251
|
Tatsumi M, Yanagita M, Yamashita M, Hasegawa S, Ikegami K, Kitamura M, Murakami S. Long-term exposure to cigarette smoke influences characteristics in human gingival fibroblasts. J Periodontal Res 2021; 56:951-963. [PMID: 34057209 DOI: 10.1111/jre.12891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Periodontal disease is a chronic inflammatory disease caused by periodontopathic bacteria accumulated in the gingival sulcus and periodontal pocket. Cigarette smoking is a well-established risk factor for periodontal disease, and periodontal tissues in smokers are chronically exposed to cigarette smoke on a long-term basis. OBJECTIVE In this study, we investigated the effects of long-term exposure to nicotine or cigarette smoke condensate (CSC) on cellular functions of human gingival fibroblasts (HGFs). METHODS In vitro-maintained HGFs were divided into two groups. The HGFs of the short-term and the long-term culture groups were cultured for 4 and 25 days, respectively, in the presence or absence of nicotine, which is one of the main components of cigarette smoke, or CSC. The cellular proliferation and migration capacities of HGFs exposed to nicotine or CSC were evaluated by WST-1 and wound healing assays. The effects of exposure to nicotine or CSC on the expression of various extracellular matrix (ECM) components, inflammatory cytokines, and senescence-related genes were examined by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The cellular senescence of HGFs exposed to nicotine or CSC was detected by the senescence-associated β-galactosidase (SA-β-gal) assay. To explore the senescence-associated microRNA (miRNA), we extracted miRNA from the HGFs and the expression profiles were examined by miRNA array. RESULTS In short-term culture, no significant changes were observed. Long-term exposure of HGFs to nicotine or CSC significantly suppressed their cellular proliferation and migration and upregulated type Ⅰ collagen, type Ⅲ collagen, interleukin (IL)-6, IL-8, p16, p21, and p53 mRNA expression, and IL-6 and IL-8 protein expression. Furthermore, long-term nicotine or CSC exposure significantly increased the percentage of SA-β-gal-positive HGFs. In addition, long-term nicotine or CSC exposure reduced miR-29b and miR-199a expression to less than 50% of that in the unstimulated HGFs. CONCLUSION These data suggest that long-term smoking habits may reduce wound healing ability, modulate ECM protein homeostasis, stimulate the inflammatory response, and accelerate cellular senescence in HGFs, and consequently accelerate the progression of periodontal diseases.
Collapse
Affiliation(s)
- Mari Tatsumi
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Manabu Yanagita
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Oral Health, Kobe Tokiwa Junior College, Kobe, Japan
| | - Motozo Yamashita
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shiori Hasegawa
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kuniko Ikegami
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masahiro Kitamura
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shinya Murakami
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
252
|
Costa J, Martins S, Ferreira PA, Cardoso AMS, Guedes JR, Peça J, Cardoso AL. The old guard: Age-related changes in microglia and their consequences. Mech Ageing Dev 2021; 197:111512. [PMID: 34022277 DOI: 10.1016/j.mad.2021.111512] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Among all major organs, the brain is one of the most susceptible to the inexorable effects of aging. Throughout the last decades, several studies in human cohorts and animal models have revealed a plethora of age-related changes in the brain, including reduced neurogenesis, oxidative damage, mitochondrial dysfunction and cell senescence. As the main immune effectors and first responders of the nervous tissue, microglia are at the center of these events. These cells experience irrevocable changes as a result from cumulative exposure to environmental triggers, such as stress, infection and metabolic dysregulation. The age-related immunosenescent phenotype acquired by microglia is characterized by profound modifications in their transcriptomic profile, secretome, morphology and phagocytic activity, which compromise both their housekeeping and defensive functions. As a result, aged microglia are no longer capable of establishing effective immune responses and sustaining normal synaptic activity, directly contributing to age-associated cognitive decline and neurodegeneration. This review discusses how lifestyle and environmental factors drive microglia dysfunction at the molecular and functional level, also highlighting possible interventions to reverse aging-associated damage to the nervous and immune systems.
Collapse
Affiliation(s)
- Jéssica Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Solange Martins
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro A Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; PhD Program in Biosciences, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana M S Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Joana R Guedes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - João Peça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana L Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
253
|
Mohiuddin M, Kasahara K. The emerging role of cellular senescence in complications of COVID-19. Cancer Treat Res Commun 2021; 28:100399. [PMID: 34023769 PMCID: PMC8123375 DOI: 10.1016/j.ctarc.2021.100399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has triggered a sudden global change in healthcare systems. Cancer patients have a higher risk of death from COVID-19 in comparison to patients without cancer. Many studies have stated that various factors, such as older age, frequent exposure to healthcare, and higher smoking rates are responsible for the complications of COVID-19. We hypothesize that side effects of chemotherapy, such as cellular senescence, could worsen COVID-19. Given this situation, in this review, we highlight the updated findings of research investigating the impact of cellular senescence on COVID-19 complications and explored potential therapeutic targets for eliminating senescent cells during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Md Mohiuddin
- Department of Respiratory Medicine, Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan.
| | - Kazuo Kasahara
- Department of Respiratory Medicine, Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| |
Collapse
|
254
|
Palacios-Pedrero MÁ, Osterhaus ADME, Becker T, Elbahesh H, Rimmelzwaan GF, Saletti G. Aging and Options to Halt Declining Immunity to Virus Infections. Front Immunol 2021; 12:681449. [PMID: 34054872 PMCID: PMC8149791 DOI: 10.3389/fimmu.2021.681449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Immunosenescence is a process associated with aging that leads to dysregulation of cells of innate and adaptive immunity, which may become dysfunctional. Consequently, older adults show increased severity of viral and bacterial infections and impaired responses to vaccinations. A better understanding of the process of immunosenescence will aid the development of novel strategies to boost the immune system in older adults. In this review, we focus on major alterations of the immune system triggered by aging, and address the effect of chronic viral infections, effectiveness of vaccination of older adults and strategies to improve immune function in this vulnerable age group.
Collapse
Affiliation(s)
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tanja Becker
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
255
|
Neuroinflammation in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9050524. [PMID: 34067173 PMCID: PMC8150909 DOI: 10.3390/biomedicines9050524] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with human aging. Ten percent of individuals over 65 years have AD and its prevalence continues to rise with increasing age. There are currently no effective disease modifying treatments for AD, resulting in increasingly large socioeconomic and personal costs. Increasing age is associated with an increase in low-grade chronic inflammation (inflammaging) that may contribute to the neurodegenerative process in AD. Although the exact mechanisms remain unclear, aberrant elevation of reactive oxygen and nitrogen species (RONS) levels from several endogenous and exogenous processes in the brain may not only affect cell signaling, but also trigger cellular senescence, inflammation, and pyroptosis. Moreover, a compromised immune privilege of the brain that allows the infiltration of peripheral immune cells and infectious agents may play a role. Additionally, meta-inflammation as well as gut microbiota dysbiosis may drive the neuroinflammatory process. Considering that inflammatory/immune pathways are dysregulated in parallel with cognitive dysfunction in AD, elucidating the relationship between the central nervous system and the immune system may facilitate the development of a safe and effective therapy for AD. We discuss some current ideas on processes in inflammaging that appear to drive the neurodegenerative process in AD and summarize details on a few immunomodulatory strategies being developed to selectively target the detrimental aspects of neuroinflammation without affecting defense mechanisms against pathogens and tissue damage.
Collapse
|
256
|
Sears B, Perry M, Saha AK. Dietary Technologies to Optimize Healing from Injury-Induced Inflammation. Antiinflamm Antiallergy Agents Med Chem 2021; 20:123-131. [PMID: 32394845 PMCID: PMC9906631 DOI: 10.2174/1871523019666200512114210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022]
Abstract
Inflammation is an acute adaptive response to injury. However, if the initial inflammatory response to an injury is not completely healed, it becomes chronic low-level inflammation that is strongly associated with many chronic disease states, including metabolic (obesity and diabetes), cardiovascular, auto-immune, and neurogenerative disorders as well as cancer. The healing process is far more complex than the initiation of inflammation. Within that complexity of healing is a sequence of events that are under profound dietary control and can be defined by specific blood markers. Those molecular events of the healing process that are under significant dietary control are termed as the Resolution Response. The purpose of this review is to describe the molecular components of the Resolution Response and how different dietary factors can either optimize or inhibit their actions. In particular, those dietary components that optimize the Resolution Response include a calorie-restricted, protein-adequate, moderate-carbohydrate, low-fat diet referred to as the Zone diet, omega-3 fatty acids, and polyphenols. The appropriate combination of these dietary interventions constitutes the foundation of Pro-Resolution Nutrition. The effect of these dietary components the actions of NF-κB, AMPK, eicosanoids, and resolvins are described in this review, as well as ranges of appropriate blood markers that indicate success in optimizing the Resolution Response by dietary interventions.
Collapse
Affiliation(s)
- Barry Sears
- Inflammation Research Foundation, Peabody, MA 01960, USA,Address correspondence to these authors at the Inflammation Research Foundation, Peabody, MA 01960, USA; E-mails: and
| | - Mary Perry
- Inflammation Research Foundation, Peabody, MA 01960, USA
| | - Asish K. Saha
- Inflammation Research Foundation, Peabody, MA 01960, USA,Address correspondence to these authors at the Inflammation Research Foundation, Peabody, MA 01960, USA; E-mails: and
| |
Collapse
|
257
|
Cellular senescence and its role in white adipose tissue. Int J Obes (Lond) 2021; 45:934-943. [PMID: 33510393 DOI: 10.1038/s41366-021-00757-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
Cell senescence is defined as a state of irreversible cell cycle arrest combined with DNA damage and the induction of a senescence-associated secretory phenotype (SASP). This includes increased secretion of many inflammatory agents, proteases, miRNA's, and others. Cell senescence has been widely studied in oncogenesis and has generally been considered to be protective, due to cell cycle arrest and the inhibition of proliferation. Cell senescence is also associated with ageing and extensive experimental data support its role in generating the ageing-associated phenotype. Senescent cells can also influence proximal "healthy" cells through SASPs and, e.g., inhibit normal development of progenitor/stem cells, thereby preventing tissue replacement of dying cells and reducing organ functions. Recent evidence demonstrates that SASPs may also play important roles in several chronic diseases including diabetes and cardiovascular disease. White adipose tissue (WAT) cells are highly susceptible to becoming senescent both with ageing but also with obesity and type 2 diabetes, independently of chronological age. WAT senescence is associated with inappropriate expansion (hypertrophy) of adipocytes, insulin resistance, and dyslipidemia. Major efforts have been made to identify approaches to delete senescent cells including the use of "senolytic" compounds. The most established senolytic treatment to date is the combination of dasatinib, an antagonist of the SRC family of kinases, and the antioxidant quercetin. This combination reduces cell senescence and improves chronic disorders in experimental animal models. Although only small and short-term studies have been performed in man, no severe adverse effects have been reported. Hopefully, these or other senolytic agents may provide novel ways to prevent and treat different chronic diseases in man. Here we review the current knowledge on cellular senescence in both murine and human studies. We also discuss the pathophysiological role of this process and the potential therapeutic relevance of targeting senescence selectively in WAT.
Collapse
|
258
|
Martínez‐Zamudio RI, Dewald HK, Vasilopoulos T, Gittens‐Williams L, Fitzgerald‐Bocarsly P, Herbig U. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell 2021; 20:e13344. [PMID: 33939265 PMCID: PMC8135084 DOI: 10.1111/acel.13344] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 01/10/2023] Open
Abstract
Aging leads to a progressive functional decline of the immune system, rendering the elderly increasingly susceptible to disease and infection. The degree to which immune cell senescence contributes to this decline remains unclear, however, since markers that label immune cells with classical features of cellular senescence accurately and comprehensively have not been identified. Using a second-generation fluorogenic substrate for β-galactosidase and multi-parameter flow cytometry, we demonstrate here that peripheral blood mononuclear cells (PBMCs) isolated from healthy humans increasingly display cells with high senescence-associated β-galactosidase (SA-βGal) activity with advancing donor age. The greatest age-associated increases were observed in CD8+ T-cell populations, in which the fraction of cells with high SA-βGal activity reached average levels of 64% in donors in their 60s. CD8+ T cells with high SA-βGal activity, but not those with low SA-βGal activity, were found to exhibit features of telomere dysfunction-induced senescence and p16-mediated senescence, were impaired in their ability to proliferate, developed in various T-cell differentiation states, and had a gene expression signature consistent with the senescence state previously observed in human fibroblasts. Based on these results, we propose that senescent CD8+ T cells with classical features of cellular senescence accumulate to levels that are significantly higher than previously reported and additionally provide a simple yet robust method for the isolation and characterization of senescent CD8+ T cells with predictive potential for biological age.
Collapse
Affiliation(s)
- Ricardo I. Martínez‐Zamudio
- Center for Cell SignalingRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Department of Microbiology, Biochemistry, and Molecular GeneticsRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
| | - Hannah K. Dewald
- Rutgers School of Graduate StudiesRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Center for Immunity and InflammationRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Department of Pathology, Immunology, and Laboratory MedicineRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
| | - Themistoklis Vasilopoulos
- Center for Cell SignalingRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Department of Microbiology, Biochemistry, and Molecular GeneticsRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Rutgers School of Graduate StudiesRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
| | - Lisa Gittens‐Williams
- Department of Obstetrics, Gynecology and Women's HealthRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
| | - Patricia Fitzgerald‐Bocarsly
- Center for Immunity and InflammationRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Department of Pathology, Immunology, and Laboratory MedicineRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
| | - Utz Herbig
- Center for Cell SignalingRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Department of Microbiology, Biochemistry, and Molecular GeneticsRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
| |
Collapse
|
259
|
Pignolo RJ, Law SF, Chandra A. Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus 2021; 5:e10488. [PMID: 33869998 PMCID: PMC8046105 DOI: 10.1002/jbm4.10488] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in aging bone that lead to osteoporosis are mediated at multiple levels, including hormonal alterations, skeletal unloading, and accumulation of senescent cells. This pathological interplay is superimposed upon medical conditions, potentially bone-wasting medications, modifiable and unmodifiable personal risk factors, and genetic predisposition that accelerate bone loss with aging. In this study, the focus is on bone hemostasis and its dysregulation with aging. The major physiological changes with aging in bone and the role of cellular senescence in contributing to age-related osteoporosis are summarized. The aspects of bone aging are reviewed including remodeling deficits, uncoupling phenomena, inducers of cellular senescence related to bone aging, roles of the senescence-associated secretory phenotype, radiation-induced bone loss as a model for bone aging, and the accumulation of senescent cells in the bone microenvironment as a predominant mechanism for age-related osteoporosis. The study also addresses the rationale and potential for therapeutic interventions based on the clearance of senescent cells or suppression of the senescence-associated secretory phenotype. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Susan F Law
- Department of MedicineMayo ClinicRochesterMNUSA
| | - Abhishek Chandra
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
260
|
Fitsiou E, Soto-Gamez A, Demaria M. Biological functions of therapy-induced senescence in cancer. Semin Cancer Biol 2021; 81:5-13. [PMID: 33775830 DOI: 10.1016/j.semcancer.2021.03.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced cellular senescence is a state of stable growth arrest induced by common cancer treatments such as chemotherapy and radiation. In an oncogenic context, therapy-induced senescence can have different consequences. By blocking cellular proliferation and by facilitating immune cell infiltration, it functions as tumor suppressive mechanism. By fueling the proliferation of bystander cells and facilitating metastasis, it acts as a tumor promoting factor. This dual role is mainly attributed to the differential expression and secretion of a set of pro-inflammatory cytokines and tissue remodeling factors, collectively known as the Senescence-Associated Secretory Phenotype (SASP). Here, we describe cell-autonomous and non-cell-autonomous mechanisms that senescent cells activate in response to chemotherapy and radiation leading to tumor suppression and tumor promotion. We present the current state of knowledge on the stimuli that affect the activation of these opposing mechanisms and the effect of senescent cells on their micro-environment eg. by regulating the functions of immune cells in tumor clearance as well as strategies to eliminate senescent tumor cells before exerting their deleterious side-effects.
Collapse
Affiliation(s)
- Eleni Fitsiou
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands
| | - Abel Soto-Gamez
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands; University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands.
| |
Collapse
|
261
|
Marques-Reis M, Moreno E. Role of cell competition in ageing. Dev Biol 2021; 476:79-87. [PMID: 33753080 DOI: 10.1016/j.ydbio.2021.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Recent advances in rapid medical detection and diagnostic technology have extended both human health and life expectancy. However, ageing remains one of the critical risk factors in contributing to major incapacitating and fatal conditions, including cancer and neurodegeneration. Therefore, it is vital to study how ageing attributes to (or participates in) endangering human health via infliction of age-related diseases and what must be done to tackle this intractable process. This review encompasses the most recent literature elaborating the role of cell competition (CC) during ageing. CC is a process that occurs between two heterogeneous populations, where the cells with higher fitness levels have a competitive advantage over the neighbouring cells that have comparatively lower fitness levels. This interaction results in the selection of the fit cells, within a population, and elimination of the viable yet suboptimal cells. Therefore, it is tempting to speculate that, if this quality control mechanism works efficiently throughout life, can it ultimately lead to a healthier ageing and extended lifespan. Furthermore, the review aims to collate all the important state of the art publications that provides evidence of the relevance of CC in dietary restriction, stem cell dynamics, and cell senescence, thus, prompting us to advocate its contribution and in exploring new avenues and opportunities in fighting age-related conditions.
Collapse
Affiliation(s)
- Mariana Marques-Reis
- Cell Fitness Laboratory, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038, Lisbon, Portugal
| | - Eduardo Moreno
- Cell Fitness Laboratory, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038, Lisbon, Portugal.
| |
Collapse
|
262
|
Saoudaoui S, Bernard M, Cardin GB, Malaquin N, Christopoulos A, Rodier F. mTOR as a senescence manipulation target: A forked road. Adv Cancer Res 2021; 150:335-363. [PMID: 33858600 DOI: 10.1016/bs.acr.2021.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence, cancer and aging are highly interconnected. Among many important molecular machines that lie at the intersection of this triad, the mechanistic (formerly mammalian) target of rapamycin (mTOR) is a central regulator of cell metabolism, proliferation, and survival. The mTOR signaling cascade is essential to maintain cellular homeostasis in normal biological processes or in response to stress, and its dysregulation is implicated in the progression of many disorders, including age-associated diseases. Accordingly, the pharmacological implications of mTOR inhibition using rapamycin or others rapalogs span the treatment of various human diseases from immune disorders to cancer. Importantly, rapamycin is one of the only known pan-species drugs that can extend lifespan. The molecular and cellular mechanisms explaining the phenotypic consequences of mTOR are vast and heavily studied. In this review, we will focus on the potential role of mTOR in the context of cellular senescence, a tumor suppressor mechanism and a pillar of aging. We will explore the link between senescence, autophagy and mTOR and discuss the opportunities to exploit senescence-associated mTOR functions to manipulate senescence phenotypes in age-associated diseases and cancer treatment.
Collapse
Affiliation(s)
- Sarah Saoudaoui
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Monique Bernard
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Guillaume B Cardin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Nicolas Malaquin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Apostolos Christopoulos
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Université de Montréal, Département de radiologie, radio-oncologie et médicine nucléaire, Montreal, QC, Canada.
| |
Collapse
|
263
|
Abstract
Autophagy is an evolutionarily conserved process necessary to maintain cell homeostasis in response to various forms of stress such as nutrient deprivation and hypoxia as well as functioning to remove damaged molecules and organelles. The role of autophagy in cancer varies depending on the stage of cancer. Cancer therapeutics can also simultaneously evoke cancer cell senescence and ploidy increase. Both cancer cell senescence and polyploidization are reversible by depolyploidization giving rise to the progeny. Autophagy activation may be indispensable for cancer cell escape from senescence/polyploidy. As cancer cell polyploidy is proposed to be involved in cancer origin, the role of autophagy in polyploidization/depolyploidization of senescent cancer cells seems to be crucial. Accordingly, this review is an attempt to understand the complicated interrelationships between reversible cell senescence/polyploidy and autophagy.
Collapse
|
264
|
Tchkonia T, Palmer AK, Kirkland JL. New Horizons: Novel Approaches to Enhance Healthspan Through Targeting Cellular Senescence and Related Aging Mechanisms. J Clin Endocrinol Metab 2021; 106:e1481-e1487. [PMID: 33155651 PMCID: PMC7947756 DOI: 10.1210/clinem/dgaa728] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The elderly population is increasing faster than other segments of the population throughout the world. Age is the leading predictor for most chronic diseases and disorders, multimorbidity, geriatric syndromes, and impaired ability to recover from accidents or illnesses. Enhancing the duration of health and independence, termed healthspan, would be more desirable than extending lifespan merely by prolonging the period of morbidity toward the end of life. The geroscience hypothesis posits that healthspan can be extended by targeting fundamental aging mechanisms, rather than attempting to address each age-related disease one at a time, only so the afflicted individual survives disabled and dies shortly afterward of another age-related disease. These fundamental aging mechanisms include, among others, chronic inflammation, fibrosis, stem cell/ progenitor dysfunction, DNA damage, epigenetic changes, metabolic shifts, destructive metabolite generation, mitochondrial dysfunction, misfolded or aggregated protein accumulation, and cellular senescence. These processes appear to be tightly interlinked, as targeting any one appears to affect many of the rest, underlying our Unitary Theory of Fundamental Aging Mechanisms. Interventions targeting many fundamental aging processes are being developed, including dietary manipulations, metformin, mTOR (mechanistic target of rapamycin) inhibitors, and senolytics, which are in early human trials. These interventions could lead to greater healthspan benefits than treating age-related diseases one at a time. To illustrate these points, we focus on cellular senescence and therapies in development to target senescent cells. Combining interventions targeting aging mechanisms with disease-specific drugs could result in more than additive benefits for currently difficult-to-treat or intractable diseases. More research attention needs to be devoted to targeting fundamental aging processes.
Collapse
Affiliation(s)
- Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
- Correspondence and Reprint Requests: James L. Kirkland, MD, PhD, Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. E-mail:
| |
Collapse
|
265
|
Scolari IR, Volpini X, Fanani ML, La Cruz-Thea BD, Natali L, Musri MM, Granero GE. Exploring the Toxicity, Lung Distribution, and Cellular Uptake of Rifampicin and Ascorbic Acid-Loaded Alginate Nanoparticles as Therapeutic Treatment of Lung Intracellular Infections. Mol Pharm 2021; 18:807-821. [PMID: 33356316 DOI: 10.1021/acs.molpharmaceut.0c00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology is a very promising technological tool to combat health problems associated with the loss of effectiveness of currently used antibiotics. Previously, we developed a formulation consisting of a chitosan and tween 80-decorated alginate nanocarrier that encapsulates rifampicin and the antioxidant ascorbic acid (RIF/ASC), intended for the treatment of respiratory intracellular infections. Here, we investigated the effects of RIF/ASC-loaded NPs on the respiratory mucus and the pulmonary surfactant. In addition, we evaluated their cytotoxicity for lung cells in vitro, and their biodistribution on rat lungs in vivo after their intratracheal administration. Findings herein demonstrated that RIF/ASC-loaded NPs display a favorable lung biocompatibility profile and a uniform distribution throughout lung lobules. RIF/ASC-loaded NPs were mainly uptaken by lung macrophages, their primary target. In summary, findings show that our novel designed RIF/ASC NPs could be a suitable system for antibiotic lung administration with promising perspectives for the treatment of pulmonary intracellular infections.
Collapse
Affiliation(s)
- Ivana R Scolari
- UNITEFA, CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Ximena Volpini
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
| | - María L Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba X5000HUA, Argentina
| | - Benjamín De La Cruz-Thea
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
| | - Lautaro Natali
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
| | - Melina M Musri
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba X5000HUA, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Gladys E Granero
- UNITEFA, CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
266
|
Cheon SY, Lee JE. Extracellular Vesicles and Immune System in Ageing and Immune Diseases. Exp Neurobiol 2021; 30:32-47. [PMID: 33632983 PMCID: PMC7926047 DOI: 10.5607/en20059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Immune system is essential for host homeostasis. Immune cells communicate with each other by binding to receptors or by releasing vesicles including chemokines and cytokines. Under healthy circumstances, immune cell-derived factors are critical for cellular growth, division and function, whereas under conditions such as ageing and inflammatory states, they can aggravate pathologies and cause disease. Cell-derived membranous extracellular vesicles mediate cell-to-cell communication and are implicated in various physiological and pathological processes involving ageing and age-related diseases. Extracellular vesicles are responsible for spreading detrimental factors to the surroundings and the propagation phase of inflammatory diseases. The regulation of extracellular vesicles is a putative target for treatment of inflammatory diseases. Moreover, their features are ideal for developing biomarkers and drug delivery systems modulated by bioengineering in inflammatory diseases. The present review summarizes the current understanding of extracellular vesicles in ageing and inflammatory diseases.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
- BK21 PLUS Project for Medical Science, and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
267
|
Denroche HC, Miard S, Sallé-Lefort S, Picard F, Verchere CB. T cells accumulate in non-diabetic islets during ageing. IMMUNITY & AGEING 2021; 18:8. [PMID: 33622333 PMCID: PMC7901217 DOI: 10.1186/s12979-021-00221-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 02/11/2021] [Indexed: 12/25/2022]
Abstract
Background The resident immune population of pancreatic islets has roles in islet development, beta cell physiology, and the pathology of diabetes. These roles have largely been attributed to islet macrophages, comprising 90% of islet immune cells (in the absence of islet autoimmunity), and, in the case of type 1 diabetes, to infiltrating autoreactive T cells. In adipose, tissue-resident and recruited T and B cells have been implicated in the development of insulin resistance during diet-induced obesity and ageing, but whether this is paralleled in the pancreatic islets is not known. Here, we investigated the non-macrophage component of resident islet immune cells in islets isolated from C57BL/6 J male mice during ageing (3 to 24 months of age) and following similar weight gain achieved by 12 weeks of 60% high fat diet. Immune cells were also examined by flow cytometry in cadaveric non-diabetic human islets. Results Immune cells comprised 2.7 ± 1.3% of total islet cells in non-diabetic mouse islets, and 2.3 ± 1.7% of total islet cells in non-diabetic human islets. In 3-month old mice on standard diet, B and T cells each comprised approximately 2–4% of the total islet immune cell compartment, and approximately 0.1% of total islet cells. A similar amount of T cells were present in non-diabetic human islets. The majority of islet T cells expressed the αβ T cell receptor, and were comprised of CD8-positive, CD4-positive, and regulatory T cells, with a minor population of γδ T cells. Interestingly, the number of islet T cells increased linearly (R2 = 0.9902) with age from 0.10 ± 0.05% (3 months) to 0.38 ± 0.11% (24 months) of islet cells. This increase was uncoupled from body weight, and was not phenocopied by a degree similar weight gain induced by high fat diet in mice. Conclusions This study reveals that T cells are a part of the normal islet immune population in mouse and human islets, and accumulate in islets during ageing in a body weight-independent manner. Though comprising only a small subset of the immune cells within islets, islet T cells may play a role in the physiology of islet ageing. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-021-00221-4.
Collapse
Affiliation(s)
- Heather C Denroche
- Canucks for Kids Fund Childhood Diabetes Laboratories, BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stéphanie Miard
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | | | - Frédéric Picard
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada.,Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - C Bruce Verchere
- Canucks for Kids Fund Childhood Diabetes Laboratories, BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada. .,Departments of Surgery and Pathology & Laboratory Medicine, BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Ave, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
268
|
Meierjohann S. Effect of stress-induced polyploidy on melanoma reprogramming and therapy resistance. Semin Cancer Biol 2021; 81:232-240. [PMID: 33610722 DOI: 10.1016/j.semcancer.2021.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Melanomas and their precursors, the melanocytes, are frequently exposed to UV due to their anatomic location, leading to DNA damage and reactive oxygen stress related harm. Such damage can result in multinucleation or polyploidy, in particularly in presence of mitotic or cell division failure. As a consequence, the cell encounters either of two fates: mitotic catastrophe, resulting in cell death, or survival and recovery, the latter occurring less frequently. However, when cells manage to recover in an polyploid state, they have often acquired new features, which allow them to tolerate and adapt to oncogene- or therapy induced stress. This review focuses on polyploidy inducers in melanoma and their effects on transcriptional reprogramming and phenotypic adaptation as well as the relevance of polyploid melanoma cells for therapy resistance.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Institute of Pathology, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
269
|
Senolytics for Cancer Therapy: Is All That Glitters Really Gold? Cancers (Basel) 2021; 13:cancers13040723. [PMID: 33578753 PMCID: PMC7916462 DOI: 10.3390/cancers13040723] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Senescence is an essential component of tumor cell biology and is a primary cell stress response to therapy. While the long-term impact of senescence in cancer therapy is not yet fully understood, the use of senolytics, drugs that selectively kill senescent cells, is an area of active investigation in cancer treatment. Several challenges and unanswered questions have arisen from the current preclinical literature, indicating the need to re-evaluate some of the basic premises and experimental approaches, as well as the potential utility for translating to the clinic the application of senolytics as adjuvants to current cancer therapy. Abstract Senolytics represent a group of mechanistically diverse drugs that can eliminate senescent cells, both in tumors and in several aging-related pathologies. Consequently, senolytic use has been proposed as a potential adjuvant approach to improve the response to senescence-inducing conventional and targeted cancer therapies. Despite the unequivocal promise of senolytics, issues of universality, selectivity, resistance, and toxicity remain to be further clarified. In this review, we attempt to summarize and analyze the current preclinical literature involving the use of senolytics in senescent tumor cell models, and to propose tenable solutions and future directions to improve the understanding and use of this novel class of drugs.
Collapse
|
270
|
Connective Tissue and Fibroblast Senescence in Skin Aging. J Invest Dermatol 2021; 141:985-992. [PMID: 33563466 DOI: 10.1016/j.jid.2020.11.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
There is increasing evidence that skin aging is significantly enforced by the accumulation of senescent dermal fibroblasts. Various stressors damaging macromolecules inside and outside fibroblasts are responsible. In addition, NK cells fail to adequately remove senescent (SEN) fibroblasts from tissues. SEN fibroblasts by the release of the proinflammatory, tissue degrading senescent-associated secretory phenotype factors and vesicles with distinct cargo impact on their endogenous niche and spread senescence and skin aging. In this review, we will further discuss less noticed facets, including the plasticity of distinct dermal fibroblast phenotypes, the underestimated impact of the extracellular matrix itself, and the depletion of fibroblast subsets on skin homeostasis and aging.
Collapse
|
271
|
Shi M, Chu F, Tian X, Aerqin Q, Zhu F, Zhu J. Role of Adaptive Immune and Impacts of Risk Factors on Adaptive Immune in Alzheimer's Disease: Are Immunotherapies Effective or Off-Target? Neuroscientist 2021; 28:254-270. [PMID: 33530843 DOI: 10.1177/1073858420987224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complex. Still it remains unclear, which resulted in all efforts for AD treatments with targeting the pathogenic factors unsuccessful over past decades. It has been evidenced that the innate immune is strongly implicated in the pathogenesis of AD. However, the role of adaptive immune in AD remains mostly unknown and the results obtained were controversial. In the review, we summarized recent studies and showed that the molecular and cellular alterations in AD patients and its animal models involving T cells and B cells as well as immune mediators of adaptive immune occur not only in the peripheral blood but also in the brain and the cerebrospinal fluid. The risk factors that cause AD contribute to AD progress by affecting the adaptive immune, indicating that adaptive immunity proposes a pivotal role in this disease. It may provide a possible basis for applying immunotherapy in AD and further investigates whether the immunotherapies are effective or off-target?
Collapse
Affiliation(s)
- Mingchao Shi
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Xiaoping Tian
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Qiaolifan Aerqin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
272
|
Zhou D, Borsa M, Simon AK. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 2021; 20:e13316. [PMID: 33524238 PMCID: PMC7884036 DOI: 10.1111/acel.13316] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
The ageing of the global population brings about unprecedented challenges. Chronic age-related diseases in an increasing number of people represent an enormous burden for health and social care. The immune system deteriorates during ageing and contributes to many of these age-associated diseases due to its pivotal role in pathogen clearance, tissue homeostasis and maintenance. Moreover, in order to develop treatments for COVID-19, we urgently need to acquire more knowledge about the aged immune system, as older adults are disproportionally and more severely affected. Changes with age lead to impaired responses to infections, malignancies and vaccination, and are accompanied by chronic, low-degree inflammation, which together is termed immunosenescence. However, the molecular and cellular mechanisms that underlie immunosenescence, termed immune cell senescence, are mostly unknown. Cellular senescence, characterised by an irreversible cell cycle arrest, is thought to be the cause of tissue and organismal ageing. Thus, better understanding of cellular senescence in immune populations at single-cell level may provide us with insight into how immune cell senescence develops over the life time of an individual. In this review, we will briefly introduce the phenotypic characterisation of aged innate and adaptive immune cells, which also contributes to overall immunosenescence, including subsets and function. Next, we will focus on the different hallmarks of cellular senescence and cellular ageing, and the detection techniques most suitable for immune cells. Applying these techniques will deepen our understanding of immune cell senescence and to discover potential druggable pathways, which can be modulated to reverse immune ageing.
Collapse
Affiliation(s)
- Dingxi Zhou
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Mariana Borsa
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | | |
Collapse
|
273
|
The Jekyll and Hyde of Cellular Senescence in Cancer. Cells 2021; 10:cells10020208. [PMID: 33494247 PMCID: PMC7909764 DOI: 10.3390/cells10020208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a state of stable cell cycle arrest that can be triggered in response to various insults and is characterized by distinct morphological hallmarks, gene expression profiles, and the senescence-associated secretory phenotype (SASP). Importantly, cellular senescence is a key component of normal physiology with tumor suppressive functions. In the last few decades, novel cancer treatment strategies exploiting pro-senescence therapies have attracted considerable interest. Recent insight, however, suggests that therapy-induced senescence (TIS) elicits cell-autonomous and non-cell-autonomous implications that potentially entail detrimental consequences, reflecting the Jekyll and Hyde nature of cancer cell senescence. In essence, the undesirable manifestations that generally culminate in inflammation, cancer stemness, senescence reversal, therapy resistance, and disease recurrence are dictated by the persistent accumulation of senescent cells and the SASP. Thus, mitigating these pro-tumorigenic effects by eliminating these cells or inhibiting their SASP production holds great promise for developing innovative therapeutic strategies. In this review, we describe the fundamental aspects and dynamics of cancer cell senescence and summarize the comprehensive research on the adverse outcomes of TIS. Furthermore, we underline the rationale and motivation of emerging senotherapeutic modalities surrounding the removal of senescent cells and the SASP to help maximize the overall efficacy of cancer therapies.
Collapse
|
274
|
Chen Z, Xiong ZF, Liu X. Research progress on the interaction between circadian clock and early vascular aging. Exp Gerontol 2021; 146:111241. [PMID: 33453324 DOI: 10.1016/j.exger.2021.111241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Considerable researches implicate that the circadian clock regulates the responsive rhythms of organs and sets the orderly aging process of cells indirectly. It influences an array of diverse biological process including intestinal flora, peripheral inflammatory responses, and redox homeostasis. People with sleep disoders and other kinds of circadian disruptions are prone to have vascular aging earlier. Meanwhile, those people are always faced with chronic vascular inflammation. It has not been elucidated that the specific mechanism of the interaction between the circadian system and early vascular aging. To explore the biphasic relationship between vascular aging and the circadian system, we summarize what is linking circadian clock with early vascular aging through four major prospect: inflammatory process, oxidative stress response, intestinal flora, and cellular senescence. Meanwhile, we discuss the hypothesis that the deterioration of circadian rhythms may exacerbate the process of early vascular aging, leading to the cardiovascular diseases. It will help us to provide new ideas for understanding the process of vascular aging and exploring the possible ways to design personalized chronotherapies.
Collapse
Affiliation(s)
- Zhuoying Chen
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Zhi-Fan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
275
|
Elyahu Y, Monsonego A. Thymus involution sets the clock of the aging T-cell landscape: Implications for declined immunity and tissue repair. Ageing Res Rev 2021; 65:101231. [PMID: 33248315 DOI: 10.1016/j.arr.2020.101231] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Aging is generally characterized as a gradual increase in tissue damage, which is associated with senescence and chronic systemic inflammation and is evident in a variety of age-related diseases. The extent to which such tissue damage is a result of a gradual decline in immune regulation, which consequently compromises the capacity of the body to repair damages, has not been fully explored. Whereas CD4 T lymphocytes play a critical role in the orchestration of immunity, thymus involution initiates gradual changes in the CD4 T-cell landscape, which may significantly compromise tissue repair. In this review, we describe the lifespan accumulation of specific dysregulated CD4 T-cell subsets and their coevolution with systemic inflammation in the process of declined immunity and tissue repair capacity with age. Then, we discuss the process of thymus involution-which appears to be most pronounced around puberty-as a possible driver of the aging T-cell landscape. Finally, we identify individualized T cell-based early diagnostic biomarkers and therapeutic strategies for age-related diseases.
Collapse
Affiliation(s)
- Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
276
|
Potter ML, Hill WD, Isales CM, Hamrick MW, Fulzele S. MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone 2021; 142:115679. [PMID: 33022453 PMCID: PMC7901145 DOI: 10.1016/j.bone.2020.115679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) have recently come under scrutiny for their role in various age-related diseases. Similarly, cellular senescence has been linked to disease and aging. MicroRNAs and senescence likely play an intertwined role in driving these pathologic states. In this review, we present the connection between these two drivers of age-related disease concerning mesenchymal stem cells (MSCs). First, we summarize key miRNAs that are differentially expressed in MSCs and other musculoskeletal lineage cells during senescence and aging. Additionally, we also reviewed miRNAs that are regulated via traditional senescence-associated secretory phenotype (SASP) cytokines in MSC. Lastly, we summarize miRNAs that have been found to target components of the cell cycle arrest pathways inherently activated in senescence. This review attempts to highlight potential miRNA targets for regenerative medicine applications in age-related musculoskeletal disease.
Collapse
Affiliation(s)
- Matthew L Potter
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - William D Hill
- Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403, United States of America
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
277
|
Brawerman G, Thompson PJ. Beta Cell Therapies for Preventing Type 1 Diabetes: From Bench to Bedside. Biomolecules 2020; 10:E1681. [PMID: 33339173 PMCID: PMC7765619 DOI: 10.3390/biom10121681] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disease characterized by insulin deficiency, generally resulting from progressive autoimmune-mediated destruction of pancreatic beta cells. While the phenomenon of beta cell autoimmunity continues to be an active area of investigation, recent evidence suggests that beta cell stress responses are also important contributors to disease onset. Here we review the pathways driving different kinds of beta cell dysfunction and their respective therapeutic targets in the prevention of T1D. We discuss opportunities and important open questions around the effectiveness of beta cell therapies and challenges for clinical utility. We further evaluate ways in which beta cell drug therapy could be combined with immunotherapy for preventing T1D in light of our growing appreciation of disease heterogeneity and patient endotypes. Ultimately, the emergence of pharmacologic beta cell therapies for T1D have armed us with new tools and closing the knowledge gaps in T1D etiology will be essential for maximizing the potential of these approaches.
Collapse
Affiliation(s)
- Gabriel Brawerman
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Peter J. Thompson
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
278
|
Abstract
Over the last decade, our understanding of the physiological role of senescent cells has drastically evolved, from merely indicators of cellular stress and ageing to having a central role in regeneration and repair. Increasingly, studies have identified senescent cells and the senescence-associated secretory phenotype (SASP) as being critical in the regenerative process following injury; however, the timing and context at which the senescence programme is activated can lead to distinct outcomes. For example, a transient induction of senescent cells followed by rapid clearance at the early stages following injury promotes repair, while the long-term accumulation of senescent cells impairs tissue function and can lead to organ failure. A key role of the SASP is the recruitment of immune cells to the site of injury and the subsequent elimination of senescent cells. Among these cell types are macrophages, which have well-documented regulatory roles in all stages of regeneration and repair. However, while the role of senescent cells and macrophages in this process is starting to be explored, the specific interactions between these cell types and how these are important in the different stages of injury/reparative response still require further investigation. In this review, we consider the current literature regarding the interaction of these cell types, how their cooperation is important for regeneration and repair, and what questions remain to be answered to advance the field.
Collapse
|
279
|
Kaur J, Farr JN. Cellular senescence in age-related disorders. Transl Res 2020; 226:96-104. [PMID: 32569840 PMCID: PMC7572662 DOI: 10.1016/j.trsl.2020.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Much of the population is now faced with an enormous burden of age-associated chronic diseases. Recent discoveries in geroscience indicate that healthspan in model organisms such as mice can be manipulated by targeting cellular senescence, a hallmark mechanism of aging, defined as an irreversible proliferative arrest that occurs when cells experience oncogenic or other diverse forms of damage. Senescent cells and their proinflammatory secretome have emerged as contributors to age-related tissue dysfunction and morbidity. Cellular senescence has causal roles in mediating osteoporosis, frailty, cardiovascular diseases, osteoarthritis, pulmonary fibrosis, renal diseases, neurodegenerative diseases, hepatic steatosis, and metabolic dysfunction. Therapeutically targeting senescent cells in mice can prevent, delay, or alleviate each of these conditions. Therefore, senotherapeutic approaches, including senolytics and senomorphics, that either selectively eliminate senescent cells or interfere with their ability to promote tissue dysfunction, are gaining momentum as potential realistic strategies to abrogate human senescence to thereby compress morbidity and extend healthspan.
Collapse
Affiliation(s)
- Japneet Kaur
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester Minnesota; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester Minnesota
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester Minnesota; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Mayo Clinic, Rochester Minnesota; Division of Physiology and Biomedical Engineering; Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
280
|
Fan Y, Cheng J, Zeng H, Shao L. Senescent Cell Depletion Through Targeting BCL-Family Proteins and Mitochondria. Front Physiol 2020; 11:593630. [PMID: 33335487 PMCID: PMC7736607 DOI: 10.3389/fphys.2020.593630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/04/2020] [Indexed: 01/10/2023] Open
Abstract
Senescent cells with replicative arrest can be generated during genotoxic, oxidative, and oncogenic stress. Long-term retention of senescent cells in the body, which is attributed to highly expressed BCL-family proteins, chronically damages tissues mainly through a senescence-associated secretory phenotype (SASP). It has been documented that accumulation of senescent cells contributes to chronic diseases and aging-related diseases. Despite the fact that no unique marker is available to identify senescent cells, increased p16INK4a expression has long been used as an in vitro and in vivo marker of senescent cells. We reviewed five existing p16INK4a reporter mouse models to detect, isolate, and deplete senescent cells. Senescent cells express high levels of anti-apoptotic and pro-apoptotic genes compared to normal cells. Thus, disrupting the balance between anti-apoptotic and pro-apoptotic gene expression, such as ABT-263 and ABT-737, can activate the apoptotic signaling pathway and remove senescent cells. Mitochondrial abnormalities in senescent cells were also discussed, for example mitochondrial DNA mutation accumulation, dysfunctional mitophagy, and mitochondrial unfolded protein response (mtUPR). The mitochondrial-targeted tamoxifen, MitoTam, can efficiently remove senescent cells due to its inhibition of respiratory complex I and low expression of adenine nucleotide translocase-2 (ANT2) in senescent cells. Therefore, senescent cells can be removed by various strategies, which delays chronic and aging-related diseases and enhances lifespan and healthy conditions in the body.
Collapse
Affiliation(s)
- Ying Fan
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China
| | - Jiaoqi Cheng
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, Medical College of Nanchang University, Nanchang, China.,Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
281
|
Moskalev A, Stambler I, Caruso C. Innate and Adaptive Immunity in Aging and Longevity: The Foundation of Resilience. Aging Dis 2020; 11:1363-1373. [PMID: 33269094 PMCID: PMC7673842 DOI: 10.14336/ad.2020.0603] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
The interrelation of the processes of immunity and senescence now receives an unprecedented emphasis during the COVID-19 pandemic, which brings to the fore the critical need to combat immunosenescence and improve the immune function and resilience of older persons. Here we review the historical origins and the current state of the science of innate and adaptive immunity in aging and longevity. From the modern point of view, innate and adaptive immunity are not only affected by aging but also are important parts of its underlying mechanisms. Excessive levels or activity of antimicrobial peptides, C-reactive protein, complement system, TLR/NF-κB, cGAS/STING/IFN 1,3 and AGEs/RAGE pathways, myeloid cells and NLRP3 inflammasome, declined levels of NK cells in innate immunity, thymus involution and decreased amount of naive T-cells in adaptive immunity, are biomarkers of aging and predisposition factors for cellular senescence and aging-related pathologies. Long-living species, human centenarians, and women are characterized by less inflamm-aging and decelerated immunosenescence. Despite recent progress in understanding, the harmonious theory of immunosenescence is still developing. Geroprotectors targeting these mechanisms are just emerging and are comprehensively discussed in this article.
Collapse
Affiliation(s)
- Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia.
| | - Ilia Stambler
- Vetek (Seniority), The Movement for Longevity and Quality of Life, Israel.
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
282
|
Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Curcumin: A therapeutic potential in ageing-related disorders. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
283
|
Song S, Tchkonia T, Jiang J, Kirkland JL, Sun Y. Targeting Senescent Cells for a Healthier Aging: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002611. [PMID: 33304768 PMCID: PMC7709980 DOI: 10.1002/advs.202002611] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/11/2020] [Indexed: 05/02/2023]
Abstract
Aging is a physiological decline in both structural homeostasis and functional integrity, progressively affecting organismal health. A major hallmark of aging is the accumulation of senescent cells, which have entered a state of irreversible cell cycle arrest after experiencing inherent or environmental stresses. Although cellular senescence is essential in several physiological events, it plays a detrimental role in a large array of age-related pathologies. Recent biomedical advances in specifically targeting senescent cells to improve healthy aging, or alternatively, postpone natural aging and age-related diseases, a strategy termed senotherapy, have attracted substantial interest in both scientific and medical communities. Challenges for aging research are highlighted and potential avenues that can be leveraged for therapeutic interventions to control aging and age-related disorders in the current era of precision medicine.
Collapse
Affiliation(s)
- Shuling Song
- Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- School of GerontologyBinzhou Medical UniversityYantaiShandong264003China
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMN55905USA
| | - Jing Jiang
- School of PharmacyBinzhou Medical UniversityYantaiShandong264003China
| | - James L. Kirkland
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMN55905USA
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- School of PharmacyBinzhou Medical UniversityYantaiShandong264003China
- Department of Medicine and VAPSHCSUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
284
|
Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells 2020; 9:cells9122540. [PMID: 33255630 PMCID: PMC7761055 DOI: 10.3390/cells9122540] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer-related death and is the most common type of liver cancer. Due to the current paucity of drugs for HCC therapy there is a pressing need to develop new therapeutic concepts. In recent years, the role of Serum Response Factor (SRF) and its coactivators, Myocardin-Related Transcription Factors A and B (MRTF-A and -B), in HCC formation and progression has received considerable attention. Targeting MRTFs results in HCC growth arrest provoked by oncogene-induced senescence. The induction of senescence acts as a tumor-suppressive mechanism and therefore gains consideration for pharmacological interventions in cancer therapy. In this article, we describe the key features and the functional role of senescence in light of the development of novel drug targets for HCC therapy with a focus on MRTFs.
Collapse
|
285
|
Venosa A. Senescence in Pulmonary Fibrosis: Between Aging and Exposure. Front Med (Lausanne) 2020; 7:606462. [PMID: 33282895 PMCID: PMC7689159 DOI: 10.3389/fmed.2020.606462] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
To date, chronic pulmonary pathologies represent the third leading cause of death in the elderly population. Evidence-based projections suggest that >65 (years old) individuals will account for approximately a quarter of the world population before the turn of the century. Genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, are described as the nine “hallmarks” that govern cellular fitness. Any deviation from the normal pattern initiates a complex cascade of events culminating to a disease state. This blueprint, originally employed to describe aberrant changes in cancer cells, can be also used to describe aging and fibrosis. Pulmonary fibrosis (PF) is the result of a progressive decline in injury resolution processes stemming from endogenous (physiological decline or somatic mutations) or exogenous stress. Environmental, dietary or occupational exposure accelerates the pathogenesis of a senescent phenotype based on (1) window of exposure; (2) dose, duration, recurrence; and (3) cells type being targeted. As the lung ages, the threshold to generate an irreversibly senescent phenotype is lowered. However, we do not have sufficient knowledge to make accurate predictions. In this review, we provide an assessment of the literature that interrogates lung epithelial, mesenchymal, and immune senescence at the intersection of aging, environmental exposure and pulmonary fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, UT, United States
| |
Collapse
|
286
|
Santin Y, Lluel P, Rischmann P, Gamé X, Mialet-Perez J, Parini A. Cellular Senescence in Renal and Urinary Tract Disorders. Cells 2020; 9:cells9112420. [PMID: 33167349 PMCID: PMC7694377 DOI: 10.3390/cells9112420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is a state of cell cycle arrest induced by repetitive cell mitoses or different stresses, which is implicated in various physiological or pathological processes. The beneficial or adverse effects of senescent cells depend on their transitory or persistent state. Transient senescence has major beneficial roles promoting successful post-injury repair and inhibiting malignant transformation. On the other hand, persistent accumulation of senescent cells has been associated with chronic diseases and age-related illnesses like renal/urinary tract disorders. The deleterious effects of persistent senescent cells have been related, in part, to their senescence-associated secretory phenotype (SASP) characterized by the release of a variety of factors responsible for chronic inflammation, extracellular matrix adverse remodeling, and fibrosis. Recently, an increase in senescent cell burden has been reported in renal, prostate, and bladder disorders. In this review, we will summarize the molecular mechanisms of senescence and their implication in renal and urinary tract diseases. We will also discuss the differential impacts of transient versus persistent status of cellular senescence, as well as the therapeutic potential of senescent cell targeting in these diseases.
Collapse
Affiliation(s)
- Yohan Santin
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1048—I2MC, 31432 Toulouse, France; (Y.S.); (J.M.-P.)
| | - Philippe Lluel
- Urosphere SAS, Rue des Satellites, 31400 Toulouse, France;
| | - Pascal Rischmann
- Department of Urology, Kidney Transplantation and Andrology, Toulouse Rangueil University Hospital, 31432 Toulouse, France; (P.R.); (X.G.)
| | - Xavier Gamé
- Department of Urology, Kidney Transplantation and Andrology, Toulouse Rangueil University Hospital, 31432 Toulouse, France; (P.R.); (X.G.)
| | - Jeanne Mialet-Perez
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1048—I2MC, 31432 Toulouse, France; (Y.S.); (J.M.-P.)
| | - Angelo Parini
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1048—I2MC, 31432 Toulouse, France; (Y.S.); (J.M.-P.)
- Correspondence: ; Tel.: +33-561325601
| |
Collapse
|
287
|
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med 2020; 288:518-536. [PMID: 32686219 PMCID: PMC7405395 DOI: 10.1111/joim.13141] [Citation(s) in RCA: 633] [Impact Index Per Article: 126.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Senolytics are a class of drugs that selectively clear senescent cells (SC). The first senolytic drugs Dasatinib, Quercetin, Fisetin and Navitoclax were discovered using a hypothesis-driven approach. SC accumulate with ageing and at causal sites of multiple chronic disorders, including diseases accounting for the bulk of morbidity, mortality and health expenditures. The most deleterious SC are resistant to apoptosis and have up-regulation of anti-apoptotic pathways which defend SC against their own inflammatory senescence-associated secretory phenotype (SASP), allowing them to survive, despite killing neighbouring cells. Senolytics transiently disable these SCAPs, causing apoptosis of those SC with a tissue-destructive SASP. Because SC take weeks to reaccumulate, senolytics can be administered intermittently - a 'hit-and-run' approach. In preclinical models, senolytics delay, prevent or alleviate frailty, cancers and cardiovascular, neuropsychiatric, liver, kidney, musculoskeletal, lung, eye, haematological, metabolic and skin disorders as well as complications of organ transplantation, radiation and cancer treatment. As anticipated for agents targeting the fundamental ageing mechanisms that are 'root cause' contributors to multiple disorders, potential uses of senolytics are protean, potentially alleviating over 40 conditions in preclinical studies, opening a new route for treating age-related dysfunction and diseases. Early pilot trials of senolytics suggest they decrease senescent cells, reduce inflammation and alleviate frailty in humans. Clinical trials for diabetes, idiopathic pulmonary fibrosis, Alzheimer's disease, COVID-19, osteoarthritis, osteoporosis, eye diseases and bone marrow transplant and childhood cancer survivors are underway or beginning. Until such studies are done, it is too early for senolytics to be used outside of clinical trials.
Collapse
Affiliation(s)
- J L Kirkland
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - T Tchkonia
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
288
|
Aerobic exercise induces tumor suppressor p16 INK4a expression of endothelial progenitor cells in human skeletal muscle. Aging (Albany NY) 2020; 12:20226-20234. [PMID: 33104519 PMCID: PMC7655215 DOI: 10.18632/aging.103763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022]
Abstract
Aerobic exercise induces oxidative stress and DNA damage, nevertheless, lowers cancer incidence. It remains unclear how genetic stability is maintained under this condition. Here, we examined the dynamic change of the tumor suppressor p16INK4a in cells of skeletal muscle among young men following 60-min of aerobic cycling at 70% maximal oxygen consumption (V̇O2max). Rg1 (5 mg, an immunostimulant ginsenoside) and placebo (PLA) were supplemented 1 h before exercise. Data from serial muscle biopsies shows unchanged p16INK4a+ cells after exercise followed by a considerable increase (+21-fold) in vastus lateralis muscle 3 h later. This increase was due to the accumulation of endothelial progenitor cells (p16INK4a+/CD34+) surrounding myofibers and other infiltrated nucleated cells (p16INK4a+/CD34-) in necrotic myofibers. During the Rg1 trial, acute increases of p16INK4a+ cells in the muscle occurred immediately after exercise (+3-fold) and reversed near baseline 3 h later. Rg1 also lowered IL-10 mRNA relative to PLA 3 h after exercise. Post-exercise increases in VEGF mRNA and CD163+ macrophages were similar for PLA and Rg1 trials. Conclusion: The marked increases in p16INK4a protein expression of endothelial progenitor cells in skeletal muscle implicates a protective mechanism for maintaining genetic stability against aerobic exercise. Rg1 accelerates resolution of the exercise-induced stress response.
Collapse
|
289
|
Cellular senescence contributes to radiation-induced hyposalivation by affecting the stem/progenitor cell niche. Cell Death Dis 2020; 11:854. [PMID: 33056980 PMCID: PMC7566836 DOI: 10.1038/s41419-020-03074-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Radiotherapy for head and neck cancer is associated with impairment of salivary gland function and consequent xerostomia, which has a devastating effect on the quality of life of the patients. The mechanism of radiation-induced salivary gland damage is not completely understood. Cellular senescence is a permanent state of cell cycle arrest accompanied by a secretory phenotype which contributes to inflammation and tissue deterioration. Genotoxic stresses, including radiation-induced DNA damage, are known to induce a senescence response. Here, we show that radiation induces cellular senescence preferentially in the salivary gland stem/progenitor cell niche of mouse models and patients. Similarly, salivary gland-derived organoids show increased expression of senescence markers and pro-inflammatory senescence-associated secretory phenotype (SASP) factors after radiation exposure. Clearance of senescent cells by selective removal of p16Ink4a-positive cells by the drug ganciclovir or the senolytic drug ABT263 lead to increased stem cell self-renewal capacity as measured by organoid formation efficiency. Additionally, pharmacological treatment with ABT263 in mice irradiated to the salivary glands mitigates tissue degeneration, thus preserving salivation. Our data suggest that senescence in the salivary gland stem/progenitor cell niche contributes to radiation-induced hyposalivation. Pharmacological targeting of senescent cells may represent a therapeutic strategy to prevent radiotherapy-induced xerostomia.
Collapse
|
290
|
Nehme J, Borghesan M, Mackedenski S, Bird TG, Demaria M. Cellular senescence as a potential mediator of COVID-19 severity in the elderly. Aging Cell 2020; 19:e13237. [PMID: 32955770 PMCID: PMC7576296 DOI: 10.1111/acel.13237] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 01/10/2023] Open
Abstract
SARS-CoV-2 is a novel betacoronavirus which infects the lower respiratory tract and can cause coronavirus disease 2019 (COVID-19), a complex respiratory distress syndrome. Epidemiological data show that COVID-19 has a rising mortality particularly in individuals with advanced age. Identifying a functional association between SARS-CoV-2 infection and the process of biological aging may provide a tractable avenue for therapy to prevent acute and long-term disease. Here, we discuss how cellular senescence-a state of stable growth arrest characterized by pro-inflammatory and pro-disease functions-can hypothetically be a contributor to COVID-19 pathogenesis, and a potential pharmaceutical target to alleviate disease severity. First, we define why older COVID-19 patients are more likely to accumulate high levels of cellular senescence. Second, we describe how senescent cells can contribute to an uncontrolled SARS-CoV-2-mediated cytokine storm and an excessive inflammatory reaction during the early phase of the disease. Third, we discuss the various mechanisms by which senescent cells promote tissue damage leading to lung failure and multi-tissue dysfunctions. Fourth, we argue that a high senescence burst might negatively impact on vaccine efficacy. Measuring the burst of cellular senescence could hypothetically serve as a predictor of COVID-19 severity, and targeting senescence-associated mechanisms prior and after SARS-CoV-2 infection might have the potential to limit a number of severe damages and to improve the efficacy of vaccinations.
Collapse
Affiliation(s)
- Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
- Doctoral School of Science and TechnologyLebanese UniversityBeirutLebanon
| | - Michela Borghesan
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
| | - Sebastian Mackedenski
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
| | - Thomas G. Bird
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
- MRC Centre for Inflammation ResearchThe Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
| |
Collapse
|
291
|
Oh J, Wang W, Thomas R, Su DM. Thymic rejuvenation via FOXN1-reprogrammed embryonic fibroblasts (FREFs) to counteract age-related inflammation. JCI Insight 2020; 5:140313. [PMID: 32790650 PMCID: PMC7526556 DOI: 10.1172/jci.insight.140313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Age-associated systemic, chronic inflammation is partially attributed to increased self-autoreactivity, resulting from disruption of central tolerance in the aged, involuted thymus. This involution causally results from gradually decreased expression of the transcription factor FOXN1 in thymic epithelial cells (TECs), whereas exogenous FOXN1 in TECs can partially rescue age-related thymic involution. TECs induced from FOXN1-overexpressing embryonic fibroblasts can generate an ectopic de novo thymus under the kidney capsule, and intrathymic injection of naturally young TECs can lead to middle-aged thymus regrowth. Therefore, as a thymic rejuvenation strategy, we extended these 2 findings by combining them with 2 types of promoter-driven (Rosa26CreERT and FoxN1Cre) Cre-mediated FOXN1-reprogrammed embryonic fibroblasts (FREFs). We engrafted these FREFs directly into the aged murine thymus. We found substantial regrowth of the native aged thymus with rejuvenated architecture and function in both males and females, exhibiting increased thymopoiesis and reinforced thymocyte negative selection, along with reduced senescent T cells and autoreactive T cell–mediated inflammation in old mice. Therefore, this approach has preclinical significance and presents a strategy to potentially rescue decreased thymopoiesis and perturbed negative selection to substantially, albeit partially, restore defective central tolerance and reduce subclinical autoimmune symptoms in elderly people. Engrafting FOXN1-reprogrammed embryonic fibroblast directly into the aged murine thymus promoted regrowth of the native thymus with rejuvenated architecture and function.
Collapse
|
292
|
Barth E, Sieber P, Stark H, Schuster S. Robustness during Aging-Molecular Biological and Physiological Aspects. Cells 2020; 9:E1862. [PMID: 32784503 PMCID: PMC7465392 DOI: 10.3390/cells9081862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding the process of aging is still an important challenge to enable healthy aging and to prevent age-related diseases. Most studies in age research investigate the decline in organ functionality and gene activity with age. The focus on decline can even be considered a paradigm in that field. However, there are certain aspects that remain surprisingly stable and keep the organism robust. Here, we present and discuss various properties of robust behavior during human and animal aging, including physiological and molecular biological features, such as the hematocrit, body temperature, immunity against infectious diseases and others. We examine, in the context of robustness, the different theories of how aging occurs. We regard the role of aging in the light of evolution.
Collapse
Affiliation(s)
- Emanuel Barth
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Patricia Sieber
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Heiko Stark
- Institute of Zoology and Evolutionary Research with Phyletic Museum, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Stefan Schuster
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, 07743 Jena, Germany;
| |
Collapse
|
293
|
Macrophage Immunometabolism and Inflammaging: Roles of Mitochondrial Dysfunction, Cellular Senescence, CD38, and NAD. ACTA ACUST UNITED AC 2020; 2:e200026. [PMID: 32774895 PMCID: PMC7409778 DOI: 10.20900/immunometab20200026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aging is a complex process that involves dysfunction on multiple levels, all of which seem to converge on inflammation. Macrophages are intimately involved in initiating and resolving inflammation, and their dysregulation with age is a primary contributor to inflammaging—a state of chronic, low-grade inflammation that develops during aging. Among the age-related changes that occur to macrophages are a heightened state of basal inflammation and diminished or hyperactive inflammatory responses, which seem to be driven by metabolic-dependent epigenetic changes. In this review article we provide a brief overview of mitochondrial functions and age-related changes that occur to macrophages, with an emphasis on how the inflammaging environment, senescence, and NAD decline can affect their metabolism, promote dysregulation, and contribute to inflammaging and age-related pathologies.
Collapse
|
294
|
Song S, Lam EWF, Tchkonia T, Kirkland JL, Sun Y. Senescent Cells: Emerging Targets for Human Aging and Age-Related Diseases. Trends Biochem Sci 2020; 45:578-592. [PMID: 32531228 PMCID: PMC7649645 DOI: 10.1016/j.tibs.2020.03.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023]
Abstract
Aging is a major risk factor for numerous human pathologies, including cardiovascular, metabolic, musculoskeletal, and neurodegenerative conditions and various malignancies. While our understanding of aging is far from complete, recent advances suggest that targeting fundamental aging processes can delay, prevent, or alleviate age-related disorders. Cellular senescence is physiologically beneficial in several contexts, but it has causal roles in multiple chronic diseases. New studies have illustrated the promising feasibility and safety to selectively ablate senescent cells from tissues, a therapeutic modality that holds potential for treating multiple chronic pathologies and extending human healthspan. Here, we review molecular links between cellular senescence and age-associated complications and highlight novel therapeutic avenues that may be exploited to target senescent cells in future geriatric medicine.
Collapse
Affiliation(s)
- Shuling Song
- School of Gerontology, Binzhou Medical University, Yantai, Shandong 264003, China; Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
295
|
Wang H, Zhou Y, Yin Z, Chen L, Jin L, Cui Q, Xue L. Transcriptome analysis of common and diverged circulating miRNAs between arterial and venous during aging. Aging (Albany NY) 2020; 12:12987-13004. [PMID: 32609094 PMCID: PMC7377886 DOI: 10.18632/aging.103385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/25/2020] [Indexed: 12/30/2022]
Abstract
Circulating miRNAs have received extensive attention as non-invasive biomarkers for prediction and diagnosis of disease. However, most samples have been obtained from peripheral venous blood. To evaluate whether peripheral venous miRNAs represent circulating miRNAs from all blood vessels under a given condition, such as aging, we compared the miRNA profiles of venous and arterial plasma between young and aged rats by Illumina next-generation sequencing. The DEseq2 tool was used to obtain differentially-expressed miRNAs. We observed 105 aging-related deregulated miRNAs in vein and 62 in artery, which were highly associated with cell survival and inflammation, respectively. On the other hand, the young and aged groups exhibited a unique arterial-venous bias. There were 54 differentially-expressed miRNAs in the young group and 42 in the aged group; only 8 miRNAs were shared. Further transcriptional factors enrichment analysis found that the shared miRNAs could be partially upregulated by NF-κB and SIRT1. These transcriptional factors could be organ-specific and/or regulated in physiological and aging states as possible causal factors. This study suggested the potential application of circulating miRNAs, which reflect the systematic response to certain conditions, such as aging, and the importance of origin selection for candidate circulating miRNAs.
Collapse
Affiliation(s)
- Hao Wang
- Medical Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zhongnan Yin
- Biobank, Peking University Third Hospital, Beijing 100191, China
| | - Li Chen
- Medical Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Ling Jin
- Biobank, Peking University Third Hospital, Beijing 100191, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lixiang Xue
- Medical Research Center, Peking University Third Hospital, Beijing 100191, China.,Biobank, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
296
|
Cianflone E, Torella M, Biamonte F, De Angelis A, Urbanek K, Costanzo FS, Rota M, Ellison-Hughes GM, Torella D. Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells 2020; 9:E1558. [PMID: 32604861 PMCID: PMC7349658 DOI: 10.3390/cells9061558] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Adult stem/progenitor are a small population of cells that reside in tissue-specific niches and possess the potential to differentiate in all cell types of the organ in which they operate. Adult stem cells are implicated with the homeostasis, regeneration, and aging of all tissues. Tissue-specific adult stem cell senescence has emerged as an attractive theory for the decline in mammalian tissue and organ function during aging. Cardiac aging, in particular, manifests as functional tissue degeneration that leads to heart failure. Adult cardiac stem/progenitor cell (CSC) senescence has been accordingly associated with physiological and pathological processes encompassing both non-age and age-related decline in cardiac tissue repair and organ dysfunction and disease. Senescence is a highly active and dynamic cell process with a first classical hallmark represented by its replicative limit, which is the establishment of a stable growth arrest over time that is mainly secondary to DNA damage and reactive oxygen species (ROS) accumulation elicited by different intrinsic stimuli (like metabolism), as well as external stimuli and age. Replicative senescence is mainly executed by telomere shortening, the activation of the p53/p16INK4/Rb molecular pathways, and chromatin remodeling. In addition, senescent cells produce and secrete a complex mixture of molecules, commonly known as the senescence-associated secretory phenotype (SASP), that regulate most of their non-cell-autonomous effects. In this review, we discuss the molecular and cellular mechanisms regulating different characteristics of the senescence phenotype and their consequences for adult CSCs in particular. Because senescent cells contribute to the outcome of a variety of cardiac diseases, including age-related and unrelated cardiac diseases like diabetic cardiomyopathy and anthracycline cardiotoxicity, therapies that target senescent cell clearance are actively being explored. Moreover, the further understanding of the reversibility of the senescence phenotype will help to develop novel rational therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Francesco S. Costanzo
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA;
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guys Campus-Great Maze Pond rd, London SE1 1UL, UK;
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
297
|
Wang J, Zhu G, Wang X, Cai J, Xie L, Zheng W, Feng Y, Guo Q, Chen H, Cai L. An injectable liposome for sustained release of icariin to the treatment of acute blunt muscle injury. J Pharm Pharmacol 2020; 72:1152-1164. [PMID: 32567690 DOI: 10.1111/jphp.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/23/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Icariin, extracted from Epimedium, is a kind of flavonoid and possesses osteogenesis and antioxidant. This study aimed to evaluate the therapeutic effects of icariin liposome on acute blunt skeletal muscle injury in rats. METHODS Icariin liposome was prepared by the thin-film dispersion method. After muscle injury, the corresponding treatment measures were given every day for two weeks. Recovery and mechanism of muscle injury were evaluated by QRT-PCR, HE, immunohistochemistry, malondialdehyde, superoxide dismutase and serological tests. KEY FINDINGS The particle size, polydispersity index, zeta potential, encapsulation efficiency and drug loading of icariin liposomes were 171.37 ± 38.23 nm, 0.27 ± 0.01, -5.59 ± 1.36 mV, 78.15 ± 2.04% and 15.62%, respectively. The QRT-PCR showed that icariin liposome significantly promoted the expression of MHCIIB and vimentin. Through HE, immunohistochemistry, ELISA and serological tests, we found that icariin liposome effectively promoted desmin expression, reduced collagen I expression and inhibited the production of pro-inflammatory factors, including TNF-α and IL-6. Icariin liposome therapy significantly reduced the level of malondialdehyde and increased the activity of superoxide dismutase. CONCLUSIONS Icariin liposome has excellent therapeutic effects on acute blunt muscle injury in rats by improving immunity, repairing cytoskeleton and cellular integrity, anti-inflammation, anti-fibrosis and antioxidant stress.
Collapse
Affiliation(s)
- Jinwu Wang
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Gaosheng Zhu
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Xingyu Wang
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Jie Cai
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Linzhen Xie
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Wenhao Zheng
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Yongzeng Feng
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Qiang Guo
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Hua Chen
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Leyi Cai
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
298
|
Gabuzda D, Jamieson BD, Collman RG, Lederman MM, Burdo TH, Deeks SG, Dittmer DP, Fox HS, Funderburg NT, Pahwa SG, Pandrea I, Wilson CC, Hunt PW. Pathogenesis of Aging and Age-related Comorbidities in People with HIV: Highlights from the HIV ACTION Workshop. Pathog Immun 2020; 5:143-174. [PMID: 32856008 PMCID: PMC7449259 DOI: 10.20411/pai.v5i1.365] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
People with HIV (PWH) experience accentuated biological aging, as defined by markers of inflammation, immune dysfunction, and the epigenetic clock. They also have an elevated risk of multiple age-associated comorbidities. To discuss current knowledge, research gaps, and priorities in aging and age-related comorbidities in treated HIV infection, the NIH program staff organized a workshop held in Bethesda, Maryland in September 2019. This review article describes highlights of discussions led by the Pathogenesis/Basic Science Research working group that focused on three high priority topics: immunopathogenesis; the microbiome/virome; and aging and senescence. We summarize knowledge in these fields and describe key questions for research on the pathogenesis of aging and age-related comorbidities in PWH. Understanding the drivers and mechanisms underlying accentuated biological aging is a high priority that will help identify potential therapeutic targets to improve healthspan in older PWH.
Collapse
Affiliation(s)
- Dana Gabuzda
- Department of Cancer Immunology and Virology; Dana-Farber Cancer Institute; Boston, Massachusetts; Department of Neurology; Harvard Medical School; Boston, Massachusetts
| | - Beth D Jamieson
- Department of Medicine; David Geffen School of Medicine; University of California; Los Angeles, California
| | - Ronald G Collman
- Department of Medicine; University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania
| | - Michael M Lederman
- Department of Medicine; Case Western Reserve University School of Medicine; Cleveland, Ohio
| | - Tricia H Burdo
- Department of Neuroscience; Lewis Katz School of Medicine; Temple University; Philadelphia, Pennsylvania
| | - Steven G Deeks
- Department of Medicine; University of California; San Francisco, California
| | - Dirk P Dittmer
- Department of Microbiology and Immunology; University of North Carolina School of Medicine; Chapel Hill, North Carolina
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience; University of Nebraska Medical Center; Omaha, Nebraska
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science; School of Health and Rehabilitation Sciences; Ohio State University College of Medicine; Columbus, Ohio
| | - Savita G Pahwa
- Department of Microbiology and Immunology; University of Miami Miller School of Medicine; Miami, Florida
| | - Ivona Pandrea
- Department of Microbiology and Molecular Genetics; School of Medicine; University of Pittsburgh; Pittsburgh, Pennsylvania
| | - Cara C Wilson
- Department of Medicine; Division of Infectious Diseases; University of Colorado Anschutz Medical Campus; Aurora, Colorado
| | - Peter W Hunt
- Department of Medicine; University of California; San Francisco, California
| |
Collapse
|
299
|
Zolotovskaya IA, Davydkin IL. [Antiresorptive-cytokine effects of the chondroprotective therapy in patients with lower back pain]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:65-71. [PMID: 32490621 DOI: 10.17116/jnevro202012004165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To evaluate the antiresorptive-cytokine effects of chondroitin sulfate on non-specific lower back pain in patients with knee osteoarthritis (OA). MATERIALS AND METHODS Using the envelope method, 231 patients were randomized into two groups: group 1 (n=116, main) received nonsteroidal anti-inflammatory drugs (NSAIDs) and chondrogard, group 2 (n=115, comparison) received only NSAIDs. The 2-month study included 3 visits (V): V1 - at the beginning of the study, V2 - after 10 days, V3 - after 60 days with the assessment of blood parameters: transforming growth factor β1 (TFR β1), interleukin (IL)-1β and IL-6, beta-Crosslaps, bone matrix formation indicator P1NP (n-terminal propeptide procollagen type 1), and determination of the level of deoxypyridinoline (DPID) in the urine. RESULTS AND CONCLUSION At the end of the study, there is a significant decrease in all studied cytokines in patients of group 1 compared to group 2, as well as indicators of beta-Crosslaps (p<0,001) and DPID (p<0,001), which may indicate the presence of its own antiresorptive-cytokine effect in chondroitin sulfate.
Collapse
|
300
|
Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol 2020; 21:501-521. [PMID: 32424334 DOI: 10.1038/s41580-020-0244-x] [Citation(s) in RCA: 1175] [Impact Index Per Article: 235.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The cGAS-STING signalling axis, comprising the synthase for the second messenger cyclic GMP-AMP (cGAS) and the cyclic GMP-AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS-STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS-STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome-dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid-liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS-STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved.
Collapse
Affiliation(s)
- Karl-Peter Hopfner
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany. .,Gene Center, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Veit Hornung
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany. .,Gene Center, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|