251
|
Wang Y, Jiang X, Feng F, Liu W, Sun H. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B 2020; 10:207-238. [PMID: 32082969 PMCID: PMC7016280 DOI: 10.1016/j.apsb.2019.08.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Blocking the biological functions of scaffold proteins and aggregated proteins is a challenging goal. PROTAC proteolysis-targeting chimaera (PROTAC) technology may be the solution, considering its ability to selectively degrade target proteins. Recent progress in the PROTAC strategy include identification of the structure of the first ternary eutectic complex, extra-terminal domain-4-PROTAC-Von-Hippel-Lindau (BRD4-PROTAC-VHL), and PROTAC ARV-110 has entered clinical trials for the treatment of prostate cancer in 2019. These discoveries strongly proved the value of the PROTAC strategy. In this perspective, we summarized recent meaningful research of PROTAC, including the types of degradation proteins, preliminary biological data in vitro and in vivo, and new E3 ubiquitin ligases. Importantly, the molecular design, optimization strategy and clinical application of candidate molecules are highlighted in detail. Future perspectives for development of advanced PROTAC in medical fields have also been discussed systematically.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
252
|
Reichermeier KM, Straube R, Reitsma JM, Sweredoski MJ, Rose CM, Moradian A, den Besten W, Hinkle T, Verschueren E, Petzold G, Thomä NH, Wertz IE, Deshaies RJ, Kirkpatrick DS. PIKES Analysis Reveals Response to Degraders and Key Regulatory Mechanisms of the CRL4 Network. Mol Cell 2020; 77:1092-1106.e9. [PMID: 31973889 DOI: 10.1016/j.molcel.2019.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/18/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Co-opting Cullin4 RING ubiquitin ligases (CRL4s) to inducibly degrade pathogenic proteins is emerging as a promising therapeutic strategy. Despite intense efforts to rationally design degrader molecules that co-opt CRL4s, much about the organization and regulation of these ligases remains elusive. Here, we establish protein interaction kinetics and estimation of stoichiometries (PIKES) analysis, a systematic proteomic profiling platform that integrates cellular engineering, affinity purification, chemical stabilization, and quantitative mass spectrometry to investigate the dynamics of interchangeable multiprotein complexes. Using PIKES, we show that ligase assemblies of Cullin4 with individual substrate receptors differ in abundance by up to 200-fold and that Cand1/2 act as substrate receptor exchange factors. Furthermore, degrader molecules can induce the assembly of their cognate CRL4, and higher expression of the associated substrate receptor enhances degrader potency. Beyond the CRL4 network, we show how PIKES can reveal systems level biochemistry for cellular protein networks important to drug development.
Collapse
Affiliation(s)
- Kurt M Reichermeier
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA; Genentech, 1 DNA Way, South San Francisco, 94080 CA, USA.
| | - Ronny Straube
- Max Plank Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany; Bristol-Myers Squibb, 3551 Lawrenceville Princeton Rd, Lawrence Township, NJ 08648, USA
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA; Abbvie, 1 N Waukegan Rd, North Chicago, IL 60064, USA
| | - Michael J Sweredoski
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | | | - Annie Moradian
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Willem den Besten
- Genentech, 1 DNA Way, South San Francisco, 94080 CA, USA; Amgen Research, Amgen, One Amgen Center Drive, 29MB, Thousand Oaks, CA 91320, USA
| | - Trent Hinkle
- Genentech, 1 DNA Way, South San Francisco, 94080 CA, USA
| | | | - Georg Petzold
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Ingrid E Wertz
- Genentech, 1 DNA Way, South San Francisco, 94080 CA, USA
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA; Amgen Research, Amgen, One Amgen Center Drive, 29MB, Thousand Oaks, CA 91320, USA
| | | |
Collapse
|
253
|
Abstract
The dynamic nature of histone post-translational modifications such as methylation or acetylation makes possible the alteration of disease associated epigenetic states through the manipulation of the associated epigenetic machinery. One approach is through small molecule perturbation. Chemical probes of epigenetic reader domains have been critical in improving our understanding of the biological consequences of modulating their targets, while also enabling the development of novel probe-based reagents. By appending a functional handle to a reader domain probe, a chemical toolbox of reagents can be created to facilitate chemiprecipitation of epigenetic complexes, evaluate probe selectivity, develop in vitro screening assays, visualize cellular target localization, enable target degradation and recruit epigenetic machinery to a site within the genome in a highly controlled fashion.
Collapse
|
254
|
Yang W, Gadgil P, Krishnamurthy VR, Landis M, Mallick P, Patel D, Patel PJ, Reid DL, Sanchez-Felix M. The Evolving Druggability and Developability Space: Chemically Modified New Modalities and Emerging Small Molecules. AAPS JOURNAL 2020; 22:21. [DOI: 10.1208/s12248-019-0402-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
|
255
|
Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, Tong Y, Rao Y. PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther 2019; 4:64. [PMID: 31885879 PMCID: PMC6927964 DOI: 10.1038/s41392-019-0101-6] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Although many kinds of therapies are applied in the clinic, drug-resistance is a major and unavoidable problem. Another disturbing statistic is the limited number of drug targets, which are presently only 20-25% of all protein targets that are currently being studied. Moreover, the focus of current explorations of targets are their enzymatic functions, which ignores the functions from their scaffold moiety. As a promising and appealing technology, PROteolysis TArgeting Chimeras (PROTACs) have attracted great attention both from academia and industry for finding available approaches to solve the above problems. PROTACs regulate protein function by degrading target proteins instead of inhibiting them, providing more sensitivity to drug-resistant targets and a greater chance to affect the nonenzymatic functions. PROTACs have been proven to show better selectivity compared to classic inhibitors. PROTACs can be described as a chemical knockdown approach with rapidity and reversibility, which presents new and different biology compared to other gene editing tools by avoiding misinterpretations that arise from potential genetic compensation and/or spontaneous mutations. PRTOACs have been widely explored throughout the world and have outperformed not only in cancer diseases, but also in immune disorders, viral infections and neurodegenerative diseases. Although PROTACs present a very promising and powerful approach for crossing the hurdles of present drug discovery and tool development in biology, more efforts are needed to gain to get deeper insight into the efficacy and safety of PROTACs in the clinic. More target binders and more E3 ligases applicable for developing PROTACs are waiting for exploration.
Collapse
Affiliation(s)
- Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084 P. R. China
| | - Hongying Gao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084 P. R. China
| | - Yiqing Yang
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084 P. R. China
| | - Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
| | - Yue Wu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
| | - Yugang Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
| | - Yan Tong
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
256
|
Kim K, Lee DH, Park S, Jo SH, Ku B, Park SG, Park BC, Jeon YU, Ahn S, Kang CH, Hwang D, Chae S, Ha JD, Kim S, Hwang JY, Kim JH. Disordered region of cereblon is required for efficient degradation by proteolysis-targeting chimera. Sci Rep 2019; 9:19654. [PMID: 31873151 PMCID: PMC6928225 DOI: 10.1038/s41598-019-56177-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/06/2019] [Indexed: 01/21/2023] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are an emerging strategy for promoting targeted protein degradation by inducing the proximity between targeted proteins and E3 ubiquitin ligases. Although successful degradation of numerous proteins by PROTACs has been demonstrated, the elements that determine the degradability of PROTAC-targeted proteins have not yet been explored. In this study, we developed von Hippel-Lindau-Cereblon (VHL-CRBN) heterodimerizing PROTACs that induce the degradation of CRBN, but not VHL. A quantitative proteomic analysis further revealed that VHL-CRBN heterodimerizing PROTACs induced the degradation of CRBN, but not the well-known immunomodulatory drug (IMiD) neo-substrates, IKAROS family zinc finger 1 (IKZF1) and -3 (IZKF3). Moreover, truncation of disordered regions of CRBN and the androgen receptor (AR) attenuated their PROTAC-induced degradation, and attachment of the disordered region to stable CRBN or AR facilitated PROTAC-induced degradation. Thus, these results suggest that the intrinsically disordered region of targeted proteins is essential for efficient proteolysis, providing a novel criterion for choosing degradable protein targets.
Collapse
Affiliation(s)
- Kidae Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Proteome Structural biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dong Ho Lee
- Therapeutics & Biotechnology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Sungryul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Proteome Structural biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Seung-Hyun Jo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Proteome Structural biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Yeong Uk Jeon
- Therapeutics & Biotechnology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Sunjoo Ahn
- Therapeutics & Biotechnology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Chung Hyo Kang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.,College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sehyun Chae
- Korea Brain Bank, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jae Du Ha
- Therapeutics & Biotechnology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea. .,Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Jong Yeon Hwang
- Therapeutics & Biotechnology, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea. .,Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
257
|
Dragovich PS, Adhikari P, Blake RA, Blaquiere N, Chen J, Cheng YX, den Besten W, Han J, Hartman SJ, He J, He M, Rei Ingalla E, Kamath AV, Kleinheinz T, Lai T, Leipold DD, Li CS, Liu Q, Lu J, Lu Y, Meng F, Meng L, Ng C, Peng K, Lewis Phillips G, Pillow TH, Rowntree RK, Sadowsky JD, Sampath D, Staben L, Staben ST, Wai J, Wan K, Wang X, Wei B, Wertz IE, Xin J, Xu K, Yao H, Zang R, Zhang D, Zhou H, Zhao Y. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorg Med Chem Lett 2019; 30:126907. [PMID: 31902710 DOI: 10.1016/j.bmcl.2019.126907] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022]
Abstract
Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.
Collapse
Affiliation(s)
| | - Pragya Adhikari
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert A Blake
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Jinhua Chen
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Yun-Xing Cheng
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | | | - Jinping Han
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | | | - Jintang He
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mingtao He
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | | | - Amrita V Kamath
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Tommy Lai
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | | | - Chun Sing Li
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Qi Liu
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | - Jiawei Lu
- WuXi Biologics, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Ying Lu
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Fanwei Meng
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | - Lingyao Meng
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Carl Ng
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kaishan Peng
- WuXi Biologics, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | | | - Thomas H Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Jack D Sadowsky
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Deepak Sampath
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Leanna Staben
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steven T Staben
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Wai
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Kunpeng Wan
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Xinxin Wang
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ingrid E Wertz
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jianfeng Xin
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | - Keyang Xu
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hui Yao
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Richard Zang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hao Zhou
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Yongxin Zhao
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| |
Collapse
|
258
|
Ferroni C, Varchi G. Non-Steroidal Androgen Receptor Antagonists and Prostate Cancer: A Survey on Chemical Structures Binding this Fast-Mutating Target. Curr Med Chem 2019; 26:6053-6073. [PMID: 30209993 DOI: 10.2174/0929867325666180913095239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/01/2023]
Abstract
The Androgen Receptor (AR) pathway plays a major role in both the pathogenesis and progression of prostate cancer. In particular, AR is chiefly involved in the development of Castration-Resistant Prostate Cancer (CRPC) as well as in the resistance to the secondgeneration AR antagonist enzalutamide, and to the selective inhibitor of cytochrome P450 17A1 (CYP17A1) abiraterone. Several small molecules acting as AR antagonists have been designed and developed so far, also as a result of the ability of cells expressing this molecular target to rapidly develop resistance and turn pure receptor antagonists into ineffective or event detrimental molecules. This review covers a survey of most promising classes of non-steroidal androgen receptor antagonists, also providing insights into their mechanism of action and efficacy in treating prostate cancer.
Collapse
Affiliation(s)
- Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| |
Collapse
|
259
|
Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat Chem Biol 2019; 16:15-23. [DOI: 10.1038/s41589-019-0411-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023]
|
260
|
Yang H, Lv W, He M, Deng H, Li H, Wu W, Rao Y. Plasticity in designing PROTACs for selective and potent degradation of HDAC6. Chem Commun (Camb) 2019; 55:14848-14851. [PMID: 31769449 DOI: 10.1039/c9cc08509b] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HDAC6 (histone deacetylase 6) catalyses the deacetylation of non-histone substrates, and plays important roles in cell migration, protein degradation and other cellular processes. Here we report that CRBN-recruiting PROTAC NH2, which introduces pomalidomide at the benzene ring of Nex A, reaches comparable degradation efficiency of HDAC6 compared to aliphatic-chain-introducing PROTAC NP8.
Collapse
Affiliation(s)
- Haiyan Yang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
261
|
Design, synthesis, and biological evaluation of small molecule PROTACs for potential anticancer effects. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02485-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
262
|
Wang Y, Dix MM, Bianco G, Remsberg JR, Lee HY, Kalocsay M, Gygi SP, Forli S, Vite G, Lawrence RM, Parker CG, Cravatt BF. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs. Nat Chem 2019; 11:1113-1123. [PMID: 31659311 PMCID: PMC6874898 DOI: 10.1038/s41557-019-0351-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/10/2019] [Indexed: 11/29/2022]
Abstract
A fundamental challenge in chemical biology and medicine is to understand and expand the fraction of the human proteome that can be targeted by small molecules. We recently described a strategy that integrates fragment-based ligand discovery with chemical proteomics to furnish global portraits of reversible small-molecule/protein interactions in human cells. Excavating clear structure-activity relationships from these 'ligandability' maps, however, was confounded by the distinct physicochemical properties and corresponding overall protein-binding potential of individual fragments. Here, we describe a compelling solution to this problem by introducing a next-generation set of fully functionalized fragments differing only in absolute stereochemistry. Using these enantiomeric probe pairs, or 'enantioprobes', we identify numerous stereoselective protein-fragment interactions in cells and show that these interactions occur at functional sites on proteins from diverse classes. Our findings thus indicate that incorporating chirality into fully functionalized fragment libraries provides a robust and streamlined method to discover ligandable proteins in cells.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Giulia Bianco
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jarrett R Remsberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Hsin-Yu Lee
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Marian Kalocsay
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gregory Vite
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - R Michael Lawrence
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
263
|
Lazo JS. The hubris and humility of cancer pharmacology in the post immuno-oncology era. Pharmacol Res Perspect 2019; 7:e00527. [PMID: 31624635 PMCID: PMC6783649 DOI: 10.1002/prp2.527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 01/04/2023] Open
Abstract
Cancer is a dreaded word, which has stimulated monumental efforts to discover and deliver effective cancer treatments for more than half a century. During the past two decades, our understanding of the molecular pathogenesis of cancer has increased remarkably. This has fostered an explosion in the number of experimental agents and clinical trials coupled with a dramatic rise in the regulatory approval of therapies for human cancers. Unfortunately, our preclinical models perform poorly as predictive platforms for the ultimate success of clinical candidates, reflecting the complexity of cancer. Moreover the common combination of cancer drugs prescribes the need for a better understanding of the fundamental pharmacology of each agent. Here I briefly outline some of the fundamental changes that have and have not occurred in cancer pharmacology during the past two decades and prognosticate on possible future directions.
Collapse
Affiliation(s)
- John S. Lazo
- Departments of Pharmacology and ChemistryUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
264
|
Lopez‐Barbosa N, Ludwicki MB, DeLisa MP. Proteome editing using engineered proteins that hijack cellular quality control machinery. AIChE J 2019. [DOI: 10.1002/aic.16854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Lopez‐Barbosa
- Robert F. Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York
| | - Morgan B. Ludwicki
- Robert F. Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York
| | - Matthew P. DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University Ithaca New York
- Biochemistry, Molecular and Cell Biology Cornell University Ithaca New York
| |
Collapse
|
265
|
Bai L, Zhou H, Xu R, Zhao Y, Chinnaswamy K, McEachern D, Chen J, Yang CY, Liu Z, Wang M, Liu L, Jiang H, Wen B, Kumar P, Meagher JL, Sun D, Stuckey JA, Wang S. A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. Cancer Cell 2019; 36:498-511.e17. [PMID: 31715132 PMCID: PMC6880868 DOI: 10.1016/j.ccell.2019.10.002] [Citation(s) in RCA: 363] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/14/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. Here we report the discovery of SD-36, a small-molecule degrader of STAT3. SD-36 potently induces the degradation of STAT3 protein in vitro and in vivo and demonstrates high selectivity over other STAT members. Induced degradation of STAT3 results in a strong suppression of its transcription network in leukemia and lymphoma cells. SD-36 inhibits the growth of a subset of acute myeloid leukemia and anaplastic large-cell lymphoma cell lines by inducing cell-cycle arrest and/or apoptosis. SD-36 achieves complete and long-lasting tumor regression in multiple xenograft mouse models at well-tolerated dose schedules. Degradation of STAT3 protein, therefore, is a promising cancer therapeutic strategy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Lymphoma, Large-Cell, Anaplastic/drug therapy
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/pathology
- Mice
- Proteolysis/drug effects
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/metabolism
- Tumor Burden/drug effects
- Tumor Burden/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Longchuan Bai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haibin Zhou
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Renqi Xu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yujun Zhao
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Donna McEachern
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianyong Chen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chao-Yie Yang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhaomin Liu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mi Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liu Liu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui Jiang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Praveen Kumar
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer L Meagher
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeanne A Stuckey
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
266
|
Affiliation(s)
- Katsuya Maruyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
267
|
Chi JJ, Li H, Zhou Z, Izquierdo-Ferrer J, Xue Y, Wavelet CM, Schiltz GE, Zhang B, Cristofanilli M, Lu X, Bahar I, Wan Y. A novel strategy to block mitotic progression for targeted therapy. EBioMedicine 2019; 49:40-54. [PMID: 31669221 PMCID: PMC6945239 DOI: 10.1016/j.ebiom.2019.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Blockade of mitotic progression is an ideal approach to induce mitotic catastrophe that suppresses cancer cell expansion. Cdc20 is a critical mitotic factor governing anaphase initiation and the exit from mitosis through recruiting substrates to APC/C for degradation. Results from recent TCGA (The Cancer Genome Atlas) and pathological studies have demonstrated a pivotal oncogenic role for Cdc20-APC/C in tumor progression as well as drug resistance. Thus, deprivation of the mitotic role for Cdc20-APC/C by either inhibition of Cdc20-APC/C activity or elimination of Cdc20 protein via induced protein degradation emerges as an effective therapeutic strategy to control cancer. METHODS We designed a proteolysis targeting chimera, called CP5V, which comprises a Cdc20 ligand and VHL binding moiety bridged by a PEG5 linker that induces Cdc20 degradation. We characterized the effect of CP5V in destroying Cdc20, arresting mitosis, and inhibiting tumor progression by measuring protein degradation, 3D structure dynamics, cell cycle control, tumor cell killing and tumor inhibition using human breast cancer xenograft mouse model. FINDINGS Results from our study demonstrate that CP5V can specifically degrade Cdc20 by linking Cdc20 to the VHL/VBC complex for ubiquitination followed by proteasomal degradation. Induced degradation of Cdc20 by CP5V leads to significant inhibition of breast cancer cell proliferation and resensitization of Taxol-resistant cell lines. Results based on a human breast cancer xenograft mouse model show a significant role for CP5V in suppressing breast tumor progression. INTERPRETATION CP5V-mediated degradation of Cdc20 could be an effective therapeutic strategy for anti-mitotic therapy.
Collapse
Affiliation(s)
- Junlong Jack Chi
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, USA; Department of Biomedical Engineering, Northwestern University, USA
| | - Hongchun Li
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
| | - Zhuan Zhou
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, USA
| | | | - Yifan Xue
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, USA
| | - Cindy M Wavelet
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, USA
| | - Gary E Schiltz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, USA; Center for Molecular Innovation and Drug Discovery, Northwestern University, USA
| | - Bin Zhang
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, USA
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
| | - Yong Wan
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, USA; Chemical of Life Processes Institute, Northwestern University, USA.
| |
Collapse
|
268
|
Yang J, Li Y, Aguilar A, Liu Z, Yang CY, Wang S. Simple Structural Modifications Converting a Bona fide MDM2 PROTAC Degrader into a Molecular Glue Molecule: A Cautionary Tale in the Design of PROTAC Degraders. J Med Chem 2019; 62:9471-9487. [PMID: 31560543 DOI: 10.1021/acs.jmedchem.9b00846] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inducing protein degradation by proteolysis targeting chimeras (PROTACs) has gained tremendous momentum for its promise to discover and develop new therapies. Based upon our previously reported PROTAC MDM2 degraders, we have designed and synthesized additional analogues. Surprisingly, we found that simple structural modifications of MD-222, a bona fide MDM2 PROTAC degrader, converts it into a "molecular glue", as exemplified by MG-277. MG-277 induces only moderate MDM2 degradation and fails to activate wild-type p53 but is highly potent in inhibition of tumor cell growth in a p53-independent manner. Our mechanistic investigation established that MG-277 is not a PROTAC MDM2 degrader but instead works as a molecular glue, inducing degradation of a translation termination factor, GSPT1 to achieve its potent anticancer activity. Our study provides the first example that simple structural modifications can convert a bona fide PROTAC degrader into a molecular glue compound, which has a completely different mechanism of action.
Collapse
|
269
|
Werner CT, Mitra S, Martin JA, Stewart AF, Lepack AE, Ramakrishnan A, Gobira PH, Wang ZJ, Neve RL, Gancarz AM, Shen L, Maze I, Dietz DM. Ubiquitin-proteasomal regulation of chromatin remodeler INO80 in the nucleus accumbens mediates persistent cocaine craving. SCIENCE ADVANCES 2019; 5:eaay0351. [PMID: 31633032 PMCID: PMC6785264 DOI: 10.1126/sciadv.aay0351] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/14/2019] [Indexed: 05/07/2023]
Abstract
Neuroadaptations in the nucleus accumbens (NAc) underlie cue-induced cocaine craving that intensifies ("incubates") during abstinence and is believed to contribute to persistent relapse vulnerability. Changes in gene expression often govern perpetual behavioral abnormalities, but epigenetic plasticity during prolonged abstinence from drug exposure is poorly understood. We examined how E3 ubiquitin ligase TRIM3 dysregulates chromatin remodeler INO80 to mediate cocaine craving during prolonged abstinence. We found that INO80 expression increased in the NAc on abstinence day 30 (AD30) but not on AD1 following cocaine self-administration. Furthermore, TRIM3, which mediates degradation of INO80, was reduced on AD30, along with TRIM3-INO80 interaction. Viral-mediated gene transfer of INO80 or TRIM3 governed cocaine craving during prolonged abstinence. Lastly, chromatin immunoprecipitation followed by massively parallel DNA sequencing identified INO80-mediated transcriptional regulation of predicted pathways associated with cocaine plasticity. Together, these results demonstrate a novel ubiquitin-proteasomal-epigenetic mechanism by which TRIM3-INO80 mediates cocaine craving during prolonged abstinence.
Collapse
Affiliation(s)
- C. T. Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - S. Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - J. A. Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - A. F. Stewart
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - A. E. Lepack
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A. Ramakrishnan
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P. H. Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Z.-J. Wang
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - R. L. Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA, USA
| | - A. M. Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, CA, USA
| | - L. Shen
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - I. Maze
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D. M. Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, The State University of New York at Buffalo, Buffalo, NY, USA
- Corresponding author.
| |
Collapse
|
270
|
Kostrz D, Wayment-Steele HK, Wang JL, Follenfant M, Pande VS, Strick TR, Gosse C. A modular DNA scaffold to study protein-protein interactions at single-molecule resolution. NATURE NANOTECHNOLOGY 2019; 14:988-993. [PMID: 31548690 DOI: 10.1038/s41565-019-0542-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The residence time of a drug on its target has been suggested as a more pertinent metric of therapeutic efficacy than the traditionally used affinity constant. Here, we introduce junctured-DNA tweezers as a generic platform that enables real-time observation, at the single-molecule level, of biomolecular interactions. This tool corresponds to a double-strand DNA scaffold that can be nanomanipulated and on which proteins of interest can be engrafted thanks to widely used genetic tagging strategies. Thus, junctured-DNA tweezers allow a straightforward and robust access to single-molecule force spectroscopy in drug discovery, and more generally in biophysics. Proof-of-principle experiments are provided for the rapamycin-mediated association between FKBP12 and FRB, a system relevant in both medicine and chemical biology. Individual interactions were monitored under a range of applied forces and temperatures, yielding after analysis the characteristic features of the energy profile along the dissociation landscape.
Collapse
Affiliation(s)
- Dorota Kostrz
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS) CNRS, INSERM, PSL Research University, Paris, France
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Marcoussis, France
| | | | - Jing L Wang
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université de Paris, Paris, France
| | - Maryne Follenfant
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS) CNRS, INSERM, PSL Research University, Paris, France
| | - Vijay S Pande
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Terence R Strick
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS) CNRS, INSERM, PSL Research University, Paris, France.
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université de Paris, Paris, France.
- Programme Equipe Labellisée, Ligue Nationale Contre le Cancer, Paris, France.
| | - Charlie Gosse
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS) CNRS, INSERM, PSL Research University, Paris, France.
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Marcoussis, France.
| |
Collapse
|
271
|
Abstract
Proteolysis-targeting chimeras (PROTACs) have received much attention for their promising therapeutic intervention in recent years. These molecules, with the mechanism of simultaneous recruitment of target protein and an E3 ligase, can trigger the cellular ubiquitin–proteasome system to degrade the target proteins. This article systematically introduces the mechanism of small-molecule PROTACs, and summarized the research progress of small-molecule PROTACs. The prospect for further application and the problems to be solved are also discussed.
Collapse
|
272
|
Cuneo MJ, Mittag T. The ubiquitin ligase adaptor SPOP in cancer. FEBS J 2019; 286:3946-3958. [PMID: 31495053 DOI: 10.1111/febs.15056] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
The dysregulation of ubiquitin-mediated proteasomal degradation has emerged as an important mechanism of pathogenesis in several cancers. The speckle-type POZ protein (SPOP) functions as a substrate adaptor for the cullin3-RING ubiquitin ligase and controls the cellular persistence of a diverse array of protein substrates in hormone signalling, epigenetic control and cell cycle regulation, to name a few. Mutations in SPOP and the resulting dysregulation of this proteostatic pathway play causative roles in the pathogenesis of prostate and endometrial cancers, whereas overexpression and mislocalization are associated with kidney cancer. Understanding the molecular mechanism of the normal function of SPOP as well as the cause of SPOP-mediated oncogenesis is thus critical for eventual therapeutic targeting of SPOP and other related pathways. Here, we will review SPOP structure, function and the molecular mechanism of how this function is achieved. We will then review how mutations and protein mislocalization contribute to cancer pathogenesis and will provide a perspective on how SPOP may be targeted therapeutically.
Collapse
Affiliation(s)
- Matthew J Cuneo
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
273
|
Groppe JC. Induced degradation of protein kinases by bifunctional small molecules: a next-generation strategy. Expert Opin Drug Discov 2019; 14:1237-1253. [DOI: 10.1080/17460441.2019.1660641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jay C. Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
274
|
Duan Y, Liu W, Tian L, Mao Y, Song C. Targeting Tubulin-colchicine Site for Cancer Therapy: Inhibitors, Antibody- Drug Conjugates and Degradation Agents. Curr Top Med Chem 2019; 19:1289-1304. [PMID: 31210108 DOI: 10.2174/1568026619666190618130008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Microtubules are essential for the mitotic division of cells and have been an attractive target
for antitumour drugs due to the increased incidence of cancer and significant mitosis rate of tumour cells.
In the past few years, tubulin-colchicine binding site, as one of the three binding pockets including taxol-,
vinblastine- and colchicine-binding sites, has been focused on to design tubulin-destabilizing agents including
inhibitors, antibody-drug conjugates and degradation agents. The present review is the first to
cover a systemic and recent synopsis of tubulin-colchicine binding site agents. We believe that it would
provide an increase in our understanding of receptor-ligand interaction pattern and consciousness of a
series of challenges about tubulin target druggability.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Liang Tian
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yanna Mao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Chuanjun Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
275
|
Sun M, Veschi V, Bagchi S, Xu M, Mendoza A, Liu Z, Thiele CJ. Targeting the Chromosomal Passenger Complex Subunit INCENP Induces Polyploidization, Apoptosis, and Senescence in Neuroblastoma. Cancer Res 2019; 79:4937-4950. [PMID: 31416840 DOI: 10.1158/0008-5472.can-19-0695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
Chromosomal passenger complex (CPC) has been demonstrated to be a potential target of cancer therapy by inhibiting Aurora B or survivin in different types of cancer including neuroblastoma. However, chemical inhibition of either Aurora B or survivin does not target CPC specifically due to off-target effects or CPC-independent activities of these two components. In a previous chromatin-focused siRNA screen, we found that neuroblastoma cells were particularly vulnerable to loss of INCENP, a gene encoding a key scaffolding component of the CPC. In this study, INCENP was highly expressed by neuroblastoma cells, and its expression decreased following retinoic acid-induced neuroblastoma differentiation. Elevated levels of INCENP were significantly associated with poor prognosis in primary tumors of neuroblastoma patients with high-risk disease. Genetic silencing of INCENP reduced the growth of both MYCN-wild-type and MYCN-amplified neuroblastoma cell lines in vitro and decreased the growth of neuroblastoma xenografts in vivo, with significant increases in murine survival. Mechanistically, INCENP depletion suppressed neuroblastoma cell growth by inducing polyploidization, apoptosis, and senescence. In most neuroblastoma cell lines tested in vitro, apoptosis was the primary cell fate after INCENP silencing due to induction of DNA damage response and activation of the p53-p21 axis. These results confirm that CPC is a therapeutic target in neuroblastoma, and targeting INCENP is a novel way to disrupt the activity of CPC and inhibit tumor progression in neuroblastoma. SIGNIFICANCE: Dysregulation of INCENP contributes to neuroblastoma tumorigenesis and targeting INCENP presents a novel strategy to disrupt the activity of chromosomal passenger complex and inhibit neuroblastoma progression.
Collapse
Affiliation(s)
- Ming Sun
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Veronica Veschi
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sukriti Bagchi
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Man Xu
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Arnulfo Mendoza
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Zhihui Liu
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Carol J Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
276
|
Ehrenhöfer-Wölfer K, Puchner T, Schwarz C, Rippka J, Blaha-Ostermann S, Strobl U, Hörmann A, Bader G, Kornigg S, Zahn S, Sommergruber W, Schweifer N, Zichner T, Schlattl A, Neumüller RA, Shi J, Vakoc CR, Kögl M, Petronczki M, Kraut N, Pearson MA, Wöhrle S. SMARCA2-deficiency confers sensitivity to targeted inhibition of SMARCA4 in esophageal squamous cell carcinoma cell lines. Sci Rep 2019; 9:11661. [PMID: 31406271 PMCID: PMC6691015 DOI: 10.1038/s41598-019-48152-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
SMARCA4/BRG1 and SMARCA2/BRM, the two mutually exclusive catalytic subunits of the BAF complex, display a well-established synthetic lethal relationship in SMARCA4-deficient cancers. Using CRISPR-Cas9 screening, we identify SMARCA4 as a novel dependency in SMARCA2-deficient esophageal squamous cell carcinoma (ESCC) models, reciprocal to the known synthetic lethal interaction. Restoration of SMARCA2 expression alleviates the dependency on SMARCA4, while engineered loss of SMARCA2 renders ESCC models vulnerable to concomitant depletion of SMARCA4. Dependency on SMARCA4 is linked to its ATPase activity, but not to bromodomain function. We highlight the relevance of SMARCA4 as a drug target in esophageal cancer using an engineered ESCC cell model harboring a SMARCA4 allele amenable to targeted proteolysis and identify SMARCA4-dependent cell models with low or absent SMARCA2 expression from additional tumor types. These findings expand the concept of SMARCA2/SMARCA4 paralog dependency and suggest that pharmacological inhibition of SMARCA4 represents a novel therapeutic opportunity for SMARCA2-deficient cancers.
Collapse
Affiliation(s)
| | - Teresa Puchner
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | - Janine Rippka
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | - Ursula Strobl
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Stefan Kornigg
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Stephan Zahn
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | | | - Thomas Zichner
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | | | - Junwei Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Manfred Kögl
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Mark Petronczki
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Mark A Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Simon Wöhrle
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria.
| |
Collapse
|
277
|
BRD4 PROTAC as a novel therapeutic approach for the treatment of vemurafenib resistant melanoma: Preformulation studies, formulation development and in vitro evaluation. Eur J Pharm Sci 2019; 138:105039. [PMID: 31394259 DOI: 10.1016/j.ejps.2019.105039] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 01/12/2023]
Abstract
Limited therapeutic interventions and development of resistance to targeted therapy within few months of therapy pose a great challenge in the treatment of melanoma. Current work was aimed to investigate; (a) Anticancer activity of a novel class of compound - Bromodomain and Extra-Terminal motif (BET) protein degrader in sensitive and vemurafenib-resistant melanoma (b) Preformulation studies and formulation development. ARV-825 (ARV), a molecule designed using PROteolysis-TArgeting Chimeric (PROTAC) technology, degrades BRD4 protein instead of merely inhibiting it. Based on extensive preformulation studies, ARV loaded self-nanoemulsifying preconcentrate (ARV-SNEP) was developed and optimized. ARV showed extremely poor aqueous solubility (<7 μg/mL) and pH dependent hydrolytic degradation. CaCO-2 cell uptake assay and human liver microsome studies proved that ARV is a substrate of CYP3A4 but not of P-gp efflux pump. Optimized ARV-SNEP spontaneously formed nanoglobules of 45.02 nm with zeta potential of -3.78 mV and significantly enhanced solubility of ARV in various aqueous and bio-relevant media. Most importantly, ARV showed promising cytotoxicity, anti-migration and apoptotic activity against vemurafenib-resistant melanoma cells. ARV-SNEP could be potentially novel therapeutic approach for the treatment of drug-resistant melanoma. This is the very first paper investigating a PROTAC class of molecule for the treatment of drug resistant cancer, preformulation and formulation studies.
Collapse
|
278
|
Su S, Yang Z, Gao H, Yang H, Zhu S, An Z, Wang J, Li Q, Chandarlapaty S, Deng H, Wu W, Rao Y. Potent and Preferential Degradation of CDK6 via Proteolysis Targeting Chimera Degraders. J Med Chem 2019; 62:7575-7582. [PMID: 31330105 DOI: 10.1021/acs.jmedchem.9b00871] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A focused PROTAC library hijacking cancer therapeutic target CDK6 was developed. A design principle as "match/mismatch" was proposed for understanding the degradation profile differences in these PROTACs. Notably, potent PROTACs with specific and remarkable CDK6 degradation potential were generated by linking CDK6 inhibitor palbociclib and E3 ligase CRBN recruiter pomalidomide. The PROTAC strongly inhibited proliferation of hematopoietic cancer cells including multiple myeloma and robustly degraded copy-amplified/mutated forms of CDK6, indicating future potential clinical applications.
Collapse
Affiliation(s)
- Shang Su
- MOE Key Laboratory of Protein Sciences, School of Life Sciences , Tsinghua University , Beijing 100084 , P. R. China
| | - Zimo Yang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China
| | - Hongying Gao
- MOE Key Laboratory of Protein Sciences, School of Life Sciences , Tsinghua University , Beijing 100084 , P. R. China.,MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China
| | - Haiyan Yang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences , Tsinghua University , Beijing 100084 , P. R. China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences , Tsinghua University , Beijing 100084 , P. R. China
| | - Zixuan An
- MOE Key Laboratory of Protein Sciences, School of Life Sciences , Tsinghua University , Beijing 100084 , P. R. China
| | - Juanjuan Wang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences , Tsinghua University , Beijing 100084 , P. R. China
| | - Qing Li
- Human Oncology and Pathogenesis Program , Memorial Sloan Kettering Cancer Center (MSKCC) , New York , New York 10065 , United States
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program , Memorial Sloan Kettering Cancer Center (MSKCC) , New York , New York 10065 , United States
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences , Tsinghua University , Beijing 100084 , P. R. China
| | - Wei Wu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences , Tsinghua University , Beijing 100084 , P. R. China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
279
|
Flanagan JJ, Neklesa TK. Targeting Nuclear Receptors with PROTAC degraders. Mol Cell Endocrinol 2019; 493:110452. [PMID: 31125586 DOI: 10.1016/j.mce.2019.110452] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/13/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023]
Abstract
Nuclear receptors comprise a class of intracellular transcription factors whose major role is to act as sensors of various stimuli and to convert the external signal into a transcriptional output. Nuclear receptors (NRs) achieve this by possessing a ligand binding domain, which can bind cell permeable agonists, a DNA-binding domain, which binds the upstream sequences of target genes, and a regulatory domain that recruits the transcriptional machinery. The ligand binding alters the activation state of the NR, either by activating or inactivating its transcriptional output. Given the central role of NRs in signal transduction, many currently approved therapeutics modulate the activity of NRs. Here we discuss how PROTAC degraders afford a novel approach to abrogate the downstream signaling activity of NRs. We highlight six broad functional reasons why PROTAC degraders are preferable to the classical ligand binding pocket antagonists, with specific examples provided for each category. Lastly, as Androgen Receptor and Estrogen Receptor PROTAC degraders are being pursued as treatment for prostate cancer and breast cancer, respectively, a rationale is provided for the translational utility for the degradation of these two NRs.
Collapse
Affiliation(s)
| | - Taavi K Neklesa
- Halda Therapeutics, 23 Business Park, Branford, CT, 06405, USA.
| |
Collapse
|
280
|
Abstract
Less than a decade ago, it was shown that bromodomains, acetyl lysine 'reader' modules found in proteins with varied functions, were highly tractable small-molecule targets. This is an unusual property for protein-protein or protein-peptide interaction domains, and it prompted a wave of chemical probe discovery to understand the biological potential of new agents that targeted bromodomains. The original examples, inhibitors of the bromodomain and extra-terminal (BET) class of bromodomains, showed enticing anti-inflammatory and anticancer activities, and several compounds have since advanced to human clinical trials. Here, we review the current state of BET inhibitor biology in relation to clinical development, and we discuss the next wave of bromodomain inhibitors with clinical potential in oncology and non-oncology indications. The lessons learned from BET inhibitor programmes should affect efforts to develop drugs that target non-BET bromodomains and other epigenetic readers.
Collapse
|
281
|
Zhu HQ, Gao FH. Regulatory Molecules and Corresponding Processes of BCR-ABL Protein Degradation. J Cancer 2019; 10:2488-2500. [PMID: 31258755 PMCID: PMC6584333 DOI: 10.7150/jca.29528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
The BCR-ABL fusion protein with strong tyrosine kinase activity is one of the molecular biological bases of leukemia. Imatinib (Gleevec), a specific targeted drug for the treatment of chronic myeloid leukemia (CML), was developed for inhibiting the kinase activity of the BCR-ABL fusion protein. Despite the positive clinical efficacy of imatinib, the proportion of imatinib resistance has gradually increased. The main reason for the resistance is a decrease in sensitivity to imatinib caused by mutation or amplification of the BCR-ABL gene. In response to this phenomenon, the new generation of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL fusion protein was developed to solve the problem. However this strategy only selectively inhibits the tyrosine kinase activity of the BCR-ABL protein without eliminating the BCR-ABL protein, it does not fundamentally cure the BCR-ABL-positive leukemia patients. With the accumulation of the knowledge of cellular molecular biology, it has become possible to specifically eliminate certain proteins by cellular proteases in a specific way. Therefore, the therapeutic strategy to induce the degradation of the BCR-ABL fusion protein is superior to the strategy of inhibiting its activity. The protein degradation strategy is also a solution to the TKI resistance caused by different BCR-ABL gene point mutations. In order to provide possible exploration directions and clues for eliminating the BCR-ABL fusion protein in tumor cells, we summarize the significant molecules involved in the degradation pathway of the BCR-ABL protein, as well as the reported potent compounds that can target the BCR-ABL protein for degradation.
Collapse
Affiliation(s)
- Han-Qing Zhu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
282
|
Ludwicki MB, Li J, Stephens EA, Roberts RW, Koide S, Hammond PT, DeLisa MP. Broad-Spectrum Proteome Editing with an Engineered Bacterial Ubiquitin Ligase Mimic. ACS CENTRAL SCIENCE 2019; 5:852-866. [PMID: 31139721 PMCID: PMC6535771 DOI: 10.1021/acscentsci.9b00127] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 05/03/2023]
Abstract
Manipulation of the ubiquitin-proteasome pathway to achieve targeted silencing of cellular proteins has emerged as a reliable and customizable strategy for remodeling the mammalian proteome. One such approach involves engineering bifunctional proteins called ubiquibodies that are comprised of a synthetic binding protein fused to an E3 ubiquitin ligase, thus enabling post-translational ubiquitination and degradation of a target protein independent of its function. Here, we have designed a panel of new ubiquibodies based on E3 ubiquitin ligase mimics from bacterial pathogens that are capable of effectively interfacing with the mammalian proteasomal degradation machinery for selective removal of proteins of interest. One of these, the Shigella flexneri effector protein IpaH9.8 fused to a fibronectin type III (FN3) monobody that specifically recognizes green fluorescent protein (GFP), was observed to potently eliminate GFP and its spectral derivatives as well as 15 different FP-tagged mammalian proteins that varied in size (27-179 kDa) and subcellular localization (cytoplasm, nucleus, membrane-associated, and transmembrane). To demonstrate therapeutically relevant delivery of ubiquibodies, we leveraged a bioinspired molecular assembly method whereby synthetic mRNA encoding the GFP-specific ubiquibody was coassembled with poly A binding proteins and packaged into nanosized complexes using biocompatible, structurally defined polypolypeptides bearing cationic amine side groups. The resulting nanoplexes delivered ubiquibody mRNA in a manner that caused efficient target depletion in cultured mammalian cells stably expressing GFP as well as in transgenic mice expressing GFP ubiquitously. Overall, our results suggest that IpaH9.8-based ubiquibodies are a highly modular proteome editing technology with the potential for pharmacologically modulating disease-causing proteins.
Collapse
Affiliation(s)
- Morgan B. Ludwicki
- Robert F. Smith
School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New
York 14853, United
States
| | - Jiahe Li
- Department of Chemical Engineering and Koch Institute for
Integrative Cancer Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Erin A. Stephens
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, United States
| | - Richard W. Roberts
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Shohei Koide
- Perlmutter Cancer Center, New York University
Langone Medical Center, New York, New York 10016, United States
- Department of Biochemistry and Molecular
Pharmacology, New York University School
of Medicine, New York, New York 10016, United States
| | - Paula T. Hammond
- Department of Chemical Engineering and Koch Institute for
Integrative Cancer Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew P. DeLisa
- Robert F. Smith
School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New
York 14853, United
States
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
283
|
Peng L, Zhang Z, Lei C, Li S, Zhang Z, Ren X, Chang Y, Zhang Y, Xu Y, Ding K. Identification of New Small-Molecule Inducers of Estrogen-related Receptor α (ERRα) Degradation. ACS Med Chem Lett 2019; 10:767-772. [PMID: 31097997 DOI: 10.1021/acsmedchemlett.9b00025] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
A series of (E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyanoacrylamide derivatives were designed and synthesized as new estrogen-related receptor α (ERRα) degraders based on the proteolysis targeting chimera (PROTAC) concept. One of the representative compounds 6c is capable of specifically degrading ERRα protein by >80% at a relatively low concentration of 30 nM, becoming one of the most potent and selective ERRα degraders to date. Compound 6c could be utilized as a new powerful research tool for further biological investigation of ERRα.
Collapse
Affiliation(s)
- Lijie Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhensheng Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chong Lei
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shan Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yu Chang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yan Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
284
|
Qiu X, Sun N, Kong Y, Li Y, Yang X, Jiang B. Chemoselective Synthesis of Lenalidomide-Based PROTAC Library Using Alkylation Reaction. Org Lett 2019; 21:3838-3841. [DOI: 10.1021/acs.orglett.9b01326] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xing Qiu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ning Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ying Kong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yan Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Biao Jiang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
285
|
Xi M, Chen Y, Yang H, Xu H, Du K, Wu C, Xu Y, Deng L, Luo X, Yu L, Wu Y, Gao X, Cai T, Chen B, Shen R, Sun H. Small molecule PROTACs in targeted therapy: An emerging strategy to induce protein degradation. Eur J Med Chem 2019; 174:159-180. [PMID: 31035238 DOI: 10.1016/j.ejmech.2019.04.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 01/01/2023]
Abstract
Inhibitors and nucleic acid based techniques were two main approaches to interfere with protein signaling and respective cascade in the past. Until recently, a new class of small molecules named proteolysis-targeting chimeras (PROTACs) have emerged. Each contains a target warhead, a linker and an E3 ligand. These bifunctional molecules recruit E3 ligases and target specific proteins for degradation via the ubiquitin (Ub) proteasome system (UPS). The degradation provides several advantages over inhibition in potency, selectivity and drug resistance. Thus, a variety of small molecule PROTACs have been discovered so far. In this review, we summarize the biological mechanism, advantages and recent progress of PROTACs, trying to offer an outlook in development of drugs targeting degradation in future.
Collapse
Affiliation(s)
- Meiyang Xi
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yi Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Hongyu Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Huiting Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Kui Du
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chunlei Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanfei Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Liping Deng
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xiang Luo
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Lemao Yu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yonghua Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xiaozhong Gao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tao Cai
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Bin Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Runpu Shen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
286
|
Fanning SW, Greene GL. Next-Generation ERα Inhibitors for Endocrine-Resistant ER+ Breast Cancer. Endocrinology 2019; 160:759-769. [PMID: 30753408 DOI: 10.1210/en.2018-01095] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/04/2019] [Indexed: 11/19/2022]
Abstract
One in eight women will be diagnosed with breast cancer in their lifetime. Because estrogen receptor-α (ERα) is expressed in ~70% of patients, therapeutic intervention by ERα-targeted endocrine therapies remains the leading strategy to prevent progression and/or metastasis in the adjuvant setting. However, the efficacy of these therapies will be diminished by the development of acquired resistance after prolonged treatment regimens. In preclinical models of endocrine-resistant metastatic breast cancers that retain ERα expression, antiestrogens with improved efficacy and potency can overcome resistance to shrink tumors and prevent metastasis. In particular, selective ER degraders or downregulators, which both antagonize ERα actions and induce its degradation, have demonstrated substantial antitumor efficacy in this setting. In the present review, we have discussed the mechanisms of acquired endocrine resistance in luminal breast cancers and the strategies used by next-generation endocrine therapies to antagonize ERα.
Collapse
Affiliation(s)
- Sean W Fanning
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| |
Collapse
|
287
|
Abstract
Proteolysis-targeting chimeras (PROTACs) are an emerging tool for therapeutic intervention by reducing or eliminating disease-causing proteins. PROTACs are bifunctional molecules that consist of a target protein ligand, a linker and an E3 ligase ligand, which mediate the polyubiquitination of the target protein, ultimately leading to the target protein degradation by the ubiquitin–proteasome pathway. We review some of the main PROTACs that have been reported recently and discuss their potential therapeutic benefits over classical enzyme inhibition. Future research is expected to focus on the delivery and bioavailability of PROTACs due to their high molecular weight (700–1000 Da).
Collapse
|
288
|
Chopra R, Sadok A, Collins I. A critical evaluation of the approaches to targeted protein degradation for drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 31:5-13. [PMID: 31200859 PMCID: PMC6559946 DOI: 10.1016/j.ddtec.2019.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 11/23/2022]
Abstract
There is a great deal of excitement around the concept of targeting proteins for degradation as an alternative to conventional inhibitory small molecules and antibodies. Protein degradation can be undertaken by bifunctional molecules that bind the target for ubiquitin mediated degradation by complexing them with Cereblon (CRBN), von Hippel-Lindau or other E-3 ligases. Alternatively, E-3 ligase receptors such as CRBN or DCAF15 can also be used as a 'template' to bind IMiD or sulphonamide like compounds to degrade multiple context specific proteins by the selected E-3 ligases. The 'template approach' results in the degradation of neo-substrates, some of which would be difficult to drug using conventional approaches. The chemical properties necessary for drug discovery, the rules by which neo-substrates are selected by E-3 ligase receptors and defining the optimal components of the ubiquitin proteasome for protein degradation are still to be fully elucidate. Theis review will aim to critically evaluate the different approaches and principles emerging for targted protein degradation.
Collapse
Affiliation(s)
- Rajesh Chopra
- Cancer Research UK Cancer Therapeutics Unit and Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom.
| | - Amine Sadok
- Cancer Research UK Cancer Therapeutics Unit and Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit and Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| |
Collapse
|
289
|
Brown Y, Hua S, Tanwar PS. Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. Int J Biochem Cell Biol 2019; 109:90-104. [DOI: 10.1016/j.biocel.2019.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
|
290
|
Kunig V, Potowski M, Gohla A, Brunschweiger A. DNA-encoded libraries - an efficient small molecule discovery technology for the biomedical sciences. Biol Chem 2019; 399:691-710. [PMID: 29894294 DOI: 10.1515/hsz-2018-0119] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.
Collapse
Affiliation(s)
- Verena Kunig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Marco Potowski
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Anne Gohla
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Andreas Brunschweiger
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| |
Collapse
|
291
|
Watt GF, Scott-Stevens P, Gaohua L. Targeted protein degradation in vivo with Proteolysis Targeting Chimeras: Current status and future considerations. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 31:69-80. [PMID: 31200862 DOI: 10.1016/j.ddtec.2019.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/21/2019] [Indexed: 02/08/2023]
Abstract
Proteolysis Targeting Chimeras (PROTACs) are a rapidly expanding new therapeutic modality inducing selective protein degradation and offering the potential of a differentiated pharmacological profile across multiple therapeutic areas. As the repertoire of protein targets and E3 ligases available for incorporation into PROTACs continues to grow, understanding the drug- and system-dependent parameters for PROTACs will be critical for achieving tissue/cell specific pharmacology. The review discusses the current knowledge and future direction of in vivo PROTAC study evaluation. The importance of establishing the quantitative relationship between loss of protein target and biological function in vivo, coupled with building mechanistic PK/PD and ultimately PBPK/PD models, is emphasised with the aim to aid translation from preclinical to clinical space.
Collapse
Affiliation(s)
- Gillian F Watt
- Protein Degradation Discovery Performance Unit, Future Pipelines Discovery, GlaxoSmithKline, Medicines Research Centre, Stevenage SG1 2NY, UK.
| | - Paul Scott-Stevens
- Protein Degradation Discovery Performance Unit, Future Pipelines Discovery, GlaxoSmithKline, Medicines Research Centre, Stevenage SG1 2NY, UK
| | - Lu Gaohua
- Drug Design and Selection - SMTB, R&D Platform Technologies Sciences,GlaxoSmithKline, Medicines Research Centre, Stevenage SG1 2NY, UK
| |
Collapse
|
292
|
Kargbo RB. PROTAC Molecules for the Treatment of Autoimmune Disorders. ACS Med Chem Lett 2019; 10:276-277. [PMID: 30891126 DOI: 10.1021/acsmedchemlett.9b00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|
293
|
Veggiani G, Gerpe MCR, Sidhu SS, Zhang W. Emerging drug development technologies targeting ubiquitination for cancer therapeutics. Pharmacol Ther 2019; 199:139-154. [PMID: 30851297 PMCID: PMC7112620 DOI: 10.1016/j.pharmthera.2019.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of effective cancer therapeutic strategies relies on our ability to interfere with cellular processes that are dysregulated in tumors. Given the essential role of the ubiquitin proteasome system (UPS) in regulating a myriad of cellular processes, it is not surprising that malfunction of UPS components is implicated in numerous human diseases, including many types of cancer. The clinical success of proteasome inhibitors in treating multiple myeloma has further stimulated enthusiasm for targeting UPS proteins for pharmacological intervention in cancer treatment, particularly in the precision medicine era. Unfortunately, despite tremendous efforts, the paucity of potent and selective UPS inhibitors has severely hampered attempts to exploit the UPS for therapeutic benefits. To tackle this problem, many groups have been working on technology advancement to rapidly and effectively screen for potent and specific UPS modulators as intracellular probes or early-phase therapeutic agents. Here, we review several emerging technologies for developing chemical- and protein-based molecules to manipulate UPS enzymatic activity, with the aim of providing an overview of strategies available to target ubiquitination for cancer therapy.
Collapse
Affiliation(s)
- Gianluca Veggiani
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - María Carla Rosales Gerpe
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G2W1, Canada
| | - Sachdev S Sidhu
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada.
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G2W1, Canada.
| |
Collapse
|
294
|
Coughlin Q, Hopper AT, Blanco MJ, Tirunagaru V, Robichaud AJ, Doller D. Allosteric Modalities for Membrane-Bound Receptors: Insights from Drug Hunting for Brain Diseases. J Med Chem 2019; 62:5979-6002. [PMID: 30721063 DOI: 10.1021/acs.jmedchem.8b01651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Medicinal chemists are accountable for embedding the appropriate drug target profile into the molecular architecture of a clinical candidate. An accurate characterization of the functional effects following binding of a drug to its biological target is a fundamental step in the discovery of new medicines, informing the translation of preclinical efficacy and safety observations into human trials. Membrane-bound proteins, particularly ion channels and G protein-coupled receptors (GPCRs), are biological targets prone to allosteric modulation. Investigations using allosteric drug candidates and chemical tools suggest that their functional effects may be tailored with a high degree of translational alignment, making them molecular tools to correct pathophysiological functional tone and enable personalized medicine when a causative target-to-disease link is known. We present select examples of functional molecular fine-tuning of allosterism and discuss consequences relevant to drug design.
Collapse
|
295
|
Kargbo RB. Modulators of Proteolysis for the Treatment of Carcinomas. ACS Med Chem Lett 2019; 10:151-152. [PMID: 30783495 DOI: 10.1021/acsmedchemlett.9b00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Indexed: 11/30/2022] Open
Affiliation(s)
- Robert B Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|
296
|
Drummond ML, Williams CI. In Silico Modeling of PROTAC-Mediated Ternary Complexes: Validation and Application. J Chem Inf Model 2019; 59:1634-1644. [DOI: 10.1021/acs.jcim.8b00872] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
297
|
Gangopadhyay SA, Cox KJ, Manna D, Lim D, Maji B, Zhou Q, Choudhary A. Precision Control of CRISPR-Cas9 Using Small Molecules and Light. Biochemistry 2019; 58:234-244. [PMID: 30640437 PMCID: PMC6586488 DOI: 10.1021/acs.biochem.8b01202] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas system is an adaptive immune system of bacteria that has furnished several RNA-guided DNA endonucleases (e.g., Cas9) that are revolutionizing the field of genome engineering. Cas9 is being used to effect genomic alterations as well as in gene drives, where a particular trait may be propagated through a targeted species population over several generations. The ease of targeting catalytically impaired Cas9 to any genomic loci has led to development of technologies for base editing, chromatin imaging and modeling, epigenetic editing, and gene regulation. Unsurprisingly, Cas9 is being developed for numerous applications in biotechnology and biomedical research and as a gene therapy agent for multiple pathologies. There is a need for precise control of Cas9 activity over several dimensions, including those of dose, time, and space in these applications. Such precision controls, which are required of therapeutic agents, are particularly important for Cas9 as off-target effects, chromosomal translocations, immunogenic response, genotoxicity, and embryonic mosaicism are observed at elevated levels and with prolonged activity of Cas9. Here, we provide a perspective on advances in the precision control of Cas9 over aforementioned dimensions using external stimuli (e.g., small molecules or light) for controlled activation, inhibition, or degradation of Cas9.
Collapse
Affiliation(s)
- Soumyashree A. Gangopadhyay
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Kurt J. Cox
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Debasish Manna
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Donghyun Lim
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Qingxuan Zhou
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| |
Collapse
|
298
|
Scheepstra M, Hekking KF, van Hijfte L, Folmer RH. Bivalent Ligands for Protein Degradation in Drug Discovery. Comput Struct Biotechnol J 2019; 17:160-176. [PMID: 30788082 PMCID: PMC6369262 DOI: 10.1016/j.csbj.2019.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/19/2023] Open
Abstract
Targeting the "undruggable" proteome remains one of the big challenges in drug discovery. Recent innovations in the field of targeted protein degradation and manipulation of the ubiquitin-proteasome system open up new therapeutic approaches for disorders that cannot be targeted with conventional inhibitor paradigms. Proteolysis targeting chimeras (PROTACs) are bivalent ligands in which a compound that binds to the protein target of interest is connected to a second molecule that binds an E3 ligase via a linker. The E3 protein is usually either Cereblon or Von Hippel-Lindau. Several examples of selective PROTAC molecules with potent effect in cells and in vivo models have been reported. The degradation of specific proteins via these bivalent molecules is already allowing for the study of biochemical pathways and cell biology with more specificity than was possible with inhibitor compounds. In this review, we provide a comprehensive overview of recent developments in the field of small molecule mediated protein degradation, including transcription factors, kinases and nuclear receptors. We discuss the potential benefits of protein degradation over inhibition as well as the challenges that need to be overcome.
Collapse
Key Words
- ABCB1, ATP-binding cassette sub-family B member 1
- AD, Alzheimer's disease
- AHR, aryl hydrogen receptor
- ALK, anaplastic lymphoma kinase
- Aβ, amyloid-β
- BET, bromodomain and extra-terminal
- BTK, Bruton's tyrosine kinase
- Bcl6, B-cell lymphoma 6
- Bivalent ligand
- Brd4, bromodomain 4
- CDK9, cyclin dependent kinase 9
- CK2, Casein kinase 2
- CLIPTAC, click-formed proteolysis targeting chimera
- CRBN, Cereblon
- Chimera
- DC50, the compound concentration that results in 50% target protein degradation
- DHODH, Dihydroorotate dehydrogenase
- Degrader
- ERK1, extracellular signal-regulated kinase 1
- ERRα, estrogen-related receptor alpha
- ERα, estrogen receptor alpha
- EZH2, enhancer of zeste homolog 2
- FLT3, FMS-like tyrosine kinase-3
- FRS2, fibroblast growth factor receptor substrate 2
- GCN5, general control nonderepressible 5
- GPCR, G-protein coupled receptor
- GST, glutathione S-transferase
- HDAC, histone deacetylase
- HTS, high-throughput screening
- MDM2, mouse double-minute 2 homolog
- MetAP-2, methionine aminopeptidase-2
- PCAF, P300/CBP-associated factor
- PEG, polyethylene glycol
- PI3K, phosphatidylinositol-3-kinase
- PLK-1, polo-like kinase 1
- POI, protein of interest
- PROTAC
- PROTAC, proteolysis targeting chimeras
- Proteasome
- Protein degradation
- RAR, retinoic acid receptor
- RIPK2, receptor-interacting serine/threonine-protein kinase 2
- RTK, receptor tyrosine kinase
- SARM, selective androgen receptor modulator
- SNIPER, specific and non-genetic IAP-dependent protein eraser
- TBK1, TANK-Binding kinase 1
- TRIM24, tripartite motif-containing 24 (also known as TIF1α)
- VHL, Von Hippel-Lindau
- cIAP1, cellular inhibitor of apoptosis protein
Collapse
|
299
|
Naito M, Ohoka N, Shibata N. SNIPERs-Hijacking IAP activity to induce protein degradation. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 31:35-42. [PMID: 31200857 DOI: 10.1016/j.ddtec.2018.12.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
The induction of protein degradation by chimeric small molecules represented by proteolysis-targeting chimeras (PROTACs) is an emerging approach for novel drug development. We have developed a series of chimeric molecules termed specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to effect targeted degradation. Unlike the chimeric molecules that recruit von Hippel-Lindau and cereblon ubiquitin ligases, SNIPERs induce simultaneous degradation of IAPs such as cIAP1 and XIAP along with the target proteins. Because cancer cells often overexpress IAPs-a mechanism involved in the resistance to cancer therapy-SNIPERs could be used to kill cancer cells efficiently.
Collapse
Affiliation(s)
- Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan.
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Norihito Shibata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| |
Collapse
|
300
|
Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis. Cancers (Basel) 2019; 11:cancers11010066. [PMID: 30634515 PMCID: PMC6356294 DOI: 10.3390/cancers11010066] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/24/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Despite significant advances in cancer diagnostics and therapeutics the majority of cancer unfortunately remains incurable, which has led to continued research to better understand its exceptionally diverse biology. As a result of genomic instability, cancer cells typically have elevated proteotoxic stress. Recent appreciation of this functional link between the two secondary hallmarks of cancer: aneuploidy (oxidative stress) and proteotoxic stress, has therefore led to the development of new anticancer therapies targeting this emerging “Achilles heel” of malignancy. This review highlights the importance of managing proteotoxic stress for cancer cell survival and provides an overview of the integral role proteostasis pathways play in the maintenance of protein homeostasis. We further review the efforts undertaken to exploit proteotoxic stress in multiple myeloma (as an example of a hematologic malignancy) and triple negative breast cancer (as an example of a solid tumor), and give examples of: (1) FDA-approved therapies in routine clinical use; and (2) promising therapies currently in clinical trials. Finally, we provide new insights gleaned from the use of emerging technologies to disrupt the protein secretory pathway and repurpose E3 ligases to achieve targeted protein degradation.
Collapse
|