251
|
Di Francesco M, Primavera R, Summa M, Pannuzzo M, Di Francesco V, Di Mascolo D, Bertorelli R, Decuzzi P. Engineering shape-defined PLGA microPlates for the sustained release of anti-inflammatory molecules. J Control Release 2020; 319:201-212. [DOI: 10.1016/j.jconrel.2019.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
|
252
|
Brauner B, Schwarz P, Wirth M, Gabor F. Micro vs. nano: PLGA particles loaded with trimethoprim for instillative treatment of urinary tract infections. Int J Pharm 2020; 579:119158. [PMID: 32081799 DOI: 10.1016/j.ijpharm.2020.119158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 01/06/2023]
Abstract
Recurring infections and increasing resistances continue to complicate treatment of urinary tract infections. To investigate alternative treatment options, trimethoprim loaded micro- (D[4;3] of 1-9 µm) and nanoparticles (Z-Avg of 200-400 nm) were prepared from two types of poly(d,l-lactic-co-glycolic acid) (PLGA) for instillative therapy. While PLGA 503H microparticles could not be loaded with more than 2.6% trimethoprim, PLGA 2300 entrapped 22%. When preparing nanoparticles, both types displayed an even higher drug load of up to 29% using PLGA 2300, while PLGA 503H drug load stagnated at 10%. After eight hours, drug release from microparticles amounted to 55% (503H) and 35% (2300) whereas total drug release occurred after 8 (503H) and 9 days (2300). In case of nanoparticles, trimethoprim was liberated much faster with 60% after 2 h and a complete release after 24 h from both polymers. PLGA 2300 seems to be the better choice for entrapment of trimethoprim in microparticles considering the drug load. Both polymers, however, seem to be viable options for nanoparticles. Due to the higher overall drug load, nanoparticles seem to be advantageous over microparticles for instillative therapy, especially when prepared with PLGA 2300.
Collapse
Affiliation(s)
- Bernhard Brauner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Patrik Schwarz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Michael Wirth
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
253
|
Lucas J, Ralaivao M, Estevinho BN, Rocha F. A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.11.095] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
254
|
de Oliveira Cardoso VM, Evangelista RC, Daflon Gremião MP, Stringhetti Ferreira Cury B. Insights into the impact of cross-linking processes on physicochemical characteristics and mucoadhesive potential of gellan gum/retrograded starch microparticles as a platform for colonic drug release. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
255
|
New intranasal cross-linked mosapride xyloglucan pluronics micelles (MOS-XPMs) for reflux esophagitis disease: In-vitro optimization and improved therapeutic efficacy. J Adv Res 2020; 23:83-94. [PMID: 32089877 PMCID: PMC7025289 DOI: 10.1016/j.jare.2020.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mosapride was loaded inside crosslinked Xyloglucan Pluronic micelle (MOS-XPMs). (MOS-XPMs) showed improved stability and mucoadhesiveness. MOS-XPMs systems showed a rapid release of drug located in the shell within 0.5hr followed by a consistent release pattern for the remaining 8hr. Trans-abdominal ultrasonography XPMs showed 1.5 fold increased in duodenal and cecal motility compared to MOS suspension.
Mosapride belongs to class IV in Biopharmaceutics Classification System and is used in the treatment of reflux esophagitis. It exhibits poor bioavailability due to limited permeability, solubility and extensive first-pass metabolism. In this study, intranasal mosapride-loaded cross-linked xyloglucan Pluronic micelles (MOS-XPMs) was formulated and optimized to improve the low solubility & bioavailability of MOS. The solid dispersion technique using 23 full factorial design was applied. (MOS-XPMs) (F4) had the highest desirability value (0.952) and, therefore, it was selected as an optimal system. Xyloglucan cross-linked in the shell of Pluronic micelles offered improved stability and mucoadhesiveness to MOS-XPMs. 1H NMR spectra ensured the cross-linking of xyloglucan with Pluronic micelle shell and micelle stabilization. A Pharmacodynamic study revealed that MOS-XPMs showed 1.5-fold increase in duodenal and cecal motility compared to MOS suspension and 1.7-fold increase compared to the oral marketed product. The new MOS-XPMs were shown to be successful at improving the therapeutic efficacy of mosapride.
Collapse
|
256
|
Influence of Acetylated Annealed Starch on the Release of β-Escin from the Anionic and Non-Ionic Hydrophilic Gels. Pharmaceutics 2020; 12:pharmaceutics12010084. [PMID: 31968699 PMCID: PMC7023413 DOI: 10.3390/pharmaceutics12010084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 01/10/2023] Open
Abstract
Naturally sourced products introduced to human nutrition and rediscovered for therapy include polysaccharides from potatoes. The starch may obtain unique properties via acetylation with acetic anhydride at 13 cm3/100 g of starch as the basic dose of reagent used in industrial conditions. The hydrogel formulation was applied as a carrier for escin included in the dry extract of Aesculus hippocastanum. Six hydrogels were evaluated (methylcellulose, polyacrylic acid-Carbopol 980 NF and polyacrylate crosspolymer 11—Aristoflex Velvet) with various concentrations of the modified starch. The kinetic studies of in vitro β-escin release were carried out in purified water at 37 ± 0.5 °C using a paddle apparatus at 50 rpm and a time period of 7 h. The criterion for the most suitable model was based on a high correlation coefficient of evaluated release profiles. The addition of modified annealed acetylated potato starch resulted in prolongation of β-escin release.
Collapse
|
257
|
Development of TPGS/F127/F68 mixed polymeric micelles: Enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol 2020; 137:111126. [PMID: 31954714 DOI: 10.1016/j.fct.2020.111126] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Syringic acid (SA), a natural polyphenol found in fruits and vegetables, is claimed to show notable hepatoprotection. Nevertheless, low solubility and bioavailability hamper the application of SA. This study aimed to investigate the potential of TPGS/F127/F68 mixed polymeric micelles as a sustained and liver-targeting nanocarrier for SA. Herein, the prepared SA-loaded TPGS/F127/F68 mixed polymeric micelles (SA-TPGS-Ms) were spherically-shaped and homogeneously-distributed nanoparticles with high entrapment efficiency (94.67 ± 2.05%) and sustained release. Besides, in-vitro cell culture studies revealed that SA-TPGS-Ms substantially promoted cellular uptake with excellent biocompatibility. After oral administration, SA-TPGS-Ms demonstrated an increased bioavailability (2.3-fold) and delayed in-vivo elimination compared with the free SA. Furthermore, the alleviation of oxidative stress and amelioration of hepatic injury in CCl4-induced hepatotoxicity mice further demonstrated the excellent hepatoprotection of SA-TPGS-Ms. Collectively, SA-TPGS-Ms could be a promising nanocarrier for the utilization of SA in functional foods, with enhanced bioavailability and hepatoprotection.
Collapse
|
258
|
Fensham M, Steenekamp J, Jacobs A, Hamman J. Artificial membranes in combination with selected natural oils for in vitro drug passive diffusion screening in Ussing type chamber apparatus applied to gastro-retentive systems. Pharm Dev Technol 2019; 25:366-375. [PMID: 31835955 DOI: 10.1080/10837450.2019.1705484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mark Fensham
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Jan Steenekamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Adriaan Jacobs
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Josias Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
259
|
Wannasarit S, Mahattanadul S, Issarachot O, Puttarak P, Wiwattanapatapee R. Raft-forming gastro-retentive formulations based on Centella asiatica extract-solid dispersions for gastric ulcer treatment. Eur J Pharm Sci 2019; 143:105204. [PMID: 31870812 DOI: 10.1016/j.ejps.2019.105204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Liquid raft-forming formulations comprising solid dispersions of glycoside-rich Centella asiatica extract and Eudragit® EPO (GR-SD) were developed to achieve prolonged delivery of the glycosides, asiaticoside (AS) and madecassoside (MS) in the stomach and thus increase the effectiveness of gastric ulcer treatment. Solid dispersions of GR extract and Eudragit® EPO (GR-SD, weight ratio 1:0.5) resulted in the highest solubility of AS (41.7 mg/mL) and MS (29.3 mg/mL) and completed dissolution of both glycosides occurred in SGF within 10 min. The optimized raft-forming formulation was composed of alginate (2%), HPMC K-100 (0.5%), GR-SD (1.2%), and calcium carbonate (0.5%) as a calcium source and carbon dioxide producer. The formulation provided sufficient raft strength (> 7.0 g), rapid floating behavior in SGF (~30 s), and sustained release of AS (more than 80%) and MS (85%) over 8 h. GR-SD-based formulations administered once daily to rats for two days at a dose of 10 mg AS/kg reduced the severity of gastric ulcer induced by indomethacin with a greater curative efficacy than those of unformulated GR extract and a standard antiulcer agent: lansoprazole (p < 0.05). These findings demonstrate that GR-SD-based raft-forming systems offer significant promise for improving the treatment of gastric ulcers induced by non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Saowanee Wannasarit
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Research Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Sirima Mahattanadul
- Phytomedicine and Pharmaceutical Biotechnology Excellence Research Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Ousanee Issarachot
- Pharmacy Technician Department, Sirindhron College of Public Health of Suphanburi, 77 moo4, Tubteelek sub-district, Mueang district, Suphanburi, 72000, Thailand
| | - Panupong Puttarak
- Phytomedicine and Pharmaceutical Biotechnology Excellence Research Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Ruedeekorn Wiwattanapatapee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Research Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
260
|
Brouers F, Al-Musawi TJ. The use of the Brouers–Sotolongo fractal kinetic equation for the study of drug release. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00183-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
261
|
Ahmed TA, Mussari MA, Abdel-Hady SES, El-Say KM. An Optimized Surfactant-Based PEG-PLCL In Situ Gel Formulation For Enhanced Activity Of Rosuvastatin In Poloxamer-Induced Hyperlipidemic Rats. Drug Des Devel Ther 2019; 13:4035-4051. [PMID: 31839704 PMCID: PMC6904902 DOI: 10.2147/dddt.s224442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Injectable in situ gel (ISG) systems suffer from high initial drug release that may result in toxic effects. OBJECTIVE This work aimed to develop an injectable sustained release rosuvastatin (RSV) ISG formulation with minimum initial drug burst and improved hyperlipidemic efficacy. METHODS Six formulation factors that affect RSV release after 0.5, 2 and 24 hrs have been screened and the significant ones were optimized utilizing an experimental design tool. The optimum ISG formulation components were physicochemically characterized. Kinetic treatment, dissolution efficiency and mean dissolution time were investigated for the developed ISG formulations. Pharmacodynamic effects of the optimized ISG formulation were studied and compared to ISG formulation loaded with free RSV and to a marketed oral drug product. RESULTS The concentration polylactide-co-ε-caprolactone (25: 75), the surfactant hydrophilic lipophilic balance (HLB) and the ratio of surfactant to polyethylene glycol 400 were significantly affecting the release of RSV during the first 24 h. Physicochemical characterization demonstrated complete dispersion of RSV in the polymeric matrix with slight changes in the drug crystalline structure. The optimized formulation demonstrated acceptable syringeability, good flow rate and was able to extend the in vitro drug release for 34 days. The ISG formulations complied with Weibull model. Pharmacodynamic study revealed a sustained reduction in the lipid profile that lasted for 21 days with a marked decrease in the lipid level during the first 24 hrs from the ISG system loaded with free RSV. CONCLUSION The optimized RSV ISG formulation could be considered a promising strategy due to a reduction in dosing frequency and enhancement in hypolipidemic efficacy.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department Of Pharmaceutics, Faculty Of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department Of Pharmaceutics And Industrial Pharmacy, Faculty Of Pharmacy, Al-Azhar University, Cairo11651, Egypt
| | - Mohammed A Mussari
- Department Of Pharmaceutics, Faculty Of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Seham El-Sayed Abdel-Hady
- Department Of Pharmaceutics, Faculty Of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Khalid M El-Say
- Department Of Pharmaceutics, Faculty Of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department Of Pharmaceutics And Industrial Pharmacy, Faculty Of Pharmacy, Al-Azhar University, Cairo11651, Egypt
| |
Collapse
|
262
|
Kadam SL, Yadav P, Bhutkar S, Patil VD, Shukla PG, Shanmuganathan K. Sustained release insect repellent microcapsules using modified cellulose nanofibers (mCNF) as pickering emulsifier. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
263
|
Estevez-Areco S, Guz L, Famá L, Candal R, Goyanes S. Bioactive starch nanocomposite films with antioxidant activity and enhanced mechanical properties obtained by extrusion followed by thermo-compression. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
264
|
Xue F, Gu Y, Wang Y, Li C, Adhikari B. Encapsulation of essential oil in emulsion based edible films prepared by soy protein isolate-gum acacia conjugates. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
265
|
Yu M, Yuan W, Li D, Schwendeman A, Schwendeman SP. Predicting drug release kinetics from nanocarriers inside dialysis bags. J Control Release 2019; 315:23-30. [PMID: 31629038 DOI: 10.1016/j.jconrel.2019.09.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 11/17/2022]
Abstract
Dialysis methods are frequently used to determine the in vitro drug release kinetics of nanoparticle drug delivery systems. However, the need for the released drug to diffuse through the dialysis membrane delays its appearance in the sampling compartment. Thus, the apparent drug release data outside the dialysis bag typically does not match the desired release kinetics inside the bag adjacent to the nanocarriers. To address this issue, here we describe a simple approach to determine the actual drug release kinetics from nano drug carriers inside the dialysis bag from the experimental data measured from the sampling compartment. First, a calibration experiment is carried out to determine the diffusion barrier properties of the dialysis membranes. The apparent drug release profile of the nanocarrier is then determined using the dialysis method, and a mathematical model is applied to determine the actual drug release kinetics from the experimental data. The model was tested on DOXIL® (doxorubicin liposomes), and an excellent agreement was found between the predicted and measured drug concentration inside the dialysis membranes. By taking the barrier effects of dialysis membranes into consideration, our model independent of drug carrier not only enables the proper interpretation of the data from dialysis studies but also helps to evaluate the dialysis methodology applied to in vitro drug release assays.
Collapse
Affiliation(s)
- Minzhi Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, NCRC, 2800 Plymouth Rd, Ann Arbor, MI, 48109, United States
| | - Wenmin Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, NCRC, 2800 Plymouth Rd, Ann Arbor, MI, 48109, United States
| | - Dan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, NCRC, 2800 Plymouth Rd, Ann Arbor, MI, 48109, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, NCRC, 2800 Plymouth Rd, Ann Arbor, MI, 48109, United States
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, NCRC, 2800 Plymouth Rd, Ann Arbor, MI, 48109, United States; Department of Biomedical Engineering, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
266
|
Zhou T, Moriyama Y, Ayukawa Y, Rakhmatia YD, Zhou X, Hu J, Koyano K. Injectable Porous Bioresorbable Composite Containing Fluvastatin for Bone Augmentation. ACS Biomater Sci Eng 2019; 5:5422-5429. [DOI: 10.1021/acsbiomaterials.9b01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tianren Zhou
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuko Moriyama
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yunia Dwi Rakhmatia
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Xudiyang Zhou
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jiangqi Hu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
267
|
Artusio F, Ferri A, Gigante V, Massella D, Mazzarino I, Sangermano M, Barresi A, Pisano R. Synthesis of high payload nanohydrogels for the ecapsulation of hydrophilic molecules via inverse miniemulsion polymerization: caffeine as a case study. Drug Dev Ind Pharm 2019; 45:1862-1870. [PMID: 31549528 DOI: 10.1080/03639045.2019.1672714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The association of an active principle with a nanocarrier is known to improve its stability and protect it from external factors. Nevertheless, loading of nanoparticles with highly hydrophilic substances like caffeine remains a tricky issue. In the present study, inverse miniemulsion systems were successfully coupled to UV radiation to synthesize polymeric nanohydrogels for drug delivery. The proper choice of the continuous and dispersed phase chemical composition led to the entrapment of active principle into the miniemulsion droplets. Our confinement-based strategy enabled unprecedented caffeine encapsulation efficiency inside 100-nm particles. Dimensional, thermal, and spectroscopic characterizations were carried out to investigate both unloaded and loaded nanohydrogels. Furthermore, in vitro release studies evaluated caffeine release kinetics from nanohydrogels by means of dialysis tests. It was demonstrated that controlled and sustained release occurred within the first 50 hours. Experimental data were found to fit the Higuchi model suggesting that the active principle release is diffusion controlled.
Collapse
Affiliation(s)
- Fiora Artusio
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Valeria Gigante
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Daniele Massella
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Italo Mazzarino
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Marco Sangermano
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Antonello Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| |
Collapse
|
268
|
Zhang B, Huang J, Liu K, Zhou Z, Jiang L, Shen Y, Zhao D. Biocompatible Cyclodextrin-Based Metal–Organic Frameworks for Long-Term Sustained Release of Fragrances. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04214] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | - Dan Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
269
|
Osman N, Omolo CA, Gannimani R, Waddad AY, Rambharose S, Mocktar C, Singh S, Parboosing R, Govender T. Novel fatty acid-based pH-responsive nanostructured lipid carriers for enhancing antibacterial delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
270
|
Adibkia K, Selselehjonban S, Emami S, Osouli-Bostanabad K, Barzegar-Jalali M. Electrosprayed polymeric nanobeads and nanofibers of modafinil: preparation, characterization, and drug release studies. ACTA ACUST UNITED AC 2019; 9:179-188. [PMID: 31508333 PMCID: PMC6726752 DOI: 10.15171/bi.2019.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/03/2022]
Abstract
![]()
Introduction: Modafinil (MDF) is used orally for the treatment of attention-deficit/hyperactivity disorder and narcolepsy. It holds low solubility and high permeability; therefore, improving its dissolution properties by preparing nanoformulations can be a promising approach to enhance its oral absorption. Our aims were to prepare and characterize MDF-Eudragit® RS100 (MDF-ERS) nanoparticles by electrospray technique.
Methods: Electrosprayed nanoparticles were fabricated by varying MDF to ERS ratios and concentrations. The formulations were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier-transform infrared spectroscopy (FTIR). Release studies were performed on nanoparticles, physical mixtures, and raw MDF. The release data were fitted to different models to understand the mechanism of the drug release.
Results: Electrospraying of MDF and ERS solution resulted in the preparation of nonobeads or nanofibers, and the particulate characteristics of the obtained products were largely controlled by the polymer amount in the solution. PXRD and thermal analyses showed that MDF was an amorphous phase in the structures of nanoparticles. Using FTIR, no interaction was observed between MDF and ERS in nanoparticles. Nanoparticles showed biphasic release profiles and the order of dissolution rates was: nanofibers>MDF>nanobeads. The well-fitted model was Weibull model, indicating a Fickian diffusion as the main mechanism of release.
Conclusion: The results suggest that by optimization of variables such as solution concentration of MDF-ERS nanofibers and nanobeads with higher dissolution rates can be made by electrospray. Electrospray deposition as a simple, continuous, and surfactant free method is an excellent choice for preparation of drug loaded polymeric nanoparticles.
Collapse
Affiliation(s)
- Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevil Selselehjonban
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Emami
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Karim Osouli-Bostanabad
- Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
271
|
Hao L, Lin G, Chen C, Zhou H, Chen H, Zhou X. Phosphorylated Zein as Biodegradable and Aqueous Nanocarriers for Pesticides with Sustained-Release and anti-UV Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9989-9999. [PMID: 31430135 DOI: 10.1021/acs.jafc.9b03060] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zein's prevalent hydrophobic character is one of the major challenges associated with ineffective utilization as an aqueous nanocarrier for pesticides. Herein, we report an effective approach to hydrophilic modification of zein by phosphorylation using nontoxic sodium tripolyphosphate (STP), thereby improving the water-solubility, foliage wettability, and adhesion ability of zein as a nanocarrier for sustained release of pesticides. The procedure relied on zein grafted with STP via N- and O- phosphate bonds and encapsulation of avermectin (AVM) as a hydrophobic model drug using phosphorylated zein (P-Zein), which achieved pH sensitivity to controlled release of AVM in various applicable environments. The chemical interaction between zein and STP was confirmed by Fourier transform infrared, thermogravimetric analysis, and differential scanning calorimetric. Scanning electron microscopy, dynamic light scattering, and zeta potential technique were applied to investigate their structural characteristics and stability, from which it was found that AVM encapsulated in P-Zein (AVM@P-Zein) formed uniform nanoparticles with average sizes in the range of 174-278 nm under different conditions, and had an excellent stability in aqueous solution. Besides, AVM@P-Zein facilitated the wettability on the foliage surface evidenced from contact angle values owing to the amphiphilic character after phosphorylation as well as enhanced the adhesion ability between liquid and leaf, restricting the pesticide runoff. Ultraviolet-visible spectroscopy was employed to explore the anti-UV property and encapsulation as well as release behavior, which revealed that the presence of P-Zein like a shell protects AVM from UV photolysis with encapsulation efficiency of approximately 81.52%, and the release of AVM from P-Zein showed pH-responsive behavior ascribed to protonation and deprotonation of phosphate under various pH conditions fitting to Elovich kinetic model, achieving the relatively more rapid release under acidic conditions. More importantly, AVM@P-Zein retained the toxicity for insecticidal effect.
Collapse
Affiliation(s)
- Li Hao
- School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
| | - Guanquan Lin
- School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
| | - Chuangyu Chen
- School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
| | - Hongjun Zhou
- School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
| | - Huayao Chen
- School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
| | - Xinhua Zhou
- School of Chemistry and Chemical Engineering , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution , Zhongkai University of Agriculture and Engineering , Guangzhou , Guangdong 510225 , P. R. China
| |
Collapse
|
272
|
Benefits of Fractal Approaches in Solid Dosage Form Development. Pharm Res 2019; 36:156. [PMID: 31493266 DOI: 10.1007/s11095-019-2685-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Pharmaceutical formulations are complex systems consisting of active pharmaceutical ingredient(s) and a number of excipients selected to provide the intended performance of the product. The understanding of materials' properties and technological processes is a requirement for building quality into pharmaceutical products. Such understanding is gained mostly from empirical correlations of material and process factors with quality attributes of the final product. However, it seems also important to gain knowledge based on mechanistic considerations. Promising is here to study morphological and/or topological characteristics of particles and their aggregates. These geometric aspects must be taken into account to better understand how product attributes emerge from raw materials, which includes, for example, mechanical tablet properties, disintegration or dissolution behavior. Regulatory agencies worldwide are promoting the use of physical models in pharmaceutics to design quality into a final product. This review deals with pharmaceutical applications of theoretical models, focusing on percolation theory, fractal, and multifractal geometry. The use of these so-called fractal approaches improves the understanding of different aspects in the development of solid dosage forms, for example by identifying critical drug and excipient concentrations, as well as to study effects of heterogeneity on dosage form performance. The aim is to link micro- and macrostructure to the emerging quality attributes of the pharmaceutical solid dosage forms as a strategy to enhance mechanistic understanding and to advance pharmaceutical development and manufacturing processes.
Collapse
|
273
|
Faidi A, Lassoued MA, Becheikh MEH, Touati M, Stumbé JF, Farhat F. Application of sodium alginate extracted from a Tunisian brown algae Padina pavonica for essential oil encapsulation: Microspheres preparation, characterization and in vitro release study. Int J Biol Macromol 2019; 136:386-394. [PMID: 31173834 DOI: 10.1016/j.ijbiomac.2019.06.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/19/2019] [Accepted: 06/03/2019] [Indexed: 11/23/2022]
Abstract
In recent years, there has been considerable interest in essential oils encapsulation and in developing biodegradable microparticles. The aim of this present work was to prepare clove essential oil loaded microspheres, by a modified emulsification method, using sodium alginate extracted from a Tunisian Brown seaweed Algae Padina pavonica as biopolymer. The obtained microparticles were characterized by FT-IR, DSC and SEM. Loading capacity yield, encapsulation efficiency (%EE) and in vitro release of the essential oil were also investigated. Sodium alginate microspheres were successfully prepared as confirmed by physico-chemical characterizations. %yield of microspheres and %EE of essential oil were 72.73% and 24.77% ± 7.47%, respectively. SEM showed pseudospherical microspheres with rough surface ranging, in size, from 1500 μm to 3000 μm. In vitro dissolution study indicates a controlled released of the essential oil which follows, mainly, classical Fickian diffusion. Thus, this present work highlighted the potential of this polysaccharide as a biopolymer to formulate polymeric microspheres.
Collapse
Affiliation(s)
- Adel Faidi
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), University of Monastir, Faculty of Pharmacy of Monastir, Ibn Sina Street, 5000 Monastir, Tunisia.
| | - Mohamed Ali Lassoued
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), University of Monastir, Faculty of Pharmacy of Monastir, Ibn Sina Street, 5000 Monastir, Tunisia
| | - Mohamed El Hédi Becheikh
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), University of Monastir, Faculty of Pharmacy of Monastir, Ibn Sina Street, 5000 Monastir, Tunisia
| | - Mouna Touati
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), University of Monastir, Faculty of Pharmacy of Monastir, Ibn Sina Street, 5000 Monastir, Tunisia
| | - Jean-François Stumbé
- Laboratory of Photochemistry and Macromolecular Engineering Jean Baptiste Donnet Institute, National Engineering School of Chemistry of Mulhouse, 68093 Mulhouse, France
| | - Farhat Farhat
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), University of Monastir, Faculty of Pharmacy of Monastir, Ibn Sina Street, 5000 Monastir, Tunisia
| |
Collapse
|
274
|
Wang S, Li W, Sun K, Zhang R, Wang S, Geng L. Study of release kinetics and degradation thermodynamics of ferric citrate liposomes. Chem Phys Lipids 2019; 225:104811. [PMID: 31449765 DOI: 10.1016/j.chemphyslip.2019.104811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/10/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
Ferric citrate liposome (FAC-Lip) with good sustained-released property was prepared by the rotary-evaporated film-ultrasonic method, and characterized by TEM, DLS, zeta potential and encapsulation efficiency (EE%). The effects of membrane material ratios (mPC: mchol = 8:1, 10:1 and 12:1) and drug lipid ratios (mFAC: mPC = 1:4, 1:6.5 and 1:8) on the release of FAC-Lip were examined. The in vitro release kinetic models and mechanisms of FAC-Lip in artificial gastric juice (SGF) and artificial intestinal juice (SIF) compared with free-FAC were determined. The thermal degradation in PBS was also determined. The results showed that FAC-Lip with membrane material ratio (10:1) and drug lipid ratio (1:6.5) had the optimal sustained-released property, unilamellar vesicles with uniform size (178 ± 2.12 nm), negative charge (-56 ± 3.51 mV) and high encapsulation efficiency (72.77 ± 0.42%). The in vitro release kinetic models of FAC-Lip were two-phase kinetics model and the release mechanisms were non-Fick diffusion both in SGF and SIF. The thermal degradation of FAC-Lip was an endothermic and spontaneous reaction. The results may be helpful in optimizing drug-liposome design, application in food and medicine industries, and furthermore, predicting and guiding medication in vivo.
Collapse
Affiliation(s)
- Shan Wang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenxin Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Kaiyue Sun
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ru Zhang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shuping Wang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lina Geng
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
275
|
|
276
|
Evaluation of proanthocyanidin-crosslinked sericin/alginate blend for ketoprofen extended release. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
277
|
Design and Characterization of Chitosan Nanoformulations for the Delivery of Antifungal Agents. Int J Mol Sci 2019; 20:ijms20153686. [PMID: 31357647 PMCID: PMC6695956 DOI: 10.3390/ijms20153686] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023] Open
Abstract
Among different Candida species triggering vaginal candidiasis, Candida albicans is the most predominant yeast. It is commonly treated using azole drugs such as Tioconazole (TIO) and Econazole (ECO). However, their low water solubility may affect their therapeutic efficiency. Therefore, the aim of this research was to produce a novel chitosan nanocapsule based delivery system comprising of TIO or ECO and to study their suitability in vaginal application. These systems were characterized by their physicochemical properties, encapsulation efficiency, in vitro release, storage stability, cytotoxicity, and in vitro biological activity. Both nanocapsules loaded with TIO (average hydrodynamic size of 146.8 ± 0.8 nm, zeta potential of +24.7 ± 1.1 mV) or ECO (average hydrodynamic size of 127.1 ± 1.5 nm, zeta potential of +33.0 ± 1.0 mV) showed excellent association efficiency (99% for TIO and 87% for ECO). The analysis of size, polydispersity index, and zeta potential of the systems at 4, 25, and 37 °C (over a period of two months) showed the stability of the systems. Finally, the developed nanosystems presented fungicidal activity against C. albicans at non-toxic concentrations (studied on model human skin cells). The results obtained from this study are the first step in the development of a pharmaceutical dosage form suitable for the treatment of vaginal candidiasis.
Collapse
|
278
|
Wu W, Wu J, Fu Q, Jin C, Guo F, Yan Q, Yang Q, Wu D, Yang Y, Yang G. Elaboration and characterization of curcumin-loaded Tri-CL-mPEG three-arm copolymeric nanoparticles by a microchannel technology. Int J Nanomedicine 2019; 14:4683-4695. [PMID: 31308653 PMCID: PMC6615023 DOI: 10.2147/ijn.s198217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose: Clinical applications of curcumin (Cur) have been greatly restricted due to its low solubility and poor systemic bioavailability. Three-arm amphiphilic copolymer tricarballylic acid-poly (ε-caprolactone)-methoxypolyethylene glycol (Tri-CL-mPEG) nanoparticles (NPs) were designed to improve the solubility and bioavailability of Cur. The present study adopted a microchannel system to precisely control the preparation of self-assembly polymeric NPs via liquid flow-focusing and gas displacing method. Methods: The amphiphilic three-arm copolymer Tri-CL-mPEG was synthesized and self-assembled into nearly spherical NPs, yielding Cur encapsulated into NP cores (Cur-NPs). The obtained NPs were evaluated for physicochemical properties, morphology, toxicity, cellular uptake by A549 cells, release in vitro, biodistribution, and pharmacokinetics in vivo. Results: Rapidly fabricated and isodispersed Cur-NPs prepared by this method had an average diameter of 116±3 nm and a polydispersity index of 0.197±0.008. The drug loading capacity and entrapment efficiency of Cur-NPs were 5.58±0.23% and 91.42±0.39%, respectively. In vitro release experiments showed sustained release of Cur, with cumulative release values of 40.1% and 66.1% at pH 7.4 and pH 5.0, respectively, after 10 days post-incubation. The results of cellular uptake, biodistribution, and in vivo pharmacokinetics experiments demonstrated that Cur-NPs exhibited better biocompatibility and bioavailability, while additionally enabling greater cellular uptake and prolonged circulation with possible spleen, lung, and kidney targeting effects when compared to the properties of free Cur. Conclusion: These results indicate that Tri-CL-mPEG NPs are promising in clinical applications as a controllable delivery system for hydrophobic drugs.
Collapse
Affiliation(s)
- Wenchao Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jiangqing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qiafan Fu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Chenhao Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qinying Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Danjun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
279
|
Chen L, Zhou H, Hao L, Chen H, Zhou X. Soy protein isolate-carboxymethyl cellulose conjugates with pH sensitivity for sustained avermectin release. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190685. [PMID: 31417761 PMCID: PMC6689608 DOI: 10.1098/rsos.190685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/24/2019] [Indexed: 05/09/2023]
Abstract
Carboxymethyl cellulose (CMC) was grafted onto the surface of soy protein isolate (SPI) to obtain soy protein isolate-carboxymethyl cellulose conjugate (SPC). Avermectin (AVM) was hydrophobically encapsulated as a model drug to obtain SPC@AVM. The reaction between SPI and CMC was confirmed by infrared spectroscopy, thermal analysis and SDS-PAGE electrophoresis. The results of scanning electron microscopy showed that the average particle size of the drug-loaded microspheres was 129 nm and the shape of microspheres changed from block to spherical after the addition of AVM. After encapsulation of AVM, the absolute value of zeta potential was greater than 15 mV, which indicated better stability. Compared to AVM solution, SPC@AVM showed more wettability on the leaf surface and the contact angle on the leaves decreased from 71.64° to 57.33°. The maximum liquid holding capacity increased by 41.41%, from 8.85 to 12.52 mg cm-2, which effectively reduced leaf loss. SPC@AVM also prevented UV photolysis, wherein the half-life was extended from 18 to 68 min when exposed to UV light. Moreover, toxicity tests showed that the encapsulation of AVM was beneficial to retain the insecticidal effect of AVM in the presence of ultraviolet light. The release rate of AVM showed pH responsiveness and the release rate under neutral conditions was faster than acidic and alkaline conditions. Moreover, the process conformed to the Weibull model.
Collapse
Affiliation(s)
| | - Hongjun Zhou
- Authors for correspondence: Hongjun Zhou e-mail:
| | | | | | - Xinhua Zhou
- Authors for correspondence: Xinhua Zhou e-mail:
| |
Collapse
|
280
|
de Araújo PR, Calixto GMF, da Silva IC, de Paula Zago LH, Oshiro Junior JA, Pavan FR, Ribeiro AO, Fontana CR, Chorilli M. Mucoadhesive In Situ Gelling Liquid Crystalline Precursor System to Improve the Vaginal Administration of Drugs. AAPS PharmSciTech 2019; 20:225. [PMID: 31214798 DOI: 10.1208/s12249-019-1439-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
The vaginal mucosa is a very promising route for drug administration due to its high permeability and the possibility to bypass first pass metabolism; however, current vaginal dosage forms present low retention times due to their dilution in vaginal fluids, which hampers the efficacy of many pharmacological treatments. In order to overcome these problems, this study proposes to develop a mucoadhesive in situ gelling liquid crystalline precursor system composed of 30% of oleic acid and cholesterol (7:1), 40% of ethoxylated and propoxylated cetyl alcohol, and 30% of a dispersion of 16% Poloxamer 407. The effect of the dilution with simulated vaginal fluid (SVF) on this system was evaluated by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), rheological studies, texture profile analysis (TPA), mucoadhesion study, in vitro drug release test using hypericin (HYP) as drug model, and cytotoxicity assay. PLM and SAXS confirmed the formation of an isotropic system. After the addition of three different concentrations of SVF (30, 50, and 100%), the resultant formulations presented anisotropy and characteristics of viscous lamellar phases. Rheology shows that formulations with SVF behaved as a non-Newtonian fluid with suitable shear thinning for vaginal application. TPA and mucoadhesion assays indicated the formation of long-range ordered systems as the amount of SVF increases which may assist in the fixation of the formulation on the vaginal mucosa. The formulations were able to control about 75% of the released HYP demonstrating a sustained release profile. Finally, all formulations acted as safe vaginal drug delivery systems.
Collapse
|
281
|
Wicochea-Rodríguez JD, Chalier P, Ruiz T, Gastaldi E. Active Food Packaging Based on Biopolymers and Aroma Compounds: How to Design and Control the Release. Front Chem 2019; 7:398. [PMID: 31214577 PMCID: PMC6558079 DOI: 10.3389/fchem.2019.00398] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/17/2019] [Indexed: 11/13/2022] Open
Abstract
Aroma compounds are known to be efficient active agents for a broad range of applications (antimicrobial, anti-oxidant, insect repellent…) that are highly sought when aiming at extending shelf life of food or biological products. However, they are intrinsically odorant and volatile at ambient temperature, which restricts the processing routes used to introduce them in a polymeric matrix and can affect their mode of action and limit efficiency. Indeed, due to their high sensitivity toward temperature they can be lost or transformed during processing. Acting after being released in the headspace, their concentration has to be controlled to avoid any odorant contamination of the targeted products. Hence, the ability for an aroma compound to be retained in a polymeric matrix, and then released when submitted to a triggering effect, are the two main requirements that should be satisfied. The volatile nature of the aroma compound offer the possibility when introduce in the packaging to act by direct or indirect contact with the product and thus to be used in different ways; as a coating layer directly applied on the product surface, as a self-supported film or as coated paper when associated with a paper sheet, as well as an object that could be inserted in the package. As biopolymers such as proteins and polysaccharides are able to retain aroma compounds but also to favor their release by modification of their structure when the relative humidity (RH) and temperature change, they are relevant carriers of these specific aroma compounds. Examples of how active packaging systems with limonene, eugenol and carvacrol as active agents were designed and elaborated. These examples will be presented with a special focus on the processing conditions and the way to improve their aroma compound retention and the release control (biopolymer nature, cyclodextrin clay addition…). Avrami's equation has been used to model the transfer of aroma compound and to advantageously compare it taking into account the mechanism in relation to the biopolymer structural changes.
Collapse
Affiliation(s)
- Jose Daniel Wicochea-Rodríguez
- UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes, Université de Montpellier-SupAgro-INRA-CIRAD, Montpellier, France
| | - Pascale Chalier
- UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes, Université de Montpellier-SupAgro-INRA-CIRAD, Montpellier, France
| | - Thierry Ruiz
- UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes, Université de Montpellier-SupAgro-INRA-CIRAD, Montpellier, France
| | - Emmanuelle Gastaldi
- UMR 1208 Ingénierie des Agropolymères et Technologies Emergentes, Université de Montpellier-SupAgro-INRA-CIRAD, Montpellier, France
| |
Collapse
|
282
|
Adibkia K, Ghajar S, Osouli-Bostanabad K, Balaei N, Emami S, Barzegar-Jalali M. Novel Gliclazide Electrosprayed Nano-Solid Dispersions: Physicochemical Characterization and Dissolution Evaluation. Adv Pharm Bull 2019; 9:231-240. [PMID: 31380248 PMCID: PMC6664122 DOI: 10.15171/apb.2019.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/11/2019] [Accepted: 04/14/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose: In the current study, electrospraying was directed as a novel alternative approach to improve the physicochemical attributes of gliclazide (GLC), as a poorly water-soluble drug, by creating nanocrystalline/amorphous solid dispersions (ESSs). Methods: ESSs were formulated using Eudragit® RS100 and polyethylene glycol (PEG) 6000 as polymeric carriers at various drug: polymer ratios (i.e. 1:5 and 1:10) with different total solution concentrations of 10, 15, and 20% w/v. Morphological, physicochemical, and in-vitro release characteristics of the developed formulations were assessed. Furthermore, GLC dissolution behaviors from ESSs were fitted to various models in order to realize the drug release mechanism. Results: Field emission scanning electron microscopy analyses revealed that the size and morphology of the ESSs were affected by the drug: polymer ratios and solution concentrations. The polymer ratio augmentation led to increase in the particle size while the solution concentration enhancement yielded in a fiber establishment. Differential scanning calorimetry and powder X-ray diffraction investigations demonstrated that the ESSs were present in an amorphous state. Furthermore, the in vitro drug release studies depicted that the samples prepared employing PEG 6000 as carrier enhanced the dissolution rate and the model that appropriately fitted the release behavior of ESSs was Weibull model, where demonstrating a Fickian diffusion as the leading release mechanism. Fourier-transform infrared spectroscopy results showed a probability of complexation or hydrogen bonding, development between GLC and the polymers in the solid state. Conclusion: Hence the electrospraying system avails the both nanosizing and amorphization advantages, therefore, it can be efficiently applied to formulating of ESSs of BCS Class II drugs.
Collapse
Affiliation(s)
- Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Ghajar
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Osouli-Bostanabad
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Balaei
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Emami
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
283
|
Ramírez C, Millón C, Nuñez H, Campo V, Almonacid S, Simpson R. Effect of particle size distribution on the in vitro digestion of calcium alginate‐starchy model foods. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cristian Ramírez
- Departamento de Ingeniería Química y AmbientalUniversidad Técnica Federico Santa María Valparaíso Chile
- Centro Regional de Estudios en Alimentos Saludables (CREAS) Conicyt‐Regional R06I1004 Valparaíso Chile
| | - Camila Millón
- Departamento de Ingeniería Química y AmbientalUniversidad Técnica Federico Santa María Valparaíso Chile
| | - Helena Nuñez
- Departamento de Ingeniería Química y AmbientalUniversidad Técnica Federico Santa María Valparaíso Chile
| | - Valeria Campo
- Departamento de FísicaUniversidad Técnica Federico Santa María Valparaíso Chile
| | - Sergio Almonacid
- Departamento de Ingeniería Química y AmbientalUniversidad Técnica Federico Santa María Valparaíso Chile
- Centro Regional de Estudios en Alimentos Saludables (CREAS) Conicyt‐Regional R06I1004 Valparaíso Chile
| | - Ricardo Simpson
- Departamento de Ingeniería Química y AmbientalUniversidad Técnica Federico Santa María Valparaíso Chile
- Centro Regional de Estudios en Alimentos Saludables (CREAS) Conicyt‐Regional R06I1004 Valparaíso Chile
| |
Collapse
|
284
|
Sábio RM, Meneguin AB, Ribeiro TC, Silva RR, Chorilli M. New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. Int J Pharm 2019; 564:379-409. [PMID: 31028801 DOI: 10.1016/j.ijpharm.2019.04.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) displays interesting properties for biomedical applications such as high chemical stability, large surface area and tunable pores diameters and volumes, allowing the incorporation of large amounts of drugs, protecting them from deactivation and degradation processes acting as an excellent nanoplatform for drug delivery. However, the functional MSNs do not present the ability to transport the therapeutics without any leakage until reach the targeted cells causing side effects. On the other hand, the hydroxyls groups available on MSNs surface allows the conjugation of specific molecules which can binds to the overexpressed Enhanced Growth Factor Receptor (EGFR) in many tumors, representing a potential strategy for the cancer treatment. Beyond that, the targeting molecules conjugate onto mesoporous surface increase its cell internalization and act as gatekeepers blocking the mesopores controlling the drug release. In this context, multifunctional MSNs emerge as stimuli-responsive controlled drug delivery systems (CDDS) to overcome drawbacks as low internalization, premature release before to reach the region of interest, several side effects and low effectiveness of the current treatments. This review presents an overview of MSNs fabrication methods and its properties that affects drug delivery as well as stimuli-responsive CDDS for cancer treatment.
Collapse
Affiliation(s)
- Rafael M Sábio
- São Carlos Institute of Physics - University of São Paulo (USP), 13566-590 São Carlos, Brazil.
| | - Andréia B Meneguin
- São Carlos Institute of Physics - University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Taís C Ribeiro
- School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Robson R Silva
- Department of Chemistry and Chemical Engineering - Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Marlus Chorilli
- School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, Brazil.
| |
Collapse
|
285
|
Partheniadis I, Gkogkou P, Kantiranis N, Nikolakakis I. Modulation of the Release of a Non-Interacting Low Solubility Drug from Chitosan Pellets Using Different Pellet Size, Composition and Numerical Optimization. Pharmaceutics 2019; 11:pharmaceutics11040175. [PMID: 30974869 PMCID: PMC6523273 DOI: 10.3390/pharmaceutics11040175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 12/01/2022] Open
Abstract
Two size classes of piroxicam (PXC) pellets (mini (380–550 μm) and conventional (700–1200 μm)) were prepared using extrusion/spheronization and medium viscosity chitosan (CHS). Mixture experimental design and numerical optimization were applied to distinguish formulations producing high sphericity pellets with fast or extended release. High CHS content required greater wetting liquid volume for pellet formation and the diameter decreased linearly with volume. Sphericity increased with CHS for low-to-medium drug content. Application of PXRD showed that the drug was a mixture of form II and I. Crystallinity decreased due to processing and was significant at 5% drug content. Raman spectroscopy showed no interactions. At pH 1.2, the dissolved CHS increased ‘apparent’ drug solubility up to 0.24 mg/mL while, at pH 5.6, the suspended CHS increased ‘apparent’ solubility to 0.16 mg/mL. Release at pH 1.2 was fast for formulations with intermediate CHS and drug levels. At pH 5.6, conventional pellets showed incomplete release while mini pellets with a CHS/drug ratio ≥2 and up to 21.25% drug, showed an extended release that was completed within 8 h. Numerical optimization provided optimal formulations for fast release at pH 1.2 with drug levels up to 40% as well as for extended release formulations with drug levels of 5% and 10%. The Weibull model described the release kinetics indicating complex or combined release (parameter ‘b’ > 0.75) for release at pH 1.2, and normal diffusion for the mini pellets at pH 5.6 (‘b’ from 0.63 to 0.73). The above results were attributed mainly to the different pellet sizes and the extensive dissolution/erosion of the gel matrix was observed at pH 1.2 but not at pH 5.6.
Collapse
Affiliation(s)
- Ioannis Partheniadis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Paraskevi Gkogkou
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos Kantiranis
- Department of Mineralogy-Petrology-Economic Geology, School of Geology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioannis Nikolakakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
286
|
Transport of paracetamol in swellable and relaxing polyurethane nanocomposite hydrogels. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02755-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
287
|
Controlled release of nisin from polyvinyl alcohol - Alyssum homolocarpum seed gum composite films: Nisin kinetics. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
288
|
Panos Macheras: a pioneering scientist in pharmaceutical science. J Pharmacokinet Pharmacodyn 2019; 46:105-109. [PMID: 30923983 DOI: 10.1007/s10928-019-09628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
Professor Panos Macheras is a pioneering scientist in pharmacokinetics, pharmacodynamics and biopharmaceutics. His many important contributions to pharmaceutical science are reviewed.
Collapse
|
289
|
Mircioiu C, Voicu V, Anuta V, Tudose A, Celia C, Paolino D, Fresta M, Sandulovici R, Mircioiu I. Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics 2019; 11:E140. [PMID: 30901930 PMCID: PMC6471682 DOI: 10.3390/pharmaceutics11030140] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/07/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Embedding of active substances in supramolecular systems has as the main goal to ensure the controlled release of the active ingredients. Whatever the final architecture or entrapment mechanism, modeling of release is challenging due to the moving boundary conditions and complex initial conditions. Despite huge diversity of formulations, diffusion phenomena are involved in practically all release processes. The approach in this paper starts, therefore, from mathematical methods for solving the diffusion equation in initial and boundary conditions, which are further connected with phenomenological conditions, simplified and idealized in order to lead to problems which can be analytically solved. Consequently, the release models are classified starting from the geometry of diffusion domain, initial conditions, and conditions on frontiers. Taking into account that practically all solutions of the models use the separation of variables method and integral transformation method, two specific applications of these methods are included. This paper suggests that "good modeling practice" of release kinetics consists essentially of identifying the most appropriate mathematical conditions corresponding to implied physicochemical phenomena. However, in most of the cases, models can be written but analytical solutions for these models cannot be obtained. Consequently, empiric models remain the first choice, and they receive an important place in the review.
Collapse
Affiliation(s)
- Constantin Mircioiu
- Department of Applied Mathematics and Biostatistics, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Victor Voicu
- Department of Clinical Pharmacology, Toxicology and Psychopharmacology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Valentina Anuta
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Andra Tudose
- Department of Applied Mathematics and Biostatistics, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Christian Celia
- Department of Pharmacy, G. D'Annunzio University of Chieti⁻Pescara, 66100 Chieti, Italy.
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, "Magna Græcia" University of Catanzaro, Germaneto - Catanzaro (CZ) 88100, Italy.
| | - Massimo Fresta
- Department of Health Sciences, School of Pharmacy, "Magna Græcia" University of Catanzaro, Germaneto - Catanzaro (CZ) 88100, Italy.
| | - Roxana Sandulovici
- Department of Applied Mathematics and Biostatistics, Titu Maiorescu University, 004051 Bucharest, Romania.
| | - Ion Mircioiu
- Department of Biopharmacy and Pharmacokinetics, Titu Maiorescu University, 004051 Bucharest, Romania.
| |
Collapse
|
290
|
Kosmidis K, Dassios G. Monte Carlo simulations in drug release. J Pharmacokinet Pharmacodyn 2019; 46:165-172. [PMID: 30880356 DOI: 10.1007/s10928-019-09625-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
We present methods based on simple sampling Monte Carlo simulations that are used in the study of controlled drug release from devices of various shapes and characteristics. The manuscript is part of a special tribute issue for Prof. Panos Macheras and we have chosen applications of the Monte Carlo method in the field of drug release that were pioneered by him and his research group. Thus, we focus on the investigation of diffusion based release and we present methods that go beyond the application of the classical fickian diffusion equation. We describe methods that have proven to be effective in illuminating the profound effects of the substrate heterogeneity on the drug release profiles and demonstrate some of the most powerful applications of agent based simulations and numerical methods in the field of pharmacokinetics.
Collapse
Affiliation(s)
- Kosmas Kosmidis
- Division of Theoretical Physics, Physics Department, Aristotele University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - George Dassios
- Division of Applied Mathematics, Department of Chemical Engineering, University of Patras, Patras, Greece
| |
Collapse
|
291
|
Liu J, Wang Q, Adu-Frimpong M, Wei Q, Xie Y, Zhang K, Wei C, Weng W, Ji H, Toreniyazov E, Xu X, Yu J. Preparation, in vitro and in vivo evaluation of isoliquiritigenin-loaded TPGS modified proliposomes. Int J Pharm 2019; 563:53-62. [PMID: 30890449 DOI: 10.1016/j.ijpharm.2019.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/26/2022]
Abstract
Isoliquiritigenin (ISL) has a great variety of pharmacological effects especially liver cancer therapy, but its poor solubility, bioavailability and liver targeting have limited its clinical use. In order to solve the aforementioned shortcomings, the TPGS-modified proliposomes loaded with ISL (ISL-TPGS-PLP) was prepared in this study. ISL-TPGS-PLP was fabricated via thin-film dispersion method and was characterized by the appearance, particle size, zeta potential and morphology. HPLC was used to evaluate entrapment efficiency (EE), in vitro release and stability of ISL-TPGS-PLP single or combined while appropriate physicochemical parameters were measured with DLS. Meanwhile, the pharmacokinetics and tissue distribution were also studied after oral administration. The results demonstrated that ISL-TPGS-PLP had a mean size of 23.8 ± 0.9 nm, high EE of 97.33 ± 0.40%. More importantly, nearly 90% ISL was released from ISL-TPGS-PLP within 24 h while only 50% was released from ISL suspension. In the pharmacokinetics study, the area under the curve (AUC0-24h) of ISL-TPGS-PLP was 1.53 times higher than that of ISL suspension. The Tissue distribution study showed that the ISL released from ISL-TPGS-PLP was higher in the liver than the free ISL suspension. Altogether, ISL-TPGS-PLP could ameliorate the ISL solubility, bioavailability and liver targeting ability, suggesting that ISL-TPGS-PLP could serve as a promising nanocarrier for liver cancer therapy.
Collapse
Affiliation(s)
- Jian Liu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiuyu Wei
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Yujiao Xie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Kangyi Zhang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Chunmei Wei
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen Weng
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China
| | - Hao Ji
- Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China; Jiangsu Tian Sheng Pharmaceutical Co., Ltd., No. 10 Baohua Development Zone, Jurong, Zhenjiang, Jiangsu, PR China
| | - Elmurat Toreniyazov
- Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China; Ashkent State Agricultural University (Nukus Branch), Avdanberdi str., Nukus 742009, Karakalpakstan, Uzbekistan
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China; Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Drug Delivery & Tissue Regeneration and Jiangsu Provincial, Jiangsu University, Zhenjiang 212013, PR China; Research Center for Medicinal Function Development of New Food Resources, Zhenjiang 212001, PR China.
| |
Collapse
|
292
|
Mavroudis PD, Kosmidis K, Macheras P. On the unphysical hypotheses in pharmacokinetics and oral drug absorption: Time to utilize instantaneous rate coefficients instead of rate constants. Eur J Pharm Sci 2019; 130:137-146. [PMID: 30690188 DOI: 10.1016/j.ejps.2019.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
Abstract
This work aims to explore the unphysical assumptions associated with i) the homogeneity of the well mixed compartments of pharmacokinetics and ii) the diffusion limited model of drug dissolution. To this end, we i) tested the homogeneity hypothesis using Monte Carlo simulations for a reaction and a diffusional process that take place in Euclidean and fractal media, ii) re-considered the flip-flop kinetics assuming that the absorption rate for a one-compartment model is governed by an instantaneous rate coefficient instead of a rate constant, and, iii) re-considered the extent of drug absorption as a function of dose using an in vivo reaction limited model of drug dissolution with integer and non-integer stoichiometry values. We found that drug diffusional processes and reactions are slowed down in heterogeneous media and the environmental heterogeneity leads to increased fluctuations of the measurable quantities. Highly variable experimental literature data with measurements in intrathecal space and gastrointestinal fluids were explained accordingly. Next, by applying power law and Weibull input functions to a one-compartment model of disposition we show that the shape of concentration-time curves is highly dependent on the time exponent of the input functions. Realistic examples based on PK data of three compounds known to exhibit flip-flop kinetics are analyzed. The need to use time dependent coefficients instead of rate constants in PBPK modeling and virtual bioequivalence is underlined. Finally, the shape of the fraction absorbed as a function of dose plots, using an in vivo reaction limited model of drug dissolution were found to be dependent on the stoichiometry value and the solubility of drug. Ascending and descending limbs were observed for the higher stoichiometries (2.0 and 1.5) with the low solubility drug. In contrast, for the more soluble drug, a continuous increase of fraction absorbed as a function of dose is observed when the higher stoichiometries are used (2.0 and 1.5). For both drugs, the fraction absorbed for the lower values of stoichiometry (0.7 and 1.0) exhibit a non-dependency on dose profile. Our results give an insight into the complex picture of in vivo drug dissolution since diffusion-limited and reaction-limited processes seem to operate under in vivo conditions concurrently.
Collapse
Affiliation(s)
- Panteleimon D Mavroudis
- School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kosmas Kosmidis
- Division of Theoretical Physics, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece; Pharma Informatics Unit, Research Center ATHENA, Athens, Greece
| | - Panos Macheras
- School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; Pharma Informatics Unit, Research Center ATHENA, Athens, Greece; Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
293
|
Ye M, Duan H, Yao L, Fang Y, Zhang X, Dong L, Yang F, Yang X, Pan W. A method of elevated temperatures coupled with magnetic stirring to predict real time release from long acting progesterone PLGA microspheres. Asian J Pharm Sci 2019; 14:222-232. [PMID: 32104454 PMCID: PMC7032230 DOI: 10.1016/j.ajps.2018.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 12/23/2022] Open
Abstract
The object of the study was to develop a quick and reproducible accelerated in vitro release method to predict and deduce the function of the real time (37 °C) release for long acting PLGA microspheres. The method could be described in several steps. First, the release of the microspheres were studied using the sample and separate method at 37 °C with normal orbital shaking and elevated temperatures with magnetic stirring to further accelerate the release. Second, the most similar profile at elevated temperatures with the real time release was chosen with the help of the n value in the fitted Korsmeyer-Peppas Function. Third, the Weibull function and conversion ratio were used to deduce the function of real time release according to the chosen profile at elevated temperatures. The key point in this study was to provide a quick and precise method to predict the real time release for long acting progesterone PLGA microspheres. So the elevated temperatures coupled with magnetic stirring were used to accelerate the release further, and when there have many similar release profiles with the real time release at elevated temperatures, releasing time at elevated temperatures and the R2 of the final deduced function will be used to help choosing the most similar release profile with the real time release. Four different types of progesterone PLGA microspheres were used to verify the method, and all the deduced function correlated well with the real time releases, for R 2 = 0.9912, 0.9781, 0.9918 and 0.9972, respectively.
Collapse
Affiliation(s)
- Mingzhu Ye
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongliang Duan
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lixia Yao
- Zhejiang University of Technology, 18 Chaowang Road, Zhejiang 310014, China
| | - Yicheng Fang
- Zhejiang University of Technology, 18 Chaowang Road, Zhejiang 310014, China
| | - Xiaoyu Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ling Dong
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Feifei Yang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xinggang Yang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Weisan Pan
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
294
|
Paolino D, Tudose A, Celia C, Di Marzio L, Cilurzo F, Mircioiu C. Mathematical Models as Tools to Predict the Release Kinetic of Fluorescein from Lyotropic Colloidal Liquid Crystals. MATERIALS 2019; 12:ma12050693. [PMID: 30813650 PMCID: PMC6427212 DOI: 10.3390/ma12050693] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/28/2022]
Abstract
In this study, we investigated the release kinetic of fluorescein from colloidal liquid crystals made from monoglyceride and different non-ionic surfactants. The crystals were physicochemically characterized and the release experiments were carried out under the sink conditions, while mathematical models were described as extrapolations from solutions of the diffusion equation, in different initial and boundary conditions imposed by pharmaceutical formulations. The diffusion equation was solved using Laplace and Fourier transformed functions for release kinetics from infinite reservoirs in a semi-infinite medium. Solutions represents a general square root law and can be applied for the release kinetic of fluorescein from lyotropic colloidal liquid crystals. Akaike, Schwartz, and Imbimbo criteria were used to establish the appropriate mathematical model and the hierarchy of the performances of different models applied to the release experiments. The Fisher statistic test was applied to obtain the significance of differences among mathematical models. Differences of mathematical criteria demonstrated that small or no significant statistic differences were carried out between the various applied models and colloidal formulations. Phenomenological models were preferred over the empirical and semi-empirical ones. The general square root model shows that the diffusion-controlled release of fluorescein is the mathematical models extrapolated for lyotropic colloidal liquid crystals.
Collapse
Affiliation(s)
- Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy.
| | - Andra Tudose
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy.
- Department of Applied Mathematics and Biostatistics, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila" Bucharest, 6 Traian Vuia, 020956 Bucharest, Romania.
| | - Christian Celia
- Department of Applied Mathematics and Biostatistics, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila" Bucharest, 6 Traian Vuia, 020956 Bucharest, Romania.
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", via dei Vestini 31, 66100 Chieti, Italy.
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", via dei Vestini 31, 66100 Chieti, Italy.
| | - Felisa Cilurzo
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", via dei Vestini 31, 66100 Chieti, Italy.
| | - Constantin Mircioiu
- Department of Applied Mathematics and Biostatistics, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila" Bucharest, 6 Traian Vuia, 020956 Bucharest, Romania.
| |
Collapse
|
295
|
Yeap EWQ, Acevedo AJ, Khan SA. Microfluidic Extractive Crystallization for Spherical Drug/Drug-Excipient Microparticle Production. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eunice W. Q. Yeap
- BioSystems and Micromechanics, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14, Enterprise Wing, Singapore 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Andrew J. Acevedo
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215, United States
| | - Saif A. Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
296
|
Karača S, Trifković K, Bušić A, Đorđević V, Belščak-Cvitanović A, Cebin AV, Bugarski B, Komes D. The functional potential of immortelle (Helichrysum italicum) based edible films reinforced with proteins and hydrogel particles. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
297
|
Hybrid Hydrogel Composed of Polymeric Nanocapsules Co-Loading Lidocaine and Prilocaine for Topical Intraoral Anesthesia. Sci Rep 2018; 8:17972. [PMID: 30568251 PMCID: PMC6299281 DOI: 10.1038/s41598-018-36382-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
This study reports the development of nanostructured hydrogels for the sustained release of the eutectic mixture of lidocaine and prilocaine (both at 2.5%) for intraoral topical use. The local anesthetics, free or encapsulated in poly(ε-caprolactone) nanocapsules, were incorporated into CARBOPOL hydrogel. The nanoparticle suspensions were characterized in vitro in terms of particle size, polydispersity, and surface charge, using dynamic light scattering measurements. The nanoparticle concentrations were determined by nanoparticle tracking analysis. Evaluation was made of physicochemical stability, structural features, encapsulation efficiency, and in vitro release kinetics. The CARBOPOL hydrogels were submitted to rheological, accelerated stability, and in vitro release tests, as well as determination of mechanical and mucoadhesive properties, in vitro cytotoxicity towards FGH and HaCaT cells, and in vitro permeation across buccal and palatal mucosa. Anesthetic efficacy was evaluated using Wistar rats. Nanocapsules were successfully developed that presented desirable physicochemical properties and a sustained release profile. The hydrogel formulations were stable for up to 6 months under critical conditions and exhibited non-Newtonian pseudoplastic flows, satisfactory mucoadhesive strength, non-cytotoxicity, and slow permeation across oral mucosa. In vivo assays revealed higher anesthetic efficacy in tail-flick tests, compared to a commercially available product. In conclusion, the proposed hydrogel has potential for provision of effective and longer-lasting superficial anesthesia at oral mucosa during medical and dental procedures. These results open perspectives for future clinical trials.
Collapse
|
298
|
Sorasitthiyanukarn FN, Muangnoi C, Ratnatilaka Na Bhuket P, Rojsitthisak P, Rojsitthisak P. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:178-190. [DOI: 10.1016/j.msec.2018.07.069] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 06/25/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
|
299
|
Marcos X, Padilla-Beltrán C, Bernad-Bernad MJ, Rosales-Hernández MC, Pérez-Casas S, Correa-Basurto J. Controlled release of N-(2-hydroxyphenyl)-2-propylpentanamide nanoencapsulated in polymeric micelles of P123 and F127 tested as anti-proliferative agents in MDA-MB-231 cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
300
|
Bugnone CA, Ronchetti S, Manna L, Banchero M. An emulsification/internal setting technique for the preparation of coated and uncoated hybrid silica/alginate aerogel beads for controlled drug delivery. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|