251
|
Calabrese B, Wilson MS, Halpain S. Development and regulation of dendritic spine synapses. Physiology (Bethesda) 2006; 21:38-47. [PMID: 16443821 DOI: 10.1152/physiol.00042.2005] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dendritic spines are small protrusions from neuronal dendrites that form the postsynaptic component of most excitatory synapses in the brain. They play critical roles in synaptic transmission and plasticity. Recent advances in imaging and molecular technologies reveal that spines are complex, dynamic structures that contain a dense array of cytoskeletal, transmembrane, and scaffolding molecules. Several neurological and psychiatric disorders exhibit dendritic spine abnormalities.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Cell Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
252
|
Tada T, Sheng M. Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 2006; 16:95-101. [PMID: 16361095 DOI: 10.1016/j.conb.2005.12.001] [Citation(s) in RCA: 512] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 12/02/2005] [Indexed: 11/29/2022]
Abstract
Excitatory synapses are formed on dendritic spines, postsynaptic structures that change during development and in response to synaptic activity. Once mature, however, spines can remain stable for many months. The molecular mechanisms that control the formation and elimination, motility and stability, and size and shape of dendritic spines are being revealed. Multiple signaling pathways, particularly those involving Rho and Ras family small GTPases, converge on the actin cytoskeleton to regulate spine morphology and dynamics bidirectionally. Numerous cell surface receptors, scaffold proteins and actin binding proteins are concentrated in spines and engaged in spine morphogenesis.
Collapse
Affiliation(s)
- Tomoko Tada
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | |
Collapse
|
253
|
Xie Z, Huganir RL, Penzes P. Activity-dependent dendritic spine structural plasticity is regulated by small GTPase Rap1 and its target AF-6. Neuron 2006; 48:605-18. [PMID: 16301177 DOI: 10.1016/j.neuron.2005.09.027] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/16/2005] [Accepted: 09/28/2005] [Indexed: 12/11/2022]
Abstract
Activity-dependent remodeling of dendritic spines is essential for neural circuit development and synaptic plasticity, but the mechanisms that coordinate synaptic structural and functional plasticity are not well understood. Here we investigate the signaling pathways that enable excitatory synapses to undergo activity-dependent structural modifications. We report that activation of NMDA receptors in cultured cortical neurons induces spine morphogenesis and activation of the small GTPase Rap1. Rap1 bimodally regulates spine morphology: activated Rap1 recruits the PDZ domain-containing protein AF-6 to the plasma membrane and induces spine neck elongation, while inactive Rap1 dissociates AF-6 from the membrane and induces spine enlargement. Rap1 also regulates spine content of AMPA receptors: thin spines induced by Rap1 activation have reduced GluR1-containing AMPA receptor content, while large spines induced by Rap1 inactivation are rich in AMPA receptors. These results identify a signaling pathway that regulates activity-dependent synaptic structural plasticity and coordinates it with functional plasticity.
Collapse
Affiliation(s)
- Zhong Xie
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611
| | | | | |
Collapse
|
254
|
Chakravarthy S, Saiepour MH, Bence M, Perry S, Hartman R, Couey JJ, Mansvelder HD, Levelt CN. Postsynaptic TrkB signaling has distinct roles in spine maintenance in adult visual cortex and hippocampus. Proc Natl Acad Sci U S A 2006; 103:1071-6. [PMID: 16418274 PMCID: PMC1347973 DOI: 10.1073/pnas.0506305103] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In adult primary visual cortex (V1), dendritic spines are more persistent than during development. Brain-derived neurotrophic factor (BDNF) increases synaptic strength, and its levels rise during cortical development. We therefore asked whether postsynaptic BDNF signaling through its receptor TrkB regulates spine persistence in adult V1. This question has been difficult to address because most methods used to alter TrkB signaling in vivo affect cortical development or cannot distinguish between pre- and postsynaptic mechanisms. We circumvented these problems by employing transgenic mice expressing a dominant negative TrkB-EGFP fusion protein in sparse pyramidal neurons of the adult neocortex and hippocampus, producing a Golgi-staining-like pattern. In adult V1, expression of dominant negative TrkB-EGFP resulted in reduced mushroom spine maintenance and synaptic efficacy, accompanied by an increase in long and thin spines and filopodia. In contrast, mushroom spine maintenance was unaffected in CA1, indicating that TrkB plays fundamentally different roles in structural plasticity in these brain areas.
Collapse
Affiliation(s)
- Sridhara Chakravarthy
- Department of Molecular Visual Plasticity, Netherlands Ophthalmic Research Institute, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Moon LDF, Madani R, Vassalli JD, Bunge MB. Neuronal overexpression of tissue-type plasminogen activator does not enhance sensory axon regeneration or locomotor recovery following dorsal hemisection of adult mouse thoracic spinal cord. J Neurosci Res 2006; 84:1245-54. [PMID: 16917839 DOI: 10.1002/jnr.21019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CNS axons rarely regenerate spontaneously back to original targets following spinal cord injury (SCI). Neuronal expression of the serine protease tissue-type plasminogen activator (tPA) enhances axon growth in vitro and following PNS injury. Here we test the hypothesis that neuronal overexpression of tPA in adult transgenic mice promotes CNS axon regeneration and functional recovery following SCI. Adult wild-type and transgenic mouse spinal cords were subjected to dorsal hemisection at the level of the T10/T11 vertebrae. PCR confirmed incorporation of the transgene. Immunolabeling revealed overexpression of tPA in transgenic mice in neurons, including large-diameter neurons in lumbar dorsal root ganglia that contribute axons to the dorsal columns. Immunolabeling also revealed the presence of tPA protein within axons juxtaposing the injury site in transgenics but not wild types. In situ zymography revealed abundant enzymatic activity of tPA in gray matter of thoracic spinal cords of transgenics but not wild types. Rotorod locomotor testing revealed no differences between groups in locomotor function up to 21 days postinjury. Transganglionic tracer was injected into the crushed right sciatic nerve 28 days postinjury, and mice were killed 3 days later. There was no evidence for regrowth of ascending dorsal column sensory axons through or beyond the injury site. In conclusion, despite neuronal overexpression of tPA in injured neurons of transgenics, neither locomotor recovery nor regeneration of ascending sensory axons was observed following thoracic dorsal hemisection.
Collapse
Affiliation(s)
- L D F Moon
- The Miami Project to Cure Paralysis, Miami, Florida, USA.
| | | | | | | |
Collapse
|
256
|
Dumas TC. Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Prog Neurobiol 2005; 76:189-211. [PMID: 16181726 DOI: 10.1016/j.pneurobio.2005.08.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 06/14/2005] [Accepted: 08/09/2005] [Indexed: 01/18/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) act as molecular coincidence detectors and allow for association or dissociation between pre- and postsynaptic neurons. NMDA receptors are central to remodeling of synaptic connections during postnatal development and associative learning abilities in adults. The ability to remodel neural networks is altered during postnatal development, possibly due to a change in the composition of NMDARs. That is, as forebrain systems (and cerebellum) develop, synaptic NR2B-containing NMDARs (NR2B-NMDARs) are replaced by NR2A-containing NMDARs (NR2A-NMDARs) and NR2B-NMDARs move to extrasynaptic sites. During the initial phase of the switch, synapses contain both NR2A- and NR2B-NMDARs and both long-term potentiation and long-term depression are enhanced. As NMDAR subunit expression decreases and NR2A-NMDARs come to predominate in the synapse, channel function and synaptic plasticity are reduced, and remodeling ability dissipates. The end result is a balance of plasticity and stability that is optimal for information processing and storage. Associative learning abilities involving different sensory modalities emerge sequentially, in accordance with synaptic maturation in related cortical and underlying brain structures. Thus, developmental alterations in NMDAR composition that occur at different ages in various brain structures may explain the protracted nature of the maturation of various associative learning abilities.
Collapse
Affiliation(s)
- Theodore C Dumas
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| |
Collapse
|
257
|
Pawlak R, Rao BSS, Melchor JP, Chattarji S, McEwen B, Strickland S. Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus. Proc Natl Acad Sci U S A 2005; 102:18201-6. [PMID: 16330749 PMCID: PMC1312427 DOI: 10.1073/pnas.0509232102] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repeated stress can impair function in the hippocampus, a brain structure essential for learning and memory. Although behavioral evidence suggests that severe stress triggers cognitive impairment, as seen in major depression or posttraumatic stress disorder, little is known about the molecular mediators of these functional deficits in the hippocampus. We report here both pre- and postsynaptic effects of chronic stress, manifested as a reduction in the number of NMDA receptors, dendritic spines, and expression of growth-associated protein-43 in the cornu ammonis 1 region. Strikingly, the stress-induced decrease in NMDA receptors coincides spatially with sites of plasminogen activation, thereby predicting a role for tissue plasminogen activator (tPA) in this form of stress-induced plasticity. Consistent with this possibility, tPA-/- and plasminogen-/- mice are protected from stress-induced decrease in NMDA receptors and reduction in dendritic spines. At the behavioral level, these synaptic and molecular signatures of stress-induced plasticity are accompanied by impaired acquisition, but not retrieval, of hippocampal-dependent spatial learning, a deficit that is not exhibited by the tPA-/- and plasminogen-/- mice. These findings establish the tPA/plasmin system as an important mediator of the debilitating effects of prolonged stress on hippocampal function at multiple levels of neural organization.
Collapse
Affiliation(s)
- Robert Pawlak
- Department of Cell Physiology and Pharmacology, University of Leicester, UK
| | | | | | | | | | | |
Collapse
|
258
|
Hérard AS, Besret L, Dubois A, Dauguet J, Delzescaux T, Hantraye P, Bonvento G, Moya KL. siRNA targeted against amyloid precursor protein impairs synaptic activity in vivo. Neurobiol Aging 2005; 27:1740-50. [PMID: 16337035 DOI: 10.1016/j.neurobiolaging.2005.10.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/07/2005] [Accepted: 10/20/2005] [Indexed: 11/27/2022]
Abstract
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease (AD) pathogenesis through its cleavage leading to the accumulation of the peptide betaA4. Diffusible oligomeric assemblies of amyloid beta peptide are thought to induce synaptic dysfunction, an early change in AD. We tested the hypothesis that a reduction in presynaptic APP could itself lead to a decrease in synaptic efficacy in vivo. Twenty-four hours after intraocular injection, siRNA targeted against APP accumulated in retinal cells and the APP in retinal terminals in the superior colliculus was significantly reduced. Surprisingly, the amyloid precursor-like protein 2 (APLP2) was reduced as well. Functional imaging experiments in rats during visual stimulation showed that knockdown of presynaptic APP/APLP2 significantly reduced the stimulation-induced glucose utilization in the superior colliculus. Our results suggest that perturbations in the amount of APP/APLP2 axonally transported to, and/or in their turnover in the nerve terminal alter synaptic function and could be a pathogenic mechanism in AD.
Collapse
Affiliation(s)
- A S Hérard
- CEA-CNRS URA 2210, Service Hospitalier Frédéric Joliot, 4, Place du Général Leclerc, F-91401 Orsay Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M. Prior experience enhances plasticity in adult visual cortex. Nat Neurosci 2005; 9:127-32. [PMID: 16327785 DOI: 10.1038/nn1610] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/31/2005] [Indexed: 11/09/2022]
Abstract
The brain has a remarkable capacity to adapt to alterations in its sensory environment, which is normally much more pronounced in juvenile animals. Here we show that in adult mice, the ability to adapt to changes can be improved profoundly if the mouse has already experienced a similar change in its sensory environment earlier in life. Using the standard model for sensory plasticity in mouse visual cortex-ocular dominance (OD) plasticity-we found that a transient shift in OD, induced by monocular deprivation (MD) earlier in life, renders the adult visual cortex highly susceptible to subsequent MD many weeks later. Irrespective of whether the first MD was experienced during the critical period (around postnatal day 28) or in adulthood, OD shifts induced by a second MD were faster, more persistent and specific to repeated deprivation of the same eye. The capacity for plasticity in the mammalian cortex can therefore be conditioned by past experience.
Collapse
Affiliation(s)
- Sonja B Hofer
- Max-Planck-Institut für Neurobiologie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
260
|
Abstract
The cerebral cortex of the human brain is a sheet of about 10 billion neurons divided into discrete subdivisions or areas that process particular aspects of sensation, movement, and cognition. Recent evidence has begun to transform our understanding of how cortical areas form, make specific connections with other brain regions, develop unique processing networks, and adapt to changes in inputs.
Collapse
Affiliation(s)
- Mriganka Sur
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., 46-6237, Cambridge, MA 02139, USA.
| | | |
Collapse
|
261
|
Abstract
Neuronal circuits in the brain are shaped by experience during 'critical periods' in early postnatal life. In the primary visual cortex, this activity-dependent development is triggered by the functional maturation of local inhibitory connections and driven by a specific, late-developing subset of interneurons. Ultimately, the structural consolidation of competing sensory inputs is mediated by a proteolytic reorganization of the extracellular matrix that occurs only during the critical period. The reactivation of this process, and subsequent recovery of function in conditions such as amblyopia, can now be studied with realistic circuit models that might generalize across systems.
Collapse
Affiliation(s)
- Takao K Hensch
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
262
|
Abstract
In the visual and somatosensory systems, maturation of neuronal circuits continues for days to weeks after sensory stimulation occurs. Deprivation of sensory input at various stages of development can induce physiological, and often structural, changes that modify the circuitry of these sensory systems. Recent studies also reveal a surprising degree of plasticity in the mature visual and somatosensory pathways. Here, we compare and contrast the effects of sensory experience on the connectivity and function of these pathways and discuss what is known to date concerning the structural, physiological, and molecular mechanisms underlying their plasticity.
Collapse
Affiliation(s)
- Kevin Fox
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, United Kingdom.
| | | |
Collapse
|
263
|
McGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 2005; 309:2222-6. [PMID: 16195464 PMCID: PMC2856689 DOI: 10.1126/science.1114362] [Citation(s) in RCA: 477] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Monocular deprivation normally alters ocular dominance in the visual cortex only during a postnatal critical period (20 to 32 days postnatal in mice). We find that mutations in the Nogo-66 receptor (NgR) affect cessation of ocular dominance plasticity. In NgR-/- mice, plasticity during the critical period is normal, but it continues abnormally such that ocular dominance at 45 or 120 days postnatal is subject to the same plasticity as at juvenile ages. Thus, physiological NgR signaling from myelin-derived Nogo, MAG, and OMgp consolidates the neural circuitry established during experience-dependent plasticity. After pathological trauma, similar NgR signaling limits functional recovery and axonal regeneration.
Collapse
Affiliation(s)
- Aaron W. McGee
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yupeng Yang
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Quentin S. Fischer
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nigel W. Daw
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephen M. Strittmatter
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
- To whom correspondence should be addressed.
| |
Collapse
|
264
|
Melchor JP, Strickland S. Tissue plasminogen activator in central nervous system physiology and pathology. Thromb Haemost 2005; 93:655-60. [PMID: 15841309 PMCID: PMC1383744 DOI: 10.1160/th04-12-0838] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although conventionally associated with fibrin clot degradation, recent work has uncovered new functions for the tissue plasminogen activator (tPA)/plasminogen cascade in central nervous system physiology and pathology. This extracellular proteolytic cascade has been shown to have roles in learning and memory, stress, neuronal degeneration, addiction and Alzheimer's disease. The current review considers the different ways tPA functions in the brain.
Collapse
Affiliation(s)
| | - Sidney Strickland
- Correspondence to: Professor S. Strickland, Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York, 10021, USA, Tel.: + 1 212 327–8705, Fax: + 1 212 327–8774, E-mail:
| |
Collapse
|
265
|
Matys T, Pawlak R, Strickland S. Tissue plasminogen activator in the bed nucleus of stria terminalis regulates acoustic startle. Neuroscience 2005; 135:715-22. [PMID: 16125860 DOI: 10.1016/j.neuroscience.2005.06.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/21/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022]
Abstract
The bed nucleus of stria terminalis is a basal forebrain region involved in regulation of hormonal and behavioral responses to stress. In this report we demonstrate that bed nucleus of stria terminalis has a high and localized expression of tissue plasminogen activator, a serine protease with neuromodulatory properties and implicated in neuronal plasticity. Tissue plasminogen activator activity in the bed nucleus of stria terminalis is transiently increased in response to acute restraint stress or i.c.v. administration of a major stress mediator, corticotropin-releasing factor. We show that tissue plasminogen activator is important in bed nucleus of stria terminalis function using two criteria: 1, Neuronal activation in this region as measured by c-fos induction is reduced in tissue plasminogen activator-deficient mice; and 2, a bed nucleus of stria terminalis-dependent behavior, potentiation of acoustic startle by corticotropin-releasing factor, is attenuated in tissue plasminogen activator-deficient mice. These studies identify a novel site of tissue plasminogen activator expression in the mouse brain and demonstrate a functional role for this protease in the bed nucleus of stria terminalis.
Collapse
Affiliation(s)
- T Matys
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
266
|
Abstract
Neurotrophins have diverse functions in the CNS. Initially synthesized as precursors (proneurotrophins), they are cleaved to produce mature proteins, which promote neuronal survival and enhance synaptic plasticity by activating Trk receptor tyrosine kinases. Recent studies indicate that proneurotrophins serve as signalling molecules by interacting with the p75 neurotrophin receptor (p75NTR). Interestingly, proneurotrophins often have biological effects that oppose those of mature neurotrophins. Therefore, the proteolytic cleavage of proneurotrophins represents a mechanism that controls the direction of action of neurotrophins. New insights into the 'yin and yang' of neurotrophin activity have profound implications for our understanding of the role of neurotrophins in a wide range of cellular processes.
Collapse
Affiliation(s)
- Bai Lu
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland 20892-3714, USA.
| | | | | |
Collapse
|
267
|
Kawaguchi Y, Karube F, Kubota Y. Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. ACTA ACUST UNITED AC 2005; 16:696-711. [PMID: 16107588 DOI: 10.1093/cercor/bhj015] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
To understand the dendritic differentiation in various types of cortical nonpyramidal cells, we analyzed quantitatively their dendritic branching and spine expression. The dendritic internode and interspine interval obeyed exponential distributions with type-specific decay constants. The initial branching pattern, internode interval and spine density at the light microscopic level divided nonpyramidal cells into three dendritic types, correlated with axonal, neurochemical and firing types. The initial branching pattern determined the overall vertical spread of dendrites. Basket cell subtypes with different firing and chemical expression patterns were distinct in the vertical and horizontal spatial spread, providing diverse input territories. Internode densities of dendritic spines, as well as those of axonal synaptic boutons, did not correlate with the tortuosities and intervals, suggesting a tendency to distribute synapses homogeneously over the arbor. Dendritic spines identified at the electron microscopic level were different in length and shape among subtypes. Although the density was lower than that of pyramidal cells, spines themselves were also composed of several morphological types such as mushroom and multihead ones, which were expressed differentially among subtypes. Correlation of dendritic branching characteristics with differences in spine structure suggests distinct ways to receive specific inputs among the subtypes.
Collapse
Affiliation(s)
- Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Aichi Okazaki 444-8787, Japan.
| | | | | |
Collapse
|
268
|
Abstract
Dendritic spines are tiny protrusions on dendritic shafts where most excitatory synapses are located. Recent advances in imaging technologies have given us great insight into the function of spines as biochemical compartments. Here we review recent evidence suggesting that the geometry of dendritic spines controls postsynaptic calcium signaling and is bidirectionally regulated during synaptic plasticity.
Collapse
Affiliation(s)
- Yasunori Hayashi
- RIKEN-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
269
|
Oray S, Majewska A, Sur M. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron 2005; 44:1021-30. [PMID: 15603744 DOI: 10.1016/j.neuron.2004.12.001] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 09/14/2004] [Accepted: 10/20/2004] [Indexed: 01/19/2023]
Abstract
The mammalian primary visual cortex (V1) is especially susceptible to changes in visual input over a well-defined critical period, during which closing one eye leads to a loss of responsiveness of neurons to the deprived eye and a shift in response toward the open eye. This functional plasticity can occur rapidly, following even a single day of eye closure, although the structural bases of these changes are unknown. Here, we show that rapid structural changes at the level of dendritic spines occur following brief monocular deprivation. These changes are evident in the supra- and infragranular layers of the binocular zone and can be mimicked by degradation of the extracellular matrix with the tPA/plasmin proteolytic cascade. Further, monocular deprivation occludes a subsequent effect of matrix degradation, suggesting that this mechanism is active in vivo to permit structural remodeling during ocular dominance plasticity.
Collapse
Affiliation(s)
- Serkan Oray
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
270
|
Berardi N, Pizzorusso T, Maffei L. Extracellular matrix and visual cortical plasticity: freeing the synapse. Neuron 2005; 44:905-8. [PMID: 15603733 DOI: 10.1016/j.neuron.2004.12.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of monocular deprivation (MD) on the ocular dominance of visual cortical neurons are a paradigmatic example of experience-dependent plasticity. Here we review recent data showing that extracellular matrix (ECM) plays an important role in the control of experience-dependent plasticity both in the developing and adult visual cortex.
Collapse
|
271
|
Ethell IM, Pasquale EB. Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 2005; 75:161-205. [PMID: 15882774 DOI: 10.1016/j.pneurobio.2005.02.003] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/28/2005] [Accepted: 02/22/2005] [Indexed: 12/19/2022]
Abstract
Dendritic spines are small protrusions that cover the surface of dendrites and bear the postsynaptic component of excitatory synapses. Having an enlarged head connected to the dendrite by a narrow neck, dendritic spines provide a postsynaptic biochemical compartment that separates the synaptic space from the dendritic shaft and allows each spine to function as a partially independent unit. Spines develop around the time of synaptogenesis and are dynamic structures that continue to undergo remodeling over time. Changes in spine morphology and density influence the properties of neural circuits. Our knowledge of the structure and function of dendritic spines has progressed significantly since their discovery over a century ago, but many uncertainties still remain. For example, several different models have been put forth outlining the sequence of events that lead to the genesis of a spine. Although spines are small and apparently simple organelles with a cytoskeleton mainly composed of actin filaments, regulation of their morphology and physiology appears to be quite sophisticated. A multitude of molecules have been implicated in dendritic spine development and remodeling, suggesting that intricate networks of interconnected signaling pathways converge to regulate actin dynamics in spines. This complexity is not surprising, given the likely importance of dendritic spines in higher brain functions. In this review, we discuss the molecules that are currently known to mediate the exquisite sensitivity of spines to perturbations in their environment and we outline how these molecules interface with each other to mediate cascades of signals flowing from the spine surface to the actin cytoskeleton.
Collapse
Affiliation(s)
- Iryna M Ethell
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
272
|
Abstract
Binocular vision is shaped by experience during a critical period of early postnatal life. Loss of visual acuity following monocular deprivation is mediated by a shift of spiking output from the primary visual cortex. Both synaptic and network explanations have been offered for this heightened brain plasticity. Direct experimental control over its timing, duration, and closure has now been achieved through a consideration of balanced local circuit excitation-inhibition. Notably, canonical models of homosynaptic plasticity at excitatory synapses alone (LTP/LTD) fail to produce predictable manipulations of the critical period in vivo. Instead, a late functional maturation of intracortical inhibition is the driving force, with one subtype in particular standing out. Parvalbumin-positive large basket cells that innervate target cell bodies with synapses containing the alpha1-subunit of GABA(A) receptors appear to be critical. With age, these cells are preferentially enwrapped in peri-neuronal nets of extracellular matrix molecules, whose disruption by chondroitinase treatment reactivates ocular dominance plasticity in adulthood. In fact, critical period plasticity is best viewed as a continuum of local circuit computations ending in structural consolidation of inputs. Monocular deprivation induces an increase of endogenous proteolytic (tPA-plasmin) activity and consequently motility of spines followed by their pruning, then re-growth. These early morphological events faithfully reflect competition only during the critical period and lie downstream of excitatory-inhibitory balance on a timescale (of days) consistent with the physiological loss of deprived-eye responses in vivo. Ultimately, thalamic afferents retract or expand accordingly to hardwire the rapid functional changes in connectivity. Competition detected by local inhibitory circuits then implemented at an extracellular locus by proteases represents a novel, cellular understanding of the critical period mechanism. It is hoped that this paradigm shift will lead to novel therapies and training strategies for rehabilitation, recovery from injury, and lifelong learning in adulthood.
Collapse
Affiliation(s)
- Takao K Hensch
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|