251
|
Bachor TP, Suburo AM. Neural stem cells in the diabetic brain. Stem Cells Int 2012; 2012:820790. [PMID: 23213341 PMCID: PMC3505664 DOI: 10.1155/2012/820790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/15/2012] [Indexed: 01/28/2023] Open
Abstract
Experimental diabetes in rodents rapidly affects the neurogenic niches of the adult brain. Moreover, behavioral disorders suggest that a similar dysfunction of the neurogenic niches most likely affects diabetic and prediabetic patients. Here, we review our present knowledge about adult neural stem cells, the methods used for their study in diabetic models, and the effects of experimental diabetes. Variations in diet and even a short hyperglycemia profoundly change the structure and the proliferative dynamics of the neurogenic niches. Moreover, alterations of diabetic neurogenic niches appear to be associated with diabetic cognitive disorders. Available evidence supports the hypothesis that, in the adult, early changes of the neurogenic niches might enhance development of the diabetic disease.
Collapse
Affiliation(s)
| | - Angela M. Suburo
- Medicina Celular y Molecular, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, B1629AHJ Pilar, Argentina
| |
Collapse
|
252
|
Castro OW, Santos VR, Pun RYK, McKlveen JM, Batie M, Holland KD, Gardner M, Garcia-Cairasco N, Herman JP, Danzer SC. Impact of corticosterone treatment on spontaneous seizure frequency and epileptiform activity in mice with chronic epilepsy. PLoS One 2012; 7:e46044. [PMID: 23029379 PMCID: PMC3460996 DOI: 10.1371/journal.pone.0046044] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/27/2012] [Indexed: 12/28/2022] Open
Abstract
Stress is the most commonly reported precipitating factor for seizures in patients with epilepsy. Despite compelling anecdotal evidence for stress-induced seizures, animal models of the phenomena are sparse and possible mechanisms are unclear. Here, we tested the hypothesis that increased levels of the stress-associated hormone corticosterone (CORT) would increase epileptiform activity and spontaneous seizure frequency in mice rendered epileptic following pilocarpine-induced status epilepticus. We monitored video-EEG activity in pilocarpine-treated mice 24/7 for a period of four or more weeks, during which animals were serially treated with CORT or vehicle. CORT increased the frequency and duration of epileptiform events within the first 24 hours of treatment, and this effect persisted for up to two weeks following termination of CORT injections. Interestingly, vehicle injection produced a transient spike in CORT levels – presumably due to the stress of injection – and a modest but significant increase in epileptiform activity. Neither CORT nor vehicle treatment significantly altered seizure frequency; although a small subset of animals did appear responsive. Taken together, our findings indicate that treatment of epileptic animals with exogenous CORT designed to mimic chronic stress can induce a persistent increase in interictal epileptiform activity.
Collapse
Affiliation(s)
- Olagide W. Castro
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Victor R. Santos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raymund Y. K. Pun
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jessica M. McKlveen
- Program in Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Matthew Batie
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Katherine D. Holland
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Margaret Gardner
- Molecular and Developmental Biology Program, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - James P. Herman
- Program in Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Steve C. Danzer
- Program in Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Molecular and Developmental Biology Program, University of Cincinnati, Cincinnati, Ohio, United States of America
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
253
|
Hu P, Oomen C, van Dam AM, Wester J, Zhou JN, Joëls M, Lucassen PJ. A single-day treatment with mifepristone is sufficient to normalize chronic glucocorticoid induced suppression of hippocampal cell proliferation. PLoS One 2012; 7:e46224. [PMID: 23049985 PMCID: PMC3458013 DOI: 10.1371/journal.pone.0046224] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023] Open
Abstract
Background Chronic stress or prolonged administration of glucocorticoids suppresses proliferation and/or survival of newborn cells in adult rat dentate gyrus. Earlier we showed that administration of the glucocorticoid receptor antagonist mifepristone during the final 4 days of a 21 days period of corticosterone treatment fully normalized the number of newborn cells. Here we aimed to better understand how mifepristone achieves this effect and questioned whether an even shorter (single day) mifepristone treatment (instead of 4 days) also suffices to normalize neurogenesis. Methods We investigated various steps of the neurogenic process, using the immunohistochemical markers BrdU, doublecortin, proliferating cell nuclear antigen as well as glial fibrillary acidic protein, after 17 or 21 days of corticosterone (versus vehicle) treatment. Results Corticosterone primarily attenuates the proliferation of cells which subsequently develop into neurons; this is fully reversed by mifepristone. Surprisingly, the corticosteroid effects on neurogenesis can even be fully re-set by a single-day treatment with mifepristone (on day 18), despite the continued corticosterone exposure on subsequent days. Conclusions Our results emphasize that studies into the therapeutical efficacy of new antidepressants, especially those targeting HPA-activity or the glucocorticoid receptor, should explore the possibility to reduce treatment duration.
Collapse
Affiliation(s)
- Pu Hu
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Charlotte Oomen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Jordi Wester
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Marian Joëls
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Rudolf Magnus Institute for Neurosciences, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
254
|
Suri D, Vaidya VA. Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity. Neuroscience 2012; 239:196-213. [PMID: 22967840 DOI: 10.1016/j.neuroscience.2012.08.065] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 12/20/2022]
Abstract
Glucocorticoids serve as key stress response hormones that facilitate stress coping. However, sustained glucocorticoid exposure is associated with adverse consequences on the brain, in particular within the hippocampus. Chronic glucocorticoid exposure evokes neuronal cell damage and dendritic atrophy, reduces hippocampal neurogenesis and impairs synaptic plasticity. Glucocorticoids also alter expression and signaling of the neurotrophin, brain-derived neurotrophic factor (BDNF). Since BDNF is known to promote neuroplasticity, enhance cell survival, increase hippocampal neurogenesis and cellular excitability, it has been hypothesized that specific adverse effects of glucocorticoids may be mediated by attenuating BDNF expression and signaling. The purpose of this review is to summarize the current state of literature examining the influence of glucocorticoids on BDNF, and to address whether specific effects of glucocorticoids arise through perturbation of BDNF signaling. We integrate evidence of glucocorticoid regulation of BDNF at multiple levels, spanning from the well-documented glucocorticoid-induced changes in BDNF mRNA to studies examining alterations in BDNF receptor-mediated signaling. Further, we delineate potential lines of future investigation to address hitherto unexplored aspects of the influence of glucocorticoids on BDNF. Finally, we discuss the current understanding of the contribution of BDNF to the modulation of structural and functional plasticity by glucocorticoids, in particular in the context of the hippocampus. Understanding the mechanistic crosstalk between glucocorticoids and BDNF holds promise for the identification of potential therapeutic targets for disorders associated with the dysfunction of stress hormone pathways.
Collapse
Affiliation(s)
- D Suri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | | |
Collapse
|
255
|
Barbarich-Marsteller NC, Fornal CA, Takase LF, Bocarsly ME, Arner C, Walsh BT, Hoebel BG, Jacobs BL. Activity-based anorexia is associated with reduced hippocampal cell proliferation in adolescent female rats. Behav Brain Res 2012; 236:251-257. [PMID: 22981561 DOI: 10.1016/j.bbr.2012.08.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 02/03/2023]
Abstract
Activity-based anorexia (ABA) is an animal model of anorexia nervosa that mimics core features of the clinical psychiatric disorder, including severe food restriction, weight loss, and hyperactivity. The ABA model is currently being used to study starvation-induced changes in the brain. Here, we examined hippocampal cell proliferation in animals with ABA (or the appropriate control conditions). Adolescent female Sprague-Dawley rats were assigned to 4 groups: control (24h/day food access), food-restricted (1h/day food access), exercise (24h/day food and wheel access), and ABA (1h/day food access, 24h/day wheel access). After 3 days of ABA, 5-bromo-2'-deoxyuridine (BrdU; 200mg/kg, i.p.) was injected and the rats were perfused 2h later. Brains were removed and subsequently processed for BrdU and Ki67 immunohistochemistry. The acute induction of ABA reduced cell proliferation in the dentate gyrus. This effect was significant in the hilus region of the dentate gyrus, but not in the subgranular zone, where adult neurogenesis occurs. Marked decreases in cell proliferation were also observed in the surrounding dorsal hippocampus and in the corpus callosum. These results indicate a primary effect on gliogenesis rather than neurogenesis following 3 days of ABA. For each brain region studied (except SGZ), there was a strong positive correlation between the level of cell proliferation and body weight/food intake. Future studies should examine whether these changes are maintained following long-term weight restoration and whether alterations in neurogenesis occur following longer exposures to ABA.
Collapse
Affiliation(s)
- Nicole C Barbarich-Marsteller
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Unit 98, New York, NY 10032, United States; New York State Psychiatric Institute, 1051 Riverside Drive, Unit 98, New York, NY 10032, United States.
| | - Casimir A Fornal
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| | - Luiz F Takase
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| | - Miriam E Bocarsly
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| | - Candice Arner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| | - B Timothy Walsh
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, Unit 98, New York, NY 10032, United States; New York State Psychiatric Institute, 1051 Riverside Drive, Unit 98, New York, NY 10032, United States
| | - Bartley G Hoebel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| | - Barry L Jacobs
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
256
|
Franklin T, Saab B, Mansuy I. Neural Mechanisms of Stress Resilience and Vulnerability. Neuron 2012; 75:747-61. [DOI: 10.1016/j.neuron.2012.08.016] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 01/01/2023]
|
257
|
Barha CK, Galea LAM. The hormone therapy, Premarin, impairs hippocampus-dependent spatial learning and memory and reduces activation of new granule neurons in response to memory in female rats. Neurobiol Aging 2012; 34:986-1004. [PMID: 22938820 DOI: 10.1016/j.neurobiolaging.2012.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/29/2012] [Accepted: 07/11/2012] [Indexed: 12/25/2022]
Abstract
Estrogens have been implicated as possible therapeutic agents for improving cognition in postmenopausal women and have been linked to neurodegenerative disorders such as Alzheimer's disease. However, the utility of Premarin (Wyeth Pharmaceuticals, Markham, ON, Canada), a conjugated equine estrogen and the most commonly prescribed hormone therapy, has recently been questioned. The purpose of this study was to investigate the effects of Premarin at 2 different doses (10 or 20 μg) on hippocampus-dependent spatial learning and memory, hippocampal neurogenesis, and new neuronal activation using a rodent model of surgical menopause. Rats were treated daily with subcutaneous injections of Premarin and trained on the spatial working/reference memory version of the radial arm maze. Premarin impaired spatial reference and working learning and memory, increased hippocampal neurogenesis, but either decreased or increased activation of new neurons in response to memory retrieval as indexed by the expression of the immediate early gene product zif268, depending on the maturity of cells examined. This activation of new neurons was related to impaired performance in Premarin-treated but not control-treated female rats. These results indicate that Premarin may be impairing hippocampus-dependent learning and memory by negatively altering the neurogenic environment in the dentate gyrus thus disrupting normal activity of new neurons.
Collapse
Affiliation(s)
- Cindy K Barha
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
258
|
Samarasinghe RA, Witchell SF, DeFranco DB. Cooperativity and complementarity: synergies in non-classical and classical glucocorticoid signaling. Cell Cycle 2012; 11:2819-27. [PMID: 22801547 DOI: 10.4161/cc.21018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids (GCs) are an ubiquitous class of steroid hormones that exert a wide array of physiological effects. Traditionally, GC action has been considered to primarily involve transcriptional effects following the binding of hormone to the glucocorticoid receptor (GR) and subsequent activation or repression of target genes. However, a number of findings suggest that cellular responses following GC exposure may be mediated by transcription-independent, or "non-classical," mechanisms. We have added to this growing body of work by recently uncovering a novel GC signaling pathway that operates through plasma membrane GRs to limit gap junction intercellular signaling and limit the proliferation of neural progenitor cells (NPCs). In this review, we highlight our current state of knowledge of non-classical GR signaling, in particular as it applies to neuronal function. Using NPCs as a cellular model, we speculate on the components of this non-classical pathway and the mechanisms whereby a number of cytoplasmic and nuclear signaling events may be integrated.
Collapse
Affiliation(s)
- Ranmal A Samarasinghe
- Department of Neuroscience, University of Pittsburgh, School of Medicine, and Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | | |
Collapse
|
259
|
Leconte C, Léger M, Boulouard M, Tixier E, Fréret T, Bernaudin M, Schumann-Bard P. Repeated mild hypoxic exposures decrease anxiety-like behavior in the adult mouse together with an increased brain adrenomedullin gene expression. Behav Brain Res 2012; 230:78-84. [DOI: 10.1016/j.bbr.2012.01.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/23/2012] [Accepted: 01/27/2012] [Indexed: 01/17/2023]
|
260
|
|
261
|
Danzer SC. Depression, stress, epilepsy and adult neurogenesis. Exp Neurol 2012; 233:22-32. [PMID: 21684275 PMCID: PMC3199026 DOI: 10.1016/j.expneurol.2011.05.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 05/12/2011] [Accepted: 05/28/2011] [Indexed: 12/16/2022]
Abstract
Epilepsy and depression share an unusually high coincidence suggestive of a common etiology. Disrupted production of adult-born hippocampal granule cells in both disorders may contribute to this high coincidence. Chronic stress and depression are associated with decreased granule cell neurogenesis. Epilepsy is associated with increased production - but aberrant integration - of new cells early in the disease and decreased production late in the disease. In both cases, the literature suggests these changes in neurogenesis play important roles in their respective diseases. Aberrant integration of adult-generated cells during the development of epilepsy may impair the ability of the dentate gyrus to prevent excess excitatory activity from reaching hippocampal pyramidal cells, thereby promoting seizures. Effective treatment of a subset of depressive symptoms, on the other hand, may require increased granule cell neurogenesis, indicating that adult-generated granule cells can modulate mood and affect. Given the robust changes in adult neurogenesis evident in both disorders, competing effects on brain structure are likely. Changes in relative risk, disease course or response to treatment seem probable, but complex and changing patterns of neurogenesis in both conditions will require sophisticated experimental designs to test these ideas. Despite the challenges, this area of research is critical for understanding and improving treatment for patients suffering from these disorders.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
262
|
Castilla-Ortega E, Hoyo-Becerra C, Pedraza C, Chun J, Rodríguez De Fonseca F, Estivill-Torrús G, Santín LJ. Aggravation of chronic stress effects on hippocampal neurogenesis and spatial memory in LPA₁ receptor knockout mice. PLoS One 2011; 6:e25522. [PMID: 21980482 PMCID: PMC3183048 DOI: 10.1371/journal.pone.0025522] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022] Open
Abstract
Background The lysophosphatidic acid LPA1 receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA1 receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory. Methodology/Principal Findings Male LPA1-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice. Conclusions/Significance These results reveal that the absence of the LPA1 receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPA1 receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Departamento de Psicobiología y Metodología de las CC, Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Carolina Hoyo-Becerra
- Unidad de Investigación, Fundación IMABIS, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las CC, Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Jerold Chun
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | | | - Guillermo Estivill-Torrús
- Unidad de Investigación, Fundación IMABIS, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Luis J. Santín
- Departamento de Psicobiología y Metodología de las CC, Universidad de Málaga, Campus de Teatinos, Málaga, Spain
- * E-mail:
| |
Collapse
|
263
|
Dranovsky A, Leonardo ED. Is there a role for young hippocampal neurons in adaptation to stress? Behav Brain Res 2011; 227:371-5. [PMID: 21621559 DOI: 10.1016/j.bbr.2011.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/11/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
The hippocampus has been implicated in many cognitive and emotional behaviors and in the physiology of the stress response. Within the hippocampus, the dentate gyrus has been implicated in the detection of novelty. The dentate is also a major target for stress hormones and modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. Whether these functions of the dentate integrate or segregate remains unknown, as most investigations of its role in stress and learning are separate. Since the exciting discovery of adult neurogenesis in the dentate gyrus, adult-born neurons have been implicated in both novelty detection and the stress response. In this perspective we will discuss the literature that implicates the hippocampus, and potentially, adult-born neurons in these two functions. We will attempt to reconcile the seemingly contradictory behavioral results for the function of adult-born neurons. Finally, we will speculate that a key function of adult-born neurons within hippocampal function may be to modulate the stress response and perhaps assign stress salience to the sensory context.
Collapse
Affiliation(s)
- Alex Dranovsky
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032, USA.
| | | |
Collapse
|
264
|
Roitbak T, Thomas K, Martin A, Allan A, Cunningham LA. Moderate fetal alcohol exposure impairs neurogenic capacity of murine neural stem cells isolated from the adult subventricular zone. Exp Neurol 2011; 229:522-5. [PMID: 21419122 DOI: 10.1016/j.expneurol.2011.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/11/2011] [Accepted: 03/04/2011] [Indexed: 12/31/2022]
Abstract
Gestational alcohol exposure leads to a spectrum of neurological symptoms which range from severe mental retardation caused by high dose exposure, to subtle cognitive and neuropsychiatric symptoms caused by low-to-moderate doses. We and other investigators have demonstrated that exposure to moderate levels of alcohol throughout gestation leads to impaired neurogenesis in the adult hippocampus, although the mechanisms by which this occurs are not known. To begin to distinguish cell-intrinsic from microenvironmental contributions to impaired adult neurogenesis, we isolated neural stem progenitor cells (NSPCs) from the adult SVZ of mice exposed to moderate levels of alcohol throughout gestation. We found that NSPCs isolated from fetal alcohol exposed (FAE) mice displayed reduced neurosphere formation in culture, as assessed by a serial passage neurosphere assay, and reduced neuronal differentiation upon growth factor withdrawal. These studies suggest that gestational alcohol exposure leads to long-lasting NSPC-intrinsic dysregulation, which may underlie in vivo neurogenic deficits.
Collapse
Affiliation(s)
- Tamara Roitbak
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131–0001, USA
| | | | | | | | | |
Collapse
|
265
|
Frye CA, Paris JJ, Osborne DM, Campbell JC, Kippin TE. Prenatal Stress Alters Progestogens to Mediate Susceptibility to Sex-Typical, Stress-Sensitive Disorders, such as Drug Abuse: A Review. Front Psychiatry 2011; 2:52. [PMID: 22022315 PMCID: PMC3195272 DOI: 10.3389/fpsyt.2011.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 09/10/2011] [Indexed: 01/06/2023] Open
Abstract
Maternal-offspring interactions begin prior to birth. Experiences of the mother during gestation play a powerful role in determining the developmental programming of the central nervous system. In particular, stress during gestation alters developmental programming of the offspring resulting in susceptibility to sex-typical and stress-sensitive neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. However, neither these effects, nor the underlying mechanisms, are well understood. Our hypothesis is that allopregnanolone, during gestation, plays a particularly vital role in mitigating effects of stress on the developing fetus and may mediate, in part, alterations apparent throughout the lifespan. Specifically, altered balance between glucocorticoids and progestogens during critical periods of development (stemming from psychological, immunological, and/or endocrinological stressors during gestation) may permanently influence behavior, brain morphology, and/or neuroendocrine-sensitive processes. 5α-reduced progestogens are integral in the developmental programming of sex-typical, stress-sensitive, and/or disorder-relevant phenotypes. Prenatal stress (PNS) may alter these responses and dysregulate allopregnanolone and its normative effects on stress axis function. As an example of a neurodevelopmental, neuropsychiatric, and/or neurodegenerative process, this review focuses on responsiveness to drugs of abuse, which is sensitive to PNS and progestogen milieu. This review explores the notion that allopregnanolone may effect, or be influenced by, PNS, with consequences for neurodevelopmental-, neuropsychiatric-, and/or neurodegenerative- relevant processes, such as addiction.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, University at Albany-State University of New York Albany, NY, USA
| | | | | | | | | |
Collapse
|
266
|
Wang J, Barak LS, Mook RA, Chen W. Glucocorticoid hedgehog agonists in neurogenesis. VITAMINS AND HORMONES 2011; 87:207-15. [PMID: 22127244 DOI: 10.1016/b978-0-12-386015-6.00030-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The process of neurogenesis in mammals, which is prolific and widespread at birth, gradually slows with aging and in humans becomes restricted to areas including the cerebellum and hippocampus. It has been reported that exposure to glucocorticoids can impair neurogenesis in both adults and children. Glucocorticoids are known to bind with high affinity to intracellular receptors. Glucocorticoid blood levels are normally regulated by environmental stresses, but because of their clinical utility, exogenous glucocorticoids are frequently administered in drug formulations. Consequently, concerns have arisen about the consequences of glucocorticoid use on neurogenesis and health, especially in the pediatric population. In this article, we will review recent findings that a select number of related glucocorticoids, halcinonide, fluticasone propionate, clobetasol propionate, and fluocinonide, also bind the hedgehog pathway receptor Smoothened. We will discuss their pharmacology and also a most surprising result; that this select group of compounds, which includes FDA approved drugs, unlike typical glucocorticoids such as dexamethasone, stimulate stem cell growth, and thus enhance neurogenesis.
Collapse
Affiliation(s)
- Jiangbo Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | |
Collapse
|