251
|
Moeckli R, Gonçalves Jorge P, Grilj V, Oesterle R, Cherbuin N, Bourhis J, Vozenin MC, Germond JF, Bochud F, Bailat C. Commissioning of an ultra-high dose rate pulsed electron beam medical LINAC for FLASH RT preclinical animal experiments and future clinical human protocols. Med Phys 2021; 48:3134-3142. [PMID: 33866565 DOI: 10.1002/mp.14885] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/11/2020] [Accepted: 03/31/2021] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To present the acceptance and the commissioning, to define the reference dose, and to prepare the reference data for a quality assessment (QA) program of an ultra-high dose rate (UHDR) electron device in order to validate it for preclinical animal FLASH radiotherapy (FLASH RT) experiments and for FLASH RT clinical human protocols. METHODS The Mobetron® device was evaluated with electron beams of 9 MeV in conventional (CONV) mode and of 6 and 9 MeV in UHDR mode (nominal energy). The acceptance was performed according to the acceptance protocol of the company. The commissioning consisted of determining the short- and long-term stability of the device, the measurement of percent depth dose curves (PDDs) and profiles at two different positions (with two different dose per pulse regimen) and for different collimator sizes, and the evaluation of the variability of these parameters when changing the pulse width and pulse repetition frequency. Measurements were performed using a redundant and validated dosimetric strategy with alanine and radiochromic films, as well as Advanced Markus ionization chamber for some measurements. RESULTS The acceptance tests were all within the tolerances of the company's acceptance protocol. The linearity with pulse width was within 1.5% in all cases. The pulse repetition frequency did not affect the delivered dose more than 2% in all cases but 90 Hz, for which the larger difference was 3.8%. The reference dosimetry showed a good agreement within the alanine and films with variations of 2.2% or less. The short-term (resp. long-term) stability was less than 1.0% (resp. 1.8%) and was the same in both CONV and UHDR modes. PDDs, profiles, and reference dosimetry were measured at two positions, providing data for two specific dose rates (about 9 Gy/pulse and 3 Gy/pulse). Maximal beam size was 4 and 6 cm at 90% isodose in the two positions tested. There was no difference between CONV and UHDR mode in the beam characteristics tested. CONCLUSIONS The device is commissioned for FLASH RT preclinical biological experiments as well as FLASH RT clinical human protocols.
Collapse
Affiliation(s)
- Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Patrik Gonçalves Jorge
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Roxane Oesterle
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Nicolas Cherbuin
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Jean Bourhis
- Radio-Oncology Department, Lausanne University Hospital and Lausanne University, Rue du Bugnon 46, Lausanne, CH-1011, Switzerland
| | - Marie-Catherine Vozenin
- Radio-Oncology Department, Lausanne University Hospital and Lausanne University, Rue du Bugnon 46, Lausanne, CH-1011, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré 1, Lausanne, CH-1007, Switzerland
| |
Collapse
|
252
|
Montay-Gruel P, Vozenin MC, Limoli CL. Letter in Response to Doyen et al., "Early Toxicities After High Dose Rate Proton Therapy in Cancer Treatments". Front Oncol 2021; 11:687593. [PMID: 34055651 PMCID: PMC8155667 DOI: 10.3389/fonc.2021.687593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Pierre Montay-Gruel
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
253
|
Ashraf M, Rahman M, Zhang R, Cao X, Williams BB, Hoopes PJ, Gladstone DJ, Pogue BW, Bruza P. Technical Note: Single-pulse beam characterization for FLASH-RT using optical imaging in a water tank. Med Phys 2021; 48:2673-2681. [PMID: 33730367 PMCID: PMC10771323 DOI: 10.1002/mp.14843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE High dose rate conditions, coupled with problems related to small field dosimetry, make dose characterization for FLASH-RT challenging. Most conventional dosimeters show significant dependence on dose rate at ultra-high dose rate conditions or fail to provide sufficiently fast temporal data for pulse to pulse dosimetry. Here fast 2D imaging of radioluminescence from a water and quinine phantom was tested for dosimetry of individual 4 μs linac pulses. METHODS A modified clinical linac delivered an electron FLASH beam of >50 Gy/s to clinical isocenter. This modification removed the x-ray target and flattening filter, leading to a beam that was symmetric and gaussian, as verified with GafChromic EBT-XD film. Lateral projected 2D dose distributions for each linac pulse were imaged in a quinine-doped water tank using a gated intensified camera, and an inverse Abel transform reconstruction provided 3D images for on-axis depth dose values. A total of 20 pulses were delivered with a 10 MeV, 1.5 cm circular beam, and beam with jaws wide open (40 × 40 cm2 ), and a 3D dose distribution was recovered for each pulse. Beam output was analyzed on a pulse by pulse basis. RESULTS The Rp , Dmax , and the R50 measured with film and optical methods agreed to within 1 mm for the 1.5 cm circular beam and the beam with jaws wide open. Cross beam profiles for both beams agreed with film data with >95% passing rate (2%/2 mm gamma criteria). The optical central axis depth dose agreed with film data, except for near the surface. A temporal pulse analysis revealed a ramp-up period where the dose per pulse increased for the first few pulses and then stabilized. CONCLUSIONS Optical imaging of radioluminescence was presented as a valuable tool for establishing a baseline for the recently initiated electron FLASH beam at our institution.
Collapse
Affiliation(s)
- M.Ramish Ashraf
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| | - Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| | - Benjamin B. Williams
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - P. Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover NH 0375 USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover NH 0375 USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| |
Collapse
|
254
|
Bortfeld TR, Viana MFD, Yan S. The societal impact of ion beam therapy. Z Med Phys 2021; 31:102-104. [PMID: 32680688 PMCID: PMC7361098 DOI: 10.1016/j.zemedi.2020.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 11/23/2022]
Affiliation(s)
- Thomas R Bortfeld
- Department of Radiation Oncology - Division of Radiation Biophysics. Massachusetts General Hospital and Harvard Medical School 100 Blossom St. Boston, MA 02114, USA.
| | | | - Susu Yan
- Department of Radiation Oncology - Division of Radiation Biophysics. Massachusetts General Hospital and Harvard Medical School 100 Blossom St. Boston, MA 02114, USA
| |
Collapse
|
255
|
Pawelke J, Brand M, Hans S, Hideghéty K, Karsch L, Lessmann E, Löck S, Schürer M, Szabó ER, Beyreuther E. Electron dose rate and oxygen depletion protect zebrafish embryos from radiation damage. Radiother Oncol 2021; 158:7-12. [DOI: 10.1016/j.radonc.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
|
256
|
Rezaee M, Iordachita I, Wong JW. Ultrahigh dose-rate (FLASH) x-ray irradiator for pre-clinical laboratory research. Phys Med Biol 2021; 66. [PMID: 33780922 DOI: 10.1088/1361-6560/abf2fa] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 01/25/2023]
Abstract
FLASH irradiation has been shown to reduce significantly normal tissue toxicity compared to conventional irradiation, while maintaining tumor control probability at similar level. Clinical translation of FLASH irradiation necessitates comprehensive laboratory studies to elucidate biological effects as well as pertinent technological and physical requirements. At present, FLASH research employs complex accelerator technologies of limited accessibilities. Here, we study the feasibility of a novel self-shielded x-ray irradiation cabinet system, as an enabling technology to enhance the preclinical research capabilities. The proposed system employs two commercially available high capacity 150 kVp fluoroscopy x-ray sources with rotating anode technology in a parallel-opposed arrangement. Simulation was performed with the GEANT4 Monte-Carlo platform. Simulated dosimetric properties of the x-ray beam for both FLASH and conventional dose-rate irradiations were characterized. Dose and dose rate from a single kV x-ray fluoroscopy source in solid water phantom were verified with measurements using Gafchromic films. The parallel-opposed x-ray sources can deliver over 50 Gy doses to a 20 mm thick water equivalent medium at ultrahigh dose-rates of 40-240 Gy s-1. A uniform depth-dose rate (±5%) is achieved over 8-12 mm in the central region of the phantom. Mirrored beams minimize heel effect of the source and achieve reasonable cross-beam uniformity (±3%). Conventional dose-rate irradiation (≤0.1 Gy s-1) can also be achieved by reducing the tube current and increasing the distance between the phantom and tubes. The rotating anode x-ray source can be used to deliver both FLASH and conventional dose-rate irradiations with the field dimensions well suitable for small animal and cell-culture irradiations. For FLASH irradiation using parallel-opposed sources, entrance and exit doses can be higher by 30% than the dose at the phantom center. Beam angling can be employed to minimize the high surface doses. Our proposed system is amendable to self-shielding and enhance research in regular laboratory setting.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, Faculty of Medicine, Johns Hopkins University, United States of America
| | - Iulian Iordachita
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, United States of America
| | - John W Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Faculty of Medicine, Johns Hopkins University, United States of America
| |
Collapse
|
257
|
Alanazi A, Meesungnoen J, Jay-Gerin JP. A Computer Modeling Study of Water Radiolysis at High Dose Rates. Relevance to FLASH Radiotherapy. Radiat Res 2021; 195:149-162. [PMID: 33300999 DOI: 10.1667/rade-20-00168.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/26/2020] [Indexed: 11/03/2022]
Abstract
"FLASH radiotherapy" is a new method of radiation treatment by which large doses of radiation are delivered at high dose rates to tumors almost instantaneously (a few milliseconds), paradoxically sparing healthy tissue while preserving anti-tumor activity. To date, no definitive mechanism has been proposed to explain the different responses of the tumor and normal tissue to radiation. As a first step, and given that living cells and tissues consist mainly of water, we studied the effects of high dose rates on the transient yields (G values) of the radical and molecular species formed in the radiolysis of deaerated/aerated water by irradiating protons, using Monte Carlo simulations. Our simulation model consisted of two steps: 1. The random irradiation of a right circular cylindrical volume of water, embedded in nonirradiated bulk water, with single and instantaneous pulses of N 300-MeV incident protons ("linear energy transfer" or LET ∼ 0.3 keV/µm) traveling along the axis of the cylinder; and 2. The development of these N proton tracks, which were initially contained in the irradiated cylinder, throughout the solution over time. The effect of dose rate was studied by varying N, which was calibrated in terms of dose rate. For this, experimental data on the yield G(Fe3+) of the super-Fricke dosimeter as a function of dose rate up to ∼1010 Gy/s were used. Confirming previous experimental and theoretical studies, significant changes in product yields were found to occur with increasing dose rate, with lower radical and higher molecular yields, which result from an increase in the radical density in the bulk of the solution. Using the kinetics of the decay of hydrated electrons, a critical time (τc), which corresponds to the "onset" of dose-rate effects, was determined for each value of N. For the cylindrical irradiation model, τc was inversely proportional to the dose rate. Moreover, the comparison with experiments with pulsed electrons underlined the importance of the geometry of the irradiation volume for the estimation of τc. Finally, in the case of aerated water radiolysis, we calculated the yield of oxygen consumption and estimated the corresponding concentration of consumed (depleted) oxygen as a function of time and dose rate. It was shown that this concentration increases substantially with increasing dose rate in the time window ∼1 ns-10 µs, with a very pronounced maximum around 0.2 µs. For high-dose-rate irradiations (>109 Gy/s), a large part of the available oxygen (∼0.25 mM for an air-saturated solution) was found to be consumed. This result, which was obtained on a purely water radiation chemistry basis, strongly supports the hypothesis that the normal tissue-sparing effect of FLASH stems from temporary hypoxia due to oxygen depletion induced by high-dose-rate irradiation.
Collapse
Affiliation(s)
- Ahmed Alanazi
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke (Québec), Canada
| | - Jintana Meesungnoen
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke (Québec), Canada
| | - Jean-Paul Jay-Gerin
- Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke (Québec), Canada
| |
Collapse
|
258
|
Christensen JB, Togno M, Nesteruk KP, Psoroulas S, Meer D, Weber DC, Lomax T, Yukihara EG, Safai S. Al 2O 3:C optically stimulated luminescence dosimeters (OSLDs) for ultra-high dose rate proton dosimetry. Phys Med Biol 2021; 66. [PMID: 33571973 DOI: 10.1088/1361-6560/abe554] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/11/2021] [Indexed: 11/11/2022]
Abstract
The response of Al2O3:C optically stimulated luminescence detectors (OSLDs) was investigated in a 250 MeV pencil proton beam. The OSLD response was mapped for a wide range of average dose rates up to 9000 Gy s-1, corresponding to a ∼150 kGy s-1instantaneous dose rate in each pulse. Two setups for ultra-high dose rate (FLASH) experiments are presented, which enable OSLDs or biological samples to be irradiated in either water-filled vials or cylinders. The OSLDs were found to be dose rate independent for all dose rates, with an average deviation <1% relative to the nominal dose for average dose rates of (1-1000) Gy s-1when irradiated in the two setups. A third setup for irradiations in a 9000 Gy s-1pencil beam is presented, where OSLDs are distributed in a 3 × 4 grid. Calculations of the signal averaging of the beam over the OSLDs were in agreement with the measured response at 9000 Gy s-1. Furthermore, a new method was presented to extract the beam spot size of narrow pencil beams, which is in agreement within a standard deviation with results derived from radiochromic films. The Al2O3:C OSLDs were found applicable to support radiobiological experiments in proton beams at ultra-high dose rates.
Collapse
Affiliation(s)
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland
| | | | | | - David Meer
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, Switzerland
| | - Tony Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | - Eduardo G Yukihara
- Department of Radiation Safety and Security, Paul Scherrer Institute, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland
| |
Collapse
|
259
|
Bongrand A, Koumeir C, Villoing D, Guertin A, Haddad F, Métivier V, Poirier F, Potiron V, Servagent N, Supiot S, Delpon G, Chiavassa S. A Monte Carlo Determination of Dose and Range Uncertainties for Preclinical Studies with a Proton Beam. Cancers (Basel) 2021; 13:1889. [PMID: 33920758 PMCID: PMC8071150 DOI: 10.3390/cancers13081889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Proton therapy (PRT) is an irradiation technique that aims at limiting normal tissue damage while maintaining the tumor response. To study its specificities, the ARRONAX cyclotron is currently developing a preclinical structure compatible with biological experiments. A prerequisite is to identify and control uncertainties on the ARRONAX beamline, which can lead to significant biases in the observed biological results and dose-response relationships, as for any facility. This paper summarizes and quantifies the impact of uncertainty on proton range, absorbed dose, and dose homogeneity in a preclinical context of cell or small animal irradiation on the Bragg curve, using Monte Carlo simulations. All possible sources of uncertainty were investigated and discussed independently. Those with a significant impact were identified, and protocols were established to reduce their consequences. Overall, the uncertainties evaluated were similar to those from clinical practice and are considered compatible with the performance of radiobiological experiments, as well as the study of dose-response relationships on this proton beam. Another conclusion of this study is that Monte Carlo simulations can be used to help build preclinical lines in other setups.
Collapse
Affiliation(s)
- Arthur Bongrand
- Institut de Cancérologie de l’Ouest, 44800 Saint-Herblain, France; (A.B.); (D.V.); (V.P.); (S.S.); (G.D.)
| | - Charbel Koumeir
- GIP ARRONAX, 44800 Saint-Herblain, France; (C.K.); (F.H.); (F.P.)
| | - Daphnée Villoing
- Institut de Cancérologie de l’Ouest, 44800 Saint-Herblain, France; (A.B.); (D.V.); (V.P.); (S.S.); (G.D.)
| | - Arnaud Guertin
- Laboratoire SUBATECH, UMR 6457, CNRS IN2P3, IMT Atlantique, Université de Nantes, 44307 Nantes, France; (A.G.); (V.M.); (N.S.)
| | - Ferid Haddad
- GIP ARRONAX, 44800 Saint-Herblain, France; (C.K.); (F.H.); (F.P.)
- Laboratoire SUBATECH, UMR 6457, CNRS IN2P3, IMT Atlantique, Université de Nantes, 44307 Nantes, France; (A.G.); (V.M.); (N.S.)
| | - Vincent Métivier
- Laboratoire SUBATECH, UMR 6457, CNRS IN2P3, IMT Atlantique, Université de Nantes, 44307 Nantes, France; (A.G.); (V.M.); (N.S.)
| | - Freddy Poirier
- GIP ARRONAX, 44800 Saint-Herblain, France; (C.K.); (F.H.); (F.P.)
| | - Vincent Potiron
- Institut de Cancérologie de l’Ouest, 44800 Saint-Herblain, France; (A.B.); (D.V.); (V.P.); (S.S.); (G.D.)
| | - Noël Servagent
- Laboratoire SUBATECH, UMR 6457, CNRS IN2P3, IMT Atlantique, Université de Nantes, 44307 Nantes, France; (A.G.); (V.M.); (N.S.)
| | - Stéphane Supiot
- Institut de Cancérologie de l’Ouest, 44800 Saint-Herblain, France; (A.B.); (D.V.); (V.P.); (S.S.); (G.D.)
| | - Grégory Delpon
- Institut de Cancérologie de l’Ouest, 44800 Saint-Herblain, France; (A.B.); (D.V.); (V.P.); (S.S.); (G.D.)
| | - Sophie Chiavassa
- Institut de Cancérologie de l’Ouest, 44800 Saint-Herblain, France; (A.B.); (D.V.); (V.P.); (S.S.); (G.D.)
| |
Collapse
|
260
|
van Marlen P, Dahele M, Folkerts M, Abel E, Slotman BJ, Verbakel W. Ultra-High Dose Rate Transmission Beam Proton Therapy for Conventionally Fractionated Head and Neck Cancer: Treatment Planning and Dose Rate Distributions. Cancers (Basel) 2021; 13:cancers13081859. [PMID: 33924627 PMCID: PMC8070061 DOI: 10.3390/cancers13081859] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Standard intensity-modulated proton therapy (IMPT) places the Bragg-peak in the target. However, it is also possible to use high energy proton transmission beams (TBs), where the Bragg-peak is placed outside the patient, irradiating with the beam section proximal to the Bragg-peak. TBs use only one energy, increase robustness, are insensitive to density changes and have sharper penumbras. TBs can also be delivered at ultra-high dose-rates (UHDRs, e.g., ≥40 Gy/s), which is one of the requirements for the FLASH-effect. The aim of this work was twofold: (1) comparison of TB-plan quality to IMPT and photon volumetric-modulated arc therapy (VMAT) for conventionally fractionated head-and-neck cancer; (2) analysis of TB-plan UHDR-metrics. We showed that TB-plan quality was comparable to IMPT for contoured organs at risk and better than VMAT. Any potential FLASH-effect would only further improve plan quality. TB plans can also be delivered quickly, which might facilitate higher patient through-put and enhance patient comfort. Abstract Transmission beam (TB) proton therapy (PT) uses single, high energy beams with Bragg-peak behind the target, sharp penumbras and simplified planning/delivery. TB facilitates ultra-high dose-rates (UHDRs, e.g., ≥40 Gy/s), which is a requirement for the FLASH-effect. We investigated (1) plan quality for conventionally-fractionated head-and-neck cancer treatment using spot-scanning proton TBs, intensity-modulated PT (IMPT) and photon volumetric-modulated arc therapy (VMAT); (2) UHDR-metrics. VMAT, 3-field IMPT and 10-field TB-plans, delivering 70/54.25 Gy in 35 fractions to boost/elective volumes, were compared (n = 10 patients). To increase spot peak dose-rates (SPDRs), TB-plans were split into three subplans, with varying spot monitor units and different gantry currents. Average TB-plan organs-at-risk (OAR) sparing was comparable to IMPT: mean oral cavity/body dose were 4.1/2.5 Gy higher (9.3/2.0 Gy lower than VMAT); most other OAR mean doses differed by <2 Gy. Average percentage of dose delivered at UHDRs was 46%/12% for split/non-split TB-plans and mean dose-averaged dose-rate 46/21 Gy/s. Average total beam-on irradiation time was 1.9/3.8 s for split/non-split plans and overall time including scanning 8.9/7.6 s. Conventionally-fractionated proton TB-plans achieved comparable OAR-sparing to IMPT and better than VMAT, with total beam-on irradiation times <10s. If a FLASH-effect can be demonstrated at conventional dose/fraction, this would further improve plan quality and TB-protons would be a suitable delivery system.
Collapse
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
- Correspondence:
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
| | - Michael Folkerts
- Varian Medical Systems, 3120 Hansen Way, Palo Alto, CA 94304, USA; (M.F.); (E.A.)
| | - Eric Abel
- Varian Medical Systems, 3120 Hansen Way, Palo Alto, CA 94304, USA; (M.F.); (E.A.)
| | - Ben J. Slotman
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
| | - Wilko Verbakel
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
| |
Collapse
|
261
|
Breitkreutz DY, Shumail M, Bush KK, Tantawi SG, Maxime PG, Loo BW. Initial Steps Towards a Clinical FLASH Radiotherapy System: Pediatric Whole Brain Irradiation with 40 MeV Electrons at FLASH Dose Rates. Radiat Res 2021; 194:594-599. [PMID: 32991725 DOI: 10.1667/rade-20-00069.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/27/2020] [Indexed: 11/03/2022]
Abstract
In this work, we investigated the delivery of a clinically acceptable pediatric whole brain radiotherapy plan at FLASH dose rates using two lateral opposing 40-MeV electron beams produced by a practically realizable linear accelerator system. The EGSnrc Monte Carlo software modules, BEAMnrc and DOSXYZnrc, were used to generate whole brain radiotherapy plans for a pediatric patient using two lateral opposing 40-MeV electron beams. Electron beam phase space files were simulated using a model of a diverging beam with a diameter of 10 cm at 50 cm SAD (defined at brain midline). The electron beams were collimated using a 10-cm-thick block composed of 5 cm of aluminum oxide and 5 cm of tungsten. For comparison, a 6-MV photon plan was calculated with the Varian AAA algorithm. Electron beam parameters were based on a novel linear accelerator designed for the PHASER system and powered by a commercial 6-MW klystron. Calculations of the linear accelerator's performance indicated an average beam current of at least 6.25 µA, providing a dose rate of 115 Gy/s at isocenter, high enough for cognition-sparing FLASH effects. The electron plan was less homogenous with a homogeneity index of 0.133 compared to the photon plan's index of 0.087. Overall, the dosimetric characteristics of the 40-MeV electron plan were suitable for treatment. In conclusion, Monte Carlo simulations performed in this work indicate that two lateral opposing 40-MeV electron beams can be used for pediatric whole brain irradiation at FLASH dose rates of >115 Gy/s and serve as motivation for a practical clinical FLASH radiotherapy system, which can be implemented in the near future.
Collapse
Affiliation(s)
| | - Muhammad Shumail
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California
| | - Karl K Bush
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Sami G Tantawi
- Department of Particle Physics and Astrophysics, Stanford University, Stanford, California.,SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California
| | - Peter G Maxime
- Department of Radiation Oncology, Indiana University, Indianapolis, Indiana
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University, Stanford, California.,Stanford Cancer Institute, Stanford University, Stanford, California
| |
Collapse
|
262
|
Soto LA, Casey KM, Wang J, Blaney A, Manjappa R, Breitkreutz D, Skinner L, Dutt S, Ko RB, Bush K, Yu AS, Melemenidis S, Strober S, Englemann E, Maxim PG, Graves EE, Loo BW. FLASH Irradiation Results in Reduced Severe Skin Toxicity Compared to Conventional-Dose-Rate Irradiation. Radiat Res 2021; 194:618-624. [PMID: 32853385 DOI: 10.1667/rade-20-00090] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023]
Abstract
Radiation therapy, along with surgery and chemotherapy, is one of the main treatments for cancer. While radiotherapy is highly effective in the treatment of localized tumors, its main limitation is its toxicity to normal tissue. Previous preclinical studies have reported that ultra-high dose-rate (FLASH) irradiation results in reduced toxicity to normal tissues while controlling tumor growth to a similar extent relative to conventional-dose-rate (CONV) irradiation. To our knowledge this is the first report of a dose-response study in mice comparing the effect of FLASH irradiation vs. CONV irradiation on skin toxicity. We found that FLASH irradiation results in both a lower incidence and lower severity of skin ulceration than CONV irradiation 8 weeks after single-fraction hemithoracic irradiation at high doses (30 and 40 Gy). Survival was also higher after FLASH hemithoracic irradiation (median survival >180 days at doses of 30 and 40 Gy) compared to CONV irradiation (median survival 100 and 52 days at 30 and 40 Gy, respectively). No ulceration was observed at doses 20 Gy or below in either FLASH or CONV. These results suggest a shifting of the dose-response curve for radiation-induced skin ulceration to the right for FLASH, compared to CONV irradiation, suggesting the potential for an enhanced therapeutic index for radiation therapy of cancer.
Collapse
Affiliation(s)
- Luis A Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305.,Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Jinghui Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Alexandra Blaney
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Dylan Breitkreutz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305.,Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305
| | - Ryan B Ko
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Karl Bush
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Amy S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Samuel Strober
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Edgar Englemann
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305.,Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Peter G Maxim
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305.,Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305.,Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
263
|
Ko RB, Soto LA, von Eyben R, Melemenidis S, Rankin EB, Maxim PG, Graves EE, Loo BW. Evaluating the Reproducibility of Mouse Anatomy under Rotation in a Custom Immobilization Device for Conformal FLASH Radiotherapy. Radiat Res 2021; 194:600-606. [PMID: 32857849 DOI: 10.1667/rade-20-00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/18/2020] [Indexed: 11/03/2022]
Abstract
The observation of an enhanced therapeutic index for FLASH radiotherapy in mice has created interest in practical laboratory-based FLASH irradiators. To date, systems capable of 3D conformal FLASH irradiation in mice have been lacking. We are developing such a system, incorporating a high-current linear accelerator to produce a collimated X-ray beam in a stationary beamline design, rotating the mouse about a longitudinal axis to achieve conformal irradiation from multiple beam directions. The purpose of this work was to evaluate the reproducibility of mouse anatomy under rotation at speeds compatible with conformal FLASH delivery. Three short-hair mice and two hairless mice were immobilized under anesthesia in body weight-specific contoured plastic molds, and subjected to three rotational (up to 3 revolutions/s) and two non-rotational movement interventions. MicroCT images were acquired before and after each intervention. The displacements of 11 anatomic landmarks were measured on the image pairs. The displacement of the anatomical landmarks with any of the interventions was 0.5 mm or less for 92.4% of measurements, with a single measurement out of 275 (11 landmarks × 5 interventions × 5 mice) reaching 1 mm. There was no significant difference in the displacements associated with rotation compared to those associated with moving the immobilized mouse in and out of a scanner or with leaving the mouse in place for 5 min with no motion. There were no significant differences in displacements between mice with or without hair, although the analysis is limited by small numbers, or between different anatomic landmarks. These results show that anatomic reproducibility under rotation speed corresponding to FLASH irradiation times appears to be compatible with conformal/stereotactic irradiation in mice.
Collapse
Affiliation(s)
- Ryan B Ko
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Luis A Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.,Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Peter G Maxim
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
264
|
Vozenin MC, Montay-Gruel P, Limoli C, Germond JF. All Irradiations that are Ultra-High Dose Rate may not be FLASH: The Critical Importance of Beam Parameter Characterization and In Vivo Validation of the FLASH Effect. Radiat Res 2021; 194:571-572. [PMID: 32853355 DOI: 10.1667/rade-20-00141.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Radiation Oncology, University of California Irvine, Irvine, California
| | - Charles Limoli
- Department of Radiation Oncology, University of California Irvine, Irvine, California
| | - Jean-François Germond
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
265
|
Verhaegen F, Wanders RG, Wolfs C, Eekers D. Considerations for shoot-through FLASH proton therapy. Phys Med Biol 2021; 66:06NT01. [PMID: 33571981 DOI: 10.1088/1361-6560/abe55a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To discuss several pertinent issues related to shoot-through FLASH proton therapy based on an illustrative case. METHODS We argue that with the advent of FLASH proton radiotherapy and due to the issues associated with conventional proton radiotherapy regarding the uncertainties of positioning of the Bragg peaks, the difficulties of in vivo verification of the dose distribution, the use of treatment margins and the uncertainties surrounding linear energy transfer (LET) and relative biological effectiveness (RBE), a special mode of shoot-through FLASH proton radiotherapy should be investigated. In shoot-through FLASH, the proton beams have sufficient energy to reach the distal exit side of the patient. Due to the FLASH sparing effect of normal tissues at both the proximal and distal side of tumors, radiotherapy plans can be developed that meet current planning constraints and issues regarding RBE can be avoided. RESULTS A preliminary proton plan for a neurological tumor in close proximity to various organs at risk (OAR) with strict dose constraints was studied. A plan with four beams mostly met the constraints for the OAR, using a treatment planning system that was not optimized for this novel treatment modality. When new treatment planning algorithms would be developed for shoot-through FLASH, constraints would be easier to meet. The shoot-through FLASH plan led to a significant effective dose reduction in large parts of the healthy tissue. The plan had no uncertainties associated to Bragg peak positioning, needed in principle no large proximal or distal margins and LET increases near the Bragg peak became irrelevant. CONCLUSION Shoot-through FLASH proton radiotherapy may be an interesting treatment modality to explore further. It would remove some of the current sources of uncertainty in proton radiotherapy. An additional advantage could be that portal dosimetry may be possible with beams penetrating the patient and impinging on a distally placed imaging detector, potentially leading to a practical treatment verification method. With current proton accelerator technology, trials could be conducted for neurological, head&neck and thoracic cancers. For abdominal and pelvic cancer a higher proton energy would be required.
Collapse
Affiliation(s)
- Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
266
|
FLASH Irradiation with Proton Beams: Beam Characteristics and Their Implications for Beam Diagnostics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
FLASH irradiations use dose-rates orders of magnitude higher than commonly used in patient treatments. Such irradiations have shown interesting normal tissue sparing in cell and animal experiments, and, as such, their potential application to clinical practice is being investigated. Clinical accelerators used in proton therapy facilities can potentially provide FLASH beams; therefore, the topic is of high interest in this field. However, a clear FLASH effect has so far been observed in presence of high dose rates (>40 Gy/s), high delivered dose (tens of Gy), and very short irradiation times (<300 ms). Fulfilling these requirements poses a serious challenge to the beam diagnostics system of clinical facilities. We will review the status and proposed solutions, from the point of view of the beam definitions for FLASH and their implications for beam diagnostics. We will devote particular attention to the topics of beam monitoring and control, as well as absolute dose measurements, since finding viable solutions in these two aspects will be of utmost importance to guarantee that the technique can be adopted quickly and safely in clinical practice.
Collapse
|
267
|
Chabi S, To THV, Leavitt R, Poglio S, Jorge PG, Jaccard M, Petersson K, Petit B, Roméo PH, Pflumio F, Vozenin MC, Uzan B. Ultra-high-dose-rate FLASH and Conventional-Dose-Rate Irradiation Differentially Affect Human Acute Lymphoblastic Leukemia and Normal Hematopoiesis. Int J Radiat Oncol Biol Phys 2021; 109:819-829. [PMID: 33075474 DOI: 10.1016/j.ijrobp.2020.10.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Ultra-high-dose-rate FLASH radiation therapy has been shown to minimize side effects of irradiation in various organs while keeping antitumor efficacy. This property, called the FLASH effect, has caused enthusiasm in the radiation oncology community because it opens opportunities for safe dose escalation and improved radiation therapy outcome. Here, we investigated the impact of ultra-high-dose-rate FLASH versus conventional-dose-rate (CONV) total body irradiation (TBI) on humanized models of T-cell acute lymphoblastic leukemia (T-ALL) and normal human hematopoiesis. METHODS AND MATERIALS We optimized the geometry of irradiation to ensure reproducible and homogeneous procedures using eRT6/Oriatron. Three T-ALL patient-derived xenografts and hematopoietic stem/progenitor cells (HSPCs) and CD34+ cells isolated from umbilical cord blood were transplanted into immunocompromised mice, together or separately. After reconstitution, mice received 4 Gy FLASH and CONV-TBI, and tumor growth and normal hematopoiesis were studied. A retrospective study of clinical and gene-profiling data previously obtained on the 3 T-ALL patient-derived xenografts was performed. RESULTS FLASH-TBI was more efficient than CONV-TBI in controlling the propagation of 2 cases of T-ALL, whereas the third case of T-ALL was more responsive to CONV-TBI. The 2 FLASH-sensitive cases of T-ALL had similar genetic abnormalities, and a putative susceptibility imprint to FLASH-RT was found. In addition, FLASH-TBI was able to preserve some HSPC/CD34+ cell potential. Interestingly, when HSPC and T-ALL were present in the same animals, FLASH-TBI could control tumor development in most (3 of 4) of the secondary grafted animals, whereas among the mice receiving CONV-TBI, treated cells died with high leukemia infiltration. CONCLUSIONS Compared with CONV-TBI, FLASH-TBI reduced functional damage to human blood stem cells and had a therapeutic effect on human T-ALL with a common genetic and genomic profile. The validity of the defined susceptibility imprint needs to be investigated further; however, to our knowledge, the present findings are the first to show benefits of FLASH-TBI on human hematopoiesis and leukemia treatment.
Collapse
Affiliation(s)
- Sara Chabi
- Team Niche and Cancer in Hematopoiesis, Fontenay-aux-Roses, France; Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Service Cellules Souches et Radiations, Fontenay-aux-Roses, France; UMRE008 Stabilité Génétique, Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Thi Hong Van To
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Service Cellules Souches et Radiations, Fontenay-aux-Roses, France; UMRE008 Stabilité Génétique, Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France; Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Ron Leavitt
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Sandrine Poglio
- Team Niche and Cancer in Hematopoiesis, Fontenay-aux-Roses, France; Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Service Cellules Souches et Radiations, Fontenay-aux-Roses, France; UMRE008 Stabilité Génétique, Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Patrik Gonçalves Jorge
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland; Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Maud Jaccard
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Kristoffer Petersson
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland; Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Benoit Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Paul-Henri Roméo
- Team Niche and Cancer in Hematopoiesis, Fontenay-aux-Roses, France; UMRE008 Stabilité Génétique, Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France; Laboratoire de la Régulation de la Transcription dans les cellules Souches, Service Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Françoise Pflumio
- Team Niche and Cancer in Hematopoiesis, Fontenay-aux-Roses, France; Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Service Cellules Souches et Radiations, Fontenay-aux-Roses, France; UMRE008 Stabilité Génétique, Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Benjamin Uzan
- Team Niche and Cancer in Hematopoiesis, Fontenay-aux-Roses, France; Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Service Cellules Souches et Radiations, Fontenay-aux-Roses, France; UMRE008 Stabilité Génétique, Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
268
|
Cunningham S, McCauley S, Vairamani K, Speth J, Girdhani S, Abel E, Sharma RA, Perentesis JP, Wells SI, Mascia A, Sertorio M. FLASH Proton Pencil Beam Scanning Irradiation Minimizes Radiation-Induced Leg Contracture and Skin Toxicity in Mice. Cancers (Basel) 2021; 13:cancers13051012. [PMID: 33804336 PMCID: PMC7957631 DOI: 10.3390/cancers13051012] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Dose and efficacy of radiation therapy are limited by the toxicity to normal tissue adjacent to the treated tumor region. Recently, ultra-high dose rate radiotherapy (FLASH radiotherapy) has shown beneficial reduction of normal tissue damage while preserving similar tumor efficacy with electron, photon and scattered proton beam irradiation in preclinical models. Proton therapy is increasingly delivered by pencil beam scanning (PBS) technology, and we therefore set out to test PBS FLASH radiotherapy on normal tissue toxicity and tumor control in vivo in mouse using a clinical proton delivery system. This validation of the FLASH normal tissue-sparing hypothesis with a clinical delivery system provides supporting data for PBS FLASH radiotherapy and its potential role in improving radiotherapy outcomes. Abstract Ultra-high dose rate radiation has been reported to produce a more favorable toxicity and tumor control profile compared to conventional dose rates that are used for patient treatment. So far, the so-called FLASH effect has been validated for electron, photon and scattered proton beam, but not yet for proton pencil beam scanning (PBS). Because PBS is the state-of-the-art delivery modality for proton therapy and constitutes a wide and growing installation base, we determined the benefit of FLASH PBS on skin and soft tissue toxicity. Using a pencil beam scanning nozzle and the plateau region of a 250 MeV proton beam, a uniform physical dose of 35 Gy (toxicity study) or 15 Gy (tumor control study) was delivered to the right hind leg of mice at various dose rates: Sham, Conventional (Conv, 1 Gy/s), Flash60 (57 Gy/s) and Flash115 (115 Gy/s). Acute radiation effects were quantified by measurements of plasma and skin levels of TGF-β1 and skin toxicity scoring. Delayed irradiation response was defined by hind leg contracture as a surrogate of irradiation-induced skin and soft tissue toxicity and by plasma levels of 13 different cytokines (CXCL1, CXCL10, Eotaxin, IL1-beta, IL-6, MCP-1, Mip1alpha, TNF-alpha, TNF-beta, VEGF, G-CSF, GM-CSF and TGF- β1). Plasma and skin levels of TGF-β1, skin toxicity and leg contracture were all significantly decreased in FLASH compared to Conv groups of mice. FLASH and Conv PBS had similar efficacy with regards to growth control of MOC1 and MOC2 head and neck cancer cells transplanted into syngeneic, immunocompetent mice. These results demonstrate consistent delivery of FLASH PBS radiation from 1 to 115 Gy/s in a clinical gantry. Radiation response following delivery of 35 Gy indicates potential benefits of FLASH versus conventional PBS that are related to skin and soft tissue toxicity.
Collapse
Affiliation(s)
- Shannon Cunningham
- Cincinnati Children’s Hospital Medical Center, Division of Oncology, Cincinnati, OH 45229, USA; (S.C.); (S.M.); (K.V.); (J.P.P.); (S.I.W.)
| | - Shelby McCauley
- Cincinnati Children’s Hospital Medical Center, Division of Oncology, Cincinnati, OH 45229, USA; (S.C.); (S.M.); (K.V.); (J.P.P.); (S.I.W.)
| | - Kanimozhi Vairamani
- Cincinnati Children’s Hospital Medical Center, Division of Oncology, Cincinnati, OH 45229, USA; (S.C.); (S.M.); (K.V.); (J.P.P.); (S.I.W.)
| | - Joseph Speth
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (J.S.); (A.M.)
| | - Swati Girdhani
- Varian Medical Systems, Inc., Palo Alto, CA 94304, USA; (S.G.); (E.A.); (R.A.S.)
| | - Eric Abel
- Varian Medical Systems, Inc., Palo Alto, CA 94304, USA; (S.G.); (E.A.); (R.A.S.)
| | - Ricky A. Sharma
- Varian Medical Systems, Inc., Palo Alto, CA 94304, USA; (S.G.); (E.A.); (R.A.S.)
| | - John P. Perentesis
- Cincinnati Children’s Hospital Medical Center, Division of Oncology, Cincinnati, OH 45229, USA; (S.C.); (S.M.); (K.V.); (J.P.P.); (S.I.W.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Susanne I. Wells
- Cincinnati Children’s Hospital Medical Center, Division of Oncology, Cincinnati, OH 45229, USA; (S.C.); (S.M.); (K.V.); (J.P.P.); (S.I.W.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (J.S.); (A.M.)
| | - Mathieu Sertorio
- Cincinnati Children’s Hospital Medical Center, Division of Oncology, Cincinnati, OH 45229, USA; (S.C.); (S.M.); (K.V.); (J.P.P.); (S.I.W.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Correspondence:
| |
Collapse
|
269
|
Kourkafas G, Bundesmann J, Fanselow T, Denker A, Ehrhardt VH, Gollrad J, Budach V, Weber A, Kociok N, Joussen AM, Heufelder J. FLASH proton irradiation setup with a modulator wheel for a single mouse eye. Med Phys 2021; 48:1839-1845. [PMID: 33480028 DOI: 10.1002/mp.14730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Recent studies indicate that FLASH irradiation, which involves ultra-high dose rates in a short time window (usually >40 Gy/s in <500 ms), might be equally efficient against tumors but less harmful to healthy tissues, compared to conventional irradiation with the same total dose. Aiming to verify the latter claim for ocular proton radiotherapy, in vivo experiments with mice are being carried out by Charité - Universitätsmedizin Berlin. This work presents the implemented setup for delivering FLASH proton radiation to a single eye of mice at the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB). MATERIALS AND METHODS The HZB cyclotron is tuned to provide a high-intensity 68 MeV focused proton beam. Outside the vacuum beamline, the protons hit a single scatterer, which also serves as range shifter, and a rotating modulator wheel, which produces a flat depth-dose distribution. Two transmission ionization chambers in between, read out by fast electronics, are used as dose monitors for triggering an in-vacuum beam shutter, which blocks the beam once the desired dose has been delivered. A collimating aperture shapes the radiation field at the isocenter, which is measured by a radioluminescent screen and a CCD camera. At the same position, a parallel-plate ionization chamber of type Advanced Markus® is used for absolute dosimetry and characterization of the spread-out Bragg peak inside a water phantom. A thin-foil mirror of adjustable tilt in the beam path assists the correct alignment of the target through side illumination. Radiochromic films of type EBT3 are used to supplement the dosimetry and assist the alignment. RESULTS A dose rate of 75 Gy/s has been measured, delivering within 200 ms 15 Gy (RBE) with a reproducibility better than ±1%. A depth-dose curve with a range of 5.2 mm in water, 0.9 mm distal fall-off (90%-10%), and ±2.5% ripple has been demonstrated, with a PTV of 6.3 mm diameter, 1.7 mm lateral penumbra (90%-10%), 8% uniformity, and 3% symmetry. CONCLUSIONS The implemented setup is able to accommodate ocular irradiation of narcotized mice with protons, targeting selectively the left or the right eye, under conventional and FLASH conditions. Switching between these two modes can be done within half an hour, including the calibration of the dose monitors and the verification of the dose delivery. Further upgrades are planned after the completion of the on-going experiment.
Collapse
Affiliation(s)
- Georgios Kourkafas
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Berlin, Germany
| | - Juergen Bundesmann
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Berlin, Germany
| | - Timo Fanselow
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Berlin, Germany
| | - Andrea Denker
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Berlin, Germany.,Beuth University of Applied Sciences Berlin, Berlin, Germany
| | - Vincent Henrique Ehrhardt
- Department of Radiation Oncology and Radiotherapy, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Gollrad
- Department of Radiation Oncology and Radiotherapy, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Volker Budach
- Department of Radiation Oncology and Radiotherapy, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Weber
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,BerlinProtonen am HZB, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Kociok
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Antonia M Joussen
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Heufelder
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,BerlinProtonen am HZB, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
270
|
Marcu LG, Bezak E, Peukert DD, Wilson P. Translational Research in FLASH Radiotherapy-From Radiobiological Mechanisms to In Vivo Results. Biomedicines 2021; 9:181. [PMID: 33670409 PMCID: PMC7918545 DOI: 10.3390/biomedicines9020181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/18/2023] Open
Abstract
FLASH radiotherapy, or the administration of ultra-high dose rate radiotherapy, is a new radiation delivery method that aims to widen the therapeutic window in radiotherapy. Thus far, most in vitro and in vivo results show a real potential of FLASH to offer superior normal tissue sparing compared to conventionally delivered radiation. While there are several postulations behind the differential behaviour among normal and cancer cells under FLASH, the full spectra of radiobiological mechanisms are yet to be clarified. Currently the number of devices delivering FLASH dose rate is few and is mainly limited to experimental and modified linear accelerators. Nevertheless, FLASH research is increasing with new developments in all the main areas: radiobiology, technology and clinical research. This paper presents the current status of FLASH radiotherapy with the aforementioned aspects in mind, but also to highlight the existing challenges and future prospects to overcome them.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Informatics & Science, Department of Physics, University of Oradea, 410087 Oradea, Romania
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, Department of Physics, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Dylan D Peukert
- School of Civil, Environmental & Mining Engineering, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- STEM, University of South Australia, Adelaide, SA 5001, Australia
| | - Puthenparampil Wilson
- STEM, University of South Australia, Adelaide, SA 5001, Australia
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|
271
|
Investigation of DNA Damage and Cell-Cycle Distribution in Human Peripheral Blood Lymphocytes under Exposure to High Doses of Proton Radiotherapy. BIOLOGY 2021; 10:biology10020111. [PMID: 33546318 PMCID: PMC7913503 DOI: 10.3390/biology10020111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022]
Abstract
This study systematically investigates how a single high-dose therapeutic proton beam versus X-rays influences cell-cycle phase distribution and DNA damage in human peripheral blood lymphocytes (HPBLs). Blood samples from ten volunteers (both male and female) were irradiated with doses of 8.00, 13.64, 15.00, and 20.00 Gy of 250 kV X-rays or 60 MeV protons. The dose-effect relations were calculated and distributed by plotting the frequencies of DNA damage of excess Premature Chromosome Condensation (PCC) fragments and rings in the G2/M phase, obtained via chemical induction with calyculin A. The Papworth's u test was used to evaluate the distribution of DNA damage. The study shows that high doses of protons induce HPBL DNA damage in the G2/M phase differently than X-rays do. The results indicate a different distribution of DNA damage following high doses of irradiation with protons versus photons between donors, types of radiation, and doses. The proliferation index confirms the impact of high doses of mitosis and the influence of radiotherapy type on the different HPBL response. The results illuminate the cellular and molecular mechanisms that underlie differences in the distribution of DNA damage and cell-cycle phases; these findings may yield an improvement in the efficacy of the radiotherapies used.
Collapse
|
272
|
Montay-Gruel P, Acharya MM, Gonçalves Jorge P, Petit B, Petridis IG, Fuchs P, Leavitt R, Petersson K, Gondré M, Ollivier J, Moeckli R, Bochud F, Bailat C, Bourhis J, Germond JF, Limoli CL, Vozenin MC. Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice. Clin Cancer Res 2021; 27:775-784. [PMID: 33060122 PMCID: PMC7854480 DOI: 10.1158/1078-0432.ccr-20-0894] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent data have shown that single-fraction irradiation delivered to the whole brain in less than tenths of a second using FLASH radiotherapy (FLASH-RT), does not elicit neurocognitive deficits in mice. This observation has important clinical implications for the management of invasive and treatment-resistant brain tumors that involves relatively large irradiation volumes with high cytotoxic doses. EXPERIMENTAL DESIGN Therefore, we aimed at simultaneously investigating the antitumor efficacy and neuroprotective benefits of FLASH-RT 1-month after exposure, using a well-characterized murine orthotopic glioblastoma model. As fractionated regimens of radiotherapy are the standard of care for glioblastoma treatment, we incorporated dose fractionation to simultaneously validate the neuroprotective effects and optimized tumor treatments with FLASH-RT. RESULTS The capability of FLASH-RT to minimize the induction of radiation-induced brain toxicities has been attributed to the reduction of reactive oxygen species, casting some concern that this might translate to a possible loss of antitumor efficacy. Our study shows that FLASH and CONV-RT are isoefficient in delaying glioblastoma growth for all tested regimens. Furthermore, only FLASH-RT was found to significantly spare radiation-induced cognitive deficits in learning and memory in tumor-bearing animals after the delivery of large neurotoxic single dose or hypofractionated regimens. CONCLUSIONS The present results show that FLASH-RT delivered with hypofractionated regimens is able to spare the normal brain from radiation-induced toxicities without compromising tumor cure. This exciting capability provides an initial framework for future clinical applications of FLASH-RT.See related commentary by Huang and Mendonca, p. 662.
Collapse
Affiliation(s)
- Pierre Montay-Gruel
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, California
| | - Patrik Gonçalves Jorge
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Benoît Petit
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Ioannis G Petridis
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Philippe Fuchs
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Ron Leavitt
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Kristoffer Petersson
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Maude Gondré
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Jonathan Ollivier
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Raphael Moeckli
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - François Bochud
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Jean Bourhis
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | | | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland.
| |
Collapse
|
273
|
Zhang G, Wang J, Wang Y, Peng H. Proton FLASH: passive scattering or pencil beam scanning? Phys Med Biol 2021; 66:03NT01. [PMID: 33296881 DOI: 10.1088/1361-6560/abd22d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study focused on a direct comparison of dose delivery efficiency between two proton FLASH delivery modes: passive scattering and pencil beam scanning (PBS). Monte-Carlo simulation of the beamline was performed using the Geant4 package. Two proton energies (63 and 230 MeV) were selected, targeting for shallow and deep-seated tumors, respectively. Two irradiation field sizes were selected: 13 × 13 mm2 and 50 × 50 mm2. For each delivery mode, two cases were investigated: shoot-through and Bragg peak, yielding a total of 4 delivery scenarios. For the passive scattering mode, the impact on dose rate by multiple components along the beamline were investigated, including ridge-filter, scatterer, range shifter and collimator. A quantitative comparison among four scenarios was made in terms of field size, dose, dose rate and treatment plan quality (dose volume histogram). For the 230 MeV case, the dose rate (for 1 nA current) is 0.05 Gy s-1 (passive with Bragg peak, field size: 50 × 50 mm2) and 2.6 Gy s-1 (PBS with shoot-through). Dose rate comparison is made between passive scattering and PBS as the delivery changes from spot-layer to shoot-through. In conclusion, the study successfully established a benchmark reference for dose rate performance for different scenarios, taking into account components along the beamline, field size and beam current. The results allow us to predict and compare the required beam current to yield a dose rate sufficiently high, above the threshold of the FLASH effect.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Medical Physics, Wuhan University, 430072, People's Republic of China
| | - Junliang Wang
- Cancer Radiation Therapy Center, Fifth Medical Center of Chinese PLA General Hospital, 100039, People's Republic of China
| | - Yuenan Wang
- Department of Radiation Oncology, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518036, People's Republic of China
| | - Hao Peng
- Department of Medical Physics, Wuhan University, 430072, People's Republic of China.,NewRT Medical Systems Inc., Wuxi, 214144, People's Republic of China
| |
Collapse
|
274
|
Mazal A, Vera Sanchez JA, Sanchez-Parcerisa D, Udias JM, España S, Sanchez-Tembleque V, Fraile LM, Bragado P, Gutierrez-Uzquiza A, Gordillo N, Garcia G, Castro Novais J, Perez Moreno JM, Mayorga Ortiz L, Ilundain Idoate A, Cremades Sendino M, Ares C, Miralbell R, Schreuder N. Biological and Mechanical Synergies to Deal With Proton Therapy Pitfalls: Minibeams, FLASH, Arcs, and Gantryless Rooms. Front Oncol 2021; 10:613669. [PMID: 33585238 PMCID: PMC7874206 DOI: 10.3389/fonc.2020.613669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
Proton therapy has advantages and pitfalls comparing with photon therapy in radiation therapy. Among the limitations of protons in clinical practice we can selectively mention: uncertainties in range, lateral penumbra, deposition of higher LET outside the target, entrance dose, dose in the beam path, dose constraints in critical organs close to the target volume, organ movements and cost. In this review, we combine proposals under study to mitigate those pitfalls by using individually or in combination: (a) biological approaches of beam management in time (very high dose rate “FLASH” irradiations in the order of 100 Gy/s) and (b) modulation in space (a combination of mini-beams of millimetric extent), together with mechanical approaches such as (c) rotational techniques (optimized in partial arcs) and, in an effort to reduce cost, (d) gantry-less delivery systems. In some cases, these proposals are synergic (e.g., FLASH and minibeams), in others they are hardly compatible (mini-beam and rotation). Fixed lines have been used in pioneer centers, or for specific indications (ophthalmic, radiosurgery,…), they logically evolved to isocentric gantries. The present proposals to produce fixed lines are somewhat controversial. Rotational techniques, minibeams and FLASH in proton therapy are making their way, with an increasing degree of complexity in these three approaches, but with a high interest in the basic science and clinical communities. All of them must be proven in clinical applications.
Collapse
Affiliation(s)
| | | | - Daniel Sanchez-Parcerisa
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.,Sedecal Molecular Imaging, Madrid, Spain
| | - Jose Manuel Udias
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Samuel España
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Victor Sanchez-Tembleque
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Luis Mario Fraile
- Grupo de Física Nuclear and IPARCOS, U. Complutense Madrid, CEI Moncloa, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Paloma Bragado
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.,Department of Biochemistry and Molecular Biology. U. Complutense, Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain.,Department of Biochemistry and Molecular Biology. U. Complutense, Madrid, Spain
| | - Nuria Gordillo
- Department of Applied Physics, U. Autonoma de Madrid, Madrid, Spain.,Center for Materials Microanalysis, (CMAM), U. Autonoma de Madrid, Madrid, Spain
| | - Gaston Garcia
- Center for Materials Microanalysis, (CMAM), U. Autonoma de Madrid, Madrid, Spain
| | | | | | | | | | | | - Carme Ares
- Centro de Protonterapia Quironsalud, Madrid, Spain
| | | | | |
Collapse
|
275
|
Doyen J, Sunyach MP, Almairac F, Bourg V, Naghavi AO, Duhil de Bénazé G, Claren A, Padovani L, Benezery K, Noël G, Hannoun-Lévi JM, Guedea F, Giralt J, Vidal M, Baudin G, Opitz L, Claude L, Bondiau PY. Early Toxicities After High Dose Rate Proton Therapy in Cancer Treatments. Front Oncol 2021; 10:613089. [PMID: 33520724 PMCID: PMC7842185 DOI: 10.3389/fonc.2020.613089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background The conventional dose rate of radiation therapy is 0.01–0.05 Gy per second. According to preclinical studies, an increased dose rate may offer similar anti-tumoral effect while dramatically improving normal tissue protection. This study aims at evaluating the early toxicities for patients irradiated with high dose rate pulsed proton therapy (PT). Materials and Methods A single institution retrospective chart review was performed for patients treated with high dose rate (10 Gy per second) pulsed proton therapy, from September 2016 to April 2020. This included both benign and malignant tumors with ≥3 months follow-up, evaluated for acute (≤2 months) and subacute (>2 months) toxicity after the completion of PT. Results There were 127 patients identified, with a median follow up of 14.8 months (3–42.9 months). The median age was 55 years (1.6–89). The cohort most commonly consisted of benign disease (55.1%), cranial targets (95.1%), and were treated with surgery prior to PT (56.7%). There was a median total PT dose of 56 Gy (30–74 Gy), dose per fraction of 2 Gy (1–3 Gy), and CTV size of 47.6 ml (5.6–2,106.1 ml). Maximum acute grade ≥2 toxicity were observed in 49 (38.6%) patients, of which 8 (6.3%) experienced grade 3 toxicity. No acute grade 4 or 5 toxicity was observed. Maximum subacute grade 2, 3, and 4 toxicity were discovered in 25 (19.7%), 12 (9.4%), and 1 (0.8%) patient(s), respectively. Conclusion In this cohort, utilizing high dose rate proton therapy (10 Gy per second) did not result in a major decrease in acute and subacute toxicity. Longer follow-up and comparative studies with conventional dose rate are required to evaluate whether this approach offers a toxicity benefit.
Collapse
Affiliation(s)
- Jérôme Doyen
- Université Côte d'Azur, Department of Radiation Oncology, Centre Antoine-Lacassagne, Fédération Claude Lalanne, Nice, France
| | | | - Fabien Almairac
- Department of Neurosurgery, Centre Hospitalier Universitaire, University Côte d'Azur, Nice, France
| | - Véronique Bourg
- Department of Neurology, Centre Hospitalier Universitaire, University Côte d'Azur, Nice, France
| | - Arash O Naghavi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Gwenaëlle Duhil de Bénazé
- Department of Pediatric Oncology, Centre Hospitalier Universitaire, University Côte d'Azur, Nice, France
| | - Audrey Claren
- Department of Radiation Oncology, Centre Antoine-Lacassagne, Nice, France
| | - Laetitia Padovani
- Oncology Radiotherapy Department, CRCM Inserm, UMR1068, CNRS UMR7258, AMU UM105, Genome Instability and Carcinogenesis, Assistance Publique des Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Karen Benezery
- Department of Radiation Oncology, Centre Antoine-Lacassagne, Nice, France
| | - Georges Noël
- Department of Radiation Oncology, Institut de cancérologie Strasbourg Europe (Icans), Strasbourg, France
| | - Jean-Michel Hannoun-Lévi
- Université Côte d'Azur, Department of Radiation Oncology, Centre Antoine-Lacassagne, Fédération Claude Lalanne, Nice, France
| | - Ferran Guedea
- Radiation Oncology Department, Institut Català d'Oncologia (ICO) and University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Giralt
- Hospital Vall d'Hebron, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marie Vidal
- Department of Radiation Oncology, Centre Antoine-Lacassagne, Nice, France
| | - Guillaume Baudin
- Department of Radiology, Centre Antoine-Lacassagne, Nice, France
| | - Lucas Opitz
- Department of Anesthesiology, Centre Antoine-Lacassagne, Nice, France
| | - Line Claude
- Department of Radiotherapy, Léon Bérard Cancer Center, Lyon, France
| | | |
Collapse
|
276
|
Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci Rep 2020; 10:21600. [PMID: 33303827 PMCID: PMC7728763 DOI: 10.1038/s41598-020-78017-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 11/11/2020] [Indexed: 01/19/2023] Open
Abstract
Radiation therapy is the most effective cytotoxic therapy for localized tumors. However, normal tissue toxicity limits the radiation dose and the curative potential of radiation therapy when treating larger target volumes. In particular, the highly radiosensitive intestine limits the use of radiation for patients with intra-abdominal tumors. In metastatic ovarian cancer, total abdominal irradiation (TAI) was used as an effective postsurgical adjuvant therapy in the management of abdominal metastases. However, TAI fell out of favor due to high toxicity of the intestine. Here we utilized an innovative preclinical irradiation platform to compare the safety and efficacy of TAI ultra-high dose rate FLASH irradiation to conventional dose rate (CONV) irradiation in mice. We demonstrate that single high dose TAI-FLASH produced less mortality from gastrointestinal syndrome, spared gut function and epithelial integrity, and spared cell death in crypt base columnar cells compared to TAI-CONV irradiation. Importantly, TAI-FLASH and TAI-CONV irradiation had similar efficacy in reducing tumor burden while improving intestinal function in a preclinical model of ovarian cancer metastasis. These findings suggest that FLASH irradiation may be an effective strategy to enhance the therapeutic index of abdominal radiotherapy, with potential application to metastatic ovarian cancer.
Collapse
|
277
|
Esplen N, Mendonca MS, Bazalova-Carter M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Phys Med Biol 2020; 65:23TR03. [PMID: 32721941 DOI: 10.1088/1361-6560/abaa28] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultrahigh dose-rate radiotherapy (RT), or 'FLASH' therapy, has gained significant momentum following various in vivo studies published since 2014 which have demonstrated a reduction in normal tissue toxicity and similar tumor control for FLASH-RT when compared with conventional dose-rate RT. Subsequent studies have sought to investigate the potential for FLASH normal tissue protection and the literature has been since been inundated with publications on FLASH therapies. Today, FLASH-RT is considered by some as having the potential to 'revolutionize radiotherapy'. FLASH-RT is considered by some as having the potential to 'revolutionize radiotherapy'. The goal of this review article is to present the current state of this intriguing RT technique and to review existing publications on FLASH-RT in terms of its physical and biological aspects. In the physics section, the current landscape of ultrahigh dose-rate radiation delivery and dosimetry is presented. Specifically, electron, photon and proton radiation sources capable of delivering ultrahigh dose-rates along with their beam delivery parameters are thoroughly discussed. Additionally, the benefits and drawbacks of radiation detectors suitable for dosimetry in FLASH-RT are presented. The biology section comprises a summary of pioneering in vitro ultrahigh dose-rate studies performed in the 1960s and early 1970s and continues with a summary of the recent literature investigating normal and tumor tissue responses in electron, photon and proton beams. The section is concluded with possible mechanistic explanations of the FLASH normal-tissue protection effect (FLASH effect). Finally, challenges associated with clinical translation of FLASH-RT and its future prospects are critically discussed; specifically, proposed treatment machines and publications on treatment planning for FLASH-RT are reviewed.
Collapse
Affiliation(s)
- Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
278
|
Schüller A, Heinrich S, Fouillade C, Subiel A, De Marzi L, Romano F, Peier P, Trachsel M, Fleta C, Kranzer R, Caresana M, Salvador S, Busold S, Schönfeld A, McEwen M, Gomez F, Solc J, Bailat C, Linhart V, Jakubek J, Pawelke J, Borghesi M, Kapsch RP, Knyziak A, Boso A, Olsovcova V, Kottler C, Poppinga D, Ambrozova I, Schmitzer CS, Rossomme S, Vozenin MC. The European Joint Research Project UHDpulse – Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Phys Med 2020; 80:134-150. [DOI: 10.1016/j.ejmp.2020.09.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/17/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
|
279
|
Folkerts MM, Abel E, Busold S, Perez JR, Krishnamurthi V, Ling CC. A framework for defining FLASH dose rate for pencil beam scanning. Med Phys 2020; 47:6396-6404. [PMID: 32910460 PMCID: PMC7894358 DOI: 10.1002/mp.14456] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To develop a method of (a) calculating the dose rate of voxels within a proton field delivered using pencil beam scanning (PBS), and (b) reporting a representative dose rate for the PBS treatment field that enables correspondence between multiple treatment modalities. This method takes into account the unique spatiotemporal delivery patterns of PBS FLASH radiotherapy. METHODS The dose rate at each voxel of a PBS radiation field is approximately the quotient of the voxel's dose and "effective" irradiation time. Each voxel's "effective" irradiation time starts when the cumulative dose rises above a chosen threshold value, and stops when its cumulative dose reaches its total dose minus the same threshold value. The above calculation yields a distribution of dose rates for the voxels within a PBS treatment field. To report a representative dose rate for the PBS field, we propose a user-selectable parameter of pth percentile of the dose rate distribution, such that (100 - p) % of the field is above the corresponding dose rate. To demonstrate the method described above, we design FLASH transmission fields using 250 MeV protons and calculate the PBS dose rate distributions in both two-dimensional (2D) and three-dimensional (3D) models. To further evaluate the formalism, we provide an example of a clinical PBS treatment field. RESULTS With the 2D PBS transmission field, it is demonstrated that the time to accumulate the total dose at a voxel is limited to a fraction of the delivery time of the entire field. In addition, the spatial distributions of dose and dose rate are quite different within the field. For the 10 × 10 cm2 PBS field irradiating a 3D water phantom, the prescribed dose of 10 Gy at 10 cm depth is delivered in 1.0 s. The dose rate decreases in the irradiated volume with increasing depth (until the Bragg peak) due to increase of beam spot size by Coulomb scattering. For example, 95% of the irradiated volume between 0 and 10 cm depth receive >40 Gy/s, whereas between 0-20 cm and 0-30 cm depth, 95% of the irradiated volume received >36 Gy/s and >24 Gy/s, respectively. For the clinical PBS treatment field, the scanning pattern conforms to the PTV. PBS dose rate data are presented for the PTV and adjacent normal organs. CONCLUSION We have developed a method of calculating the dose rate distribution of a PBS proton field and have recommended nomenclature for reporting PBS treatment dose rate. We believe that standardizing the method for calculating and reporting PBS treatment dose rates, in a manner that corresponds with other treatment modalities, will advance the research and potential application of PBS FLASH radiotherapy.
Collapse
Affiliation(s)
| | - Eric Abel
- Varian Medical Systems, Inc, Palo Alto, CA, 94304, USA
| | - Simon Busold
- Varian Medical Systems Particle Therapy GmbH, Troisdorf, 53842, Germany
| | | | | | - C Clifton Ling
- Varian Medical Systems, Inc, Palo Alto, CA, 94304, USA.,Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.,Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10003, USA
| |
Collapse
|
280
|
Zou W, Diffenderfer ES, Cengel KA, Kim MM, Avery S, Konzer J, Cai Y, Boisseu P, Ota K, Yin L, Wiersma R, Carlson DJ, Fan Y, Busch TM, Koumenis C, Lin A, Metz JM, Teo BK, Dong L. Current delivery limitations of proton PBS for FLASH. Radiother Oncol 2020; 155:212-218. [PMID: 33186682 DOI: 10.1016/j.radonc.2020.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Proton Pencil Beam Scanning (PBS) is an attractive solution to realize the advantageous normal tissue sparing elucidated from FLASH high dose rates. The mechanics of PBS spot delivery will impose limitations on the effective field dose rate for PBS. METHODS This study incorporates measurements from clinical and FLASH research beams on uniform single energy and the spread-out Bragg Peak PBS fields to extrapolate the PBS dose rate to high cyclotron beam currents 350, 500, and 800 nA. The impact of the effective field dose rate from cyclotron current, spot spacing, slew time and field size were studied. RESULTS When scanning magnet slew time and energy switching time are not considered, single energy effective field FLASH dose rate (≥40 Gy/s) can only be achieved with less than 4 × 4 cm2 fields when the cyclotron output current is above 500 nA. Slew time and energy switching time remain the limiting factors for achieving high effective dose rate of the field. The dose rate-time structures were obtained. The amount of the total dose delivered at the FLASH dose rate in single energy layer and volumetric field was also studied. CONCLUSION It is demonstrated that while it is difficult to achieve FLASH dose rate for a large field or in a volume, local FLASH delivery to certain percentage of the total dose is possible. With further understanding of the FLASH radiobiological mechanism, this study could provide guidance to adapt current clinical multi-field proton PBS delivery practice for FLASH proton radiotherapy.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA.
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Steve Avery
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Joshua Konzer
- IBA PT-Inc., PT Engineer-Beam Physics, Louvain-La-Neuve, Belgium
| | - Yongliang Cai
- IBA PT-Inc., PT Engineer-Beam Physics, Louvain-La-Neuve, Belgium
| | - Paul Boisseu
- Pyramid Technical Consultants, Systems Engineering, Boston, USA
| | - Kan Ota
- Pyramid Technical Consultants, Systems Engineering, Boston, USA
| | - Lingshu Yin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Rodney Wiersma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - David J Carlson
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Costas Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - James M Metz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - BoonKeng K Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
281
|
Kim YE, Gwak SH, Hong BJ, Oh JM, Choi HS, Kim MS, Oh D, Lartey FM, Rafat M, Schüler E, Kim HS, von Eyben R, Weissman IL, Koch CJ, Maxim PG, Loo BW, Ahn GO. Effects of Ultra-high doserate FLASH Irradiation on the Tumor Microenvironment in Lewis Lung Carcinoma: Role of Myosin Light Chain. Int J Radiat Oncol Biol Phys 2020; 109:1440-1453. [PMID: 33186615 DOI: 10.1016/j.ijrobp.2020.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To investigate whether the vascular collapse in tumors by conventional dose rate (CONV) irradiation (IR) would also occur by the ultra-high dose rate FLASH IR. METHODS AND MATERIALS Lewis lung carcinoma (LLC) cells were subcutaneously implanted in mice. This was followed by CONV or FLASH IR at 15 Gy. Tumors were harvested at 6 or 48 hours after IR and stained for CD31, phosphorylated myosin light chain (p-MLC), γH2AX (a surrogate marker for DNA double strand break), intracellular reactive oxygen species (ROS), or immune cells such as myeloid and CD8α T cells. Cell lines were irradiated with CONV IR for Western blot analyses. ML-7 was intraperitoneally administered daily to LLC-bearing mice for 7 days before 15 Gy CONV IR. Tumors were similarly harvested and analyzed. RESULTS By immunostaining, we observed that CONV IR at 6 hours resulted in constricted vessel morphology, increased expression of p-MLC, and much higher numbers of γH2AX-positive cells in tumors, which were not observed with FLASH IR. Mechanistically, MLC activation by ROS is unlikely, because FLASH IR produced significantly more ROS than CONV IR in tumors. In vitro studies demonstrated that ML-7, an inhibitor of MLC kinase, abrogated IR-induced γH2AX formation and disappearance kinetics. Lastly, we observed that CONV IR when combined with ML-7 produced some effects similar to FLASH IR, including reduction in the vasculature collapse, fewer γH2AX-positive cells, and increased immune cell influx to the tumors. CONCLUSIONS FLASH IR produced novel changes in the tumor microenvironment that were not observed with CONV IR. We believe that MLC activation in tumors may be responsible for some of the microenvironmental changes differentially regulated between CONV and FLASH IR.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Life Science, Pohang University of Science and Technology, Gyeongbuk, Korea
| | - Seung-Hee Gwak
- Department of Life Science, Pohang University of Science and Technology, Gyeongbuk, Korea
| | - Beom-Ju Hong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Gyeongbuk, Korea
| | - Jung-Min Oh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Gyeongbuk, Korea
| | - Hyung-Seok Choi
- Department of Life Science, Pohang University of Science and Technology, Gyeongbuk, Korea
| | - Myeoung Su Kim
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Dawit Oh
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Frederik M Lartey
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Marjan Rafat
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Emil Schüler
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hyo-Soo Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Irving L Weissman
- Institute of Stem Cell and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Cameron J Koch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter G Maxim
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
282
|
Li X, Lee A, Cohen MA, Sherman EJ, Lee NY. Past, present and future of proton therapy for head and neck cancer. Oral Oncol 2020; 110:104879. [PMID: 32650256 DOI: 10.1016/j.oraloncology.2020.104879] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Proton therapy has recently gained substantial momentum worldwide due to improved accessibility to the technology and sustained interests in its advantage of better tissue sparing compared to traditional photon radiation. Proton therapy in head and neck cancer has a unique advantage given the complex anatomy and proximity of targets to vital organs. As head and neck cancer patients are living longer due to epidemiological shifts and advances in treatment options, long-term toxicity from radiation treatment has become a major concern that may be better mitigated by proton therapy. With increased utilization of proton therapy, new proton centers breaking ground, and as excitement about the technology continue to increase, we aim to comprehensively review the evidence of proton therapy in major subsites within the head and neck, hoping to facilitate a greater understanding of the full risks and benefits of proton therapy for head and neck cancer.
Collapse
Affiliation(s)
- Xingzhe Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, United States
| | - Anna Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, United States
| | - Marc A Cohen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, United States
| | - Eric J Sherman
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, United States
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, United States.
| |
Collapse
|
283
|
Technical challenges for FLASH proton therapy. Phys Med 2020; 78:71-82. [PMID: 32947086 DOI: 10.1016/j.ejmp.2020.08.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
There is growing interest in the radiotherapy community in the application of FLASH radiotherapy, wherein the dose is delivered to the entire treatment volume in less than a second. Early pre-clinical evidence suggests that these extremely high dose rates provide significant sparing of healthy tissue compared to conventional radiotherapy without reducing the damage to cancerous cells. This interest has been reflected in the proton therapy community, with early tests indicating that the FLASH effect is also present with high dose rate proton irradiation. In order to deliver clinically relevant doses at FLASH dose rates significant technical hurdles must be overcome in the accelerator technology before FLASH proton therapy can be realised. Of these challenges, increasing the average current from the present clinical range of 1-10 nA to in excess of 100 nA is at least feasible with existing technology, while the necessity for rapid energy adjustment on the order of a few milliseconds is much more challenging, particularly for synchrotron-based systems. However, the greatest challenge is to implement full pencil beam scanning, where scanning speeds 2 orders of magnitude faster than the existing state-of-the-art will be necessary, along with similar improvements in the speed and accuracy of associated dosimetry. Hybrid systems utilising 3D-printed patient specific range modulators present the most likely route to clinical delivery. However, to correctly adapt and develop existing technology to meet the challenges of FLASH, more pre-clinical studies are needed to properly establish the beam parameters that are necessary to produce the FLASH effect.
Collapse
|
284
|
FLASH Radiotherapy: Current Knowledge and Future Insights Using Proton-Beam Therapy. Int J Mol Sci 2020; 21:ijms21186492. [PMID: 32899466 PMCID: PMC7556020 DOI: 10.3390/ijms21186492] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
FLASH radiotherapy is the delivery of ultra-high dose rate radiation several orders of magnitude higher than what is currently used in conventional clinical radiotherapy, and has the potential to revolutionize the future of cancer treatment. FLASH radiotherapy induces a phenomenon known as the FLASH effect, whereby the ultra-high dose rate radiation reduces the normal tissue toxicities commonly associated with conventional radiotherapy, while still maintaining local tumor control. The underlying mechanism(s) responsible for the FLASH effect are yet to be fully elucidated, but a prominent role for oxygen tension and reactive oxygen species production is the most current valid hypothesis. The FLASH effect has been confirmed in many studies in recent years, both in vitro and in vivo, with even the first patient with T-cell cutaneous lymphoma being treated using FLASH radiotherapy. However, most of the studies into FLASH radiotherapy have used electron beams that have low tissue penetration, which presents a limitation for translation into clinical practice. A promising alternate FLASH delivery method is via proton beam therapy, as the dose can be deposited deeper within the tissue. However, studies into FLASH protons are currently sparse. This review will summarize FLASH radiotherapy research conducted to date and the current theories explaining the FLASH effect, with an emphasis on the future potential for FLASH proton beam therapy.
Collapse
|
285
|
Curry CB, Dunning CAS, Gauthier M, Chou HGJ, Fiuza F, Glenn GD, Tsui YY, Bazalova-Carter M, Glenzer SH. Optimization of radiochromic film stacks to diagnose high-flux laser-accelerated proton beams. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:093303. [PMID: 33003776 DOI: 10.1063/5.0020568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Here, we extend flatbed scanner calibrations of GafChromic EBT3, MD-V3, and HD-V2 radiochromic films using high-precision x-ray irradiation and monoenergetic proton bombardment. By computing a visibility parameter based on fractional errors, optimal dose ranges and transitions between film types are identified. The visibility analysis is used to design an ideal radiochromic film stack for the proton energy spectrum expected from the interaction of a petawatt laser with a cryogenic hydrogen jet target.
Collapse
Affiliation(s)
- C B Curry
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - C A S Dunning
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - M Gauthier
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - H-G J Chou
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - F Fiuza
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G D Glenn
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Y Y Tsui
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - M Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - S H Glenzer
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
286
|
Zhang Q, Cascio E, Li C, Yang Q, Gerweck LE, Huang P, Gottschalk B, Flanz J, Schuemann J. FLASH Investigations Using Protons: Design of Delivery System, Preclinical Setup and Confirmation of FLASH Effect with Protons in Animal Systems. Radiat Res 2020; 194:656-664. [DOI: 10.1667/rade-20-00068.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/14/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Qixian Zhang
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ethan Cascio
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Chengming Li
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Qingyuan Yang
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Leo E. Gerweck
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Peigen Huang
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bernard Gottschalk
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jacob Flanz
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
287
|
De Marzi L, Patriarca A, Scher N, Thariat J, Vidal M. Exploiting the full potential of proton therapy: An update on the specifics and innovations towards spatial or temporal optimisation of dose delivery. Cancer Radiother 2020; 24:691-698. [PMID: 32753235 DOI: 10.1016/j.canrad.2020.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Prescription and delivery of protons are somewhat different compared to photons and may influence outcomes (tumour control and toxicity). These differences should be taken into account to fully exploit the clinical potential of proton therapy. Innovations in proton therapy treatment are also required to widen the therapeutic window and determine appropriate populations of patients that would benefit from new treatments. Therefore, strategies are now being developed to reduce side effects to critical normal tissues using alternative treatment configurations and new spatial or temporal-driven optimisation approaches. Indeed, spatiotemporal optimisation (based on flash, proton minibeam radiation therapy or hypofractionated delivery methods) has been gaining some attention in proton therapy as a mean of improving (biological and physical) dose distribution. In this short review, the main differences in planning and delivery between protons and photons, as well as some of the latest developments and methodological issues (in silico modelling) related to providing scientific evidence for these new techniques will be discussed.
Collapse
Affiliation(s)
- L De Marzi
- Institut Curie, centre de protonthérapie d'Orsay, campus universitaire, bâtiment 101, 91898 Orsay, France; Université PSL (Paris Sciences & Lettres), 60, rue Mazarine, 75006 Paris, France; Université Paris-Saclay, route de l'Orme-aux-Merisiers, RD 128, 91190 Saint-Aubin, France; Inserm U1021, centre universitaire, bâtiment 110, rue Henri-Becquerel, 91405 Orsay cedex, France; CNRS, UMR 3347, centre universitaire, bâtiment 110, rue Henri-Becquerel, 91405 Orsay cedex, France.
| | - A Patriarca
- Institut Curie, centre de protonthérapie d'Orsay, campus universitaire, bâtiment 101, 91898 Orsay, France; Université PSL (Paris Sciences & Lettres), 60, rue Mazarine, 75006 Paris, France
| | - N Scher
- Institut Curie, centre de protonthérapie d'Orsay, campus universitaire, bâtiment 101, 91898 Orsay, France; Université PSL (Paris Sciences & Lettres), 60, rue Mazarine, 75006 Paris, France
| | - J Thariat
- Service de radiothérapie oncologique, centre François-Baclesse, 3, avenue General-Harris, 14000 Caen, France; Laboratoire de physique corpusculaire de Caen, 6, boulevard du Maréchal-Juin, 14050 Caen cedex, France; Institut national de physique nucléaire et physique des particules (IN2P3), 6, boulevard du Maréchal-Juin, 14050 Caen cedex, France; EnsiCaen, 6, boulevard du Maréchal-Juin, 14050 Caen cedex, France; CNRS, UMR6534, 6, boulevard du Maréchal-Juin, 14050 Caen cedex, France; Unicaen, 6, boulevard du Maréchal-Juin, 14050 Caen cedex, France; Normandie Université, 6, boulevard du Maréchal-Juin, 14050 Caen cedex, France
| | - M Vidal
- Centre Antoine-Lacassagne, 33, avenue Valombrose, 06000 Nice, France
| |
Collapse
|
288
|
van Marlen P, Dahele M, Folkerts M, Abel E, Slotman BJ, Verbakel WFAR. In Reply to Moeckli et al. Int J Radiat Oncol Biol Phys 2020; 107:1013-1014. [PMID: 32698970 DOI: 10.1016/j.ijrobp.2020.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | - Eric Abel
- Varian Medical Systems, Palo Alto, California
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Wilko F A R Verbakel
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
289
|
Moeckli R, Germond JF, Bailat C, Bochud F, Vozenin MC, Bourhis J. In Regard to van Marlen et al. Int J Radiat Oncol Biol Phys 2020; 107:1012-1013. [DOI: 10.1016/j.ijrobp.2020.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022]
|
290
|
Simeonov Y, Weber U, Schuy C, Engenhart-Cabillic R, Penchev P, Durante M, Zink K. Monte Carlo simulations and dose measurements of 2D range-modulators for scanned particle therapy. Z Med Phys 2020; 31:203-214. [PMID: 32711939 DOI: 10.1016/j.zemedi.2020.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
This paper introduces the concept of a 2D range-modulator as a static device for generating spread-out Bragg peaks at very small distances to the target. The 2D range-modulator has some distinct advantages that can be highly useful for different research projects in particle therapy facilities. Most importantly, it creates an instantaneous, quasi-static irradiation field with only one energy, thus decreasing irradiation time tremendously. In addition, it can be manufactured fast and cost efficiently and its SOBP width and shape can be adjusted easily for the specific purpose/experiment. As the modulator is a static element, there is no need for rotation (e.g. like in a modulation wheel) or lateral oscillation and due to the small base structure period it can be positioned close to the target. Two different rapid prototyping manufacturing techniques were utilized. The modulation properties of one polymer and one steel modulator were investigated with both simulations and measurements. For this purpose, a sophisticated water phantom system (WERNER), that can perform fast, completely automated and high resolution dose measurements, was developed. Using WERNER, the dose distribution of a modulator can be verified quickly and reliably, both during experiments, as well as in a time constrained clinical environment. The maximum deviation between the Monte Carlo simulations and dose measurements in the spread-out Bragg peak region was 1.4% and 4% for the polymer and steel modulator respectively. They were able to create spread-out Bragg peaks with a high degree of dose homogeneity, thus validating the whole process chain, from the mathematical optimization and modulator development, to manufacturing, MC simulations and dose measurements. Combining the convenience, flexibility and cost-effectiveness of rapid prototyping with the advantages of highly customizable modulators, that can be adapted for different experiments, the 2D range-modulator is considered a very useful tool for a variety of research objectives. Moreover, we have successfully shown that the manufacturing of 2D modulators with high quality and high degree of homogeneity is possible, paving the way for the further development of the more complex 3D range-modulators, which are considered a viable option for the very fast treatment of moving targets and/or FLASH irradiation.
Collapse
Affiliation(s)
- Yuri Simeonov
- Institut für Medizinische Physik und Strahlenschutz (IMPS), University of Applied Sciences, Giessen, Germany; Philipps-University, Marburg, Germany.
| | - Uli Weber
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Christoph Schuy
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany
| | - Petar Penchev
- Institut für Medizinische Physik und Strahlenschutz (IMPS), University of Applied Sciences, Giessen, Germany
| | - Marco Durante
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; Technical University of Darmstadt, Institute for Condensed Matter Physics, Germany
| | - Klemens Zink
- Institut für Medizinische Physik und Strahlenschutz (IMPS), University of Applied Sciences, Giessen, Germany; Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany; Marburg Ion Beam Therapy Center (MIT), Marburg, Germany
| |
Collapse
|
291
|
Griffin RJ, Ahmed MM, Amendola B, Belyakov O, Bentzen SM, Butterworth KT, Chang S, Coleman CN, Djonov V, Formenti SC, Glatstein E, Guha C, Kalnicki S, Le QT, Loo BW, Mahadevan A, Massaccesi M, Maxim PG, Mohiuddin M, Mohiuddin M, Mayr NA, Obcemea C, Petersson K, Regine W, Roach M, Romanelli P, Simone CB, Snider JW, Spitz DR, Vikram B, Vozenin MC, Abdel-Wahab M, Welsh J, Wu X, Limoli CL. Understanding High-Dose, Ultra-High Dose Rate, and Spatially Fractionated Radiation Therapy. Int J Radiat Oncol Biol Phys 2020; 107:766-778. [PMID: 32298811 DOI: 10.1016/j.ijrobp.2020.03.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
The National Cancer Institute's Radiation Research Program, in collaboration with the Radiosurgery Society, hosted a workshop called Understanding High-Dose, Ultra-High Dose Rate and Spatially Fractionated Radiotherapy on August 20 and 21, 2018 to bring together experts in experimental and clinical experience in these and related fields. Critically, the overall aims were to understand the biological underpinning of these emerging techniques and the technical/physical parameters that must be further defined to drive clinical practice through innovative biologically based clinical trials.
Collapse
Affiliation(s)
- Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mansoor M Ahmed
- Division of Cancer Treatment and Diagnosis, Rockville, Maryland
| | | | - Oleg Belyakov
- International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, University of Maryland, Baltimore, Maryland
| | - Karl T Butterworth
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, United Kingdom
| | - Sha Chang
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - Valentin Djonov
- Bern Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Sylvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Eli Glatstein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Shalom Kalnicki
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Health Systems, Danville, Pennsylvania
| | - Mariangela Massaccesi
- Department of Radiation Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Peter G Maxim
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Nina A Mayr
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington
| | | | - Kristoffer Petersson
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - William Regine
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mack Roach
- Department of Radiation Oncology & Urology, University of California, San Francisco, San Francisco, California
| | | | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - James W Snider
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas R Spitz
- Free Radical & Radiation Biology Program, University of Iowa, Iowa City, Iowa
| | | | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital, Switzerland
| | - May Abdel-Wahab
- International Atomic Energy Agency Headquarters, Vienna International Centre, Vienna, Austria
| | - James Welsh
- Edward Hines VA Medical Center and Loyola University Stritch School of Medicine, Chicago, Illinois
| | - Xiaodong Wu
- Executive Medical Physics Associates, Miami, Florida; Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Charles L Limoli
- Department of Radiation Oncology, University of California-Irvine, Irvine, California.
| |
Collapse
|
292
|
Could Protons and Carbon Ions Be the Silver Bullets Against Pancreatic Cancer? Int J Mol Sci 2020; 21:ijms21134767. [PMID: 32635552 PMCID: PMC7369903 DOI: 10.3390/ijms21134767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a very aggressive cancer type associated with one of the poorest prognostics. Despite several clinical trials to combine different types of therapies, none of them resulted in significant improvements for patient survival. Pancreatic cancers demonstrate a very broad panel of resistance mechanisms due to their biological properties but also their ability to remodel the tumour microenvironment. Radiotherapy is one of the most widely used treatments against cancer but, up to now, its impact remains limited in the context of pancreatic cancer. The modern era of radiotherapy proposes new approaches with increasing conformation but also more efficient effects on tumours in the case of charged particles. In this review, we highlight the interest in using charged particles in the context of pancreatic cancer therapy and the impact of this alternative to counteract resistance mechanisms.
Collapse
|
293
|
Darafsheh A, Hao Y, Zwart T, Wagner M, Catanzano D, Williamson JF, Knutson N, Sun B, Mutic S, Zhao T. Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies. Med Phys 2020; 47:4348-4355. [DOI: 10.1002/mp.14253] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Arash Darafsheh
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| | - Yao Hao
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| | - Townsend Zwart
- Mevion Medical Systems 300 Foster St. Littleton MA 01460 USA
| | - Miles Wagner
- Mevion Medical Systems 300 Foster St. Littleton MA 01460 USA
| | | | - Jeffrey F. Williamson
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| | - Nels Knutson
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| | - Baozhou Sun
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| | - Sasa Mutic
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| | - Tianyu Zhao
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| |
Collapse
|
294
|
A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect. Radiother Oncol 2020; 153:303-310. [PMID: 32534957 DOI: 10.1016/j.radonc.2020.06.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/08/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE FLASH radiotherapy, a technique based on delivering large doses in a single fraction at the micro/millisecond timescale, spares normal tissues from late radiation-induced toxicity, in an oxygen-dependent process, whilst keeping full anti-tumor efficiency. We present a theoretical model taking into account the kinetics of formation and decay of reactive oxygen species, in particular of organic peroxyl radicals ROO. formed by addition of O2 to primary carbon-centred radicals R. and known to play a major role at the origin radio-induced complications. MATERIALS AND METHODS The model focuses on the time-dependent evolution of radiolytic products in living matter exposed to continuous irradiation at dose-rates in the range 10-3-107Gy·s-1. The 9 differential rate equations resulting from the radiolytic and enzymatic reactions network were solved using the published values of these reactions rate constants in a cellular environment. RESULTS The model suggests a correlation between the area-under-the-curve of time-evolving [ROO.] and the probability of normal tissue complications. The model does not lend weight to the hypothesis of transient oxygen depletion as a main determinant of FLASH but rather suggests a major role of radical-radical recombination. CONCLUSION The model gives support to the reduction of ROO. lifetime as the main root of FLASH and compares favorably with published experimental results. We conclude that any process - in this case radical recombination - that shortens the lifetime or limits the radiolytic yield of ROO. is likely to protect normoxic tissues against the deleterious effects of radiation.
Collapse
|
295
|
Hendry J. Taking Care with FLASH Radiation Therapy. Int J Radiat Oncol Biol Phys 2020; 107:239-242. [DOI: 10.1016/j.ijrobp.2020.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 12/22/2022]
|
296
|
Charyyev S, Lei Y, Harms J, Eaton B, McDonald M, Curran WJ, Liu T, Zhou J, Zhang R, Yang X. High quality proton portal imaging using deep learning for proton radiation therapy: a phantom study. Biomed Phys Eng Express 2020; 6:035029. [PMID: 33438674 PMCID: PMC11682722 DOI: 10.1088/2057-1976/ab8a74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Purpose; For shoot-through proton treatments, like FLASH radiotherapy, there will be protons exiting the patient which can be used for proton portal imaging (PPI), revealing valuable information for the validation of tumor location in the beam's-eye-view at native gantry angles. However, PPI has poor inherent contrast and spatial resolution. To deal with this issue, we propose a deep-learning-based method to use kV digitally reconstructed radiographs (DRR) to improve PPI image quality. Method; We used a residual generative adversarial network (GAN) framework to learn the nonlinear mapping between PPIs and DRRs. Residual blocks were used to force the model to focus on the structural differences between DRR and PPI. To assess the accuracy of our method, we used 149 images for training and 30 images for testing. PPIs were acquired using a double-scattered proton beam. The DRRs acquired from CT acted as learning targets in the training process and were used to evaluate results from the proposed method using a six-fold cross-validation scheme. Results; Qualitatively, the corrected PPIs showed enhanced spatial resolution and captured fine details present in the DRRs that are missed in the PPIs. The quantitative results for corrected PPIs show average normalized mean error (NME), normalized mean absolute error (NMAE), peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index of -0.1%, 0.3%, 39.14 dB, and 0.987, respectively. Conclusion; The results indicate the proposed method can generate high quality corrected PPIs and this work shows the potential to use a deep-learning model to make PPI available in proton radiotherapy. This will allow for beam's-eye-view (BEV) imaging with the particle used for treatment, leading to a valuable alternative to orthogonal x-rays or cone-beam CT for patient position verification.
Collapse
Affiliation(s)
- Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Joseph Harms
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Bree Eaton
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Mark McDonald
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Rongxiao Zhang
- Department of Radiation Oncology, Dartmouth College, Hanover, NH, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
297
|
Mazal A, Prezado Y, Ares C, de Marzi L, Patriarca A, Miralbell R, Favaudon V. FLASH and minibeams in radiation therapy: the effect of microstructures on time and space and their potential application to protontherapy. Br J Radiol 2020; 93:20190807. [PMID: 32003574 PMCID: PMC7066940 DOI: 10.1259/bjr.20190807] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
After years of lethargy, studies on two non-conventional microstructures in time and space of the beams used in radiation therapy are enjoying a huge revival. The first effect called “FLASH” is based on very high dose-rate irradiation (pulse amplitude ≥106 Gy/s), short beam-on times (≤100 ms) and large single doses (≥10 Gy) as experimental parameters established so far to give biological and potential clinical effects. The second effect relies on the use of arrays of minibeams (e.g., 0.5–1 mm, spaced 1–3.5 mm). Both approaches have been shown to protect healthy tissues as an endpoint that must be clearly specified and could be combined with each other (e.g., minibeams under FLASH conditions). FLASH depends on the presence of oxygen and could proceed from the chemistry of peroxyradicals and a reduced incidence on DNA and membrane damage. Minibeams action could be based on abscopal effects, cell signalling and/or migration of cells between “valleys and hills” present in the non-uniform irradiation field as well as faster repair of vascular damage. Both effects are expected to maintain intact the tumour control probability and might even preserve antitumoural immunological reactions. FLASH in vivo experiments involving Zebrafish, mice, pig and cats have been done with electron beams, while minibeams are an intermediate approach between X-GRID and synchrotron X-ray microbeams radiation. Both have an excellent rationale to converge and be applied with proton beams, combining focusing properties and high dose rates in the beam path of pencil beams, and the inherent advantage of a controlled limited range. A first treatment with electron FLASH (cutaneous lymphoma) has recently been achieved, but clinical trials have neither been presented for FLASH with protons, nor under the minibeam conditions. Better understanding of physical, chemical and biological mechanisms of both effects is essential to optimize the technical developments and devise clinical trials.
Collapse
Affiliation(s)
| | - Yolanda Prezado
- IMNC, University Paris-Sud and Paris-Saclay, CNRS/IN2P3, Orsay, France
| | - Carme Ares
- Centro de Protonterapia Quironsalud, Madrid, Spain
| | - Ludovic de Marzi
- Institut Curie, Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay 91898, France.,Institut Curie, Inserm U 1021-CNRS UMR 3347, Paris-Saclay and PSL Research Universities, Orsay, France
| | - Annalisa Patriarca
- Institut Curie, Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay 91898, France
| | | | - Vincent Favaudon
- Institut Curie, Inserm U 1021-CNRS UMR 3347, Paris-Saclay and PSL Research Universities, Orsay, France
| |
Collapse
|