losses in liver and renal function and inhibited the age-associated physical dysfunction in mice. We therefore provide a strategy to monitor and selectively eliminate SnCs to regulate aging.
Collapse
Affiliation(s)
- Donglei Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Wenwen Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou, Hainan, China
| | - Ying Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Xinming Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yunyuan Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou, Hainan, China.
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali, China.
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
273
|
Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J 2023; 290:1362-1383. [PMID: 35015337 DOI: 10.1111/febs.16350] [Citation(s) in RCA: 266] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
The concept of geroscience is that since ageing is the greatest risk factor for many diseases and conditions, targeting the ageing process itself will have the greatest impact on human health. Of the hallmarks of ageing, cellular senescence has emerged as a druggable therapeutic target for extending healthspan in model organisms. Cellular senescence is a cell state of irreversible proliferative arrest driven by different types of stress, including oncogene-induced stress. Many senescent cells (SnCs) develop a senescent-associated secretory phenotype (SASP) comprising pro-inflammatory cytokines, chemokines, proteases, bioactive lipids, inhibitory molecules, extracellular vesicles, metabolites, lipids and other factors, able to promote chronic inflammation and tissue dysfunction. SnCs up-regulate senescent cell anti-apoptotic pathways (SCAPs) that prevent them from dying despite the accumulation of damage to DNA and other organelles. These SCAPs and other pathways altered in SnCs represent therapeutic targets for the development of senotherapeutic drugs that induce selective cell death of SnCs, specifically termed senolytics or suppress markers of senescence, in particular the SASP, termed senomorphics. Here, we review the current state of the development of senolytics and senomorphics for the treatment of age-related diseases and disorders and extension of healthy longevity. In addition, the challenges of documenting senolytic and senomorphic activity in pre-clinical models and the current state of the clinical application of the different senotherapeutics will be discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Louise E Pitcher
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Vaishali Prahalad
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
274
|
Rachmian N, Krizhanovsky V. Senescent cells in the brain and where to find them. FEBS J 2023; 290:1256-1266. [PMID: 36221897 DOI: 10.1111/febs.16649] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Cellular senescence is a process in which cells change their characteristic phenotype in response to stress and enter a state of prolonged cell cycle arrest accompanied by a distinct secretory phenotype. Cellular senescence has both beneficial and detrimental outcomes. With age, senescent cells progressively accumulate in tissues and might be the bridge connecting ageing to many age-related pathologies. In recent years, evidence emerged supporting the accumulation of brain senescent cells during neurological disorders and ageing. Here, we will discuss the different brain cell populations that exhibit a senescent phenotype. Subsequently, we will explore several senolytic strategies which have been developed to eliminate senescent cells. Finally, we will examine their potential to directly eliminate these senescent brain cells.
Collapse
Affiliation(s)
- Noa Rachmian
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel.,Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
275
|
Murray KO, Mahoney SA, Venkatasubramanian R, Seals DR, Clayton ZS. Aging, aerobic exercise, and cardiovascular health: Barriers, alternative strategies and future directions. Exp Gerontol 2023; 173:112105. [PMID: 36731386 PMCID: PMC10068966 DOI: 10.1016/j.exger.2023.112105] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Age-associated cardiovascular (CV) dysfunction, namely arterial dysfunction, is a key antecedent to the development of CV disease (CVD). Arterial dysfunction with aging is characterized by impaired vascular endothelial function and stiffening of the large elastic arteries, each of which is an independent predictor of CVD. These processes are largely mediated by an excess production of reactive oxygen species (ROS) and an increase in chronic, low-grade inflammation that ultimately leads to a reduction in bioavailability of the vasodilatory molecule nitric oxide. Additionally, there are other fundamental aging mechanisms that may contribute to excessive ROS and inflammation termed the "hallmarks of aging"; these additional mechanisms of arterial dysfunction may represent therapeutic targets for improving CV health with aging. Aerobic exercise is the most well-known and effective intervention to prevent and treat the effects of aging on CV dysfunction. However, the majority of mid-life and older (ML/O) adults do not meet recommended exercise guidelines due to traditional barriers to aerobic exercise, such as reduced leisure time, motivation, or access to fitness facilities. Therefore, it is a biomedical research priority to develop and implement time- and resource-efficient alternative strategies to aerobic exercise to reduce the burden of CVD in ML/O adults. Alternative strategies that mimic or are inspired by aerobic exercise, that target pathways specific to the fundamental mechanisms of aging, represent a promising approach to accomplish this goal.
Collapse
Affiliation(s)
- Kevin O Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | | | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America.
| |
Collapse
|
276
|
Compound combinations targeting longevity: Challenges and perspectives. Ageing Res Rev 2023; 85:101851. [PMID: 36642188 DOI: 10.1016/j.arr.2023.101851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Aging is one of the world's greatest concerns, requiring urgent, effective, large-scale interventions to decrease the number of late-life chronic diseases and improve human healthspan. Anti-aging drug therapy is one of the most promising strategies to combat the effects of aging. However, most geroprotective compounds are known to successfully affect only a few aging-related targets. Given this, there is a great biological rationale for the use of combinations of anti-aging interventions. In this review, we characterize the various types of compound combinations used to modulate lifespan, discuss the existing evidence on their role in life extension, and present some key points about current challenges and future prospects for the development of combination drug anti-aging therapy.
Collapse
|
277
|
Ng PY, McNeely TL, Baker DJ. Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J 2023; 290:1326-1339. [PMID: 34873840 PMCID: PMC9167891 DOI: 10.1111/febs.16315] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Microglial homeostasis has emerged as a critical mediator of health and disease in the central nervous system. In their neuroprotective role as the predominant immune cells of the brain, microglia surveil the microenvironment for debris and pathogens, while also promoting neurogenesis and performing maintenance on synapses. Chronological ageing, disease onset, or traumatic injury promotes irreparable damage or deregulated signaling to reinforce neurotoxic phenotypes in microglia. These insults may include cellular senescence, a stable growth arrest often accompanied by the production of a distinctive pro-inflammatory secretory phenotype, which may contribute to age- or disease-driven decline in neuronal health and cognition and is a potential novel therapeutic target. Despite this increased scrutiny, unanswered questions remain about what distinguishes senescent microglia and non-senescent microglia reacting to insults occurring in ageing, disease, and injury, and how central the development of senescence is in their pivot from guardian to assailant. To intelligently design future studies to untangle senescent microglia from other primed and reactionary states, specific criteria must be developed that define this population and allow for comparisons between different model systems. Comparing microglial activity seen in homeostasis, ageing, disease, and injury allows for a more coherent understanding of when and how senescent and other harmful microglial subpopulations should be targeted.
Collapse
Affiliation(s)
- Pei Y Ng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Taylor L McNeely
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
278
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
279
|
Banerjee P, Gaddam N, Pandita TK, Chakraborty S. Cellular Senescence as a Brake or Accelerator for Oncogenic Transformation and Role in Lymphatic Metastasis. Int J Mol Sci 2023; 24:ijms24032877. [PMID: 36769195 PMCID: PMC9917379 DOI: 10.3390/ijms24032877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cellular senescence-the irreversible cell cycle arrest driven by a variety of mechanisms and, more specifically, the senescence-associated secretory phenotype (SASP)-is an important area of research in the context of different age-related diseases, such as cardiovascular disease and cancer. SASP factors play both beneficial and detrimental roles in age-related disease progression depending on the source of the SASPs, the target cells, and the microenvironment. The impact of senescence and the SASP on different cell types, the immune system, and the vascular system has been widely discussed. However, the impact of replicative or stress-induced senescence on lymphatic biology and pathological lymphangiogenesis remains underexplored. The lymphatic system plays a crucial role in the maintenance of body fluid homeostasis and immune surveillance. The perturbation of lymphatic function can hamper normal physiological function. Natural aging or stress-induced premature aging influences the lymphatic vessel structure and function, which significantly affect the role of lymphatics in tumor dissemination and metastasis. In this review, we focus on the role of senescence on lymphatic pathobiology, its impact on cancer, and potential therapeutic interventions to manipulate the aged or senescent lymphatic system for disease management.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
- Correspondence: ; Tel.: +1-979-436-0697
| |
Collapse
|
280
|
Senescent cells and SASP in cancer microenvironment: New approaches in cancer therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:115-158. [PMID: 36707199 DOI: 10.1016/bs.apcsb.2022.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cellular senescence was first described as a state characterized by telomere shortening, resulting in limiting cell proliferation in aging. Apart from this type of senescence, which is called replicative senescence, other senescence types occur after exposure to different stress factors. One of these types of senescence induced after adjuvant therapy (chemotherapy and radiotherapy) is called therapy-induced senescence. The treatment with chemotherapeutics induces cellular senescence in normal and cancer cells in the tumor microenvironment. Thus therapy-induced senescence in the cancer microenvironment is accepted one of the drivers of tumor progression. Recent studies have revealed that senescence-associated secretory phenotype induction has roles in pathological processes such as inducing epithelial-mesenchymal transition and promoting tumor vascularization. Thus senolytic drugs that specifically kill senescent cells and senomorphic drugs that inhibit the secretory activity of senescent cells are seen as a new approach in cancer treatment. Developing and discovering new senotherapeutic agents targeting senescent cells is also gaining importance. In this review, we attempt to summarize the signaling pathways regarding the metabolism, cell morphology, and organelles of the senescent cell. Furthermore, we also reviewed the effects of SASP in the cancer microenvironment and the senotherapeutics that have the potential to be used as adjuvant therapy in cancer treatment.
Collapse
|
281
|
Bone-targeted delivery of senolytics to eliminate senescent cells increases bone formation in senile osteoporosis. Acta Biomater 2023; 157:352-366. [PMID: 36470392 DOI: 10.1016/j.actbio.2022.11.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Systemic elimination of senescent cells using senolytic drugs presents therapeutic effects on age-related diseases, including senile osteoporosis. However, low bioavailability and potential side effects of senolytics restrict clinical application. Therefore, we developed a bone-targeted delivery system for senolytics to effective treatment of senile osteoporosis. In this study, quercetin was screened out as the ideal senolytics for eliminating senescent BMSCs. Treatment of quercetin efficiently decreased the senescence markers in senescent BMSCs models. After treatment with quercetin in vitro, cell mitosis and calcification staining assay confirmed that the proliferation and osteogenesis of the senescent BMSCs populations were enhanced. To enhance the effectiveness and minimize the side effect of treatment, liposomes decorated with bone affinity peptide (DSS)6 were constructed for bone-targeted delivery of quercetin. After administration of liposomes loading quercetin in two aged mice models, histological and cellular analysis confirmed that bone-targeted treatment with quercetin efficiently eliminated senescent cells in bone, restored the function of BMCSs, and promoted bone formation in aged mice models when compared to non-targeted treatment. Taken together, the bone-targeted delivery of senolytics efficiently eliminates senescent cells to recover bone mass and microarchitecture, showing an effective treatment for senile osteoporosis. STATEMENT OF SIGNIFICANCE: Senile osteoporosis, a common and hazardous chronic disease, has been still lacking effective therapy. How to effectively eliminate the hazards of senescent cells in skeleton to bone formation remains challenge. In this study, quercetin was screened out as the ideal senolytic drug for senescent BMSCs and could effectively eliminated senescent BMSCs to restore the cellular functions of senescent BMSCs models in vitro. Then, the bone-targeted liposomes were designed to encapsulate and deliver senolytics efficiently to senile bone tissue. Based on two aged mice models, we confirmed that bone-targeted delivery of quercetin efficiently eliminated senescent cells in skeleton and enhanced bone formation in vivo, suggesting the bone-targeted elimination of senescent cells is an effective treatment for senile osteoporosis.
Collapse
|
282
|
Tu M, Wei T, Jia Y, Wang Y, Wu J. Molecular mechanisms of alveolar epithelial cell senescence and idiopathic pulmonary fibrosis: a narrative review. J Thorac Dis 2023; 15:186-203. [PMID: 36794134 PMCID: PMC9922607 DOI: 10.21037/jtd-22-886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022]
Abstract
Background and Objective Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial pneumonia of unknown etiology. An increasing number of studies have reported that the incidence of IPF increases with age. Simultaneously, the number of senescent cells increased in IPF. Epithelial cell senescence, an important component of epithelial cell dysfunction, plays a key role in IPF pathogenesis. This article summarizes the molecular mechanisms associated with alveolar epithelial cell senescence and recent advances in the applications of drugs targeting pulmonary epithelial cell senescence to explore novel therapeutic approaches for the treatment of pulmonary fibrosis. Methods All literature published in English on PubMed, Web of Science, and Google Scholar were electronically searched online using the following keyword combinations: aging, alveolar epithelial cell, cell senescence, idiopathic pulmonary fibrosis, WNT/β-catenin, phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB). Key Content and Findings We focused on signaling pathways associated with alveolar epithelial cell senescence in IPF, including WNT/β-catenin, PI3K/Akt, NF-κB, and mTOR signaling pathways. Some of these signaling pathways are involved in alveolar epithelial cell senescence by affecting cell cycle arrest and secretion of senescence-associated secretory phenotype-associated markers. We also found that changes in lipid metabolism in alveolar epithelial cells can be induced by mitochondrial dysfunction, both of which contribute to cellular senescence and development of IPF. Conclusions Decreasing senescent alveolar epithelial cells may be a promising strategy for the treatment of IPF. Therefore, further investigations into new treatments of IPF by applying inhibitors of relevant signaling pathways, as well as senolytic drugs, are warranted.
Collapse
Affiliation(s)
- Mingjin Tu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Ting Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Yufang Jia
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China;,Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Jun Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
283
|
Zhang J, Wang S, Liu B. New Insights into the Genetics and Epigenetics of Aging Plasticity. Genes (Basel) 2023; 14:329. [PMID: 36833255 PMCID: PMC9956228 DOI: 10.3390/genes14020329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Biological aging is characterized by irreversible cell cycle blockade, a decreased capacity for tissue regeneration, and an increased risk of age-related diseases and mortality. A variety of genetic and epigenetic factors regulate aging, including the abnormal expression of aging-related genes, increased DNA methylation levels, altered histone modifications, and unbalanced protein translation homeostasis. The epitranscriptome is also closely associated with aging. Aging is regulated by both genetic and epigenetic factors, with significant variability, heterogeneity, and plasticity. Understanding the complex genetic and epigenetic mechanisms of aging will aid the identification of aging-related markers, which may in turn aid the development of effective interventions against this process. This review summarizes the latest research in the field of aging from a genetic and epigenetic perspective. We analyze the relationships between aging-related genes, examine the possibility of reversing the aging process by altering epigenetic age.
Collapse
Affiliation(s)
- Jie Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
| | - Shixiao Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Medical School, Lihu Campus, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
284
|
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023; 186:243-278. [PMID: 36599349 DOI: 10.1016/j.cell.2022.11.001] [Citation(s) in RCA: 2268] [Impact Index Per Article: 1134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2023]
Abstract
Aging is driven by hallmarks fulfilling the following three premises: (1) their age-associated manifestation, (2) the acceleration of aging by experimentally accentuating them, and (3) the opportunity to decelerate, stop, or reverse aging by therapeutic interventions on them. We propose the following twelve hallmarks of aging: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. These hallmarks are interconnected among each other, as well as to the recently proposed hallmarks of health, which include organizational features of spatial compartmentalization, maintenance of homeostasis, and adequate responses to stress.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Altos Labs, Cambridge, UK
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
285
|
Finnegan RM, Elshazly AM, Patel NH, Tyutyunyk-Massey L, Tran TH, Kumarasamy V, Knudsen ES, Gewirtz DA. The BET inhibitor/degrader ARV-825 prolongs the growth arrest response to Fulvestrant + Palbociclib and suppresses proliferative recovery in ER-positive breast cancer. Front Oncol 2023; 12:966441. [PMID: 36741704 PMCID: PMC9890056 DOI: 10.3389/fonc.2022.966441] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Anti-estrogens or aromatase inhibitors in combination with cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are the current standard of care for estrogen receptor-positive (ER+) Her-2 negative metastatic breast cancer. Although these combination therapies prolong progression-free survival compared to endocrine therapy alone, the growth-arrested state of residual tumor cells is clearly transient. Tumor cells that escape what might be considered a dormant or quiescent state and regain proliferative capacity often acquire resistance to further therapies. Our studies are based upon the observation that breast tumor cells arrested by Fulvestrant + Palbociclib enter into states of both autophagy and senescence from which a subpopulation ultimately escapes, potentially contributing to recurrent disease. Autophagy inhibition utilizing pharmacologic or genetic approaches only moderately enhanced the response to Fulvestrant + Palbociclib in ER+ MCF-7 breast tumor cells, slightly delaying proliferative recovery. In contrast, the BET inhibitor/degrader, ARV-825, prolonged the growth arrested state in both p53 wild type MCF-7 cells and p53 mutant T-47D cells and significantly delayed proliferative recovery. In addition, ARV-825 added after the Fulvestrant + Palbociclib combination promoted apoptosis and demonstrated efficacy in resistant RB deficient cell lines. These studies indicate that administration of BET inhibitors/degraders, which are currently being investigated in multiple clinical trials, may potentially improve standard of care therapy in metastatic ER+ breast cancer patients and may further prolong progression-free survival.
Collapse
Affiliation(s)
- Ryan M. Finnegan
- Departments of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, United States,Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Ahmed M. Elshazly
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nipa H. Patel
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Liliya Tyutyunyk-Massey
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Tammy H. Tran
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Erik S. Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - David A. Gewirtz
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,*Correspondence: David A. Gewirtz,
| |
Collapse
|
286
|
Sharma A, Chabloz S, Lapides RA, Roider E, Ewald CY. Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. Nutrients 2023; 15:nu15020445. [PMID: 36678315 PMCID: PMC9861325 DOI: 10.3390/nu15020445] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Disrupted biological function, manifesting through the hallmarks of aging, poses one of the largest threats to healthspan and risk of disease development, such as metabolic disorders, cardiovascular ailments, and neurodegeneration. In recent years, numerous geroprotectors, senolytics, and other nutraceuticals have emerged as potential disruptors of aging and may be viable interventions in the immediate state of human longevity science. In this review, we focus on the decrease in nicotinamide adenine dinucleotide (NAD+) with age and the supplementation of NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), in combination with other geroprotective compounds, to restore NAD+ levels present in youth. Furthermore, these geroprotectors may enhance the efficacy of NMN supplementation while concurrently providing their own numerous health benefits. By analyzing the prevention of NAD+ degradation through the inhibition of CD38 or supporting protective downstream agents of SIRT1, we provide a potential framework of the CD38/NAD+/SIRT1 axis through which geroprotectors may enhance the efficacy of NAD+ precursor supplementation and reduce the risk of age-related diseases, thereby potentiating healthspan in humans.
Collapse
Affiliation(s)
- Arastu Sharma
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- AVEA Life AG, Bahnhofplatz, 6300 Zug, Switzerland
| | | | - Rebecca A. Lapides
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Robert Larner, MD College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Elisabeth Roider
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Maximon AG, Bahnhofplatz, 6300 Zug, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- Correspondence:
| |
Collapse
|
287
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals CD24 osteolineage cells as targets of senolytic therapy in the aged murine skeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523760. [PMID: 36711531 PMCID: PMC9882155 DOI: 10.1101/2023.01.12.523760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-βgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.
Collapse
Affiliation(s)
- Madison L. Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer L. Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie J. Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
288
|
Krajčíková K, Balicka A, Lapšanská M, Trbolová A, Guľašová Z, Kondrakhova D, Komanický V, Rašiová A, Tomečková V. The Effects of Fisetin on Cyclosporine-Treated Dry Eye Disease in Dogs. Int J Mol Sci 2023; 24:1488. [PMID: 36675005 PMCID: PMC9862591 DOI: 10.3390/ijms24021488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Dry eye disease (DED) is a chronic debilitating ophthalmological disease with the current therapeutic options focused on the suppression of the symptoms. Among the possibilities of how to improve DED therapy, polyphenols have shown an enormous capacity to counteract DED functional changes. The study aimed to specifically target pathophysiological mechanisms by the addition of fisetin to the cyclosporine treatment protocol. We examined dog patients with DED on cyclosporine treatment that were administered 0.1% fisetin or fisetin-free eye drops. For the assessment of fisetin effects, tear film production and matrix metalloproteinase 9 (MMP-9) were studied in the tear film. Tear production was not recovered after 7 or 14 days (9.40 mm ± 6.02 mm, p = 0.47; 9.80 mm ± 6.83 mm, p = 0.53, respectively). MMP-9 levels significantly increased after 7 days and then dropped after 14 days (775.44 ng/mL ± 527.52 ng/mL, p = 0.05; 328.49 ng/mL ± 376.29 ng/mL, p = 1.00, respectively). Fisetin addition to cyclosporine DED treatment was not able to restore tear fluid production but influenced molecular pathological events through MMP-9.
Collapse
Affiliation(s)
- Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| | - Agnieszka Balicka
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Mária Lapšanská
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Alexandra Trbolová
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Zuzana Guľašová
- Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Daria Kondrakhova
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Vladimír Komanický
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia
| | - Adriana Rašiová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| |
Collapse
|
289
|
Keylani K, Arbab Mojeni F, Khalaji A, Rasouli A, Aminzade D, Karimi MA, Sanaye PM, Khajevand N, Nemayandeh N, Poudineh M, Azizabadi Farahani M, Esfandiari MA, Haghshoar S, Kheirandish A, Amouei E, Abdi A, Azizinezhad A, Khani A, Deravi N. Endoplasmic reticulum as a target in cardiovascular diseases: Is there a role for flavonoids? Front Pharmacol 2023; 13:1027633. [PMID: 36703744 PMCID: PMC9871646 DOI: 10.3389/fphar.2022.1027633] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Flavonoids are found in natural health products and plant-based foods. The flavonoid molecules contain a 15-carbon skeleton with the particular structural construction of subclasses. The most flavonoid's critical subclasses with improved health properties are the catechins or flavonols (e.g., epigallocatechin 3-gallate from green tea), the flavones (e.g., apigenin from celery), the flavanones (e.g., naringenin from citrus), the flavanols (e.g., quercetin glycosides from berries, onion, and apples), the isoflavones (e.g., genistein from soya beans) and the anthocyanins (e.g., cyanidin-3-O-glucoside from berries). Scientific data conclusively demonstrates that frequent intake of efficient amounts of dietary flavonoids decreases chronic inflammation and the chance of oxidative stress expressing the pathogenesis of human diseases like cardiovascular diseases (CVDs). The endoplasmic reticulum (ER) is a critical organelle that plays a role in protein folding, post-transcriptional conversion, and transportation, which plays a critical part in maintaining cell homeostasis. Various stimuli can lead to the creation of unfolded or misfolded proteins in the endoplasmic reticulum and then arise in endoplasmic reticulum stress. Constant endoplasmic reticulum stress triggers unfolded protein response (UPR), which ultimately causes apoptosis. Research has shown that endoplasmic reticulum stress plays a critical part in the pathogenesis of several cardiovascular diseases, including diabetic cardiomyopathy, ischemic heart disease, heart failure, aortic aneurysm, and hypertension. Endoplasmic reticulum stress could be one of the crucial points in treating multiple cardiovascular diseases. In this review, we summarized findings on flavonoids' effects on the endoplasmic reticulum and their role in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Arbab Mojeni
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Dlnya Aminzade
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nazanin Khajevand
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Nemayandeh
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Ali Esfandiari
- Student Research Committee, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sepehr Haghshoar
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Erfan Amouei
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Azizinezhad
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Afshin Khani
- Department of Cardiovascular Disease, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
290
|
Endothelial senescence in vascular diseases: current understanding and future opportunities in senotherapeutics. Exp Mol Med 2023; 55:1-12. [PMID: 36599934 PMCID: PMC9898542 DOI: 10.1038/s12276-022-00906-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2023] Open
Abstract
Senescence compromises the essential role that the endothelium plays in maintaining vascular homeostasis, so promoting endothelial dysfunction and the development of age-related vascular diseases. Their biological and clinical significance calls for strategies for identifying and therapeutically targeting senescent endothelial cells. While senescence and endothelial dysfunction have been studied extensively, distinguishing what is distinctly endothelial senescence remains a barrier to overcome for an effective approach to addressing it. Here, we review the mechanisms underlying endothelial senescence and the evidence for its clinical importance. Furthermore, we discuss the current state and the limitations in the approaches for the detection and therapeutic intervention of target cells, suggesting potential directions for future research.
Collapse
|
291
|
Xu W, Luo Y, Yin J, Huang M, Luo F. Targeting AMPK signaling by polyphenols: a novel strategy for tackling aging. Food Funct 2023; 14:56-73. [PMID: 36524530 DOI: 10.1039/d2fo02688k] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aging is an inevitable biological process and is accompanied by a gradual decline of physiological functions, such as the incidence of age-related diseases. Aging becomes a major burden and challenge for society to prevent or delay the occurrence and development of these age-related diseases. AMPK is a key regulator of intracellular energy and participates in the adaptation of calorie restriction. It is also an important mediator of nutritionally sensitive pathways that regulate the biological effects of nutrient active ingredients. AMPK can limit proliferation and activate autophagy. Recent studies have shown that nutritional intervention can delay aging and lessen age-related diseases in many animal and even human models. Polyphenols function as a natural antidote and are important anti-inflammatory and antioxidant agents in human diets. Polyphenols can prevent age-related diseases because they regulate complex networks of cellular processes such as oxidative damage, inflammation, cellular aging, and autophagy, and have also attracted wide attention as a potential beneficial substance for longevity. In this review, we systemically summarized the progress of targeting AMPK signaling by dietary polyphenols in aging prevention. Polyphenols can reduce oxidative stress and inflammatory response, and maintain the steady state of energy. Polyphenols can also modulate sirtuins/NAD+, nutrient-sensing, proteostasis, mitochondrial function, autophagy and senescence via targeting AMPK signaling. Therefore, targeting the AMPK signaling pathway by dietary polyphenols may be a novel anti-aging strategy.
Collapse
Affiliation(s)
- Wei Xu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China. .,Hunan Food and Drug Vocational College, Department of Food Science and Engineering, Changsha, Hunan 410208, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Jiaxin Yin
- Hunan Food and Drug Vocational College, Department of Food Science and Engineering, Changsha, Hunan 410208, China
| | - Mengzhen Huang
- Hunan Food and Drug Vocational College, Department of Food Science and Engineering, Changsha, Hunan 410208, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
292
|
Chen JC, Wang R, Wei CC. Anti-aging effects of dietary phytochemicals: From Caenorhabditis elegans, Drosophila melanogaster, rodents to clinical studies. Crit Rev Food Sci Nutr 2023; 64:5958-5983. [PMID: 36597655 DOI: 10.1080/10408398.2022.2160961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Anti-aging research has become critical since the elderly population is increasing dramatically in this era. With the establishment of frailty phenotype and frailty index, the importance of anti-frailty research is concurrently enlightened. The application of natural phytochemicals against aging or frailty is always intriguing, and abundant related studies have been published. Various models are designed for biological research, and each model has its strength and weakness in deciphering the complex aging mechanisms. In this article, we attempt to show the potential of Caenorhabditis elegans in the study of phytochemicals' effects on anti-aging by comparing it to other animal models. In this review, the lifespan extension and anti-aging effects are demonstrated by various physical, cellular, or molecular biomarkers of dietary phytochemicals, including resveratrol, curcumin, urolithin A, sesamin, fisetin, quercetin, epigallocatechin-3-gallate, epicatechin, spermidine, sulforaphane, along with extracts of broccoli, cocoa, and blueberry. Meanwhile, the frequency of phytochemicals and models studied or presented in publications since 2010 were analyzed, and the most commonly mentioned animal models were rats, mice, and the nematode C. elegans. This up-to-date summary of the anti-aging effect of certain phytochemicals has demonstrated powerful potential for anti-aging or anti-frailty in the human population.
Collapse
Affiliation(s)
- Ju-Chi Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
293
|
Chowdhury SG, Misra S, Karmakar P. Understanding the Impact of Obesity on Ageing in the Radiance of DNA Metabolism. J Nutr Health Aging 2023; 27:314-328. [PMID: 37248755 DOI: 10.1007/s12603-023-1912-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 05/31/2023]
Abstract
Ageing is a multi-factorial phenomenon which is considered as a major risk factor for the development of neurodegeneration, osteoporosis, cardiovascular disease, dementia, cancer, and other chronic diseases. Phenotypically, ageing is related with a combination of molecular, cellular, and physiological levels like genomic and epi-genomic alterations, loss of proteostasis, deregulation of cellular and subcellular function and mitochondrial dysfunction. Though, no single molecular mechanism accounts for the functional decline of different organ systems in older humans but accumulation of DNA damage or mutations is a dominant theory which contributes largely to the development of ageing and age-related diseases. However, mechanistic, and hierarchical order of these features of ageing has not been clarified yet. Scientific community now focus on the effect of obesity on accelerated ageing process. Obesity is a complex chronic disease that affects multiple organs and tissues. It can not only lead to various health conditions such as diabetes, cancer, and cardiovascular disease but also can decrease life expectancy which shows similar phenotype of ageing. Higher loads of DNA damage were also observed in the genome of obese people. Thus, inability of DNA damage repair may contribute to both ageing and obesity apart from cancer predisposition. The present review emphasizes on the involvement of molecular phenomenon of DNA metabolism in development of obesity and how it accelerates ageing in mammals.
Collapse
Affiliation(s)
- S G Chowdhury
- Parimal Karmakar, Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India.
| | | | | |
Collapse
|
294
|
The Senolytic Drug Fisetin Attenuates Bone Degeneration in the Zmpste24 -/- Progeria Mouse Model. J Osteoporos 2023; 2023:5572754. [PMID: 36875869 PMCID: PMC9977556 DOI: 10.1155/2023/5572754] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/26/2022] [Accepted: 01/21/2023] [Indexed: 03/07/2023] Open
Abstract
Aging leads to several geriatric conditions including osteoporosis (OP) and associated frailty syndrome. Treatments for these conditions are limited and none target fundamental drivers of pathology, and thus identifying strategies to delay progressive loss of tissue homeostasis and functional reserve will significantly improve quality of life in elderly individuals. A fundamental property of aging is the accumulation of senescent cells. Senescence is a cell state defined by loss of proliferative capacity, resistance to apoptosis, and the release of a proinflammatory and anti-regenerative senescence-associated secretory phenotype (SASP). The accumulation of senescent cells and SASP factors is thought to significantly contribute to systemic aging. Senolytics-compounds which selectively target and kill senescent cells-have been characterized to target and inhibit anti-apoptotic pathways that are upregulated during senescence, which can elicit apoptosis in senescent cells and relieve SASP production. Senescent cells have been linked to several age-related pathologies including bone density loss and osteoarthritis in mice. Previous studies in murine models of OP have demonstrated that targeting senescent cells pharmacologically with senolytic drugs can reduce symptomology of the disease. Here, we demonstrate the efficacy of senolytic drugs (dasatinib, quercetin, and fisetin) to improve age-associated degeneration in bone using the Zmpste24-/- (Z24-/-) progeria murine system for Hutchinson-Gilford progeria syndrome (HGPS). We found that the combination of dasatinib plus quercetin could not significantly mitigate trabecular bone loss although fisetin administration could reduce bone density loss in the accelerated aging Z24-/- model. Furthermore, the overt bone density loss observed in the Z24-/- model reported herein highlights the Z24 model as a translational model to recapitulate alterations in bone density associated with advanced age. Consistent with the "geroscience hypothesis," these data demonstrate the utility of targeting a fundamental driver of systemic aging (senescent cell accumulation) to alleviate a common condition with age, bone deterioration.
Collapse
|
295
|
Zhou Y, Suo W, Zhang X, Yang Y, Zhao W, Li H, Ni Q. Targeting epigenetics in diabetic cardiomyopathy: Therapeutic potential of flavonoids. Biomed Pharmacother 2023; 157:114025. [PMID: 36399824 DOI: 10.1016/j.biopha.2022.114025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
The pathophysiological mechanisms of diabetic cardiomyopathy have been extensively studied, but there is still a lack of effective prevention and treatment methods. The ability of flavonoids to protect the heart from diabetic cardiomyopathy has been extensively described. In recent years, epigenetics has received increasing attention from scholars in exploring the etiology and treatment of diabetes and its complications. DNA methylation, histone modifications and non-coding RNAs play key functions in the development, maintenance and progression of diabetic cardiomyopathy. Hence, prevention or reversal of the epigenetic alterations that have occurred during the development of diabetic cardiomyopathy may alleviate the personal and social burden of the disease. Flavonoids can be used as natural epigenetic modulators in alternative therapies for diabetic cardiomyopathy. In this review, we discuss the epigenetic effects of different flavonoid subtypes in diabetic cardiomyopathy and summarize the evidence from preclinical and clinical studies that already exist. However, limited research is available on the potential beneficial effects of flavonoids on the epigenetics of diabetic cardiomyopathy. In the future, clinical trials in which different flavonoids exert their antidiabetic and cardioprotective effects through various epigenetic mechanisms should be further explored.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Yanan Yang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
296
|
Cohn RL, Gasek NS, Kuchel GA, Xu M. The heterogeneity of cellular senescence: insights at the single-cell level. Trends Cell Biol 2023; 33:9-17. [PMID: 35599179 PMCID: PMC9812642 DOI: 10.1016/j.tcb.2022.04.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/07/2023]
Abstract
Senescent cells are highly associated with aging and pathological conditions and could be targeted to slow the aging process. One commonly used marker to examine senescent cells in vivo is p16, which has led to important discoveries. Recent studies have also described new senescence markers beyond p16 and have highlighted the importance of investigating senescence heterogeneity in cell types and tissues. With the development of high-throughput technologies, such as single-cell RNA-seq and single-nucleus RNA-seq, we can examine senescent cells at the single-cell level and potentially uncover new markers. This review emphasizes that there is an urgent need to investigate senescence heterogeneity and discuss how this could be accomplished by using advanced technologies and sequencing datasets.
Collapse
Affiliation(s)
- Rachel L Cohn
- UConn Center on Aging, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Nathan S Gasek
- UConn Center on Aging, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | | | - Ming Xu
- UConn Center on Aging, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
297
|
Li C, Tang Y, Ye Y, Zuo M, Lu Q. Potential of natural flavonols and flavanones in the treatment of ulcerative colitis. Front Pharmacol 2023; 14:1120616. [PMID: 36937890 PMCID: PMC10020211 DOI: 10.3389/fphar.2023.1120616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease generally characterized by chronic, persistent, recurrent, and non-specific ulcers of the intestine. Its main clinical manifestations include abdominal pain, diarrhea, and bloody stools. This disease is difficult to cure and even carries the risk of canceration. It has been listed as a modern refractory disease by the World Health Organization. Though a large amount of drugs are available for the inhibition of UC, the conventional treatment such as aminosalicylic acids, glucocorticoids, immunosuppressors, and biological agents possess certain limitations and serious side effects. Therefore, it is urgently needed for safe and effective drugs of UC, and natural-derived flavonols and flavanones showed tremendous potential. The present study concentrated on the progress of natural-derived flavonols and flavanones from edible and pharmaceutical plants for the remedy of UC over the last two decades. The potential pharmaceutical of natural-derived flavonols and flavanones against UC were closely connected with the modulation of gut microflora, gut barrier function, inflammatory reactions, oxidative stress, and apoptosis. The excellent efficacy and safety of natural flavonols and flavanones make them prospective drug candidates for UC suppression.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yonghao Ye
- Zhuhai Resproly Pharmaceutical Technology Company Limited, Zhuhai, China
| | - Manhua Zuo
- Department of Nursing, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- *Correspondence: Qiang Lu,
| |
Collapse
|
298
|
Cummings J, Leisgang Osse AM, Kinney J. Geroscience and Alzheimer's Disease Drug Development. J Prev Alzheimers Dis 2023; 10:620-632. [PMID: 37874083 PMCID: PMC10720397 DOI: 10.14283/jpad.2023.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Age is the most important risk factor for Alzheimer's disease (AD). The acceptable age range for participation in AD clinical trials is 50 to 90, and this 40-year span incorporates enormous age-related change. Clinical trial participants tend to be younger and healthier than the general population. They are also younger than the general population of AD patients. Drug development from a geroscience perspective would take greater account of effects of aging on clinical trial outcomes. The AD clinical trial pipeline has diversified beyond the canonical targets of amyloid beta protein and tau. Many of these interventions apply to age-related disorders. Anti-inflammatory agents and bioenergetic and metabolic therapies are among the well represented classes in the pipeline and are applicable to AD and non-AD age-related conditions. Drug development strategies can be adjusted to better inform outcomes of trials regarding aged individuals. Inclusion of older individuals in the multiple ascending dose trials of Phase 1, use of geriatric-related clinical outcomes and biomarkers in Phase 2, and extension of these Phase 2 learnings to Phase 3 will result in a more comprehensive understanding of AD therapies and their relationship to aging. Clinical trials can employ a more comprehensive geriatric assessment approach and biomarkers more relevant to aging at baseline and as exploratory outcomes. Greater attention to the role of aging and its influence in AD clinical trials can result in better understanding of the generalizability of clinical trial findings to the older AD population.
Collapse
Affiliation(s)
- J Cummings
- Jeffrey Cummings, 1380 Opal valley street, Henderson, Nevada 89052, USA,
| | | | | |
Collapse
|
299
|
Hung SW, Liao YC, Chi IC, Lin TY, Lin YC, Lin HJ, Huang ST. Integrated Chinese herbal medicine and Western medicine successfully resolves spontaneous subcutaneous emphysema and pneumomediastinum in a patient with severe COVID-19 in Taiwan: A case report. Explore (NY) 2023; 19:147-152. [PMID: 34955379 PMCID: PMC8667518 DOI: 10.1016/j.explore.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/11/2021] [Indexed: 01/25/2023]
Abstract
CASE Serious complications of severe coronavirus disease 2019 (COVID-19) include subcutaneous emphysema (SE) and pneumomediastinum, which are complicated to treat with conventional Western medicine. We report how combining Chinese herbal medicine (CHM) with Western medicine quickly resolved a patient's COVID-19-associated pulmonary complications, shortened hospital stay and improved quality of life. CLINICAL FEATURES AND OUTCOME A 59-year-old male with a history of smoking and tumors was diagnosed with COVID-19 in May 2021. At hospitalization, his oxygen saturation (SpO2) was 80%, he had a continuous severe cough, rapid shallow breathing, spontaneous SE and pneumomediastinum. By Day 4 of hospitalization, his condition was worsening despite standard care, so CHM was added. After 3-5 days, his coughing had lessened and supplementary oxygen therapy was de-escalated. Nine days after starting CHM, the SE had completely resolved and the patient avoided intubation. His WHO OS 10-point Scale score had fallen from 6 to 3 points and the modified Medical Research Council Dyspnea Scale score from 4 to 2 points. He was hospitalized for 19 days. At 1 week post-discharge, the patient could handle most of his daily activities and experienced minor shortness of breath only when performing labor-intensive tasks. At 1 month, his work output was restored to pre-COVID-19 levels. CONCLUSION CHM combined with standard Western medicine improved pulmonary function, respiratory rate, blood oxygen saturation and shortened the hospital stay of a patient with severe COVID-19 complicated by SE and pneumomediastinum.
Collapse
Affiliation(s)
- Shuo-Wen Hung
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan
| | - Yuan-Ching Liao
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan; Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, North District, Taichung City 40402, Taiwan
| | - I-Chang Chi
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan
| | - Ting-Yen Lin
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan
| | - Yu-Chuan Lin
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan
| | - Hung-Jen Lin
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan; Department of Chinese Medicine, School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, North District, Taichung City 40402, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan; Department of Chinese Medicine, School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, North District, Taichung City 40402, Taiwan; Cancer Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, No. 2, Yude Road, North District, Taichung City 404332, Taiwan; An-Nan Hospital, China Medical University, No. 66, Section 2, Zhanghe Road, Annan District, Tainan City 709, Taiwan.
| |
Collapse
|
300
|
Tiwari P, Mishra R, Mazumder A, Mazumder R, Singh A. An Insight into Diverse Activities and Targets of Flavonoids. Curr Drug Targets 2023; 24:89-102. [PMID: 36111764 DOI: 10.2174/1389450123666220915121236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Flavonoids belong to the chemical class of polyphenols and are in the category of secondary metabolites imparting a wide protective effect against acute and chronic diseases. OBJECTIVE The study aims to investigate and summarize the information of various flavonoids extracted, isolated from various sources, and possess different pharmacological properties by acting on multiple targets. METHODS This comprehensive review summarizes the research information related to flavonoids and their pharmacological action targets from various sources like PubMed, Google Scholar and Google websites. RESULTS Extracted information in the paper discusses various therapeutic effects of flavonoids isolated from medicinal plant sources, which have the property to inhibit several enzymes, which finally results in health benefits like anti-cancer, anti-bacterial, antioxidant, anti-allergic, and anti-viral effects. This study also showed the different solvents and methods involved in the extraction and characterization of the isolated phytochemical constituents. CONCLUSION The findings showed the contribution of several flavonoids in the management and inhibition of various acute and chronic sicknesses by acting on different sites in the body. This study may lead to gaining interest for more research on the bioactives of different medicinal plants for the discovery of new lead compounds or further improvement of the efficacy of the existing compound.
Collapse
Affiliation(s)
- Prashant Tiwari
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| | - Rakhi Mishra
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| | - Rupa Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| | - Ayushi Singh
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| |
Collapse
|