251
|
Cofilin under control of β-arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning. Proc Natl Acad Sci U S A 2012; 109:E442-51. [PMID: 22308427 DOI: 10.1073/pnas.1118803109] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dendritic spines are dynamic, actin-rich structures that form the postsynaptic sites of most excitatory synapses in the brain. The F-actin severing protein cofilin has been implicated in the remodeling of dendritic spines and synapses under normal and pathological conditions, by yet unknown mechanisms. Here we report that β-arrestin-2 plays an important role in NMDA-induced remodeling of dendritic spines and synapses via translocation of active cofilin to dendritic spines. NMDAR activation triggers cofilin activation through calcineurin and phosphatidylinositol 3-kinase (PI3K)-mediated dephosphorylation and promotes cofilin translocation to dendritic spines that is mediated by β-arrestin-2. Hippocampal neurons lacking β-arrestin-2 develop mature spines that fail to remodel in response to NMDA. β-Arrestin-2-deficient mice exhibit normal hippocampal long-term potentiation, but significantly impaired NMDA-dependent long-term depression and spatial learning deficits. Moreover, β-arrestin-2-deficient hippocampal neurons are resistant to Aβ-induced dendritic spine loss. Our studies demonstrate unique functions of β-arrestin-2 in NMDAR-mediated dendritic spine and synapse plasticity through spatial control over cofilin activation.
Collapse
|
252
|
Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons. Neuroscience 2012; 202:384-95. [DOI: 10.1016/j.neuroscience.2011.11.053] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 11/22/2022]
|
253
|
The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease. J Neurosci 2011; 31:15703-15. [PMID: 22049413 DOI: 10.1523/jneurosci.0552-11.2011] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Considerable evidence suggests that mitochondrial dysfunction and oxidative stress contribute to the progression of Alzheimer's disease (AD). We examined the ability of the novel mitochondria-targeted antioxidant MitoQ (mitoquinone mesylate: [10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cycloheexadienl-yl) decyl triphenylphosphonium methanesulfonate]) to prevent AD-like pathology in mouse cortical neurons in cell culture and in a triple transgenic mouse model of AD (3xTg-AD). MitoQ attenuated β-amyloid (Aβ)-induced neurotoxicity in cortical neurons and also prevented increased production of reactive species and loss of mitochondrial membrane potential (Δψ(m)) in them. To determine whether the mitochondrial protection conferred by MitoQ was sufficient to prevent the emergence of AD-like neuropathology in vivo, we treated young female 3xTg-AD mice with MitoQ for 5 months and analyzed the effect on the progression of AD-like pathologies. Our results show that MitoQ prevented cognitive decline in these mice as well as oxidative stress, Aβ accumulation, astrogliosis, synaptic loss, and caspase activation in their brains. The work presented herein suggests a central role for mitochondria in neurodegeneration and provides evidence supporting the use of mitochondria-targeted therapeutics in diseases involving oxidative stress and metabolic failure, namely AD.
Collapse
|
254
|
Cellular model of Alzheimer's disease--relevance to therapeutic testing. Exp Neurol 2011; 233:733-9. [PMID: 22119424 DOI: 10.1016/j.expneurol.2011.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/26/2011] [Accepted: 11/08/2011] [Indexed: 12/29/2022]
|
255
|
Petraglia AL, Winkler EA, Bailes JE. Stuck at the bench: Potential natural neuroprotective compounds for concussion. Surg Neurol Int 2011; 2:146. [PMID: 22059141 PMCID: PMC3205506 DOI: 10.4103/2152-7806.85987] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/22/2011] [Indexed: 12/31/2022] Open
Abstract
Background: While numerous laboratory studies have searched for neuroprotective treatment approaches to traumatic brain injury, no therapies have successfully translated from the bench to the bedside. Concussion is a unique form of brain injury, in that the current mainstay of treatment focuses on both physical and cognitive rest. Treatments for concussion are lacking. The concept of neuro-prophylactic compounds or supplements is also an intriguing one, especially as we are learning more about the relationship of numerous sub-concussive blows and/or repetitive concussive impacts and the development of chronic neurodegenerative disease. The use of dietary supplements and herbal remedies has become more common place. Methods: A literature search was conducted with the objective of identifying and reviewing the pre-clinical and clinical studies investigating the neuroprotective properties of a few of the more widely known compounds and supplements. Results: There are an abundance of pre-clinical studies demonstrating the neuroprotective properties of a variety of these compounds and we review some of those here. While there are an increasing number of well-designed studies investigating the therapeutic potential of these nutraceutical preparations, the clinical evidence is still fairly thin. Conclusion: There are encouraging results from laboratory studies demonstrating the multi-mechanistic neuroprotective properties of many naturally occurring compounds. Similarly, there are some intriguing clinical observational studies that potentially suggest both acute and chronic neuroprotective effects. Thus, there is a need for future trials exploring the potential therapeutic benefits of these compounds in the treatment of traumatic brain injury, particularly concussion.
Collapse
Affiliation(s)
- Anthony L Petraglia
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
256
|
Zhou P, Chen Z, Zhao N, Liu D, Guo ZY, Tan L, Hu J, Wang Q, Wang JZ, Zhu LQ. Acetyl-L-carnitine attenuates homocysteine-induced Alzheimer-like histopathological and behavioral abnormalities. Rejuvenation Res 2011; 14:669-79. [PMID: 21978079 DOI: 10.1089/rej.2011.1195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperhomocystinemia could induce tau protein hyperphosphorylation, β-amyloid (Aβ) accumulation, and memory deficits as seen in Alzheimer disease (AD), the most common cause of senile dementia with no effective cure currently. To search for possible treatment for AD, we produced a hyperhomocysteinemia model by vena caudalis injection of homocystine (Hcy) for 2 weeks and studied the effects of acetyl-L-carnitine (ALC) in rats. We found that simultaneous supplement of ALC could improve the Hcy-induced memory deficits remarkably, with attenuation of tau hyperphosphorylation and Aβ accumulation. Supplement of ALC almost abolished the Hcy-induced tau hyperphosphorylation at multiple AD-related sites. Supplementation of ALC also suppressed the phosphorylation of β-amyloid precursor proteins (APP), which may underlie the reduction of Aβ. Our data suggest that ALC could be a promising candidate for arresting Hcy-induced AD-like pathological and behavioral impairments.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains. Pharmacol Biochem Behav 2011; 99:659-64. [DOI: 10.1016/j.pbb.2011.06.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/10/2011] [Accepted: 06/08/2011] [Indexed: 12/20/2022]
|
258
|
Zeitlin R, Patel S, Burgess S, Arendash GW, Echeverria V. Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer's transgenic mice. Brain Res 2011; 1417:127-36. [PMID: 21907331 DOI: 10.1016/j.brainres.2011.08.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/26/2011] [Accepted: 08/14/2011] [Indexed: 02/07/2023]
Abstract
Caffeine intake has been associated with a lower incidence of Alzheimer's disease (AD) in humans. In AD mouse models, caffeine significantly decreases senile plaques and amyloid beta (Aβ) levels while also protecting against or reversing cognitive impairment. To understand the mechanism(s) underlying the protective effects of caffeine against AD pathology, we investigated the effects of a two-week treatment with caffeine (3mg/day) in transgenic (APPswe) mice and non-transgenic (NT) mice on signaling factors involved in neuronal plasticity and survival. We evaluated cAMP-dependent protein kinase A (PKA), phospho-cyclic AMP response-element binding protein (phospho-CREB), and the pro-apoptotic protein kinases extracellular signal-regulated kinase 1/2 (phospho-ERK) and phospho-c-Jun N-terminal kinase 1 (phospho-JNK) in the striatum and frontal cortex of caffeine-treated mice. In the striatum, APPswe control mice exhibited a significant decrease in phospho-CREB, as well as significant increases in phospho-JNK and phospho-ERK in comparison to NT mice. Caffeine treatment stimulated PKA activity, increased phospho-CREB levels, and decreased phospho-JNK and phospho-ERK expression in the striatum of APPswe mice, all of which are thought to be beneficial changes for brain function. Even caffeine-treated NT mice exhibited some of these changes in striatum. In the frontal cortex, caffeine did not significantly increase phospho-CREB and PKA activity, but significantly reduced phospho-JNK and phospho-ERK expression in both APPswe and NT mice. These results suggest that caffeine shifts the balance between neurodegeneration and neuronal survival toward the stimulation of pro-survival cascades and inhibition of pro-apoptotic pathways in the striatum and/or cortex, which may contribute to its beneficial effects against AD.
Collapse
Affiliation(s)
- Ross Zeitlin
- Research and Development, Department of Veterans Affairs, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | | | | | | | | |
Collapse
|
259
|
Tellone E, Ficarra S, Russo A, Bellocco E, Barreca D, Laganà G, Leuzzi U, Pirolli D, De Rosa MC, Giardina B, Galtieri A. Caffeine inhibits erythrocyte membrane derangement by antioxidant activity and by blocking caspase 3 activation. Biochimie 2011; 94:393-402. [PMID: 21856371 DOI: 10.1016/j.biochi.2011.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/09/2011] [Indexed: 12/30/2022]
Abstract
The aim of this research was to investigate the effect of caffeine on band 3 (the anion exchanger protein), haemoglobin function, caspase 3 activation and glucose-6-phosphate metabolism during the oxygenation-deoxygenation cycle in human red blood cells. A particular attention has been given to the antioxidant activity by using in vitro antioxidant models. Caffeine crosses the erythrocyte membrane and interacts with the two extreme conformational states of haemoglobin (the T and the R-state within the framework of the simple two states allosteric model) with different binding affinities. By promoting the high affinity state (R-state), the caffeine-haemoglobin interaction does enhance the pentose phosphate pathway. This is of benefit for red blood cells since it leads to an increase of NADPH availability. Moreover, caffeine effect on band 3, mediated by haemoglobin, results in an extreme increase of the anion exchange, particularly in oxygenated erythrocytes. This enhances the transport of the endogenously produced CO(2) thereby avoiding the production of dangerous secondary radicals (carbonate and nitrogen dioxide) which are harmful to the cellular membrane. Furthermore caffeine destabilizes the haeme-protein interactions within the haemoglobin molecule and triggers the production of superoxide and met-haemoglobin. However this damaging effect is almost balanced by the surprising scavenger action of the alkaloid with respect to the hydroxyl radical. These experimental findings are supported by in silico docking and molecular dynamics studies and by what we may call the "caspase silence"; in fact, there is no evidence of any caspase 3 activity enhancement; this is likely due to the promotion of positive metabolic conditions which result in an increase of the cellular reducing power.
Collapse
Affiliation(s)
- Ester Tellone
- Organic and Biological Chemistry Department, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Profile of nucleotide catabolism and ectonucleotidase expression from the hippocampi of neonatal rats after caffeine exposure. Neurochem Res 2011; 37:23-30. [PMID: 21842269 DOI: 10.1007/s11064-011-0577-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/18/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Nucleotides and nucleosides play an important role in neurodevelopment acting through specific receptors. Ectonucleotidases are the major enzymes involved in controlling the availability of purinergic receptors ligands. ATP is co-released with several neurotransmitters and is the most important source of extracellular adenosine by catabolism exerted by ectonucleotidases. The main ectonucleotidases are named NTPDases (1-8) and 5'-nucleotidase. Adenosine is a powerful modulator of neurotransmitter release. Caffeine blocks adenosine receptor activity as well as adenosine-mediated neuromodulation. Considering the susceptibility of the immature brain to caffeine and the need for correct purinergic signaling during fetal development, we have analyzed the effects of caffeine exposure during gestational and lactational periods on nucleotide degradation and ectonucleotidase expression from the hippocampi of 7-, 14- and 21-days-old rats. Nucleotides hydrolysis was assessed by colorimetric determination of inorganic phosphate released. Ectonucleotidases expression was performed by RT-PCR. ATP and ADP hydrolysis displayed parallel age-dependent decreases in both control and caffeine-treated groups. AMP hydrolysis increased with caffeine treatment in 7-days-old rats (75%); although there was no significant difference in AMP hydrolysis between control (non caffeine-treated) rats and 14- or 21-days caffeine-treated rats. ADP hydrolysis was not affected by caffeine treatment. Caffeine treatment in 7- and 14-days-old rats decreased ATP hydrolysis when compared to the control group (19% and 60% decrease, respectively), but 21-days-treated rats showed an increase in ATP hydrolysis (39%). Expression levels of NTPDase 1 and 5 decreased in hippocampi of caffeine-treated rats. The expression of 5'-nucleotidase was not affected after caffeine exposure. The changes observed in nucleotide hydrolysis and ectonucleotidases expression could promote subtle effects on normal neural development considering the neuromodulatory role of adenosine.
Collapse
|
261
|
Abstract
Coffee is the leading worldwide beverage after water and its trade exceeds US $10 billion worldwide. Controversies regarding its benefits and risks still exist as reliable evidence is becoming available supporting its health promoting potential; however, some researchers have argued about the association of coffee consumption with cardiovascular complications and cancer insurgence. The health-promoting properties of coffee are often attributed to its rich phytochemistry, including caffeine, chlorogenic acid, caffeic acid, hydroxyhydroquinone (HHQ), etc. Many research investigations, epidemiological studies, and meta-analyses regarding coffee consumption revealed its inverse correlation with that of diabetes mellitus, various cancer lines, Parkinsonism, and Alzheimer's disease. Moreover, it ameliorates oxidative stress because of its ability to induce mRNA and protein expression, and mediates Nrf2-ARE pathway stimulation. Furthermore, caffeine and its metabolites help in proper cognitive functionality. Coffee lipid fraction containing cafestol and kahweol act as a safeguard against some malignant cells by modulating the detoxifying enzymes. On the other hand, their higher levels raise serum cholesterol, posing a possible threat to coronary health, for example, myocardial and cerebral infarction, insomnia, and cardiovascular complications. Caffeine also affects adenosine receptors and its withdrawal is accompanied with muscle fatigue and allied problems in those addicted to coffee. An array of evidence showed that pregnant women or those with postmenopausal problems should avoid excessive consumption of coffee because of its interference with oral contraceptives or postmenopausal hormones. This review article is an attempt to disseminate general information, health claims, and obviously the risk factors associated with coffee consumption to scientists, allied stakeholders, and certainly readers.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
| | | |
Collapse
|
262
|
Neuroprotective Effects of White Tea Against Oxidative Stress-Induced Toxicity in Striatal Cells. Neurotox Res 2011; 20:372-8. [DOI: 10.1007/s12640-011-9252-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/25/2011] [Accepted: 06/14/2011] [Indexed: 12/14/2022]
|
263
|
Liu RM, van Groen T, Katre A, Cao D, Kadisha I, Ballinger C, Wang L, Carroll SL, Li L. Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer's disease. Neurobiol Aging 2011; 32:1079-89. [PMID: 19604604 PMCID: PMC2888674 DOI: 10.1016/j.neurobiolaging.2009.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/03/2009] [Accepted: 06/11/2009] [Indexed: 12/21/2022]
Abstract
Accumulation of amyloid beta peptide (Aβ) in the brain is a pathological hallmark of Alzheimer's disease (AD); the underlying mechanism, however, is not well understood. In this study, we show that expression of plasminogen activator inhibitor 1 (PAI-1), a physiological inhibitor of tissue type and urokinase type plasminogen activators (tPA and uPA), increases with age in the brain of wild type and Aβ precursor protein-presenilin 1 (APP/PS1) transgenic mice as well as in AD patients. Most importantly, we show that knocking out the PAI-1 gene dramatically reduces Aβ burden in the brain of APP/PS1 mice but has no effect on the levels of full-length APP, alpha or beta C-terminal fragments. Furthermore, we show that knocking out the PAI-1 gene leads to increases in the activities of tPA and plasmin, and the plasmin activity inversely correlates with the amounts of SDS insoluble Aβ40 and Aβ42. Together, these data suggest that increased PAI-1 expression/activity contributes importantly to Aβ accumulation during aging and in AD probably by inhibiting plasminogen activation and thus Aβ degradation.
Collapse
Affiliation(s)
- R-M Liu
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Wostyn P, Van Dam D, Audenaert K, De Deyn PP. Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's Disease. Int J Alzheimers Dis 2011; 2011:617420. [PMID: 21660211 PMCID: PMC3109764 DOI: 10.4061/2011/617420] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 03/12/2011] [Accepted: 03/29/2011] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia among older people, is characterized by the accumulation of β-amyloid (Aβ) senile plaques and neurofibrillary tangles composed of hyperphosphorylated tau in the brain. Despite major advances in understanding the molecular etiology of the disease, progress in the clinical treatment of AD patients has been extremely limited. Therefore, new and more effective therapeutic approaches are needed. Accumulating evidence from human and animal studies suggests that the long-term consumption of caffeine, the most commonly used psychoactive drug in the world, may be protective against AD. The mechanisms underlying the suggested beneficial effect of caffeine against AD remain to be elucidated. In recent studies, several potential neuroprotective effects of caffeine have been proposed. Interestingly, a recent study in rats showed that the long-term consumption of caffeine increased cerebrospinal fluid (CSF) production, associated with the increased expression of Na+-K+ ATPase and increased cerebral blood flow. Compromised function of the choroid plexus and defective CSF production and turnover, with diminished clearance of Aβ, may be one mechanism implicated in the pathogenesis of late-onset AD. If reduced CSF turnover is a risk factor for AD, then therapeutic strategies to improve CSF flow are reasonable. In this paper, we hypothesize that long-term caffeine consumption could exert protective effects against AD at least in part by facilitating CSF production, turnover, and clearance. Further, we propose a preclinical experimental design allowing evaluation of this hypothesis.
Collapse
Affiliation(s)
- Peter Wostyn
- Department of Psychiatry, PC Sint-Amandus, Reigerlostraat 10, 8730 Beernem, Belgium
| | | | | | | |
Collapse
|
265
|
Caffeine and uric acid mediate glutathione synthesis for neuroprotection. Neuroscience 2011; 181:206-15. [DOI: 10.1016/j.neuroscience.2011.02.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 02/14/2011] [Accepted: 02/18/2011] [Indexed: 02/04/2023]
|
266
|
Wostyn P, Audenaert K, De Deyn PP. Choroidal Proteins Involved in Cerebrospinal Fluid Production may be Potential Drug Targets for Alzheimer's Disease Therapy. PERSPECTIVES IN MEDICINAL CHEMISTRY 2011; 5:11-7. [PMID: 21487536 PMCID: PMC3072647 DOI: 10.4137/pmc.s6509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alzheimer’s disease is known to be the most common form of dementia in the elderly. It is clinically characterized by impairment of cognitive functions, as well as changes in personality, behavioral disturbances and an impaired ability to perform activities of daily living. To date, there are no effective ways to cure or reverse the disease. Genetic studies of early-onset familial Alzheimer’s disease cases revealed causative mutations in the genes encoding β-amyloid precursor protein and the γ-secretase-complex components presenilin-1 and presenilin-2, supporting an important role of β-amyloid in the pathogenesis of Alzheimer’s disease. Compromised function of the choroid plexus and defective cerebrospinal fluid production and turnover, with diminished clearance of β-amyloid, may play an important role in late-onset forms of Alzheimer’s disease. If reduced cerebrospinal fluid turnover is a risk factor for Alzheimer’s disease, then therapeutic strategies to improve cerebrospinal fluid flow are reasonable. However, the role of deficient cerebrospinal fluid dynamics in Alzheimer’s disease and the relevance of choroidal proteins as potential therapeutic targets to enhance cerebrospinal fluid turnover have received relatively little research attention. In this paper, we discuss several choroidal proteins, such as Na+-K+ ATPase, carbonic anhydrase, and aquaporin 1, that may be targets for pharmacological up-regulation of cerebrospinal fluid formation. The search for potentially beneficial drugs useful to ameliorate Alzheimer’s disease by facilitating cerebrospinal fluid production and turnover may be an important area for future research. However, the ultimate utility of such modulators in the management of Alzheimer’s disease remains to be determined. Here, we hypothesize that caffeine, the most commonly used psychoactive drug in the world, may be an attractive therapeutic candidate for treatment of Alzheimer’s disease since long-term caffeine consumption may augment cerebrospinal fluid production. Other potential mechanisms of cognitive protection by caffeine have been suggested by recent studies.
Collapse
Affiliation(s)
- Peter Wostyn
- Department of Psychiatry, PC Sint-Amandus, Reigerlostraat 10, 8730 Beernem, Belgium
| | | | | |
Collapse
|
267
|
Alhaider IA, Aleisa AM, Tran TT, Alkadhi KA. Sleep deprivation prevents stimulation-induced increases of levels of P-CREB and BDNF: protection by caffeine. Mol Cell Neurosci 2011; 46:742-51. [PMID: 21338685 DOI: 10.1016/j.mcn.2011.02.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/02/2011] [Accepted: 02/11/2011] [Indexed: 01/12/2023] Open
Abstract
It is well known that caffeine and sleep deprivation have opposing effects on learning and memory; therefore, this study was undertaken to determine the effects of chronic (4wks) caffeine treatment (0.3g/l in drinking water) on long-term memory deficit associated with 24h sleep deprivation. Animals were sleep deprived using the modified multiple platform method. The results showed that chronic caffeine treatment prevented the impairment of long-term memory as measured by performance in the radial arm water maze task and normalized L-LTP in area CA1 of the hippocampi of sleep-deprived anesthetized rats. Sleep deprivation prevents the high frequency stimulation-induced increases in the levels of phosphorylated-cAMP response element binding protein (P-CREB) and brain-derived neurotrophic factor (BDNF) seen during the expression of late phase long-term potentiation (L-LTP). However, chronic caffeine treatment prevented the effect of sleep-deprivation on the stimulated levels of P-CREB and BDNF. The results suggest that chronic caffeine treatment may protect the sleep-deprived brain probably by preserving the levels of P-CREB and BDNF.
Collapse
Affiliation(s)
- Ibrahim A Alhaider
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
268
|
Stoppelkamp S, Bell HS, Palacios-Filardo J, Shewan DA, Riedel G, Platt B. In vitro modelling of Alzheimer's disease: degeneration and cell death induced by viral delivery of amyloid and tau. Exp Neurol 2011; 229:226-37. [PMID: 21295028 DOI: 10.1016/j.expneurol.2011.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 11/15/2022]
Abstract
With increasing life expectancy, Alzheimer's disease (AD) and other dementias pose an increasing and as yet unresolved health problem. A variety of cellular models of AD has helped to decipher some key aspects of amyloid and tau related degeneration. The initial approach of extracellular applications of synthetic peptides has now been replaced by the introduction of amyloid precursor protein (APP) and tau genes. In the present study adenoviral transductions were exploited for gene delivery into primary rat hippocampal and dorsal root ganglion (DRG) cultures to enable comparative and mechanistic studies at the cellular level and subsequent drug testing. Time lapse experiments revealed a different pattern of cell death: apoptotic-like for APP whereas tau positive cells joined and formed clusters. Mutated human APP or tau expression caused accelerated neuronal damage and cell death (cf. EGFP: -50% for APP at 5 days; -40% for tau at 3 days). This reduction in viability was preceded by decreased excitability, monitored via responses to depolarising KCl-challenges in Ca(2+) imaging experiments. Additionally, both transgenes reduced neurite outgrowth in DRG neurones. Treatment studies confirmed that APP induced-damage can be ameliorated by β- and γ-secretase inhibitors (providing protection to 60-100% of control levels), clioquinol (80%) and lithium (100%); while anti-aggregation treatments were beneficial for tau-induced damage (60-90% recovery towards controls). Interestingly, caffeine was the most promising drug candidate for therapeutic intervention with high efficacy in both APP (77%) and tau-induced models (72% recovery). Overall, these cellular models offer advantages for mechanistic studies and target identification in AD and related disorders.
Collapse
Affiliation(s)
- Sandra Stoppelkamp
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD Scotland, UK
| | | | | | | | | | | |
Collapse
|
269
|
Thathiah A, De Strooper B. The role of G protein-coupled receptors in the pathology of Alzheimer's disease. Nat Rev Neurosci 2011; 12:73-87. [DOI: 10.1038/nrn2977] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
270
|
Chen JF, Chern Y. Impacts of methylxanthines and adenosine receptors on neurodegeneration: human and experimental studies. Handb Exp Pharmacol 2011:267-310. [PMID: 20859800 DOI: 10.1007/978-3-642-13443-2_10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Neurodegenerative disorders are some of the most feared illnesses in modern society, with no effective treatments to slow or halt this neurodegeneration. Several decades after the earliest attempt to treat Parkinson's disease using caffeine, tremendous amounts of information regarding the potential beneficial effect of caffeine as well as adenosine drugs on major neurodegenerative disorders have accumulated. In the first part of this review, we provide general background on the adenosine receptor signaling systems by which caffeine and methylxanthine modulate brain activity and their role in relationship to the development and treatment of neurodegenerative disorders. The demonstration of close interaction between adenosine receptor and other G protein coupled receptors and accessory proteins might offer distinct pharmacological properties from adenosine receptor monomers. This is followed by an outline of the major mechanism underlying neuroprotection against neurodegeneration offered by caffeine and adenosine receptor agents. In the second part, we discuss the current understanding of caffeine/methylxantheine and its major target adenosine receptors in development of individual neurodegenerative disorders, including stroke, traumatic brain injury Alzheimer's disease, Parkinson's disease, Huntington's disease and multiple sclerosis. The exciting findings to date include the specific in vivo functions of adenosine receptors revealed by genetic mouse models, the demonstration of a broad spectrum of neuroprotection by chronic treatment of caffeine and adenosine receptor ligands in animal models of neurodegenerative disorders, the encouraging development of several A(2A) receptor selective antagonists which are now in advanced clinical phase III trials for Parkinson's disease. Importantly, increasing body of the human and experimental studies reveals encouraging evidence that regular human consumption of caffeine in fact may have several beneficial effects on neurodegenerative disorders, from motor stimulation to cognitive enhancement to potential neuroprotection. Thus, with regard to neurodegenerative disorders, these potential benefits of methylxanthines, caffeine in particular, strongly argue against the common practice by clinicians to discourage regular human consumption of caffeine in aging populations.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
271
|
Tozaki-Saitoh H, Tsuda M, Inoue K. Role of purinergic receptors in CNS function and neuroprotection. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:495-528. [PMID: 21586368 DOI: 10.1016/b978-0-12-385526-8.00015-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purinergic receptor family contains some of the most abundant receptors in living organisms. A growing body of evidence indicates that extracellular nucleotides play important roles in the regulation of neuronal and glial functions in the nervous system through purinergic receptors. Nucleotides are released from or leaked through nonexcitable cells and neurons during normal physiological and pathophysiological conditions. Ionotropic P2X and metabotropic P2Y purinergic receptors are expressed in the central nervous system (CNS), participate in the synaptic processes, and mediate intercellular communications between neuron and gila and between glia and other glia. Glial cells in the CNS are classified into astrocytes, oligodendrocytes, and microglia. Astrocytes express many types of purinergic receptors, which are integral to their activation. Astrocytes release adenosine triphosphate (ATP) as a "gliotransmitter" that allows communication with neurons, the vascular walls of capillaries, oligodendrocytes, and microglia. Oligodendrocytes are myelin-forming cells that construct insulating layers of myelin sheets around axons, and using purinergic receptor signaling for their development and for myelination. Microglia also express many types of purinergic receptors and are known to function as immunocompetent cells in the CNS. ATP and other nucleotides work as "warning molecules" especially by activating microglia in pathophysiological conditions. Studies on purinergic signaling could facilitate the development of novel therapeutic strategies for disorder of the CNS.
Collapse
Affiliation(s)
- Hidetoshi Tozaki-Saitoh
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi, Fukuoka, Japan
| | | | | |
Collapse
|
272
|
Nogueira RF, Boffo EF, Tavares MIB, Moreira LA, Tavares LA, Ferreira AG. The Use of Solid State NMR to Evaluate the Carbohydrates in Commercial Coffee Granules. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/fns.2011.24050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
273
|
Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1380-99. [PMID: 21145878 DOI: 10.1016/j.bbamem.2010.12.001] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 02/06/2023]
Abstract
Adenosine acts in parallel as a neuromodulator and as a homeostatic modulator in the central nervous system. Its neuromodulatory role relies on a balanced activation of inhibitory A(1) receptors (A1R) and facilitatory A(2A) receptors (A2AR), mostly controlling excitatory glutamatergic synapses: A1R impose a tonic brake on excitatory transmission, whereas A2AR are selectively engaged to promote synaptic plasticity phenomena. This neuromodulatory role of adenosine is strikingly similar to the role of adenosine in the control of brain disorders; thus, A1R mostly act as a hurdle that needs to be overcame to begin neurodegeneration and, accordingly, A1R only effectively control neurodegeneration if activated in the temporal vicinity of brain insults; in contrast, the blockade of A2AR alleviates the long-term burden of brain disorders in different neurodegenerative conditions such as ischemia, epilepsy, Parkinson's or Alzheimer's disease and also seem to afford benefits in some psychiatric conditions. In spite of this qualitative agreement between neuromodulation and neuroprotection by A1R and A2AR, it is still unclear if the role of A1R and A2AR in the control of neuroprotection is mostly due to the control of glutamatergic transmission, or if it is instead due to the different homeostatic roles of these receptors related with the control of metabolism, of neuron-glia communication, of neuroinflammation, of neurogenesis or of the control of action of growth factors. In spite of this current mechanistic uncertainty, it seems evident that targeting adenosine receptors might indeed constitute a novel strategy to control the demise of different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Catarina V Gomes
- Center for Neurosciences of Coimbra, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
274
|
Leite MR, Wilhelm EA, Jesse CR, Brandão R, Nogueira CW. Protective effect of caffeine and a selective A2A receptor antagonist on impairment of memory and oxidative stress of aged rats. Exp Gerontol 2010; 46:309-15. [PMID: 21122814 DOI: 10.1016/j.exger.2010.11.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/01/2010] [Accepted: 11/22/2010] [Indexed: 12/12/2022]
Abstract
In this study, the effects of caffeine (CAF) and SCH58261, a selective A(2A) receptor antagonist, on memory impairment and oxidative stress generated by aging in rats were investigated. Young and aged rats were treated daily per 10 days with CAF (30 mg/kg p.o.) or SCH58261 (0.5mg/kg, p.o.) or vehicle (1 ml/kg p.o.). Rats were trained and tested in a novel object recognition task. After the behavioral test, ascorbic acid and oxygen and nitrogen reactive species levels as well as Na(+)K(+) ATPase activity were determined in rat brain. The results demonstrated that the age-related memory deficit was reversed by treatment with CAF or SCH58261. Treatment with CAF or SCH58261 significantly normalized oxygen and nitrogen reactive species levels increased in brains of aged rats. Na(+)K(+) ATPase activity inhibited in brains of aged rats was also normalized by CAF or SCH58261 treatment. A decrease in basal ascorbic acid levels in brains of aged rats was not changed by CAF or SCH58261. These results demonstrated that CAF and SCH58261, modulators of adenosinergic receptors, were able to reverse age-associated memory impairment and to partially reduce oxidative stress.
Collapse
Affiliation(s)
- Marlon Régis Leite
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|
275
|
Chouliaras L, Sierksma ASR, Kenis G, Prickaerts J, Lemmens MAM, Brasnjevic I, van Donkelaar EL, Martinez-Martinez P, Losen M, De Baets MH, Kholod N, van Leeuwen F, Hof PR, van Os J, Steinbusch HWM, van den Hove DLA, Rutten BPF. Gene-environment interaction research and transgenic mouse models of Alzheimer's disease. Int J Alzheimers Dis 2010; 2010. [PMID: 20953364 PMCID: PMC2952897 DOI: 10.4061/2010/859101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 07/31/2010] [Indexed: 01/08/2023] Open
Abstract
The etiology of the sporadic form of Alzheimer's disease (AD) remains largely unknown. Recent evidence has suggested that gene-environment interactions (GxE) may play a crucial role in its development and progression. Whereas various susceptibility loci have been identified, like the apolipoprotein E4 allele, these cannot fully explain the increasing prevalence of AD observed with aging. In addition to such genetic risk factors, various environmental factors have been proposed to alter the risk of developing AD as well as to affect the rate of cognitive decline in AD patients. Nevertheless, aside from the independent effects of genetic and environmental risk factors, their synergistic participation in increasing the risk of developing AD has been sparsely investigated, even though evidence points towards such a direction. Advances in the genetic manipulation of mice, modeling various aspects of the AD pathology, have provided an excellent tool to dissect the effects of genes, environment, and their interactions. In this paper we present several environmental factors implicated in the etiology of AD that have been tested in transgenic animal models of the disease. The focus lies on the concept of GxE and its importance in a multifactorial disease like AD. Additionally, possible mediating mechanisms and future challenges are discussed.
Collapse
Affiliation(s)
- L Chouliaras
- School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Ritchie K, Artero S, Portet F, Brickman A, Muraskin J, Beanino E, Ancelin ML, Carrière I. Caffeine, cognitive functioning, and white matter lesions in the elderly: establishing causality from epidemiological evidence. J Alzheimers Dis 2010; 20 Suppl 1:S161-6. [PMID: 20164564 DOI: 10.3233/jad-2010-1387] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study examines the epidemiological evidence for a causal relationship between caffeine consumption and cognitive deterioration in the elderly. Using a population of 641 elderly persons, we examined cognitive functioning, caffeine consumption, magnetic resonance imaging volumetrics, and other factors known to affect cognitive performance. Our findings demonstrate the association between caffeine consumption and lower cognitive change over time to be statistically significant for women only, taking into account multiple confounders, to be dose-dependent and temporarily related (caffeine consumption precedes cognitive change). Mean log transformed white matter lesion/cranial volume ratios were found to be significantly lower in women consuming more than 3 units of caffeine per day after adjustment for age (-1.23 SD=0.06) than in women consuming 2-3 units (-1.04 SD=0.04) or one unit or less (-1.04 SD=0.07, -35% in cm3 compared to low drinkers). This observation is coherent with biological assumptions that caffeine through adenosine is linked to amyloid accumulation and subsequently white matter lesion formation. The significant relationship observed between caffeine intake in women and lower cognitive decline is highly likely to be a true causal relationship and not a spurious association.
Collapse
Affiliation(s)
- Karen Ritchie
- Inserm, U888, Montpellier, France and University of Montpellier 1, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Favrod-Coune T, Broers B. The Health Effect of Psychostimulants: A Literature Review. Pharmaceuticals (Basel) 2010; 3:2333-2361. [PMID: 27713356 PMCID: PMC4036656 DOI: 10.3390/ph3072333] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/21/2010] [Indexed: 12/13/2022] Open
Abstract
Prevalence of psychostimulant use is high, and raising in several countries. Nicotine is the legal stimulant causing the most important public health impact. Cocaine ranks among the most used illicit substances after cannabis. Stimulant medications are frequently misused. Psychostimulants can lead to addiction, have physical, psychological and social health consequences and can induce a great disease burden. The aim of the present article is to provide a literature review on the health effects of stimulants as potential drugs of abuse. It will cover essentially cocaine, amphetamines and its derivatives (including methamphetamines and 3-4-methylenedioxymethamphetamine, ecstasy), nicotine, caffeine and khat, and touch upon the issues of prescribed substances (anti-depressants, weight control medications, attention-deficit hyperactivity disorder medications, hypersomniac disorder). Their pharmacology, addictive potential, health consequences and treatment will be discussed. We used Medline for the literature review from 1990 to the date of this review, and mention the findings of human and animal studies (the latter only if they are of clinical relevance).
Collapse
Affiliation(s)
- Thierry Favrod-Coune
- Division of Primary Care Medicine, Geneva University Hospitals 4, Rue Gabrielle-Perret-Gentil,1211 Geneva 14, Switzerland.
| | - Barbara Broers
- Division of Primary Care Medicine, Geneva University Hospitals 4, Rue Gabrielle-Perret-Gentil,1211 Geneva 14, Switzerland.
| |
Collapse
|
278
|
Caffeine prevents disruption of memory consolidation in the inhibitory avoidance and novel object recognition tasks by scopolamine in adult mice. Behav Brain Res 2010; 214:254-9. [PMID: 20553765 DOI: 10.1016/j.bbr.2010.05.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/21/2010] [Indexed: 12/29/2022]
Abstract
Caffeine is a psychostimulant with positive effects on cognition. Recent studies have suggested the participation of the cholinergic system in the effects of caffeine on wakefulness. However, there are few studies assessing the contribution of cholinergic system in the cognitive enhancer properties of caffeine. In the present study, the effects of a dose and schedule of administration of caffeine that improved memory recognition were investigated on scopolamine-induced impairment of memory in adult mice. Inhibitory avoidance and novel object recognition tasks were used to assess learning and memory. Caffeine (10mg/kg, i.p.) was administered during 4 consecutive days, and the treatment was interrupted 24h before scopolamine administration (2mg/kg, i.p.). Scopolamine was administered prior to or immediately after training. Short-term and long-term memory was evaluated in both tasks. In the novel object recognition task, pre treatment with caffeine prevented the disruption of short- and long-term memory by scopolamine. In the inhibitory avoidance task, caffeine prevented short- but not long-term memory disruption by pre training administration of scopolamine. Caffeine prevented short- and long-term memory disruption by post training administration of scopolamine. Both treatments did not affect locomotor activity of the animals. These findings suggest that acute treatment with caffeine followed by its withdrawal may be effective against cholinergic-induced disruption of memory assessed in an aversive and non-aversive task. Finally, our results revealed that the cholinergic system is involved in the positive effects of caffeine on cognitive functions.
Collapse
|
279
|
Abstract
Alzheimer's disease is a progressive neurodegenerative disease for which no cure exists. There is a substantial need for new therapies that offer improved symptomatic benefit and disease-slowing capabilities. In recent decades there has been substantial progress in understanding the molecular and cellular changes associated with Alzheimer's disease pathology. This has resulted in identification of a large number of new drug targets. These targets include, but are not limited to, therapies that aim to prevent production of or remove the amyloid-beta protein that accumulates in neuritic plaques; to prevent the hyperphosphorylation and aggregation into paired helical filaments of the microtubule-associated protein tau; and to keep neurons alive and functioning normally in the face of these pathologic challenges. We provide a review of these targets for drug development.
Collapse
Affiliation(s)
- Joshua D Grill
- Mary S. Easton Center for Alzheimer's Disease Research, Deane F. Johnson Center for Neurotherapeutics, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | |
Collapse
|
280
|
Alhaider IA, Aleisa AM, Tran TT, Alkadhi KA. Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus. Eur J Neurosci 2010; 31:1368-76. [DOI: 10.1111/j.1460-9568.2010.07175.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
281
|
Rockenfeller P, Madeo F. Ageing and eating. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:499-506. [DOI: 10.1016/j.bbamcr.2010.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/24/2009] [Accepted: 01/04/2010] [Indexed: 01/09/2023]
|
282
|
Abstract
OBJECTIVE To investigate the association between caffeine consumption and cognitive outcomes in later life. METHODS Participants were 923 healthy adults from the Lothian Birth Cohort 1936 Study, on whom there were intelligence quotient (IQ) data from age 11 years. Cognitive function at age 70 years was assessed, using tests measuring general cognitive ability, speed of information processing, and memory. Current caffeine consumption (using multiple measures of tea, coffee, and total dietary caffeine) was obtained by self-report questionnaire, and demographic and health information was collected in a standardized interview. RESULTS In age- and sex-adjusted models, there were significant positive associations between total caffeine intake and general cognitive ability and memory. After adjustment for age 11 IQ and social class, both individually and together, most of these associations became nonsignificant. A robust positive association, however, was found between drinking ground coffee (e.g., filter and espresso) and performance on the National Adult Reading Test (NART, p = .007), and the Wechsler Test of Adult Reading (WTAR, p = .02). No gender effects were observed, contrary to previous studies. Generally, higher cognitive scores were associated with coffee consumption, and lower cognitive scores with tea consumption, but these effects were not significant in the fully adjusted model. CONCLUSIONS The present study is rare in having childhood IQ in a large sample of older people. The results suggest that the significant caffeine intake-cognitive ability associations are bidirectional-because childhood IQ and estimated prior IQ are associated with the type of caffeine intake in old age-and partly confounded by social class.
Collapse
|
283
|
Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in Wistar rats. Brain Res 2010; 1309:116-25. [DOI: 10.1016/j.brainres.2009.10.054] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/16/2009] [Accepted: 10/22/2009] [Indexed: 11/20/2022]
|
284
|
Chen X, Ghribi O, Geiger JD. Caffeine protects against disruptions of the blood-brain barrier in animal models of Alzheimer's and Parkinson's diseases. J Alzheimers Dis 2010; 20 Suppl 1:S127-41. [PMID: 20164568 PMCID: PMC3086010 DOI: 10.3233/jad-2010-1376] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sporadic Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the most common neurodegenerative diseases and as such they represent major public health problems. Finding effective treatments for AD and PD represents an unmet and elusive goal largely because these diseases are chronic and progressive, and have a complicated and ill-understood pathogenesis. Although the underlying mechanisms are not fully understood, caffeine, the most commonly ingested psychoactive drug in the world, has been shown in human and animal studies to be protective against AD and PD. One mechanism implicated in the pathogenesis of AD and PD is blood-brain barrier (BBB) dysfunction and we reported recently that caffeine exerts protective effects against AD and PD at least in part by keeping the BBB intact. The present review focuses on the role of BBB dysfunction in the pathogenesis of AD and PD, caffeine's protective effects against AD and PD, and potential mechanisms whereby caffeine protects against BBB leakage.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | | | | |
Collapse
|
285
|
Abstract
While the influence of caffeine on the regulation of brain perfusion has been the subject of multiple publications, the mechanisms involved in that regulation remain unclear. To some extent, that uncertainty is a function of a complex interplay of processes arising from multiple targets of caffeine located on a variety of different cells, many of which have influence, either directly or indirectly, on cerebral vascular smooth muscle tone. Adding to that complexity are the target-specific functional changes that may occur when comparing acute and chronic caffeine exposure. In the present review, we discuss some of the mechanisms behind caffeine influences on cerebrovascular function. The major effects of caffeine on the cerebral circulation can largely be ascribed to its inhibitory effects on adenosine receptors. Herein, we focus mostly on the A1, A2A, and A2B subtypes located in cells comprising the neurovascular unit (neurons, astrocytes, vascular smooth muscle); their roles in the coupling of increased neuronal (synaptic) activity to vasodilation; how caffeine, through blockade of these receptors, may interfere with the "neurovascular coupling" process; and receptor-linked changes that may occur in cerebrovascular regulation when comparing acute to chronic caffeine intake.
Collapse
Affiliation(s)
- Dale A Pelligrino
- Neuroanesthesia Research Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
286
|
Cao C, Cirrito JR, Lin X, Wang L, Wang L, Verges DK, Dickson A, Mamcarz M, Zhang C, Mori T, Arendash GW, Holtzman DM, Potter H. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice. J Alzheimers Dis 2009; 17:681-97. [PMID: 19581723 DOI: 10.3233/jad-2009-1071] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent epidemiologic studies suggest that caffeine may be protective against Alzheimer's disease (AD). Supportive of this premise, our previous studies have shown that moderate caffeine administration protects/restores cognitive function and suppresses brain amyloid-beta (Abeta) production in AD transgenic mice. In the present study, we report that acute caffeine administration to both young adult and aged AD transgenic mice rapidly reduces Abeta levels in both brain interstitial fluid and plasma without affecting Abeta elimination. Long-term oral caffeine treatment to aged AD mice provided not only sustained reductions in plasma Abeta, but also decreases in both soluble and deposited Abeta in hippocampus and cortex. Irrespective of caffeine treatment, plasma Abeta levels did not correlate with brain Abeta levels or with cognitive performance in individual aged AD mice. Although higher plasma caffeine levels were strongly associated with lower plasma Abeta1-40 levels in aged AD mice, plasma caffeine levels were also not linked to cognitive performance. Plasma caffeine and theophylline levels were tightly correlated, both being associated with reduced inflammatory cytokine levels in hippocampus. Our conclusion is two-fold: first, that both plasma and brain Abeta levels are reduced by acute or chronic caffeine administration in several AD transgenic lines and ages, indicating a therapeutic value of caffeine against AD; and second, that plasma Abeta levels are not an accurate index of brain Abeta levels/deposition or cognitive performance in aged AD mice.
Collapse
Affiliation(s)
- Chuanhai Cao
- The Byrd Alzheimer's Center & Research Institute, Tampa, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Canas PM, Porciúncula LO, Cunha GMA, Silva CG, Machado NJ, Oliveira JMA, Oliveira CR, Cunha RA. Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 2009; 29:14741-51. [PMID: 19940169 PMCID: PMC6665997 DOI: 10.1523/jneurosci.3728-09.2009] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/30/2009] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by memory impairment, neurochemically by accumulation of beta-amyloid peptide (namely Abeta(1-42)) and morphologically by an initial loss of nerve terminals. Caffeine consumption prevents memory dysfunction in different models, which is mimicked by antagonists of adenosine A(2A) receptors (A(2A)Rs), which are located in synapses. Thus, we now tested whether A(2A)R blockade prevents the early Abeta(1-42)-induced synaptotoxicity and memory dysfunction and what are the underlying signaling pathways. The intracerebral administration of soluble Abeta(1-42) (2 nmol) in rats or mice caused, 2 weeks later, memory impairment (decreased performance in the Y-maze and object recognition tests) and a loss of nerve terminal markers (synaptophysin, SNAP-25) without overt neuronal loss, astrogliosis, or microgliosis. These were prevented by pharmacological blockade [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261); 0.05 mg . kg(-1) . d(-1), i.p.; for 15 d] in rats, and genetic inactivation of A(2A)Rs in mice. Moreover, these were synaptic events since purified nerve terminals acutely exposed to Abeta(1-42) (500 nm) displayed mitochondrial dysfunction, which was prevented by A(2A)R blockade. SCH58261 (50 nm) also prevented the initial synaptotoxicity (loss of MAP-2, synaptophysin, and SNAP-25 immunoreactivity) and subsequent loss of viability of cultured hippocampal neurons exposed to Abeta(1-42) (500 nm). This A(2A)R-mediated control of neurotoxicity involved the control of Abeta(1-42)-induced p38 phosphorylation and was independent from cAMP/PKA (protein kinase A) pathway. Together, these results show that A(2A)Rs play a crucial role in the development of Abeta-induced synaptotoxicity leading to memory dysfunction through a p38 MAPK (mitogen-activated protein kinase)-dependent pathway and provide a molecular basis for the benefits of caffeine consumption in AD.
Collapse
Affiliation(s)
- Paula M. Canas
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Lisiane O. Porciúncula
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003, Porto Alegre, Brazil
| | - Geanne M. A. Cunha
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Physiology and Pharmacology, Federal University of Ceará, 60430-270, Ceará, Brazil, and
| | - Carla G. Silva
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Nuno J. Machado
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Jorge M. A. Oliveira
- Rede de Química e Tecnologia, Serviço de Farmacologia, Faculdade de Farmácia, Universidade do Porto, 4050-047 Porto, Portugal
| | - Catarina R. Oliveira
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A. Cunha
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
288
|
Abstract
An association between major surgery in the elderly and precipitation of Alzheimer's disease has been reported. As 100% oxygen (hyperoxia) is commonly administered after surgery, we exposed cognitively unimpaired Alzheimer's transgenic mice to hyperoxia typical of human exposure in a hospital setting. Three-hour hyperoxia treatments to young adult Alzheimer's transgenic mice: (i) triggered cognitive impairment that was not otherwise present at that age, (ii) increased aberrant brain synaptophysin staining, and (iii) increased brain levels of isofurans (products of lipid peroxidation sensitive to hyperoxia). Thus, hyperoxia-induced synaptic dysfunction and brain oxidative stress are likely the triggering mechanisms of cognitive dysfunction in Alzheimer's mice. These results may suggest that exposure of elderly patients to excessive amounts of oxygen perioperatively hastens the development of Alzheimer's disease.
Collapse
|
289
|
Laitala VS, Kaprio J, Koskenvuo M, Räihä I, Rinne JO, Silventoinen K. Coffee drinking in middle age is not associated with cognitive performance in old age. Am J Clin Nutr 2009; 90:640-6. [PMID: 19587088 DOI: 10.3945/ajcn.2009.27660] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The lack of effective disease-modifying treatments highlights the need for research on the prevention of dementia. It has been suggested that coffee has a protective effect on cognitive performance in old age, but only some of the previous studies have shown this association. OBJECTIVE The aim of our study was to analyze the potential association between coffee drinking in middle age and cognitive performance in old age in a large sample of Finnish twins. DESIGN Coffee consumption and other baseline variables of 2606 middle-aged Finnish twins were assessed in 1975 and 1981 by postal questionnaires. After the median follow-up of 28 y, their cognitive status was measured by using a validated telephone interview questionnaire. RESULTS Coffee consumption was high and associated with educational level and several other baseline variables. After adjustment for these variables, linear regression analysis showed that coffee consumption was not an independent predictor of cognitive performance in old age (beta = -0.12 test score units per coffee cup; 95% CI: -0.27, 0.04). No consistent differences in coffee consumption and cognitive score were observed within discordant twin pairs. Also, coffee drinking did not affect the risk of mild cognitive impairment or dementia. CONCLUSIONS Coffee drinking is associated with many sociodemographic and health variables, but our results do not support an independent role of coffee in the pathogenesis of cognitive decline and dementia.
Collapse
Affiliation(s)
- Venla S Laitala
- Department of Public Health, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
290
|
Rahman A. The role of adenosine in Alzheimer's disease. Curr Neuropharmacol 2009; 7:207-16. [PMID: 20190962 PMCID: PMC2769004 DOI: 10.2174/157015909789152119] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 05/15/2009] [Accepted: 05/27/2009] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system manifested by cognitive and memory deterioration, a variety of neuropsychiatric symptoms, behavioral disturbances, and progressive impairment of daily life activities. Current pharmacotherapies are restricted to symptomatic interventions but do not prevent progressive neuronal degeneration. Therefore, new therapeutic strategies are needed to intervene with these progressive pathological processes. In the past several years adenosine, a ubiquitously released purine ribonucleoside, has become important for its neuromodulating capability and its emerging positive experimental effects in neurodegenerative diseases. Recent research suggests that adenosine receptors play important roles in the modulation of cognitive function. The present paper attempts to review published reports and data from different studies showing the evidence of a relationship between adenosinergic function and AD-related cognitive deficits. Epidemiological studies have found an association between coffee (a nonselective adenosine receptor antagonist) consumption and improved cognitive function in AD patients and in the elderly. Long-term administration of caffeine in transgenic animal models showed a reduced amyloid burden in brain with better cognitive performance. Antagonists of adenosine A2A receptors mimic these beneficial effects of caffeine on cognitive function. Neuronal cell cultures with amyloid beta in the presence of an A2A receptor antagonist completely prevented amyloid beta-induced neurotoxicity. These findings suggest that the adenosinergic system constitutes a new therapeutic target for AD, and caffeine and A2A receptor antagonists may have promise to manage cognitive dysfunction in AD.
Collapse
Affiliation(s)
- Anisur Rahman
- Legacy Research, R.S Dow Neurobiology Laboratories, 1225 NE 2nd Avenue, Portland OR 97232, USA.
| |
Collapse
|
291
|
Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, Wang L, Zhang C, Lin X, Zhang G, Arendash GW. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 2009; 47:82-96. [PMID: 19538338 DOI: 10.1111/j.1600-079x.2009.00692.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neurohormone melatonin has been reported to exert anti-beta-amyloid aggregation, antioxidant, and anti-inflammatory actions in various in vitro and animal models. To comprehensively determine the potential for long-term melatonin treatment to protect Alzheimer's transgenic mice against cognitive impairment and development of beta-amyloid (Abeta) neuropathology, we administered melatonin (100 mg/L drinking water) to APP + PS1 double transgenic (Tg) mice from 2-2.5 months of age to their killing at age 7.5 months. A comprehensive behavioral battery administered during the final 6 weeks of treatment revealed that Tg mice given melatonin were protected from cognitive impairment in a variety of tasks of working memory, spatial reference learning/memory, and basic mnemonic function; Tg control mice remained impaired in all of these cognitive tasks/domains. Immunoreactive Abeta deposition was significantly reduced in hippocampus (43%) and entorhinal cortex (37%) of melatonin-treated Tg mice. Although soluble and oligomeric forms of Abeta1-40 and 1-42 were unchanged in the hippocampus and cortex of the same melatonin-treated Tg mice, their plasma Abeta levels were elevated. These Abeta results, together with our concurrent demonstration that melatonin suppresses Abeta aggregation in brain homogenates, are consistent with a melatonin-facilitated removal of Abeta from the brain. Inflammatory cytokines such as tumor necrosis factor (TNF)-alpha were decreased in hippocampus (but not plasma) of Tg+ melatonin mice. Finally, the cortical mRNA expression of three antioxidant enzymes (SOD-1, glutathione peroxidase, and catalase) was significantly reduced to non-Tg levels by long-term melatonin treatment in Tg mice. Thus, melatonin's cognitive benefits could involve its anti-Abeta aggregation, anti-inflammatory, and/or antioxidant properties. Our findings provide support for long-term melatonin therapy as a primary or complementary strategy for abating the progression of Alzheimer disease.
Collapse
Affiliation(s)
- James M Olcese
- Florida State University College of Medicine, Tallahassee, FL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Sanchez-Ramos J, Song S, Sava V, Catlow B, Lin X, Mori T, Cao C, Arendash GW. Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer's mice. Neuroscience 2009; 163:55-72. [PMID: 19500657 DOI: 10.1016/j.neuroscience.2009.05.071] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/13/2009] [Accepted: 05/23/2009] [Indexed: 10/20/2022]
Abstract
Granulocyte colony stimulating factor (G-CSF) is a multi-modal hematopoietic growth factor, which also has profound effects on the diseased CNS. G-CSF has been shown to enhance recovery from neurologic deficits in rodent models of ischemia. G-CSF appears to facilitate neuroplastic changes by both mobilization of bone marrow-derived cells and by its direct actions on CNS cells. The overall objective of the study was to determine if G-CSF administration in a mouse model of Alzheimer's disease (AD) (Tg APP/PS1) would impact hippocampal-dependent learning by modifying the underlying disease pathology. A course of s.c. administration of G-CSF for a period of less than three weeks significantly improved cognitive performance, decreased beta-amyloid deposition in hippocampus and entorhinal cortex and augmented total microglial activity. Additionally, G-CSF reduced systemic inflammation indicated by suppression of the production or activity of major pro-inflammatory cytokines in plasma. Improved cognition in AD mice was associated with increased synaptophysin immunostaining in hippocampal CA1 and CA3 regions and augmented neurogenesis, evidenced by increased numbers of calretinin-expressing cells in dentate gyrus. Given that G-CSF is already utilized clinically to safely stimulate hematopoietic stem cell production, these basic research findings will be readily translated into clinical trials to reverse or forestall the progression of dementia in AD. The primary objective of the present study was to determine whether a short course of G-CSF administration would have an impact on the pathological hallmark of AD, the age-dependent accumulation of A beta deposits, in a transgenic mouse model of AD (APP+ PS1; Tg). A second objective was to determine whether such treatment would impact cognitive performance in a hippocampal-dependent memory paradigm. To explain the G-CSF triggered amyloid reduction and associated reversal of cognitive impairment, several mechanisms of action were explored. (1) G-CSF was hypothesized to increase activation of resident microglia and to increase mobilization of marrow-derived microglia. The effect of G-CSF on microglial activation was examined by quantitative measurements of total microglial burden. To determine if G-CSF increased trafficking of marrow-derived microglia into brain, bone marrow-derived green fluorescent protein-expressing (GFP+) microglia were visualized in the brains of chimeric AD mice. (2) To assess the role of immune-modulation in mediating G-CSF effects, a panel of cytokines was measured in both plasma and brain. (3) To test the hypothesis that reduction of A beta deposits can affect synaptic area, quantitative measurement of synaptophysin immunoreactivity in hippocampal CA1 and CA3 sectors was undertaken. (4) To learn whether enhanced hippocampal neurogenesis was induced by G-CSF treatment, numbers of calretinin-expressing cells were determined in dentate gyrus.
Collapse
Affiliation(s)
- J Sanchez-Ramos
- Department of Neurology (MDC55), University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
293
|
Affiliation(s)
- Rodrigo A Cunha
- Centro de Neurociencias de Coimbra. Instituto de Bioquímica. Facultad de Medicina. Universidad de Coimbra. Coimbra. Portugal.
| |
Collapse
|
294
|
Hughes TF, Ganguli M. Modifiable Midlife Risk Factors for Late-Life Cognitive Impairment and Dementia. CURRENT PSYCHIATRY REVIEWS 2009; 5:73-92. [PMID: 19946443 PMCID: PMC2782871 DOI: 10.2174/157340009788167347] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The baby boom generation is approaching the age of greatest risk for cognitive impairment and dementia. There is growing interest in strategies to modify the environment in midlife to increase the probability of maintaining cognitive health in late life. Several potentially modifiable risk factors have been studied in relation to cognitive impairment and dementia in late life, but methodological limitations of observational research have resulted in some inconsistencies across studies. The most promising strategies are maintaining cardiovascular health, engagement in mental, physical, and social activities, using alcohol in moderation, abstaining from tobacco use, and following a heart-healthy diet. Other factors that may influence cognitive health are occupational attainment, depression, personality, exposure to general anesthesia, head injury, postmenopausal hormone therapy, non-steroidal anti-inflammatory medications, and nutritional supplements such as antioxidants. Some long-term observational studies initiated in midlife or earlier, and some randomized controlled trials, have examined the effects of specific cognitive health promotion behaviors in midlife on the risk of cognitive impairment in late life. Overall, these studies provide limited support for risk reduction at this time. Recommendations and challenges for developing effective strategies to reduce the burden of cognitive impairment and dementia in the future are discussed.
Collapse
Affiliation(s)
- Tiffany F. Hughes
- From the Departments of Psychiatry (T.F.H., M.G.) and Neurology (M.G.), School of Medicine, and the Department of Epidemiology (M.G.), Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary Ganguli
- From the Departments of Psychiatry (T.F.H., M.G.) and Neurology (M.G.), School of Medicine, and the Department of Epidemiology (M.G.), Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
295
|
Zafrilla P, Morulas JM, Rubio-Perez JM, Villar EC. Ingredients for Functional Drinks in Neurodegenerative Diseases: A Review. Nat Prod Commun 2009. [DOI: 10.1177/1934578x0900400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Several studies have indicated that oxidative stress is a major risk factor for the initiation and progression of neurological disorders like Parkinson's disease (PD) and Alzheimer's (AD). Therefore, reducing oxidative stress appears to be a rational choice for the prevention and reduction in the rate of progression of these neurological disorders. The brain utilizes about 25% of respired oxygen even though it represents only 5% of the body weight. Free radicals are generated during the normal intake of oxygen, during infection, and during normal oxidative metabolism of certain substrates. Although experimental data are consistent in demonstrating the neuroprotective effects of antioxidants in vitro and in animal models, the clinical evidence that antioxidant agents may prevent or slow the course of these diseases is still relatively unsatisfactory, and insufficient to strongly modify clinical practice.In this paper, natural possible substances that could be added to a beverage to prevent or decrease the developing of neurodegenerative diseases are reviewed.
Collapse
Affiliation(s)
- Pilar Zafrilla
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica San Antonio, Campus de los Jerónimos, s/n Guadalupe 30107 Murcia, Spain
| | - Juana M Morulas
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica San Antonio, Campus de los Jerónimos, s/n Guadalupe 30107 Murcia, Spain
| | - José M. Rubio-Perez
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica San Antonio, Campus de los Jerónimos, s/n Guadalupe 30107 Murcia, Spain
| | - Emma Cantos Villar
- IFAPA, Rancho de la Merced, Apto. 589, Crta. Trebujena, Km 3.2, 11.471 Jerez de la Frontera (Cádiz), Spain
| |
Collapse
|
296
|
Cao C, Arendash GW, Dickson A, Mamcarz MB, Lin X, Ethell DW. Abeta-specific Th2 cells provide cognitive and pathological benefits to Alzheimer's mice without infiltrating the CNS. Neurobiol Dis 2009; 34:63-70. [PMID: 19167499 PMCID: PMC5546306 DOI: 10.1016/j.nbd.2008.12.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/24/2008] [Accepted: 12/13/2008] [Indexed: 10/21/2022] Open
Abstract
We have found that a small number of purified Th2-biased Abeta-specific T cells are sufficient to provide profound cognitive and pathological benefits in an APP+PS1 mouse model for Alzheimer's disease. Six weeks after receiving T cell infusions, cognitively-impaired mice performed significantly better in working memory tasks, which correlated with higher plasma levels of soluble Abeta. Pathological analysis of the hippocampus revealed a 30% decrease of plaque-associated microglia and less vascular amyloidosis in T cell treated mice. The infusion of Abeta-specific Th2 cells also reduced plasma levels of IFN-gamma, TNF-alpha, GM-CSF, IL-2 and IL-4, which are elevated in untreated APP+PS1 mice. No significant immune cell infiltration and no anti-Abeta antibody titers occurred in the T cell treated mice. These results demonstrate that Abeta-specific Th2 cells are sufficient to reverse cognitive impairment and provide multiple pathological benefits in an Alzheimer's mouse model.
Collapse
Affiliation(s)
- Chuanhai Cao
- The Johnnie B. Byrd Sr. Alzheimer’s Center and Research Institute, Tampa, FL 33613
| | - Gary W. Arendash
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620
- The Florida Alzheimer’s Disease Research Center, Tampa, FL 33613
| | - Alexander Dickson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620
| | - Malgorzata B. Mamcarz
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620
| | - Xiaoyang Lin
- The Johnnie B. Byrd Sr. Alzheimer’s Center and Research Institute, Tampa, FL 33613
| | - Douglas W. Ethell
- Division of Biomedical Sciences, University of California Riverside, 900
| |
Collapse
|
297
|
Li Q, Zhao H, Zhang Z, Liu Z, Pei X, Wang J, Cai M, Li Y. Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience 2009; 159:1208-15. [DOI: 10.1016/j.neuroscience.2009.02.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 01/12/2009] [Accepted: 02/04/2009] [Indexed: 01/17/2023]
|
298
|
Hong BN, Yi TH, Kim SY, Kang TH. High-Dosage Pyridoxine-Induced Auditory Neuropathy and Protection with Coffee in Mice. Biol Pharm Bull 2009; 32:597-603. [DOI: 10.1248/bpb.32.597] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Tae Hoo Yi
- College of Life Sciences, Kyung Hee University
| | - Sun Yeou Kim
- Graduate School of East-West Medical Science, Kyung Hee University
| | - Tong Ho Kang
- Department of Oriental Pharmaceutical Development, Nambu University
| |
Collapse
|
299
|
Abstract
The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.
Collapse
Affiliation(s)
- Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Institute of Molecular Medicine, University of Lisbon, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|
300
|
Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 2009:535-87. [PMID: 19639293 DOI: 10.1007/978-3-540-89615-9_17] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine receptors modulate neuronal and synaptic function in a range of ways that may make them relevant to the occurrence, development and treatment of brain ischemic damage and degenerative disorders. A(1) adenosine receptors tend to suppress neural activity by a predominantly presynaptic action, while A(2A) adenosine receptors are more likely to promote transmitter release and postsynaptic depolarization. A variety of interactions have also been described in which adenosine A(1) or A(2) adenosine receptors can modify cellular responses to conventional neurotransmitters or receptor agonists such as glutamate, NMDA, nitric oxide and P2 purine receptors. Part of the role of adenosine receptors seems to be in the regulation of inflammatory processes that often occur in the aftermath of a major insult or disease process. All of the adenosine receptors can modulate the release of cytokines such as interleukins and tumor necrosis factor-alpha from immune-competent leukocytes and glia. When examined directly as modifiers of brain damage, A(1) adenosine receptor (AR) agonists, A(2A)AR agonists and antagonists, as well as A(3)AR antagonists, can protect against a range of insults, both in vitro and in vivo. Intriguingly, acute and chronic treatments with these ligands can often produce diametrically opposite effects on damage outcome, probably resulting from adaptational changes in receptor number or properties. In some cases molecular approaches have identified the involvement of ERK and GSK-3beta pathways in the protection from damage. Much evidence argues for a role of adenosine receptors in neurological disease. Receptor densities are altered in patients with Alzheimer's disease, while many studies have demonstrated effects of adenosine and its antagonists on synaptic plasticity in vitro, or on learning adequacy in vivo. The combined effects of adenosine on neuronal viability and inflammatory processes have also led to considerations of their roles in Lesch-Nyhan syndrome, Creutzfeldt-Jakob disease, Huntington's disease and multiple sclerosis, as well as the brain damage associated with stroke. In addition to the potential pathological relevance of adenosine receptors, there are earnest attempts in progress to generate ligands that will target adenosine receptors as therapeutic agents to treat some of these disorders.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|