251
|
Qiu H, Zhu X, Wan H, Xu L, Zhang Q, Hou P, Fan Z, Lyu Y, Ni D, Usadel B, Fernie AR, Wen W. Parallel Metabolomic and Transcriptomic Analysis Reveals Key Factors for Quality Improvement of Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5483-5495. [PMID: 32302110 DOI: 10.1021/acs.jafc.0c00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the most popular beverages globally, tea has enormous economic, cultural, and medicinal importance that necessitates a comprehensive metabolomics study of this species. In this study, a large-scale targeted metabolomics analysis on two types of leaf tissues of nine tea cultivars from five representative geographical origins within China was carried out using the liquid chromatography-mass spectrometry technique. RNA-seq-based transcriptomic analysis was in parallel conducted on the same samples, and gene expression and metabolic differentiation between tissues as well as between the multiple tea cultivars were investigated. The data obtained provide an accessible resource for further studies of naturally occurring metabolic variation of tea plants, which will aid in thoroughly interpreting the underlying genetic and molecular mechanisms of biosynthesis of specialized metabolites in this critical species. Candidate genes including a transcription factor (CsMYB5-like), which were highly correlated with both the content of flavonoids and the expression level of genes participating in the phenylpropanoid and flavonoid biosynthesis pathway, were identified as potential targets for quality improvement of tea.
Collapse
Affiliation(s)
- Haiji Qiu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Zhu
- Thermo Fisher Scientific, Shanghai 201206, China
| | - Haoliang Wan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Xu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengyi Hou
- Thermo Fisher Scientific, Shanghai 201206, China
| | - Ziquan Fan
- Thermo Fisher Scientific, Shanghai 201206, China
| | - Yi Lyu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Youyi Xilu 127, 710072 Xi'an, Shaanxi, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Björn Usadel
- Institute of Biology 1, BioSC, Rheinisch-Westfaelische Technische Hochschule Aachen, 52056 Aachen, Germany
- IBG-2, Plant Sciences, Forschungszentrum Jülich, Wilhelm Johnen Str, 52024 Jülich, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm 14476, Germany
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
252
|
Watt M, Fiorani F, Usadel B, Rascher U, Muller O, Schurr U. Phenotyping: New Windows into the Plant for Breeders. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:689-712. [PMID: 32097567 DOI: 10.1146/annurev-arplant-042916-041124] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant phenotyping enables noninvasive quantification of plant structure and function and interactions with environments. High-capacity phenotyping reaches hitherto inaccessible phenotypic characteristics. Diverse, challenging, and valuable applications of phenotyping have originated among scientists, prebreeders, and breeders as they study the phenotypic diversity of genetic resources and apply increasingly complex traits to crop improvement. Noninvasive technologies are used to analyze experimental and breeding populations. We cover the most recent research in controlled-environment and field phenotyping for seed, shoot, and root traits. Select field phenotyping technologies have become state of the art and show promise for speeding up the breeding process in early generations. We highlight the technologies behind the rapid advances in proximal and remote sensing of plants in fields. We conclude by discussing the new disciplines working with the phenotyping community: data science, to address the challenge of generating FAIR (findable, accessible, interoperable, and reusable) data, and robotics, to apply phenotyping directly on farms.
Collapse
Affiliation(s)
- Michelle Watt
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425 Jülich, Germany; ,
| | - Fabio Fiorani
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425 Jülich, Germany; ,
| | - Björn Usadel
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425 Jülich, Germany; ,
- Institute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany
| | - Uwe Rascher
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425 Jülich, Germany; ,
| | - Onno Muller
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425 Jülich, Germany; ,
| | - Ulrich Schurr
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425 Jülich, Germany; ,
| |
Collapse
|
253
|
LSTrAP-Cloud: A User-Friendly Cloud Computing Pipeline to Infer Coexpression Networks. Genes (Basel) 2020; 11:genes11040428. [PMID: 32316247 PMCID: PMC7230309 DOI: 10.3390/genes11040428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
As genomes become more and more available, gene function prediction presents itself as one of the major hurdles in our quest to extract meaningful information on the biological processes genes participate in. In order to facilitate gene function prediction, we show how our user-friendly pipeline, the Large-Scale Transcriptomic Analysis Pipeline in Cloud (LSTrAP-Cloud), can be useful in helping biologists make a shortlist of genes involved in a biological process that they might be interested in, by using a single gene of interest as bait. The LSTrAP-Cloud is based on Google Colaboratory, and provides user-friendly tools that process quality-control RNA sequencing data streamed from the European Nucleotide Archive. The LSTRAP-Cloud outputs a gene coexpression network that can be used to identify functionally related genes for any organism with a sequenced genome and publicly available RNA sequencing data. Here, we used the biosynthesis pathway of Nicotiana tabacum as a case study to demonstrate how enzymes, transporters, and transcription factors involved in the synthesis, transport, and regulation of nicotine can be identified using our pipeline.
Collapse
|
254
|
Sugar Beet ( Beta vulgaris) Guard Cells Responses to Salinity Stress: A Proteomic Analysis. Int J Mol Sci 2020; 21:ijms21072331. [PMID: 32230932 PMCID: PMC7212754 DOI: 10.3390/ijms21072331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/02/2023] Open
Abstract
Soil salinity is a major environmental constraint affecting crop growth and threatening global food security. Plants adapt to salinity by optimizing the performance of stomata. Stomata are formed by two guard cells (GCs) that are morphologically and functionally distinct from the other leaf cells. These microscopic sphincters inserted into the wax-covered epidermis of the shoot balance CO2 intake for photosynthetic carbon gain and concomitant water loss. In order to better understand the molecular mechanisms underlying stomatal function under saline conditions, we used proteomics approach to study isolated GCs from the salt-tolerant sugar beet species. Of the 2088 proteins identified in sugar beet GCs, 82 were differentially regulated by salt treatment. According to bioinformatics analysis (GO enrichment analysis and protein classification), these proteins were involved in lipid metabolism, cell wall modification, ATP biosynthesis, and signaling. Among the significant differentially abundant proteins, several proteins classified as "stress proteins" were upregulated, including non-specific lipid transfer protein, chaperone proteins, heat shock proteins, inorganic pyrophosphatase 2, responsible for energized vacuole membrane for ion transportation. Moreover, several antioxidant enzymes (peroxide, superoxidase dismutase) were highly upregulated. Furthermore, cell wall proteins detected in GCs provided some evidence that GC walls were more flexible in response to salt stress. Proteins such as L-ascorbate oxidase that were constitutively high under both control and high salinity conditions may contribute to the ability of sugar beet GCs to adapt to salinity by mitigating salinity-induced oxidative stress.
Collapse
|
255
|
Tao SQ, Auer L, Morin E, Liang YM, Duplessis S. Transcriptome Analysis of Apple Leaves Infected by the Rust Fungus Gymnosporangium yamadae at Two Sporulation Stages. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:444-461. [PMID: 31765287 DOI: 10.1094/mpmi-07-19-0208-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Apple rust disease caused by Gymnosporangium yamadae is one of the major threats to apple orchards. In this study, dual RNA-seq analysis was conducted to simultaneously monitor gene expression profiles of G. yamadae and infected apple leaves during the formation of rust spermogonia and aecia. The molecular mechanisms underlying this compatible interaction at 10 and 30 days postinoculation (dpi) indicate a significant reaction from the host plant and comprise detoxication pathways at the earliest stage and the induction of secondary metabolism pathways at 30 dpi. Such host reactions have been previously reported in other rust pathosystems and may represent a general reaction to rust infection. G. yamadae transcript profiling indicates a conserved genetic program in spermogonia and aecia that is shared with other rust fungi, whereas secretome prediction reveals the presence of specific secreted candidate effector proteins expressed during apple infection. Unexpectedly, the survey of fungal unigenes in the transcriptome assemblies of inoculated and mock-inoculated apple leaves reveals that G. yamadae infection may modify the fungal community composition in the apple phyllosphere at 30 dpi. Collectively, our results provide novel insights into the compatible apple-G. yamadae interaction and advance the knowledge of this heteroecious demicyclic rust fungus.
Collapse
Affiliation(s)
- Si-Qi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Lucas Auer
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Ying-Mei Liang
- Museum of Beijing Forestry University, Beijing Forestry University
| | - Sébastien Duplessis
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| |
Collapse
|
256
|
Ferrari C, Mutwil M. Gene expression analysis of Cyanophora paradoxa reveals conserved abiotic stress responses between basal algae and flowering plants. THE NEW PHYTOLOGIST 2020; 225:1562-1577. [PMID: 31602652 DOI: 10.1111/nph.16257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/04/2019] [Indexed: 05/25/2023]
Abstract
The glaucophyte Cyanophora paradoxa represents the most basal member of the kingdom Archaeplastida, but the function and expression of most of its genes are unknown. This information is needed to uncover how functional gene modules, that is groups of genes performing a given function, evolved in the plant kingdom. We have generated a gene expression atlas capturing responses of Cyanophora to various abiotic stresses. The data were included in the CoNekT-Plants database, enabling comparative transcriptomic analyses across two algae and six land plants. We demonstrate how the database can be used to study gene expression, co-expression networks and gene function in Cyanophora, and how conserved transcriptional programs can be identified. We identified gene modules involved in phycobilisome biosynthesis, response to high light and cell division. While we observed no correlation between the number of differentially expressed genes and the impact on growth of Cyanophora, we found that the response to stress involves a conserved, kingdom-wide transcriptional reprogramming, which is activated upon most stresses in algae and land plants. The Cyanophora stress gene expression atlas and the tools found in the https://conekt.plant.tools/ database thus provide a useful resource to reveal functionally related genes and stress responses in the plant kingdom.
Collapse
Affiliation(s)
- Camilla Ferrari
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Marek Mutwil
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
257
|
Tian T, Qiao G, Wen Z, Deng B, Qiu Z, Hong Y, Wen X. Comparative transcriptome analysis reveals the molecular regulation underlying the adaptive mechanism of cherry (Cerasus pseudocerasus Lindl.) to shelter covering. BMC PLANT BIOLOGY 2020; 20:27. [PMID: 31952478 PMCID: PMC6967096 DOI: 10.1186/s12870-019-2224-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Rain-shelter covering is widely applied during cherry fruit development in subtropical monsoon climates with the aim of decreasing the dropping and cracking of fruit caused by excessive rainfall. Under rain-shelter covering, the characteristics of the leaves and fruit of the cherry plant may adapt to the changes in the microclimate. However, the molecular mechanism underlying such adaptation remains unclear, although clarifying it may be helpful for improving the yield and quality of cherry under rain-shelter covering. RESULTS To better understand the regulation and adaptive mechanism of cherry under rain-shelter covering, 38,621 and 3584 differentially expressed genes were identified with a combination of Illumina HiSeq and single-molecule real-time sequencing in leaves and fruits, respectively, at three developmental stages. Among these, key genes, such as those encoding photosynthetic-antenna proteins (Lhca and Lhcb) and photosynthetic electron transporters (PsbP, PsbR, PsbY, and PetF), were up-regulated following the application of rain-shelter covering, leading to increased efficiency of light utilization. The mRNA levels of genes involved in carbon fixation, namely, rbcL and rbcS, were clearly increased compared with those under shelter-free conditions, resulting in improved CO2 utilization. Furthermore, the transcription levels of genes involved in chlorophyll (hemA, hemN, and chlH) and carotenoid synthesis (crtB, PDS, crtISO, and lcyB) in the sheltered leaves peaked earlier than those in the unsheltered leaves, thereby promoting organic matter accumulation in leaves. Remarkably, the expression levels of key genes involved in the metabolic pathways of phenylpropanoid (PAL, C4H, and 4CL) and flavonoid (CHS, CHI, F3'H, DFR, and ANS) in the sheltered fruits were also up-regulated earlier than of those in the unsheltered fruits, conducive to an increase in anthocyanin content in the fruits. CONCLUSIONS According to the physiological indicators and transcriptional expression levels of the related genes, the adaptive regulation mechanism of cherry plants was systematically revealed. These findings can help understand the effect of rain-shelter covering on Chinese cherry cultivation in rainy regions.
Collapse
Affiliation(s)
- Tian Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
- Institute for Forest Resources & Environment of Guizhou/ College of Forestry, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Bin Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Zhilang Qiu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Yi Hong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/ College of Life Science, Guizhou University, Guiyang, 550025 People’s Republic of China
- Institute for Forest Resources & Environment of Guizhou/ College of Forestry, Guizhou University, Guiyang, 550025 People’s Republic of China
| |
Collapse
|
258
|
Naithani S, Gupta P, Preece J, D’Eustachio P, Elser JL, Garg P, Dikeman DA, Kiff J, Cook J, Olson A, Wei S, Tello-Ruiz MK, Mundo AF, Munoz-Pomer A, Mohammed S, Cheng T, Bolton E, Papatheodorou I, Stein L, Ware D, Jaiswal P. Plant Reactome: a knowledgebase and resource for comparative pathway analysis. Nucleic Acids Res 2020; 48:D1093-D1103. [PMID: 31680153 PMCID: PMC7145600 DOI: 10.1093/nar/gkz996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
Plant Reactome (https://plantreactome.gramene.org) is an open-source, comparative plant pathway knowledgebase of the Gramene project. It uses Oryza sativa (rice) as a reference species for manual curation of pathways and extends pathway knowledge to another 82 plant species via gene-orthology projection using the Reactome data model and framework. It currently hosts 298 reference pathways, including metabolic and transport pathways, transcriptional networks, hormone signaling pathways, and plant developmental processes. In addition to browsing plant pathways, users can upload and analyze their omics data, such as the gene-expression data, and overlay curated or experimental gene-gene interaction data to extend pathway knowledge. The curation team actively engages researchers and students on gene and pathway curation by offering workshops and online tutorials. The Plant Reactome supports, implements and collaborates with the wider community to make data and tools related to genes, genomes, and pathways Findable, Accessible, Interoperable and Re-usable (FAIR).
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Parul Gupta
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Justin Preece
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | | | - Justin L Elser
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Priyanka Garg
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Daemon A Dikeman
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Jason Kiff
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Justin Cook
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | - Alfonso Munoz-Pomer
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, UK
| | - Suhaib Mohammed
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, UK
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Evan Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Irene Papatheodorou
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, UK
| | - Lincoln Stein
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- USDA-ARS, RW Holley Center for Agriculture & Health, Ithaca, NY, USA
| | - Pankaj Jaiswal
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
259
|
Colina F, Carbó M, Meijón M, Cañal MJ, Valledor L. Low UV-C stress modulates Chlamydomonas reinhardtii biomass composition and oxidative stress response through proteomic and metabolomic changes involving novel signalers and effectors. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:110. [PMID: 32577129 PMCID: PMC7305600 DOI: 10.1186/s13068-020-01750-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The exposure of microalgae and plants to low UV-C radiation dosages can improve their biomass composition and stress tolerance. Despite UV-C sharing these effects with UV-A/B but at much lower dosages, UV-C sensing and signal mechanisms are still mostly unknown. Thus, we have described and integrated the proteometabolomic and physiological changes occurring in Chlamydomonas reinhardtii-a simple Plantae model-into the first 24 h after a short and low-intensity UV-C irradiation in order to reconstruct the microalgae response system to this stress. RESULTS The microalgae response was characterized by increased redox homeostasis, ROS scavenging and protein damage repair/avoidance elements. These processes were upregulated along with others related to the modulation of photosynthetic electron flux, carbon fixation and C/N metabolism. These changes, attributed to either direct UV-C-, ROS- or redox unbalances-associated damage, trigger a response process involving novel signaling intermediaries and effectors such as the translation modulator FAP204, a PP2A-like protein and a novel DYRK kinase. These elements were found linked to the modulation of Chlamydomonas biomass composition (starch accumulation) and proliferation, within an UV-C response probably modulated by different epigenetic factors. CONCLUSION Chosen multiomics integration approach was able to describe many fast changes, including biomass composition and ROS stress tolerance, as a response to a low-intensity UV-C stress. Moreover, the employed omics and systems biology approach placed many previously unidentified protein and metabolites at the center of these changes. These elements would be promising targets for the characterization of this stress response in microalgae and plants and the engineering of more productive microalgae strains.
Collapse
Affiliation(s)
- Francisco Colina
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
260
|
Muhammad II, Kong SL, Akmar Abdullah SN, Munusamy U. RNA-seq and ChIP-seq as Complementary Approaches for Comprehension of Plant Transcriptional Regulatory Mechanism. Int J Mol Sci 2019; 21:E167. [PMID: 31881735 PMCID: PMC6981605 DOI: 10.3390/ijms21010167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The availability of data produced from various sequencing platforms offer the possibility to answer complex questions in plant research. However, drawbacks can arise when there are gaps in the information generated, and complementary platforms are essential to obtain more comprehensive data sets relating to specific biological process, such as responses to environmental perturbations in plant systems. The investigation of transcriptional regulation raises different challenges, particularly in associating differentially expressed transcription factors with their downstream responsive genes. In this paper, we discuss the integration of transcriptional factor studies through RNA sequencing (RNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). We show how the data from ChIP-seq can strengthen information generated from RNA-seq in elucidating gene regulatory mechanisms. In particular, we discuss how integration of ChIP-seq and RNA-seq data can help to unravel transcriptional regulatory networks. This review discusses recent advances in methods for studying transcriptional regulation using these two methods. It also provides guidelines for making choices in selecting specific protocols in RNA-seq pipelines for genome-wide analysis to achieve more detailed characterization of specific transcription regulatory pathways via ChIP-seq.
Collapse
Affiliation(s)
- Isiaka Ibrahim Muhammad
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
| | - Sze Ling Kong
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
| | - Siti Nor Akmar Abdullah
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Umaiyal Munusamy
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
| |
Collapse
|
261
|
Nováková S, Šubr Z, Kováč A, Fialová I, Beke G, Danchenko M. Cucumber mosaic virus resistance: Comparative proteomics of contrasting Cucumis sativus cultivars after long-term infection. J Proteomics 2019; 214:103626. [PMID: 31881349 DOI: 10.1016/j.jprot.2019.103626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
Plant viruses are a significant threat to a wide range of host species, causing substantial losses in agriculture. Particularly, Cucumber mosaic virus (CMV) evokes severe symptoms, thus dramatically limiting yield. Activation of plant defense reactions is associated with changes in the cellular proteome to ensure virus resistance. Herein, we studied two cultivars of cucumber (Cucumis sativus) resistant host Heliana and susceptible host Vanda. Plant cotyledons were mechanically inoculated with CMV isolate PK1, and systemic leaves were harvested at 33 days post-inoculation. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility enhanced mass spectrometry. From 1516 reproducibly quantified proteins using a label-free approach, 133 were differentially abundant among cultivars or treatments by strict statistic and effect size criteria. Pigments and hydrogen peroxide measurements corroborated proteomic findings. Comparison of both cultivars in the uninfected state highlighted more abundant photosynthetic and development-related proteins in resistant cucumber cultivar. Long-term CMV infection caused worse preservation of energy processes and less robust translation in the susceptible cultivar. Contrary, compatible plants had numerous more abundant stress and defense-related proteins. We proposed promising targets for functional validation in transgenic lines: A step toward durable virus resistance in cucurbits and other crops. SIGNIFICANCE: Sustainable production of crops requires an understanding of natural mechanisms of resistance/susceptibility to ubiquitous viral infections. We report original findings of comparative analysis of plant genotypes exposed to CMV. Deep discovery proteomics of resistant and susceptible cucumber cultivars, inoculated with widespread phytovirus, allowed to suggest several novel molecular targets for functional testing in plant protection strategies.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava; Mala Hora 4C, 03601 Martin, Slovak Republic.
| | - Zdeno Šubr
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences; Dubravska cesta 9, 84510 Bratislava, Slovak Republic.
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences; Dubravska cesta 21, 84551 Bratislava, Slovak Republic.
| | - Maksym Danchenko
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| |
Collapse
|
262
|
Wibberg D, Batut B, Belmann P, Blom J, Glöckner FO, Grüning B, Hoffmann N, Kleinbölting N, Rahn R, Rey M, Scholz U, Sharan M, Tauch A, Trojahn U, Usadel B, Kohlbacher O. The de.NBI / ELIXIR-DE training platform - Bioinformatics training in Germany and across Europe within ELIXIR. F1000Res 2019; 8. [PMID: 33163154 PMCID: PMC7607484 DOI: 10.12688/f1000research.20244.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/25/2022] Open
Abstract
The German Network for Bioinformatics Infrastructure (de.NBI) is a national and academic infrastructure funded by the German Federal Ministry of Education and Research (BMBF). The de.NBI provides (i) service, (ii) training, and (iii) cloud computing to users in life sciences research and biomedicine in Germany and Europe and (iv) fosters the cooperation of the German bioinformatics community with international network structures. The de.NBI members also run the German node (ELIXIR-DE) within the European ELIXIR infrastructure. The de.NBI / ELIXIR-DE training platform, also known as special interest group 3 (SIG 3) ‘Training & Education’, coordinates the bioinformatics training of de.NBI and the German ELIXIR node. The network provides a high-quality, coherent, timely, and impactful training program across its eight service centers. Life scientists learn how to handle and analyze biological big data more effectively by applying tools, standards and compute services provided by de.NBI. Since 2015, more than 300 training courses were carried out with about 6,000 participants and these courses received recommendation rates of almost 90% (status as of July 2020). In addition to face-to-face training courses, online training was introduced on the de.NBI website in 2016 and guidelines for the preparation of e-learning material were established in 2018. In 2016, ELIXIR-DE joined the ELIXIR training platform. Here, the de.NBI / ELIXIR-DE training platform collaborates with ELIXIR in training activities, advertising training courses via TeSS and discussions on the exchange of data for training events essential for quality assessment on both the technical and administrative levels. The de.NBI training program trained thousands of scientists from Germany and beyond in many different areas of bioinformatics.
Collapse
Affiliation(s)
- Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, 33501, Germany
| | - Bérénice Batut
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, 79110, Germany
| | - Peter Belmann
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, 33501, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, 35392, Germany
| | - Frank Oliver Glöckner
- Alfred-Wegener-Institut - Helmholtz Zentrum für Polar- und Meeresforschung and Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, 79110, Germany
| | - Nils Hoffmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, 44227, Germany
| | - Nils Kleinbölting
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, 33501, Germany
| | - René Rahn
- Algorithmic Bioinformatics, Department of Mathematics and Computer Science, Freie Universität Berlin, Takustraße 9, Berlin, 14195, Germany
| | - Maja Rey
- Scientific Databases and Visualization Group, Heidelberg Institute for Theoretical Studies (HITS) gGmbH, Schloss-Wolfsbrunnenweg 35, Heidelberg, 69118, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466, Germany
| | - Malvika Sharan
- The Heidelberg Center for Human Bioinformatics (HD-HuB), European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, 33501, Germany
| | - Ulrike Trojahn
- The Heidelberg Center for Human Bioinformatics (HD-HuB), European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany
| | - Björn Usadel
- IBG-2 Plant Sciences, Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, 72076, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, 72076, Germany.,Translational Bioinformatics, University Hospital Tubingen, Tübingen, 72076, Germany.,Biomolecular Interactions, Max Planck Institute for Development Biology, Tübingen, 72076, Germany
| |
Collapse
|
263
|
Decros G, Beauvoit B, Colombié S, Cabasson C, Bernillon S, Arrivault S, Guenther M, Belouah I, Prigent S, Baldet P, Gibon Y, Pétriacq P. Regulation of Pyridine Nucleotide Metabolism During Tomato Fruit Development Through Transcript and Protein Profiling. FRONTIERS IN PLANT SCIENCE 2019; 10:1201. [PMID: 31681351 PMCID: PMC6798084 DOI: 10.3389/fpls.2019.01201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/02/2019] [Indexed: 05/12/2023]
Abstract
Central metabolism is the engine of plant biomass, supplying fruit growth with building blocks, energy, and biochemical cofactors. Among metabolic cornerstones, nicotinamide adenine dinucleotide (NAD) is particularly pivotal for electron transfer through reduction-oxidation (redox) reactions, thus participating in a myriad of biochemical processes. Besides redox functions, NAD is now assumed to act as an integral regulator of signaling cascades involved in growth and environmental responses. However, the regulation of NAD metabolism and signaling during fruit development remains poorly studied and understood. Here, we benefit from RNAseq and proteomic data obtained from nine growth stages of tomato fruit (var. Moneymaker) to dissect mRNA and protein profiles that link to NAD metabolism, including de novo biosynthesis, recycling, utilization, and putative transport. As expected for a cofactor synthesis pathway, protein profiles failed to detect enzymes involved in NAD synthesis or utilization, except for nicotinic acid phosphoribosyltransferase (NaPT) and nicotinamidase (NIC), which suggested that most NAD metabolic enzymes were poorly represented quantitatively. Further investigations on transcript data unveiled differential expression patterns during fruit development. Interestingly, among specific NAD metabolism-related genes, early de novo biosynthetic genes were transcriptionally induced in very young fruits, in association with NAD kinase, while later stages of fruit growth rather showed an accumulation of transcripts involved in later stages of de novo synthesis and in NAD recycling, which agreed with augmented NAD(P) levels. In addition, a more global overview of 119 mRNA and 78 protein significant markers for NAD(P)-dependent enzymes revealed differential patterns during tomato growth that evidenced clear regulations of primary metabolism, notably with respect to mitochondrial functions. Overall, we propose that NAD metabolism and signaling are very dynamic in the developing tomato fruit and that its differential regulation is certainly critical to fuel central metabolism linking to growth mechanisms.
Collapse
Affiliation(s)
| | | | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Cécile Cabasson
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Stéphane Bernillon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Stéphanie Arrivault
- Department 2, Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Manuela Guenther
- Department 2, Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Isma Belouah
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Sylvain Prigent
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Pierre Baldet
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Pierre Pétriacq
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| |
Collapse
|
264
|
Belouah I, Nazaret C, Pétriacq P, Prigent S, Bénard C, Mengin V, Blein-Nicolas M, Denton AK, Balliau T, Augé S, Bouchez O, Mazat JP, Stitt M, Usadel B, Zivy M, Beauvoit B, Gibon Y, Colombié S. Modeling Protein Destiny in Developing Fruit. PLANT PHYSIOLOGY 2019; 180:1709-1724. [PMID: 31015299 PMCID: PMC6752906 DOI: 10.1104/pp.19.00086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/02/2019] [Indexed: 05/18/2023]
Abstract
Protein synthesis and degradation are essential processes that regulate cell status. Because labeling in bulky organs, such as fruits, is difficult, we developed a modeling approach to study protein turnover at the global scale in developing tomato (Solanum lycopersicum) fruit. Quantitative data were collected for transcripts and proteins during fruit development. Clustering analysis showed smaller changes in protein abundance compared to mRNA abundance. Furthermore, protein and transcript abundance were poorly correlated, and the coefficient of correlation decreased during fruit development and ripening, with transcript levels decreasing more than protein levels. A mathematical model with one ordinary differential equation was used to estimate translation (kt ) and degradation (kd ) rate constants for almost 2,400 detected transcript-protein pairs and was satisfactorily fitted for >1,000 pairs. The model predicted median values of ∼2 min for the translation of a protein, and a protein lifetime of ∼11 d. The constants were validated and inspected for biological relevance. Proteins involved in protein synthesis had higher kt and kd values, indicating that the protein machinery is particularly flexible. Our model also predicts that protein concentration is more strongly affected by the rate of translation than that of degradation.
Collapse
Affiliation(s)
- Isma Belouah
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Christine Nazaret
- Institut de Mathématiques de Bordeaux, Ecole Nationale Supérieure de Technologie des Biomolécules de Bordeaux-Institut Polytechnique de Bordeaux, 33400 Talence, France
| | - Pierre Pétriacq
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Sylvain Prigent
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Camille Bénard
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Virginie Mengin
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mélisande Blein-Nicolas
- La Plateforme d'Analyse Protéomique de Paris Sud Ouest, Génétique Quantitative et Évolution-Le Moulon, Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Alisandra K Denton
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52074, Germany
| | - Thierry Balliau
- La Plateforme d'Analyse Protéomique de Paris Sud Ouest, Génétique Quantitative et Évolution-Le Moulon, Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Ségolène Augé
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Olivier Bouchez
- Institut National de la Recherche Agronomique, US1426, Service Génome et Transcriptome, Plateforme Génomique, Genotoul, 31326 Castanet-Tolosan, France
| | - Jean-Pierre Mazat
- Institute for Cellular Biochemistry and Genetics-Centre National de la Recherche Scientifique, F-33077 Bordeaux Cedex, France
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Björn Usadel
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52074, Germany
| | - Michel Zivy
- La Plateforme d'Analyse Protéomique de Paris Sud Ouest, Génétique Quantitative et Évolution-Le Moulon, Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Bertrand Beauvoit
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Yves Gibon
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| | - Sophie Colombié
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université Bordeaux, F33883 Villenave d'Ornon, France
| |
Collapse
|
265
|
Falter-Braun P, Brady S, Gutiérrez RA, Coruzzi GM, Krouk G. iPlant Systems Biology (iPSB): An International Network Hub in the Plant Community. MOLECULAR PLANT 2019; 12:727-730. [PMID: 31125688 DOI: 10.1016/j.molp.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München (HMGU), 85764, München-Neuherberg, Germany; Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University (LMU) Munich, 82152 Planegg-Martinsried, Germany
| | - Siobhan Brady
- Department of Plant Biology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Gabriel Krouk
- B&PMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.
| |
Collapse
|