251
|
Current Trends in Advanced Alginate-Based Wound Dressings for Chronic Wounds. J Pers Med 2021; 11:jpm11090890. [PMID: 34575668 PMCID: PMC8471591 DOI: 10.3390/jpm11090890] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic wounds represent a major public health issue, with an extremely high cost worldwide. In healthy individuals, the wound healing process takes place in different stages: inflammation, cell proliferation (fibroblasts and keratinocytes of the dermis), and finally remodeling of the extracellular matrix (equilibrium between metalloproteinases and their inhibitors). In chronic wounds, the chronic inflammation favors exudate persistence and bacterial film has a special importance in the dynamics of chronic inflammation in wounds that do not heal. Recent advances in biopolymer-based materials for wound healing highlight the performance of specific alginate forms. An ideal wound dressing should be adherent to the wound surface and not to the wound bed, it should also be non-antigenic, biocompatible, semi-permeable, biodegradable, elastic but resistant, and cost-effective. It has to give protection against bacterial, infectious, mechanical, and thermal agents, to modulate the level of wound moisture, and to entrap and deliver drugs or other molecules This paper explores the roles of alginates in advanced wound-dressing forms with a particular emphasis on hydrogels, nanofibers networks, 3D-scaffolds or sponges entrapping fibroblasts, keratinocytes, or drugs to be released on the wound-bed. The latest research reports are presented and supported with in vitro and in vivo studies from the current literature.
Collapse
|
252
|
Ionescu OM, Mignon A, Minsart M, Van Hoorick J, Gardikiotis I, Caruntu ID, Giusca SE, Van Vlierberghe S, Profire L. Gelatin-Based Versus Alginate-Based Hydrogels: Providing Insight in Wound Healing Potential. Macromol Biosci 2021; 21:e2100230. [PMID: 34491617 DOI: 10.1002/mabi.202100230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/31/2021] [Indexed: 11/09/2022]
Abstract
Wound dressings under the form of films constituted of modified alginate (methacrylated alginate - AlgMA) versus a gelatine derivative containing norbornene functionalities (GelNB) are developed and evaluated for their moisturizing effects, followed by further in vivo testing to assay their wound healing potential. The gel fraction results shows that AlgMA and GelNB films displayed a high crosslinking efficiency while the swelling assay reveals a stronger water uptake capacity for AlgMA films compared to GelNB and to commercial dressing AquacelAg, used as positive control. Referring to the in vivo wound healing effect, the GelNB films not only exhibit proper healing properties, yet is higher to the AquacelAg, while the AlgMA films exhibit similar wound healing effect as the positive control. On a microscopic level, the healing phases (from inflammation to proliferation and contraction) are present for both materials, yet at a faster rate for the GelNB films, which is in line with the macroscopic findings. These results provide data which support that GelNB films outperform AlgMA films, but both can be used for wound healing applications.
Collapse
Affiliation(s)
- Oana Maria Ionescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, Iasi, 700115, Romania
| | - Arn Mignon
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium.,Smart Polymeric Biomaterials, Campus Group T, Surface and Interface Engineered Materials, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium
| | - Manon Minsart
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| | - Jasper Van Hoorick
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| | - Ioannis Gardikiotis
- Advanced Centre of Research and Development in Experimental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, Iasi, 700115, Romania
| | - Irina-Draga Caruntu
- Department of Morphofunctional Sciences, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, Iasi, 700115, Romania
| | - Simona Eliza Giusca
- Department of Morphofunctional Sciences, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, Iasi, 700115, Romania
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, Iasi, 700115, Romania
| |
Collapse
|
253
|
Post AD, Buchan S, John M, Safavi-Naeini P, Cosgriff-Hernández E, Razavi M. Reconstituting electrical conduction in soft tissue: the path to replace the ablationist. Europace 2021; 23:1892-1902. [PMID: 34477862 DOI: 10.1093/europace/euab187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrhythmias are a leading cause of morbidity and mortality in the developed world. A common mechanism underlying many of these arrhythmias is re-entry, which may occur when native conduction pathways are disrupted, often by myocardial infarction. Presently, re-entrant arrhythmias are most commonly treated with antiarrhythmic drugs and myocardial ablation, although both treatment methods are associated with adverse side effects and limited efficacy. In recent years, significant advancements in the field of biomaterials science have spurred increased interest in the development of novel therapies that enable restoration of native conduction in damaged or diseased myocardium. In this review, we assess the current landscape of materials-based approaches to eliminating re-entrant arrhythmias. These approaches potentially pave the way for the eventual replacement of myocardial ablation as a preferred therapy for such pathologies.
Collapse
Affiliation(s)
- Allison D Post
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Skylar Buchan
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Mathews John
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Payam Safavi-Naeini
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | | | - Mehdi Razavi
- Electrophysiology Clinical Research and Innovations, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA.,Department of Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
254
|
Wang J, Cai N, Chan V, Zeng H, Shi H, Xue Y, Yu F. Antimicrobial hydroxyapatite reinforced-polyelectrolyte complex nanofibers with long-term controlled release activity for potential wound dressing application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
255
|
Ndlovu SP, Ngece K, Alven S, Aderibigbe BA. Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings. Polymers (Basel) 2021; 13:2959. [PMID: 34502997 PMCID: PMC8434607 DOI: 10.3390/polym13172959] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.
Collapse
Affiliation(s)
| | | | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa; (S.P.N.); (K.N.); (S.A.)
| |
Collapse
|
256
|
Abstract
Hydrogels, due to their excellent biochemical and mechnical property, have shown attractive advantages in the field of wound dressings. However, a comprehensive review of the functional hydrogel as a wound dressing is still lacking. This work first summarizes the skin wound healing process and relates evaluation parameters and then reviews the advanced functions of hydrogel dressings such as antimicrobial property, adhesion and hemostasis, anti-inflammatory and anti-oxidation, substance delivery, self-healing, stimulus response, conductivity, and the recently emerged wound monitoring feature, and the strategies adopted to achieve these functions are all classified and discussed. Furthermore, applications of hydrogel wound dressing for the treatment of different types of wounds such as incisional wound and the excisional wound are summarized. Chronic wounds are also mentioned, and the focus of attention on infected wounds, burn wounds, and diabetic wounds is discussed. Finally, the future directions of hydrogel wound dressings for wound healing are further proposed.
Collapse
Affiliation(s)
- Yongping Liang
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiahui He
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
257
|
Zhou Y, Liu G, Huang H, Wu J. Advances and impact of arginine-based materials in wound healing. J Mater Chem B 2021; 9:6738-6750. [PMID: 34346479 DOI: 10.1039/d1tb00958c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In studies on wound-dressing materials, bioactive materials have been developed rapidly to accelerate wound healing. In recent years, scientists have studied arginine as a bioactive component due to its excellent biosafety, antimicrobial properties and therapeutic effects on wound healing. Surprisingly, arginine therapy is also used under specific pathological conditions, such as diabetes and trauma/hemorrhagic shock. Due to the broad utilization of arginine-assisted therapy, we present the unique properties of arginine for healing lesions of damaged tissue and examined multiple arginine-based systems for the application of wound healing. This review shows that arginine-based therapy can be separated in two categories: direct supplemental approaches of free arginine, and indirect approaches based on arginine derivatives in which modified arginine can be released after biodegradation. Using these two pathways, arginine-based therapy may prove to be a promising strategy in the development of wound curative treatments.
Collapse
Affiliation(s)
- Yang Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | | | | | | |
Collapse
|
258
|
Peng Y, Ma Y, Bao Y, Liu Z, Chen L, Dai F, Li Z. Electrospun PLGA/SF/artemisinin composite nanofibrous membranes for wound dressing. Int J Biol Macromol 2021; 183:68-78. [PMID: 33892031 DOI: 10.1016/j.ijbiomac.2021.04.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022]
Abstract
Combining biodegradable materials with natural plant components for wound dressing has been receiving significant attention. ART is a sesquiterpene lactone compound extracted from Artemisia annua L., possessing multiple pharmacological effects including antibacterial activity and anti-inflammatory property. Herein, the blended polylactic acid glycolic acid (PLGA)/silk fibroin (SF) membranes loaded with artemisinin (ART) are fabricated through electrospinning. With aid of SF, the fabricated membranes have a good sustained-release effect, and the accumulated ART release can reach 69% after three weeks. PLGA/SF/ART membranes exhibit favorable anti-inflammatory and cell compatibility in vitro evaluations. The in vivo experiment indicates that PLGA/SF/ART2 membranes can shorten the inflammation period and enhance skin regeneration in a full-thickness wound model through down-regulating the expressions of pro-inflammatory cytokines IL-1β and TNF-α. To sum up, the fabricated PLGA/SF/ART2 composite membranes with anti-inflammatory properties can be a proposal wound dressing for chronic wound healing.
Collapse
Affiliation(s)
- Yan Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Yan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Yu Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Zulan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Li Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China.
| | - Zhi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
259
|
Sulastri E, Lesmana R, Zubair MS, Elamin KM, Wathoni N. A Comprehensive Review on Ulvan Based Hydrogel and Its Biomedical Applications. Chem Pharm Bull (Tokyo) 2021; 69:432-443. [PMID: 33952853 DOI: 10.1248/cpb.c20-00763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ulvan is a natural sulfated polysaccharide obtained from marine green algae composed of 3-sulfated rhamnoglucuronan as the main component. It has a unique chemical structure that rich of L-rhamnosa, D-glucuronic acid, and L-iduronic acid. Ulvan has a similar structure to glycosaminoglycans (GAGs) in mammals including chondroitin sulfate, dermatan sulfate, and heparan sulfate that has broad range applications for many years. Here, we provide an overview of ulvan based hydrogels for biomedical applications. Hydrogels are one of ulvan advances in polymer science for application in drug delivery, tissue engineering, and wound healing. This review presented an overview about functional information of ulvan based hydrogels and the promising potential in biomedicals collected from published papers in Scopus, PubMed, and Google Scholar. Other important aspects concerning properties, hydrogel-forming mechanisms, and ulvan based hydrogel developments were reported as well. As conclusion, ulvan showed interesting properties in forming hydrogels and promising advances in biomedical applications.
Collapse
Affiliation(s)
- Evi Sulastri
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran.,Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Tadulako
| | - Ronny Lesmana
- Department of Anatomy, Physiology and Biology Cell, Faculty of Medicine, Universitas Padjadjaran
| | | | - Khaled M Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran
| |
Collapse
|
260
|
Orekhov AS, Arkharova NA, Klechkovskaya VV. Microstructural Features of Poly(N-Vinylpyrrolidone)−La(NO3)3 ⋅ 6H2O Hydrogel. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
261
|
Lima TDPDL, Passos MF. Skin wounds, the healing process, and hydrogel-based wound dressings: a short review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1910-1925. [PMID: 34156314 DOI: 10.1080/09205063.2021.1946461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skin wounds are damage to the epithelial layer and the integrity of living tissue. The healing mechanism is dynamic and complex, and often treatments with wound dressings help in tissue regeneration, reducing the risk of infections. Polymeric hydrogels become good candidates for wet curing process. These materials prevent dehydration of the tissue and avoid discomfort to the patient when changing the dressing. In this short review, we demonstrate the importance of the healing process, the types of skin wounds, and the hydrogels that are potentially attractive as wound dressings.
Collapse
|
262
|
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how. Int J Biol Macromol 2021; 186:656-685. [PMID: 34271047 DOI: 10.1016/j.ijbiomac.2021.07.067] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation. Hence, in both acute and chronic wounds, prominent biomaterials are required for wound healing along with antimicrobial agents. This review comprehensively addresses the antimicrobial and wound healing effects of chitosan, chitin, cellulose acetate, hyaluronic acid, pullulan, bacterial cellulose, fibrin, alginate, etc. based wound dressing biomaterials fabricated with natural resources such as honey, plant bioactive compounds, and marine-based polymers. Due to their excellent biocompatibility and biodegradability, bioactive compounds derived from honey, plants, and marine resources are commonly used in biomedical and tissue engineering applications. Different types of polymer-based biomaterials including hydrogel, film, scaffold, nanofiber, and sponge dressings fabricated with bioactive agents including honey, curcumin, tannin, quercetin, andrographolide, gelatin, carrageenan, etc., can exhibit significant wound healing process in, diabetic wounds, diabetic ulcers, and burns, and help in cartilage repair along with good biocompatibility and antimicrobial effects. Among the reviewed biomaterials, carbohydrate polymers such as chitosan-based biomaterials are prominent and widely used for wound healing applications followed by hyaluronic acid and alginate-based biomaterials loaded with honey, plant, and marine compounds. This review first provides an overview of the vast natural resources used to formulate different biomaterials for the treatment of antimicrobial, acute, and chronic wound healing processes.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Subramaniam Sadhasivam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
263
|
Ma C, Choi JB, Jang YS, Kim SY, Bae TS, Kim YK, Park JM, Lee MH. Mammalian and Fish Gelatin Methacryloyl-Alginate Interpenetrating Polymer Network Hydrogels for Tissue Engineering. ACS OMEGA 2021; 6:17433-17441. [PMID: 34278129 PMCID: PMC8280709 DOI: 10.1021/acsomega.1c01806] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/15/2021] [Indexed: 05/05/2023]
Abstract
Gelatin methacryloyl (GelMA) has been widely studied as a biomaterial for tissue engineering. Most studies focus on mammalian gelatin, but certain factors, such as mammalian diseases and diet restrictions, limit the use of mammalian gelatin. Thus, fish gelatin has received much attention as a substitute material in recent years. To develop a broadly applicable hydrogel with excellent properties, an interpenetrating polymer network (IPN) hydrogel was synthesized, since IPN hydrogels consist of at least two different hydrogel components to combine their advantages. In this study, we prepared GelMA using type A and fish gelatin and then synthesized IPN hydrogels using GelMA with alginate. GelMA single-network hydrogels were used as a control group. The favorable mechanical properties of type A and fish hydrogels improved after the synthesis of the IPN hydrogels. Type A and fish IPN hydrogels showed different mechanical properties (mechanical strength, swelling ratio, and degradation rate) and different cross-sectional morphologies, since the degree of mechanical enhancement in fish IPN hydrogels was less than that in type A; however, the cell biocompatibilities were not significantly different. Therefore, these findings could serve as a reference for future studies when selecting GelMA as a biological material for tissue engineering.
Collapse
Affiliation(s)
- Chen Ma
- Department
of Dental Biomaterials, Institute of Biodegradable Materials, School
of Dentistry, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, South Korea
| | - Ji-Bong Choi
- Department
of Dental Biomaterials, Institute of Biodegradable Materials, School
of Dentistry, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, South Korea
| | - Yong-Seok Jang
- Department
of Dental Biomaterials, Institute of Biodegradable Materials, School
of Dentistry, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, South Korea
| | - Seo-Young Kim
- Department
of Dental Biomaterials, Institute of Biodegradable Materials, School
of Dentistry, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, South Korea
| | - Tae-Sung Bae
- Department
of Dental Biomaterials, Institute of Biodegradable Materials, School
of Dentistry, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, South Korea
| | - Yu-Kyoung Kim
- Department
of Dental Biomaterials, Institute of Biodegradable Materials, School
of Dentistry, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, South Korea
| | - Ju-Mi Park
- Department
of Prosthodontics, School of Dentistry, Jeonbuk National University, 567 Baekje-daero, Jeonju 54896, South Korea
| | - Min-Ho Lee
- Department
of Dental Biomaterials, Institute of Biodegradable Materials, School
of Dentistry, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, South Korea
| |
Collapse
|
264
|
Chen K, Muthukumar M. Entropic barrier of topologically immobilized DNA in hydrogels. Proc Natl Acad Sci U S A 2021; 118:e2106380118. [PMID: 34260390 PMCID: PMC8285975 DOI: 10.1073/pnas.2106380118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The single most intrinsic property of nonrigid polymer chains is their ability to adopt enormous numbers of chain conformations, resulting in huge conformational entropy. When such macromolecules move in media with restrictive spatial constraints, their trajectories are subjected to reductions in their conformational entropy. The corresponding free energy landscapes are interrupted by entropic barriers separating consecutive spatial domains which function as entropic traps where macromolecules can adopt their conformations more favorably. Movement of macromolecules by negotiating a sequence of entropic barriers is a common paradigm for polymer dynamics in restrictive media. However, if a single chain is simultaneously trapped by many entropic traps, it has recently been suggested that the macromolecule does not undergo diffusion and is localized into a topologically frustrated dynamical state, in apparent violation of Einstein's theorem. Using fluorescently labeled λ-DNA as the guest macromolecule embedded inside a similarly charged hydrogel with more than 95% water content, we present direct evidence for this new state of polymer dynamics at intermediate confinements. Furthermore, using a combination of theory and experiments, we measure the entropic barrier for a single macromolecule as several tens of thermal energy, which is responsible for the extraordinarily long extreme metastability. The combined theory-experiment protocol presented here is a determination of single-molecule entropic barriers in polymer dynamics. Furthermore, this method offers a convenient general procedure to quantify the underlying free energy landscapes behind the ubiquitous phenomenon of movement of single charged macromolecules in crowded environments.
Collapse
Affiliation(s)
- Kuo Chen
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
265
|
Venkatachalam D, Kaliappa S. Superabsorbent polymers: A state-of-art review on their classification, synthesis, physicochemical properties, and applications. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Superabsorbent polymers (SAP) and modified natural polymer hydrogels are widely and increasingly used in agriculture, health care textiles, effluent treatment, drug delivery, tissue engineering, civil concrete structure, etc. However, not many comprehensive reviews are available on this class of novel polymers. A review covering all the viable applications of SAP will be highly useful for researchers, industry persons, and medical, healthcare, and agricultural purposes. Hence, an attempt has been made to review SAPs with reference to their classifications, synthesis, modification by crosslinking, and physicochemical characterization such as morphology, swellability, thermal and mechanical properties, lifetime prediction, thermodynamics of swelling, absorption, release and transport kinetics, quantification of hydrophilic groups, etc. Besides, the possible methods of fine-tuning their structures for improving their absorption capacity, fast absorption kinetics, mechanical strength, controlled release features, etc. were also addressed to widen their uses. This review has also highlighted the biodegradability, commercial viability and market potential of SAPs, SAP composites, the feasibility of using biomass as raw materials for SAP production, etc. The challenges and future prospects of SAP, their safety, and environmental issues are also discussed.
Collapse
Affiliation(s)
- Dhanapal Venkatachalam
- Department of Chemistry , Bannari Amman Institute of Technology , Sathyamangalam , 638 401 , Erode Dt , Tamil Nadu , India
| | - Subramanian Kaliappa
- Biopolymer and Biomaterial Synthesis and Analytical Testing Lab, Department of Biotechnology , Bannari Amman Institute of Technology , Sathyamangalam , 638 401 , Erode Dt , Tamil Nadu , India
| |
Collapse
|
266
|
Behravesh A, Shahrousvand M, Goudarzi A. Poly(acrylic acid)/gum arabic/ZnO semi-IPN hydrogels: synthesis, characterization and their optimizations by response surface methodology. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00920-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
267
|
Khezri K, Saeedi M, Mohammadamini H, Zakaryaei AS. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res 2021; 35:5527-5563. [PMID: 34131980 DOI: 10.1002/ptr.7190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Today, due to the prevalence of various diseases such as the novel coronavirus (SARS-CoV-2), diabetes, central nervous system diseases, cancer, cardiovascular disorders, and so on, extensive studies have been conducted on therapeutic properties of natural and synthetic agents. A literature review on herbal medicine and commercial products in the global market showed that curcumin (Cur) has many therapeutic benefits compared to other natural ingredients. Despite the unique properties of Cur, its use in clinical trials is very limited. The poor biopharmaceutical properties of Cur such as short half-life in plasma, low bioavailability, poor absorption, rapid metabolism, very low solubility (at acidic and physiological pH), and the chemical instability in body fluids are major concerns associated with the clinical applications of Cur. Recently, nanoformulations are emerging as approaches to develop and improve the therapeutic efficacy of various drugs. Many studies have shown that Cur nanoformulations have tremendous therapeutic potential against various diseases such as SARS-CoV-2, cancer, inflammatory, osteoporosis, and so on. These nanoformulations can inhibit many diseases through several cellular and molecular mechanisms. However, successful long-term clinical results are required to confirm their safety and clinical efficacy. The present review aims to update and explain the therapeutic potential of Cur nanoformulations.
Collapse
Affiliation(s)
- Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | |
Collapse
|
268
|
Duran-Mota JA, Yani JQ, Almquist BD, Borrós S, Oliva N. Polyplex-Loaded Hydrogels for Local Gene Delivery to Human Dermal Fibroblasts. ACS Biomater Sci Eng 2021; 7:4347-4361. [PMID: 34081451 DOI: 10.1021/acsbiomaterials.1c00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Impaired cutaneous healing leading to chronic wounds affects between 2 and 6% of the total population in most developed countries and it places a substantial burden on healthcare budgets. Current treatments involving antibiotic dressings and mechanical debridement are often not effective, causing severe pain, emotional distress, and social isolation in patients for years or even decades, ultimately resulting in limb amputation. Alternatively, gene therapy (such as mRNA therapies) has emerged as a viable option to promote wound healing through modulation of gene expression. However, protecting the genetic cargo from degradation and efficient transfection into primary cells remain significant challenges in the push to clinical translation. Another limiting aspect of current therapies is the lack of sustained release of drugs to match the therapeutic window. Herein, we have developed an injectable, biodegradable and cytocompatible hydrogel-based wound dressing that delivers poly(β-amino ester)s (pBAEs) nanoparticles in a sustained manner over a range of therapeutic windows. We also demonstrate that pBAE nanoparticles, successfully used in previous in vivo studies, protect the mRNA load and efficiently transfect human dermal fibroblasts upon sustained release from the hydrogel wound dressing. This prototype wound dressing technology can enable the development of novel gene therapies for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Jose Antonio Duran-Mota
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain.,Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Júlia Quintanas Yani
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain.,Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Benjamin D Almquist
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Nuria Oliva
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
269
|
Giliomee J, du Toit LC, Kumar P, Klumperman B, Choonara YE. Evaluation of Composition Effects on the Physicochemical and Biological Properties of Polypeptide-Based Hydrogels for Potential Application in Wound Healing. Polymers (Basel) 2021; 13:polym13111828. [PMID: 34073003 PMCID: PMC8198873 DOI: 10.3390/polym13111828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, the effect of crosslinking and concentration on the properties of a new library of low-concentration poly(Lys60-ran-Ala40)-based hydrogels for potential application in wound healing was investigated in order to correlate the hydrogel composition with the desired physicochemical and biofunctional properties to expand the assortment of poly-l-lysine (PLL)-based hydrogels suitable for wound healing. Controlled ring-opening polymerization (ROP) and precise hydrogel compositions were used to customize the physicochemical and biofunctional properties of a library of new hydrogels comprising poly(l-lysine-ran-l-alanine) and four-arm poly(ethylene glycol) (P(KA)/4-PEG). The chemical composition and degree of crosslinking via free amine quantification were analyzed for the P(KA)/4-PEG hydrogels. In addition, the rheological properties, pore morphology, swelling behavior and degradation time were characterized. Subsequently, in vitro cell studies for evaluation of the cytotoxicity and cell adhesion were performed. The 4 wt% 1:1 functional molar ratio hydrogel with P(KA) concentrations as low as 0.65 wt% demonstrated low cytotoxicity and desirable cell adhesion towards fibroblasts and thus displayed a desirable combination of properties for wound healing application.
Collapse
Affiliation(s)
- Johnel Giliomee
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (J.G.); (L.C.d.T.); (P.K.)
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (J.G.); (L.C.d.T.); (P.K.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (J.G.); (L.C.d.T.); (P.K.)
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Faculty of Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (J.G.); (L.C.d.T.); (P.K.)
- Correspondence: ; Tel.: +27-11-717-2052
| |
Collapse
|
270
|
Li Z, Bratlie KM. The Influence of Polysaccharides-Based Material on Macrophage Phenotypes. Macromol Biosci 2021; 21:e2100031. [PMID: 33969643 DOI: 10.1002/mabi.202100031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 02/03/2023]
Abstract
Macrophage polarization is a key factor in determining the success of implanted tissue engineering scaffolds. Polysaccharides (derived from plants, animals, and microorganisms) are known to modulate macrophage phenotypes by recognizing cell membrane receptors. Numerous studies have developed polysaccharide-based materials into functional biomaterial substrates for tissue regeneration and pharmaceutical application due to their immunostimulatory activities and anti-inflammatory response. They are used as hydrogel substrates, surface coatings, and drug delivery carriers. In addition to their innate immunological functions, the newly endowed physical and chemical properties, including substrate modulus, pore size/porosity, surface binding chemistry, and the mole ratio of polysaccharides in hybrid materials may regulate macrophage phenotypes more precisely. Growing evidence indicates that the sulfation pattern of glycosaminoglycans and proteoglycans expressed on polarized macrophages leads to the changes in protein binding, which may alter macrophage phenotype and influence the immune response. A comprehensive understanding of how different types of polysaccharide-based materials alter macrophage phenotypic changes can be beneficial to predict transplantation/implantation outcomes. This review focuses on recent advances in promoting wound healing and balancing macrophage phenotypes using polysaccharide-based substrates/coatings and new directions to address the limitations in the current understanding of macrophage responses to polysaccharides.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Chemical & Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
271
|
Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev 2021; 172:275-295. [PMID: 33450330 PMCID: PMC8107146 DOI: 10.1016/j.addr.2021.01.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023]
Abstract
Hydrogels prepared via self-assembly offer scalable and tunable platforms for drug delivery applications. Molecular-scale self-assembly leverages an interplay of attractive and repulsive forces; drugs and other active molecules can be incorporated into such materials by partitioning in hydrophobic domains, affinity-mediated binding, or covalent integration. Peptides have been widely used as building blocks for self-assembly due to facile synthesis, ease of modification with bioactive molecules, and precise molecular-scale control over material properties through tunable interactions. Additional opportunities are manifest in stimuli-responsive self-assembly for more precise drug action. Hydrogels can likewise be fabricated from macromolecular self-assembly, with both synthetic polymers and biopolymers used to prepare materials with controlled mechanical properties and tunable drug release. These include clinical approaches for solubilization and delivery of hydrophobic drugs. To further enhance mechanical properties of hydrogels prepared through self-assembly, recent work has integrated self-assembly motifs with polymeric networks. For example, double-network hydrogels capture the beneficial properties of both self-assembled and covalent networks. The expanding ability to fabricate complex and precise materials, coupled with an improved understanding of biology, will lead to new classes of hydrogels specifically tailored for drug delivery applications.
Collapse
Affiliation(s)
- Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556, USA.
| | - E Thomas Pashuck
- Lehigh University, Department of Bioengineering, Bethlehem, PA 18015, USA.
| |
Collapse
|
272
|
Nurzynska A, Klimek K, Palka K, Szajnecki Ł, Ginalska G. Curdlan-Based Hydrogels for Potential Application as Dressings for Promotion of Skin Wound Healing-Preliminary In Vitro Studies. MATERIALS 2021; 14:ma14092344. [PMID: 33946409 PMCID: PMC8125403 DOI: 10.3390/ma14092344] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023]
Abstract
The aim of this work was to establish whether novel curdlan-based hydrogels enriched with Ca2+ ions may be considered as potential candidates for dressings, for the acceleration of skin wound healing. Firstly, biomaterials were allocated for evaluation of structural and mechanical properties. Subsequently, the ability of hydrogels to absorb simulated wound fluid and water vapor permeability, as well their capacity to release calcium ions, was evaluated. The biocompatibility of biomaterials was assessed using normal human skin fibroblasts. Importantly, the main features of the obtained curdlan-based hydrogels were compared with those of KALTOSTAT® (a commercial calcium sodium alginate wound dressing). The obtained results showed that curdlan-based biomaterials possessed a mesoporous structure (pore diameter ranged from 14–48 nm) and exhibited a good ability to absorb simulated wound fluid (swelling ratio close to 974–1229%). Moreover, in a wet state, they enabled proper water vapor transmission rate (>2000 g/m2/day), thanks to their hydrogel structure. Finally, it was found that biomaterial composed of 11 wt.% of curdlan (Cur_11%) possessed the most desirable biological properties in vitro. It released a beneficial amount of calcium ions to the aqueous environment (approximately 6.12 mM), which significantly enhanced fibroblast viability and proliferation. Taking into account the beneficial properties of Cur_11% biomaterial, it seems justified to subject it to more advanced cell culture experiments in vitro and to in vivo studies in order to determine its precise influence on skin wound healing.
Collapse
Affiliation(s)
- Aleksandra Nurzynska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (A.N.); (G.G.)
| | - Katarzyna Klimek
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (A.N.); (G.G.)
- Correspondence: ; Tel.: +48-81-448-7028 or +48-81-448-7020
| | - Krzysztof Palka
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 26 Street, 20-618 Lublin, Poland;
| | - Łukasz Szajnecki
- Department of Polymer Chemistry, Maria Curie-Skłodowska University in Lublin, M. Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland;
| | - Grazyna Ginalska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (A.N.); (G.G.)
| |
Collapse
|
273
|
Johnson JB, Broszczak DA, Mani JS, Anesi J, Naiker M. A cut above the rest: oxidative stress in chronic wounds and the potential role of polyphenols as therapeutics. J Pharm Pharmacol 2021; 74:485-502. [PMID: 33822141 DOI: 10.1093/jpp/rgab038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The pathophysiology of chronic wounds typically involves redox imbalance and inflammation pathway dysregulation, often with concomitant microbial infection. Endogenous antioxidants such as glutathione and tocopherols are notably reduced or absent, indicative of significant oxidative imbalance. However, emerging evidence suggests that polyphenols could be effective agents for the amelioration of this condition. This review aims to summarise the current state of knowledge surrounding redox imbalance in the chronic wound environment and the potential use of polyphenols for the treatment of chronic wounds. KEY FINDINGS Polyphenols provide a multi-faceted approach towards the treatment of chronic wounds. Firstly, their antioxidant activity allows direct neutralisation of harmful free radicals and reactive oxygen species, assisting in restoring redox balance. Upregulation of pro-healing and anti-inflammatory gene pathways and enzymes by specific polyphenols further acts to reduce redox imbalance and promote wound healing actions, such as proliferation, extracellular matrix deposition and tissue remodelling. Finally, many polyphenols possess antimicrobial activity, which can be beneficial for preventing or resolving infection of the wound site. SUMMARY Exploration of this diverse group of natural compounds may yield effective and economical options for the prevention or treatment of chronic wounds.
Collapse
Affiliation(s)
- Joel B Johnson
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| | - Daniel A Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Janice S Mani
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| | - Jack Anesi
- School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
| | - Mani Naiker
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| |
Collapse
|
274
|
Wojcik M, Kazimierczak P, Benko A, Palka K, Vivcharenko V, Przekora A. Superabsorbent curdlan-based foam dressings with typical hydrocolloids properties for highly exuding wound management. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112068. [PMID: 33947561 DOI: 10.1016/j.msec.2021.112068] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/27/2021] [Accepted: 03/20/2021] [Indexed: 12/31/2022]
Abstract
Effective management of chronic wounds with excessive exudate may be challenging for medical doctors. Over the years, there has been an increasing interest in the engineering of biomaterials, focusing on the development of polymer-based wound dressings to accelerate the healing of exuding wounds. The aim of this study was to use curdlan, which is known to support wound healing, as a base for the production of superabsorbent hybrid biomaterials (curdlan/agarose and curdlan/chitosan) with the intended use as wound dressings for highly exuding wound management. To evaluate the biomedical potential of the fabricated curdlan-based biomaterials, they were subjected to a comprehensive assessment of their microstructural, physicochemical, and biological properties. The obtained results showed that foam-like biomaterials with highly porous structure (66-77%) transform into soft gel after contact with the wound fluid, acting as typical hydrocolloid dressings. Novel biomaterials have the superabsorbent ability (1 g of the biomaterial absorbs approx. 15 ml of exudate) with horizontal wicking direction while keeping dry edges, and show water vapor transmission rate of approx. 1700-1800 g/m2/day which is recommended for optimal wound healing. Moreover, they are stable in the presence of collagenases, but prone to biodegradation in lysozyme solution (simulated infected wound environment). Importantly, the developed biomaterials are non-toxic and their surface hinders fibroblast attachment, which is essential during dressing changes to avoid damage to newly formed tissues in the wound bed. All mentioned features make the developed biomaterials promising candidates to be used as the wound dressings for the management of chronic wounds with moderate to high exudate.
Collapse
Affiliation(s)
- Michal Wojcik
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Paulina Kazimierczak
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Aleksandra Benko
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Krzysztof Palka
- Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36 Street, 20-618 Lublin, Poland
| | - Vladyslav Vivcharenko
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Agata Przekora
- Medical University of Lublin, Chair and Department of Biochemistry and Biotechnology, Chodzki 1 Street, 20-093 Lublin, Poland.
| |
Collapse
|
275
|
Zagórska-Dziok M, Kleczkowska P, Olędzka E, Figat R, Sobczak M. Poly(chitosan-ester-ether-urethane) Hydrogels as Highly Controlled Genistein Release Systems. Int J Mol Sci 2021; 22:3339. [PMID: 33805204 PMCID: PMC8037816 DOI: 10.3390/ijms22073339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Polymeric hydrogels play an increasingly important role in medicine, pharmacy and cosmetology. They appear to be one of the most promising groups of biomaterials due to their favorable physicochemical properties and biocompatibility. The objective of the presented study was to synthesize new poly(chitosan-ester-ether-urethane) hydrogels and to study the kinetic release of genistein (GEN) from these biomaterials. In view of the above, six non-toxic hydrogels were synthesized via the Ring-Opening Polymerization (ROP) and polyaddition processes. The poly(ester-ether) components of the hydrogels have been produced in the presence of the enzyme as a biocatalyst. In some cases, the in vitro release rate of GEN from the obtained hydrogels was characterized by near-zero-order kinetics, without "burst release" and with non-Fickian transport. It is important to note that developed hydrogels have been shown to possess the desired safety profile due to lack of cytotoxicity to skin cells (keratinocytes and fibroblasts). Taking into account the non-toxicity of hydrogels and the relatively highly controlled release profile of GEN, these results may provide fresh insight into polymeric hydrogels as an effective dermatological and/or cosmetological tool.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Faculty of Medicine, University of Information Technology and Management in Rzeszow, 2 Sucharskiego St., 35-225 Rzeszow, Poland;
| | - Patrycja Kleczkowska
- Centre for Preclinical Research (CBP), Department of Pharmacodynamics, Medical University of Warsaw, 1B Banacha St., 02-097 Warsaw, Poland;
- Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Ewa Olędzka
- Chair of Analytical Chemistry and Biomaterials, Department of Biomaterials Chemistry, Faculty of Pharmacy, Medical University of Warsaw,1 Banacha St., 02-097 Warsaw, Poland;
| | - Ramona Figat
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw,1 Banacha St., 02-097 Warsaw, Poland;
| | - Marcin Sobczak
- Department of Technology of Cosmetic and Pharmaceutical Products, Faculty of Medicine, University of Information Technology and Management in Rzeszow, 2 Sucharskiego St., 35-225 Rzeszow, Poland;
- Chair of Analytical Chemistry and Biomaterials, Department of Biomaterials Chemistry, Faculty of Pharmacy, Medical University of Warsaw,1 Banacha St., 02-097 Warsaw, Poland;
| |
Collapse
|
276
|
Development of thermosensitive hydrogel wound dressing containing Acinetobacter baumannii phage against wound infections. Int J Pharm 2021; 602:120508. [PMID: 33766635 DOI: 10.1016/j.ijpharm.2021.120508] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
With the emergence of multidrug resistance (MDR) bacteria, wound infection continues to be a challenging problem and represents a considerable healthcare burden. This study aims to evaluate the applicability of a phage loaded thermosensitive hydrogel in managing wound infections caused by MDR Acinetobacter baumannii, using IME-AB2 phage and MDR-AB2 as the model phage and bacteria, respectively. Excellent storage stability of the IME-AB2 phage in a ~18 wt% Poloxamer 407 (P407) hydrogel solution was first demonstrated with negligible titer loss (~0.5 log) in 24 months at 4 °C. The incorporated phage was released in a sustained manner with a cumulative release of 60% in the first 24 h. The in vitro bacterial killing efficiency of phage gel and phage suspension at 37 °C demonstrated >5 log10 CFU/ml reduction against A. baumannii. A comparable biofilm elimination capacity was also noted between the phage gel and phage suspension (59% and 45% respectively). These results suggested that the incorporation of phage into the hydrogel not only had insignificant impacts on the bacterial killing efficiency of phage, but also act as a phage depot to maintain higher phage titer at the infectious site for a prolong period for more effective treatment. We also found that the hydrogel formulation significantly suppressed microbial survival in an ex vivo wound infection model using pig skin (90% reduction in bacterial counts was achieved after 4 h treatment). In summary, our results demonstrated that the P407-based phage-loaded thermosensitive hydrogel is a simple and promising phage formulation for the management of wound infections.
Collapse
|
277
|
Popescu I, Turtoi M, Suflet DM, Dinu MV, Darie-Nita RN, Anghelache M, Calin M, Constantin M. Alginate/poloxamer hydrogel obtained by thiol-acrylate photopolymerization for the alleviation of the inflammatory response of human keratinocytes. Int J Biol Macromol 2021; 180:418-431. [PMID: 33737187 DOI: 10.1016/j.ijbiomac.2021.03.082] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/20/2021] [Accepted: 03/14/2021] [Indexed: 01/01/2023]
Abstract
Hydrogel-based wound dressings have been intensively studied as promising materials for wound healing and care. The mixed-mode thiol-acrylate photopolymerization is used in this paper for alginate/poloxamer hydrogels formation. First, the alginate was modified with thiol groups using the esterification reaction with cysteamine, and second, the terminal hydroxyl groups of poloxamer were esterified with acryloyl chloride to introduce polymerizable acrylate groups. Finally, the cross-linking reaction between the two macromers was performed to produce degradable alginate/poloxamer hydrogels. The optimum conditions for the photo-initiated reaction were studied in order to obtain high gel fractions. The resulting hydrogels have high swelling capacity in simulated physiological conditions, good elasticity and strength, and appropriate porosity, some of the physico-chemical properties required for their applications as wound dressings/patches. The biological assays show that the alginate/poloxamer hydrogels induce proliferation of human keratinocyte and have an anti-inflammatory effect on lipopolysaccharides (LPS)-activated keratinocytes by inhibiting the extracellular signal-regulated kinases (ERK)/ nuclear factor (NF)-kB/ tumor necrosis factor (TNF)-α signalling pathway. Taken together, the results showed that the chemical cross-linked alginate/poloxamer hydrogels may function as a dressing/patch applied directly on the skin lesion to heal the wound by reducing the exacerbated inflammation, the main cause of wound healing delay and local infection.
Collapse
Affiliation(s)
- Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania.
| | - Mihaela Turtoi
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, B.P. Hasdeu 8, 050568 Bucharest, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania
| | | | - Maria Anghelache
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, B.P. Hasdeu 8, 050568 Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, B.P. Hasdeu 8, 050568 Bucharest, Romania
| | - Marieta Constantin
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania
| |
Collapse
|
278
|
Górska A, Krupa A, Majda D, Kulinowski P, Kurek M, Węglarz WP, Jachowicz R. Poly(Vinyl Alcohol) Cryogel Membranes Loaded with Resveratrol as Potential Active Wound Dressings. AAPS PharmSciTech 2021; 22:109. [PMID: 33718994 PMCID: PMC7956935 DOI: 10.1208/s12249-021-01976-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
Hydrogel wound dressings are highly effective in the therapy of wounds. Yet, most of them do not contain any active ingredient that could accelerate healing. The aim of this study was to prepare hydrophilic active dressings loaded with an anti-inflammatory compound - trans-resveratrol (RSV) of hydrophobic properties. A special attention was paid to select such a technological strategy that could both reduce the risk of irritation at the application site and ensure the homogeneity of the final hydrogel. RSV dissolved in Labrasol was combined with an aqueous sol of poly(vinyl) alcohol (PVA), containing propylene glycol (PG) as a plasticizer. This sol was transformed into a gel under six consecutive cycles of freezing (-80 °C) and thawing (RT). White, uniform and elastic membranes were successfully produced. Their critical features, namely microstructure, mechanical properties, water uptake and RSV release were studied using SEM, DSC, MRI, texture analyser and Franz-diffusion cells. The cryogels made of 8 % of PVA showed optimal tensile strength (0.22 MPa) and elasticity (0.082 MPa). The application of MRI enabled to elucidate mass transport related phenomena in this complex system at the molecular (detection of PG, confinement effects related to pore size) as well as at the macro level (swelling). The controlled release of RSV from membranes was observed for 48 h with mean dissolution time of 18 h and dissolution efficiency of 35 %. All in all, these cryogels could be considered as a promising new active wound dressings.
Collapse
Affiliation(s)
- Anna Górska
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688, Cracow, Poland.
| | - Dorota Majda
- Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Piotr Kulinowski
- Institute of Technology, Pedagogical University of Krakow, Cracow, Poland
| | - Mateusz Kurek
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Władysław P Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688, Cracow, Poland
| |
Collapse
|
279
|
Neacsu IA, Leau SA, Marin S, Holban AM, Vasile BS, Nicoara AI, Ene VL, Bleotu C, Albu Kaya MG, Ficai A. Collagen-Carboxymethylcellulose Biocomposite Wound-Dressings with Antimicrobial Activity. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1153. [PMID: 33804421 PMCID: PMC7957653 DOI: 10.3390/ma14051153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/02/2023]
Abstract
Microbial infections associated with skin diseases are frequently investigated since they impact on the progress of pathology and healing. The present work proposes the development of freeze-dried, glutaraldehyde cross-linked, and non-cross-linked biocomposite dressings with a porous structure, which may assist the reepithelization process through the presence of collagen and carboxymethylcellulose, along with a therapeutic antimicrobial effect, due to silver nanoparticles (AgNPs) addition. Phisyco-chemical characterization revealed the porous morphology of the obtained freeze-dried composites, the presence of high crystalline silver nanoparticles with truncated triangular and polyhedral morphologies, as well as the characteristic absorption bands of collagen, silver, and carboxymethylcellulose. In vitro tests also assessed the stability, functionality, and the degradability rate of the obtained wound-dressings. Antimicrobial assay performed on Gram-negative (Escherichia coli), Gram-positive (Staphyloccocus aureus) bacteria, and yeast (Candida albicans) models demonstrated that composite wound dressings based on collagen, carboxymethylcellulose, and AgNPs are suitable for skin lesions because they prevent the risk of infection and have prospective wound healing capacity. Moreover, the cell toxicity studies proved that the obtained materials can be used in long time treatments, with no cytotoxic effects.
Collapse
Affiliation(s)
- Ionela Andreea Neacsu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.A.N.); (S.-A.L.); (B.-S.V.); (A.-I.N.); (A.F.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Sorina-Alexandra Leau
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.A.N.); (S.-A.L.); (B.-S.V.); (A.-I.N.); (A.F.)
- Electrochemistry and Corrosion Department, “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 060021 Bucharest, Romania
| | - Stefania Marin
- INCDTP-Division: Leather and Footwear Research Institute, 93 Ion Minulescu Str., 011061 Bucharest, Romania; (S.M.); (M.G.A.K.)
| | - Alina Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, 060101 Bucharest, Romania;
| | - Bogdan-Stefan Vasile
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.A.N.); (S.-A.L.); (B.-S.V.); (A.-I.N.); (A.F.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adrian-Ionut Nicoara
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.A.N.); (S.-A.L.); (B.-S.V.); (A.-I.N.); (A.F.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Vladimir Lucian Ene
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.A.N.); (S.-A.L.); (B.-S.V.); (A.-I.N.); (A.F.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Coralia Bleotu
- Stefan S. Nicolau’ Institute of Virology, Romanian Academy, 011061 Bucharest, Romania;
| | - Mădălina Georgiana Albu Kaya
- INCDTP-Division: Leather and Footwear Research Institute, 93 Ion Minulescu Str., 011061 Bucharest, Romania; (S.M.); (M.G.A.K.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (I.A.N.); (S.-A.L.); (B.-S.V.); (A.-I.N.); (A.F.)
| |
Collapse
|
280
|
Pan Z, Ye H, Wu D. Recent advances on polymeric hydrogels as wound dressings. APL Bioeng 2021; 5:011504. [PMID: 33644627 PMCID: PMC7889296 DOI: 10.1063/5.0038364] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Severe hemorrhage is a leading cause of high mortality in critical situations like disaster, accidents, and warfare. The resulting wounds could induce severe physical and psychological trauma to patients and also bring an immense socio-economic burden. Hence, rapid hemostasis and wound healing techniques have become critical initiatives for life-saving treatment. Although traditional methods relying on bandages and gauzes are effective in controlling hemorrhage, they suffer from several limitations: nonbiodegradability, being susceptible to infection, being unsuitable for the irregular wound, secondary tissue damage, and being almost ineffective for wound healing. Owing to the merits of high porosity, good biocompatibility, tunable physicochemical properties, and being beneficial for wound healing, hydrogels with excellent performance have drawn intensive attention and numerous novel effective hydrogel dressings have been widely developed. In this Review, after introducing some commonly used strategies for the synthesis of hydrogels, the most recent progress on polymer-based hydrogels as wound dressings is discussed. Particularly, their hemostasis, antibacterial, and biodegradation properties are introduced. Finally, challenges and future perspectives about the development of hydrogels for wound dressings are outlined.
Collapse
Affiliation(s)
- Zheng Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, 518055 Shenzhen, Guangdong Province, China
| | - Huijun Ye
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, 518055 Shenzhen, Guangdong Province, China
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, 518055 Shenzhen, Guangdong Province, China
| |
Collapse
|
281
|
Klushin VA, Kashparova VP, Chizhikova AA, Andreeva VE, Chernysheva DV, Ulyankina AA, Kutsevalova OY, Smirnova NV, Kravchenko OA, Ananikov VP. New Bio-Based Furanic Materials Effectively Absorb Metals from Water and Exert Antimicrobial Activity. Chemistry 2021; 27:3382-3396. [PMID: 33119938 DOI: 10.1002/chem.202003643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 02/02/2023]
Abstract
Development of sustainable bio-based materials for removal of toxic contaminants from water is a high priority goal. Novel bio-based binary and ternary copolymers with enhanced ion-exchange, adsorption and antibacterial properties were obtained by using plant biomass-derived diallyl esters of furandicarboxylic acid (FDCA) as crosslinking agents and easily available vinyl monomers. The synthesized copolymer materials showed higher sorption capacities for NiII , CoII and CuII compared to the commercial ion-exchange resins, and they maintained their high metal adsorption capacities for over 10 cycles of regeneration. The synthesized copolymer gels containing 1-5 wt % of the crosslinker showed excellent water absorption capacities. The synthesized copolymers with 1 % crosslinker content showed swelling ratios high enough to also act as moisture absorbents. Synthesized copolymers with crosslinker content of 10 wt % performed as contact-active antibacterials by inhibiting the growth of Gram-positive (S. aureus) and Gram-negative bacteria (E. coli, K. pneumonia) in suspension tests.
Collapse
Affiliation(s)
- Victor A Klushin
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk, 346428, Russia
| | - Vera P Kashparova
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk, 346428, Russia
| | - Anastasia A Chizhikova
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk, 346428, Russia
| | - Veronica E Andreeva
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk, 346428, Russia
| | - Daria V Chernysheva
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk, 346428, Russia
| | - Anna A Ulyankina
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk, 346428, Russia
| | - Olga Yu Kutsevalova
- Medical Research Centre for Oncology of the Ministry of Health of Russia, 14 Liniya str. 63, Rostov-on-Don, National 344037, Russia
| | - Nina V Smirnova
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk, 346428, Russia
| | - Oleg A Kravchenko
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk, 346428, Russia
| | - Valentin P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| |
Collapse
|
282
|
Affatato S, Trucco D, Taddei P, Vannozzi L, Ricotti L, Nessim GD, Lisignoli G. Wear Behavior Characterization of Hydrogels Constructs for Cartilage Tissue Replacement. MATERIALS (BASEL, SWITZERLAND) 2021; 14:428. [PMID: 33467142 PMCID: PMC7830039 DOI: 10.3390/ma14020428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
This paper aims to characterize the wear behavior of hydrogel constructs designed for human articular cartilage replacement. To this purpose, poly (ethylene glycol) diacrylate (PEGDA) 10% w/v and gellan gum (GG) 1.5% w/v were used to reproduce the superior (SUP) cartilage layer and PEGDA 15% w/v and GG 1.5% w/v were used to reproduce the deep (DEEP) cartilage layer, with or without graphene oxide (GO). These materials (SUP and DEEP) were analyzed alone and in combination to mimic the zonal architecture of human articular cartilage. The developed constructs were tested using a four-station displacement control knee joint simulator under bovine calf serum. Roughness and micro-computer tomography (µ-CT) measurements evidenced that the hydrogels with 10% w/v of PEGDA showed a worse behavior both in terms of roughness increase and loss of uniformly distributed density than 15% w/v of PEGDA. The simultaneous presence of GO and 15% w/v PEGDA contributed to keeping the hydrogel construct's characteristics. The Raman spectra of the control samples showed the presence of unreacted C=C bonds in all the hydrogels. The degree of crosslinking increased along the series SUP < DEEP + SUP < DEEP without GO. The Raman spectra of the tested hydrogels showed the loss of diacrylate groups in all the samples, due to the washout of unreacted PEGDA in bovine calf serum aqueous environment. The loss decreased along the series SUP > DEEP + SUP > DEEP, further confirming that the degree of photo-crosslinking of the starting materials plays a key role in determining their wear behavior. μ-CT and Raman spectroscopy proved to be suitable techniques to characterize the structure and composition of hydrogels.
Collapse
Affiliation(s)
- Saverio Affatato
- IRCSS Istituto Ortopedico Rizzoli, Laboratorio di Tecnologia Medica, 40136 Bologna, Italy
| | - Diego Trucco
- IRCSS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy; (D.T.); (G.L.)
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (L.V.); (L.R.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Paola Taddei
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy;
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (L.V.); (L.R.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (L.V.); (L.R.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Gilbert Daniel Nessim
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel;
| | - Gina Lisignoli
- IRCSS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy; (D.T.); (G.L.)
| |
Collapse
|
283
|
Wang Y, Chu X, Sun Y, Teng P, Xia T, Chen Y. A convenient approach by using poly-(HEMA-co-NIPAM)/Cu 2+ solution sol-gel transition for wound protection and healing. J Biomed Mater Res B Appl Biomater 2021; 109:50-59. [PMID: 32627333 DOI: 10.1002/jbm.b.34679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/31/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
Abstract
Rapid and convenient wound healing is crucial for reducing potential post-traumatic wound complications. In this study, a temperature-sensitive polymer of poly-(HEMA-co-NIPAM) (PHN) was synthesized by free-radical polymerization, in which the solution quickly underwent a sol-gel transition above 29°C, thus responding to a typical body temperature and facilitating wound sealing. PHN solution incorporated with copper ions (PHN-Cu) not only exhibited excellent antibacterial properties, but also expedited wound closure and facilitated tissue angiogenesis. The in vivo and in vitro experiments showed that the PHN-Cu had a higher wound closure rate and demonstrated an ability to promote skin tissue angiogenesis. Such a versatile, convenient aqueous solution could enable nonprofessionals to promptly treat wounds in a short time after injury, thus providing suitable conditions for later treatment, and can be used as a convenient method to clean wounds.
Collapse
Affiliation(s)
- Yansong Wang
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xin Chu
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yu Sun
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Peng Teng
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tianzhi Xia
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
284
|
Li Z, Chen S, Wu B, Liu Z, Cheng L, Bao Y, Ma Y, Chen L, Tong X, Dai F. Multifunctional Dual Ionic-Covalent Membranes for Wound Healing. ACS Biomater Sci Eng 2020; 6:6949-6960. [DOI: 10.1021/acsbiomaterials.0c01512] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China
| | - Sihao Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China
| | - Baiqing Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Zulan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China
| | - Lan Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Yu Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Yan Ma
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Lei Chen
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
285
|
Zhang A, Liu Y, Qin D, Sun M, Wang T, Chen X. Research status of self-healing hydrogel for wound management: A review. Int J Biol Macromol 2020; 164:2108-2123. [DOI: 10.1016/j.ijbiomac.2020.08.109] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
|
286
|
Zhou L, Zheng H, Wang S, Zhou F, Lei B, Zhang Q. Biodegradable conductive multifunctional branched poly(glycerol-amino acid)-based scaffolds for tumor/infection-impaired skin multimodal therapy. Biomaterials 2020; 262:120300. [PMID: 32891908 DOI: 10.1016/j.biomaterials.2020.120300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
|
287
|
Back PI, Balestrin LA, Fachel FNS, Nemitz MC, Falkembach M, Soares G, Marques MDS, Silveira T, Dal Prá M, Horn AP, Braganhol E, von Poser GL, Dora CL, Teixeira HF. Hydrogels containing soybean isoflavone aglycones-rich fraction-loaded nanoemulsions for wound healing treatment - in vitro and in vivo studies. Colloids Surf B Biointerfaces 2020; 196:111301. [PMID: 32871442 DOI: 10.1016/j.colsurfb.2020.111301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 11/23/2022]
Abstract
Soybean isoflavone aglycones have been investigated as potential wound healing compounds for topical application. The aim of this study was to evaluate the wound healing properties of a soybean isoflavone aglycones-rich fraction (IAF) when incorporated into lipid nanoemulsions dispersed in acrylic-acid hydrogels. Formulations exhibited a mean droplet size in the sub 200 nm range, negative ζ-potential (-60 mV), and displayed non-Newtonian pseudoplastic behavior. The addition of a gelling agent decreased the IAF release from formulations and improved the retention of these compounds in intact porcine ear skin when compared with a control propylene glycol solution. No IAF were detected in receptor fluid of Franz-type diffusion cells. However, increasing amounts of IAF were noticed in both skin layers and the receptor fluid when the tissue was partially injured (tape stripping), or when the epidermis was completely removed. In vitro studies showed that IAF elicits an increased proliferation and migration of keratinocytes (HaCaT cell line). Subsequently, the healing effect of the formulations was evaluated in a model of dorsal wounds in rats, by assessing the size of the lesions, histology, inflammatory markers, and antioxidant activity. Overall findings demonstrated the potential of IAF-loaded formulations to promote wound healing by increasing angiogenesis by ∼200 %, reducing the lipid oxidation (TBARS) by ∼52 % and the inflammation (TNFα) by ∼35 %, while increasing re-epithelialization by ∼500 %, visualized by the epithelium thickness.
Collapse
Affiliation(s)
- Patricia Inês Back
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucélia Albarello Balestrin
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Mariana Falkembach
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Nanotecnologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Gabriela Soares
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Nanotecnologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Magno da Silva Marques
- Programa de Pós-Graduação em Ciências Fisiológicas, Laboratório de Histologia, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Tony Silveira
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Nanotecnologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Morgana Dal Prá
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana Paula Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Laboratório de Histologia, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Gilsane Lino von Poser
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiana Lima Dora
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Nanotecnologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
288
|
Hogan KJ, Mikos AG. Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
289
|
Wang R, Zhu J, Jiang G, Sun Y, Ruan L, Li P, Cui H. Forward Wound Closure with Regenerated Silk Fibroin and Polylysine-Modified Chitosan Composite Bioadhesives as Dressings. ACS APPLIED BIO MATERIALS 2020; 3:7941-7951. [PMID: 35019534 DOI: 10.1021/acsabm.0c01064] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Wound dressing has been used for decades to be effective for accelerating skin wound healing. However, practical applications are still limited due to their lower cell affinity, tissue adhesiveness, and biocompatibility. Natural polymers are the important biomaterials because of their excellent biodegradability, biocompatibility, and low immunogenicity. In this work, the composite bioadhesives (PLS-CS/RSF) were prepared from regenerated silk fibroin (RSF) and polylysine-modified chitosan (PLS-CS) that were cross-linked by Ca2+ ions. The adhesion property tests showed that the PLS-CS/RSF exhibited excellent bonding potentials for various substrates, and the adhesive strength was up to 70 kPa for isolated porcine skin by the extension test. The as-prepared PLS-CS/RSF was nontoxic, displayed obvious antibacterial effects against Staphylococcus aureus and Escherichia coli in vitro, and their bacteriostasis rates were 100% after 120 min treatment. In addition, the PLS-CS/RSF exhibited favorable cytocompatibility by cell counting kit-8 assay. The animal model of wound closure results showed that PLS-CS/RSF can promote wound closure and the integrity of wound healing, inhibiting the secretion of inflammatory factor and tumor necrosis factor and stimulating vascular factor and α-smooth muscle actin to the release of vascular growth factor and promote angiogenesis during the process of wound healing by immunohistochemical assay.
Collapse
Affiliation(s)
- Ruofan Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jiangying Zhu
- Department of Polymer Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Guohua Jiang
- Department of Polymer Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yanfang Sun
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Liming Ruan
- Department of Dermatology, Beilun District People's Hospital of Ningbo City, Ningbo 315800, China
| | - Pengfei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Haiyan Cui
- Department of Plastic Surgery, Tongji Hospital of Tongji University, Shanghai 200065, China
| |
Collapse
|
290
|
Gunes OC, Ziylan Albayrak A. Antibacterial Polypeptide nisin containing cotton modified hydrogel composite wound dressings. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03429-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
291
|
Terzopoulou Z, Michopoulou A, Palamidi A, Koliakou E, Bikiaris D. Preparation and Evaluation of Collagen-Based Patches as Curcumin Carriers. Polymers (Basel) 2020; 12:polym12102393. [PMID: 33080789 PMCID: PMC7602968 DOI: 10.3390/polym12102393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with psoriasis are dissatisfied with the standard pharmacological treatments, whether systemic or topical, with many of them showing interest in complementary and alternative medicine. Curcumin (Cur), a natural polyphenol derived from turmeric, has recently gained attention for skin-related diseases because of its proven anti-inflammatory action. However, topical treatment with Cur would be inadequate because of its hydrophobicity, instability, and low bioavailability. In addition, hyperkeratosis and lack of moisture in psoriatic skin result in low penetration that would prevent actives from permeating the stratum corneum. In this work, a polymer-based formulation of Cur for the topical treatment of psoriasis is reported. To improve the physicochemical stability of Cur, it was first encapsulated in chitosan nanoparticles. The Cur-loaded nanoparticles were incorporated in a hydrophilic, biocompatible collagen-based patch. The nanoparticle-containing porous collagen patches were then chemically cross-linked. Morphology, chemical interactions, swelling ratio, enzymatic hydrolysis, and Cur release from the patches were evaluated. All patches showed excellent swelling ratio, up to ~1500%, and after cross-linking, the pore size decreased, and their hydrolysis rates decelerated. The in vitro release of Cur was sustained with an initial burst release, reaching 55% after 24 h. Cur within the scaffolds imparted a proliferation inhibitory effect on psoriatic human keratinocytes in vitro.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece; (A.P.); (D.B.)
- Correspondence: ; Tel.: +30-2310-997-812
| | - Anna Michopoulou
- Biohellenika Biotechnology Company, Leoforos Georgikis Scholis 65, GR 555 35 Thessaloniki, Greece;
| | - Artemis Palamidi
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece; (A.P.); (D.B.)
| | - Elena Koliakou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece;
| | - Dimitrios Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece; (A.P.); (D.B.)
| |
Collapse
|
292
|
Antibacterial efficiency of silver nanoparticles-loaded locust bean gum/polyvinyl alcohol hydrogels. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03418-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
293
|
Butylina S, Geng S, Laatikainen K, Oksman K. Cellulose Nanocomposite Hydrogels: From Formulation to Material Properties. Front Chem 2020; 8:655. [PMID: 33062631 PMCID: PMC7517874 DOI: 10.3389/fchem.2020.00655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Poly(vinyl alcohol) (PVA) hydrogels produced using the freeze-thaw method have attracted attention for a long time since their first preparation in 1975. Due to the importance of polymer intrinsic features and the advantages associated with them, they are very suitable for biomedical applications such as tissue engineering and drug delivery systems. On the other hand, there is an increasing interest in the use of biobased additives such as cellulose nanocrystals, CNC. This study focused on composite hydrogels which were produced by using different concentrations of PVA (5 and 10%) and CNC (1 and 10 wt.%), also, pure PVA hydrogels were used as references. The main goal was to determine the impact of both components on mechanical, thermal, and water absorption properties of composite hydrogels as well as on morphology and initial water content. It was found that PVA had a dominating effect on all hydrogels. The effect of the CNC addition was both concentration-dependent and case-dependent. As a general trend, addition of CNC decreased the water content of the prepared hydrogels, decreased the crystallinity of the PVA, and increased the hydrogels compression modulus and strength to some extent. The performance of composite hydrogels in a cyclic compression test was studied; the hydrogel with low PVA (5) and high CNC (10) content showed totally reversible behavior after 10 cycles.
Collapse
Affiliation(s)
- Svetlana Butylina
- Division of Material Science, Luleå University of Technology, Luleå, Sweden.,Laboratory of Computational and Process Engineering, Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
| | - Shiyu Geng
- Division of Material Science, Luleå University of Technology, Luleå, Sweden
| | - Katri Laatikainen
- Laboratory of Computational and Process Engineering, Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
| | - Kristiina Oksman
- Division of Material Science, Luleå University of Technology, Luleå, Sweden.,Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
294
|
Kaczmarek B, Miłek O, Michalska-Sionkowska M, Zasada L, Twardowska M, Warżyńska O, Kleszczyński K, Osyczka AM. Novel Eco-Friendly Tannic Acid-Enriched Hydrogels-Preparation and Characterization for Biomedical Application. MATERIALS 2020; 13:ma13204572. [PMID: 33066572 PMCID: PMC7602252 DOI: 10.3390/ma13204572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
Abstract
Sodium alginate and tannic acid are natural compounds that can be mixed with each other. In this study, we propose novel eco-friendly hydrogels for biomedical applications. Thus, we conducted the following assessments including (i) observation of the structure of hydrogels by scanning electron microscope; (ii) bioerosion and the concentration of released tannic acid from subjected material; (iii) dehydrogenase activity assay to determine antibacterial activity of prepared hydrogels; and (iv) blood and cell compatibility. The results showed that hydrogels based on sodium alginate/tannic acid exert a porous structure. The immersion in simulated body fluid (SBF) results in the biomineralization process occurring on their surface while the bioerosion studies revealed that the addition of tannic acid improves hydrogels’ stability proportional to its concentration. Besides, tannic acid release concentration depends on the type of hydrogels and the highest amount was noticed for those based on sodium alginate with the content of 30% tannic acid. Antibacterial activity of hydrogels was proven for both Gram-negative and Gram-positive bacteria, the hemolysis rate was below 5% and the viability of the cells was elevated with an increasing amount of tannic acid in hydrogels. Collectively, we assume that obtained materials make the imperative to consider them for biomedical applications.
Collapse
Affiliation(s)
- Beata Kaczmarek
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (L.Z.); (M.T.)
- Correspondence: ; Tel.: +48-56-611-4833
| | - Oliwia Miłek
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Kraków, Poland; (O.M.); (A.M.O.)
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.M.-S.); (O.W.)
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (L.Z.); (M.T.)
| | - Marta Twardowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (L.Z.); (M.T.)
| | - Oliwia Warżyńska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (M.M.-S.); (O.W.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany;
| | - Anna Maria Osyczka
- Department of Biology and Cell Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Kraków, Poland; (O.M.); (A.M.O.)
| |
Collapse
|
295
|
Pavel TI, Chircov C, Rădulescu M, Grumezescu AM. Regenerative Wound Dressings for Skin Cancer. Cancers (Basel) 2020; 12:cancers12102954. [PMID: 33066077 PMCID: PMC7601961 DOI: 10.3390/cancers12102954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
Skin cancer is considered the most prevalent cancer type globally, with a continuously increasing prevalence and mortality growth rate. Additionally, the high risk of recurrence makes skin cancer treatment among the most expensive of all cancers, with average costs estimated to double within 5 years. Although tumor excision is the most effective approach among the available strategies, surgical interventions could be disfiguring, requiring additional skin grafts for covering the defects. In this context, post-surgery management should involve the application of wound dressings for promoting skin regeneration and preventing tumor recurrence and microbial infections, which still represents a considerable clinical challenge. Therefore, this paper aims to provide an up-to-date overview regarding the current status of regenerative wound dressings for skin cancer therapy. Specifically, the recent discoveries in natural biocompounds as anti-cancer agents for skin cancer treatment and the most intensively studied biomaterials for bioactive wound dressing development will be described.
Collapse
Affiliation(s)
- Teodor Iulian Pavel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3997
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| |
Collapse
|
296
|
Enhancement of α-Mangostin Wound Healing Ability by Complexation with 2-Hydroxypropyl-β-Cyclodextrin in Hydrogel Formulation. Pharmaceuticals (Basel) 2020; 13:ph13100290. [PMID: 33023196 PMCID: PMC7600479 DOI: 10.3390/ph13100290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/30/2022] Open
Abstract
α-Mangostin (α-M), one of the active compounds in Garcinia mangostana peel, has been effectively used in wound healing. However, its poor solubility in aqueous solution causes low bioavailability for skin ulcers, hindering its application in wound healing. The aim of this study was to improve the solubility of α-M through complex formation with 2-hydroxypropyl-β-cyclodextrin (α-M/HP-β-CD CX) and to evaluate the healing activity of the complex. The α-M/HP-β-CD CX was incorporated in a sodium carboxymethylcellulose hydrogel (α-M/HP-β-CD CX HG), and the in vivo healing activity was examined in mice. Evaluation of α-M/HP-β-CD CX HG, including organoleptic evaluation, homogeneity, pH, spreadability, swelling ratio, consistency, scanning electron microscopy (SEM), and in vitro drug release, was carried out. The complex formation of α-M/HP-β-CD CX was confirmed by FTIR and PXRD analysis. The solubility of the α-M/HP-β-CD CX in water linearly increased about 11.7-fold compared to α-M alone, and by 3.5-fold compared to the α-M/HP-β-CD physical mixture (α-M/HP-β-CD CX PM). The α-M/HP-β-CD CX HG was homogenous, the pH was found to be in the neutral range, the spread area was 5 cm, and the consistency was stable until 14 days. SEM analysis showed that α-M/HP-β-CD CX HG surged due to the porous structure of the HG. In addition, in vitro release of α-M from α-M/HP-β-CD CX HG was considerably increased compared to α-M/HP-β-CD PM HG and α-M HG. Notably, in vivo evaluation in mice showed that α-M/HP-β-CD CX HG significantly accelerated the wound healing ability compared to other HGs. Thus, α-M/HP-β-CD CX HG has potential as a new formulation of α-M for wound healing therapy.
Collapse
|
297
|
Yahya EB, Jummaat F, Amirul AA, Adnan AS, Olaiya NG, Abdullah CK, Rizal S, Mohamad Haafiz MK, Khalil HPSA. A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery. Antibiotics (Basel) 2020; 9:E648. [PMID: 32998197 PMCID: PMC7601537 DOI: 10.3390/antibiotics9100648] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023] Open
Abstract
A biopolymer-based aerogel has been developed to become one of the most potentially utilized materials in different biomedical applications. The biopolymer-based aerogel has unique physical, chemical, and mechanical properties and these properties are used in tissue engineering, biosensing, diagnostic, medical implant and drug delivery applications. Biocompatible and non-toxic biopolymers such as chitosan, cellulose and alginates have been used to deliver antibiotics, plants extract, essential oils and metallic nanoparticles. Antibacterial aerogels have been used in superficial and chronic wound healing as dressing sheets. This review critically analyses the utilization of biopolymer-based aerogels in antibacterial delivery. The analysis shows the relationship between their properties and their applications in the wound healing process. Furthermore, highlights of the potentials, challenges and proposition of the application of biopolymer-based aerogels is explored.
Collapse
Affiliation(s)
- Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| | - Fauziah Jummaat
- Management Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam, Selangor 40100, Malaysia;
| | - A. A. Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - A. S. Adnan
- Management Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam, Selangor 40100, Malaysia;
| | - N. G. Olaiya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| | - C. K. Abdullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| | - Samsul Rizal
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - M. K. Mohamad Haafiz
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| | - H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (N.G.O.); (C.K.A.); (M.K.M.H.)
| |
Collapse
|
298
|
Zhang L, Liu M, Zhang Y, Pei R. Recent Progress of Highly Adhesive Hydrogels as Wound Dressings. Biomacromolecules 2020; 21:3966-3983. [DOI: 10.1021/acs.biomac.0c01069] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liwei Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
299
|
Nazarnezhada S, Abbaszadeh-Goudarzi G, Samadian H, Khaksari M, Ghatar JM, Khastar H, Rezaei N, Mousavi SR, Shirian S, Salehi M. Alginate hydrogel containing hydrogen sulfide as the functional wound dressing material: In vitro and in vivo study. Int J Biol Macromol 2020; 164:3323-3331. [PMID: 32888985 DOI: 10.1016/j.ijbiomac.2020.08.233] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/12/2020] [Accepted: 08/30/2020] [Indexed: 01/23/2023]
Abstract
Functional and bioactive wound dressing materials are revolutionary for wound care and healing applications. In this concept, we fabricated alginate hydrogel (Alg) containing H2S as the wound dressing materials and assessed the morphology, swelling, degradation, and release behavior, as well as the biocompatibility, cytocompatibility, and wound healing activity. The results depicted that the prepared hydrogels have a porous structure with the pore size in the range of 50 to 100 μm. Swelling and degradation studies showed that the hydrogel absorbed water about 179 ± 5% of initial dry weight during 96 h and loos about 80% of the initial dry weight after 7 days. The in vitro assessments illustrated that the optimum concentration of H2S was 0.5% and the higher concentration induced hemolysis and cell toxicity. The in vivo study revealed that the treatment by Alg/H2S 0.5% induced the highest wound closure percent with a value of 98 ± 1.22%. Moreover, the treatment by Alg/H2S 0.5% elicited the formation of sebaceous glands, hair follicles, and complete epithelization without any fibroplasia or inflammation, revealed by the histopathological observations. Accordingly, these results illustrated that the prepared Alg/H2S 0.5% could be applied as the functional and bioactive wound dressing materials.
Collapse
Affiliation(s)
- Simin Nazarnezhada
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghasem Abbaszadeh-Goudarzi
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Khaksari
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jila Majidi Ghatar
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Khastar
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nariman Rezaei
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Reza Mousavi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord 6416547815, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
300
|
Porous Curdlan-Based Hydrogels Modified with Copper Ions as Potential Dressings for Prevention and Management of Bacterial Wound Infection-An In Vitro Assessment. Polymers (Basel) 2020; 12:polym12091893. [PMID: 32842474 PMCID: PMC7565335 DOI: 10.3390/polym12091893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/28/2023] Open
Abstract
Bacterial infections at the wound site still remain a huge problem for current medicine, as they may lead to development of chronic wounds. In order to prevent such infections, there is a need to use wound dressings that possess ability to inhibit bacterial colonization. In this study, three new curdlan-based biomaterials modified with copper ions were fabricated via simple and inexpensive procedure, and their structural, physicochemical, and biological properties in vitro were evaluated. Received biomaterials possessed porous structure, had ability to absorb high amount of simulated wound fluid, and importantly, they exhibited satisfactory antibacterial properties. Nevertheless, taking into account all evaluated properties of new curdlan-based biomaterials, it seems that Cur_Cu_8% is the most promising biomaterial for management of wounds accompanied with bacterial infections. This biomaterial exhibited the best ability to reduce Escherichia coli and Staphylococcus aureus growth and moreover, it absorbed the highest amount of simulated wound fluid as well as enabled optimal water vapor transmission. Furthermore, Cur_Cu_8% biomaterial possessed the best values of selective indexes, which determine its potential safety in vitro. Thus, Cur_Cu_8% hydrogel may be considered as a promising candidate for management of infected wounds as well as it may constitute a good platform for further modifications.
Collapse
|