251
|
Renal lineage cells as a source for renal regeneration. Pediatr Res 2018; 83:267-274. [PMID: 28985199 DOI: 10.1038/pr.2017.255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 12/24/2022]
Abstract
The mammalian kidney is a highly complex organ, composed of various cell types within a unique structural framework. Nonetheless, in recent years, giant leaps in our understanding of nephrogenesis and the origin of new cells in the adult kidney have resulted in novel routes to regenerate damaged nephrons. While several strategies can be envisioned to achieve this aim, one common theme is the reliance on renal lineage cells, as extrarenal cells, such as bone marrow-derived cells, have been shown to be devoid of renal differentiation capacity. Herein, we will present the main motivation for the pursuit for cell-based therapies, which is the ever growing problem of chronic kidney disease (CKD), and discuss different strategies toward replenishing the damaged renal parenchyma. These include transplantation of fetal kidney grafts or fetal kidney stem cells, directed differentiation of pluripotent stem cells into kidney epithelia, establishment of renal progenitors from the adult kidney, and genetic reprogramming of mature kidney cells into a progenitor state. Taken together with novel techniques recapitulating the three-dimensional developmental environment, these advances are expected to take the field into a new era, bringing us closer than ever to the day when kidney stem cell-based therapy becomes a viable therapeutic option.
Collapse
|
252
|
Oshima M, Ogawa M, Tsuji T. Regeneration of complex oral organs using 3D cell organization technology. Curr Opin Cell Biol 2017; 49:84-90. [PMID: 29289879 DOI: 10.1016/j.ceb.2017.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
Abstract
The development of organoid techniques for regenerative therapy has progressed remarkably with the use of tissue-derived stem cells and pluripotent stem cells based on stem cell biology and tissue engineering technology. To realize whole-organ replacement therapy as next-generation regenerative medicine, it is expected that fully functional bioengineered organs can be reconstructed using an in vitro three-dimensional (3D) bioengineered organ germ and organoids by stem cell manipulation and self-organization. In this mini-review, we focused on substantial advances of 3D bioengineering technologies for the regeneration of complex oral organs with the reconstruction of 3D bioengineered organ germ using organ-inductive potential embryo-derived epithelial and mesenchymal cells. These bioengineering technologies have the potential for realization of future organ replacement therapy.
Collapse
Affiliation(s)
- Masamitsu Oshima
- Department of Stomatognathic Function and Occlusal Reconstruction, Institute of Biomedical Sciences, Clinical Dentistry, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Miho Ogawa
- RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan; Organ Technologies Inc., Minato-ku, Tokyo 105-0001, Japan
| | - Takashi Tsuji
- RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan; Organ Technologies Inc., Minato-ku, Tokyo 105-0001, Japan.
| |
Collapse
|
253
|
Hughes AJ, Miyazaki H, Coyle MC, Zhang J, Laurie MT, Chu D, Vavrušová Z, Schneider RA, Klein OD, Gartner ZJ. Engineered Tissue Folding by Mechanical Compaction of the Mesenchyme. Dev Cell 2017; 44:165-178.e6. [PMID: 29290586 DOI: 10.1016/j.devcel.2017.12.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 01/08/2023]
Abstract
Many tissues fold into complex shapes during development. Controlling this process in vitro would represent an important advance for tissue engineering. We use embryonic tissue explants, finite element modeling, and 3D cell-patterning techniques to show that mechanical compaction of the extracellular matrix during mesenchymal condensation is sufficient to drive tissue folding along programmed trajectories. The process requires cell contractility, generates strains at tissue interfaces, and causes patterns of collagen alignment around and between condensates. Aligned collagen fibers support elevated tensions that promote the folding of interfaces along paths that can be predicted by modeling. We demonstrate the robustness and versatility of this strategy for sculpting tissue interfaces by directing the morphogenesis of a variety of folded tissue forms from patterns of mesenchymal condensates. These studies provide insight into the active mechanical properties of the embryonic mesenchyme and establish engineering strategies for more robustly directing tissue morphogenesis ex vivo.
Collapse
Affiliation(s)
- Alex J Hughes
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA; Center for Cellular Construction, University of California, San Francisco, CA 94143, USA
| | - Hikaru Miyazaki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA; Graduate Program in Bioengineering, University of California, Berkeley, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Maxwell C Coyle
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jesse Zhang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA; Graduate Program in Bioengineering, University of California, Berkeley, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
| | - Matthew T Laurie
- Department of Biochemistry and Molecular Biology, University of California, San Francisco, CA 94143, USA
| | - Daniel Chu
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143, USA
| | - Zuzana Vavrušová
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143, USA
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA; Center for Cellular Construction, University of California, San Francisco, CA 94143, USA; Graduate Program in Bioengineering, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
254
|
Narciso C, Zartman J. Reverse-engineering organogenesis through feedback loops between model systems. Curr Opin Biotechnol 2017; 52:1-8. [PMID: 29275226 DOI: 10.1016/j.copbio.2017.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023]
Abstract
Biological complexity and ethical limitations necessitate models of human development. Traditionally, genetic model systems have provided inexpensive routes to define mechanisms governing organ development. Recent progress has led to 3D human organoid models of development and disease. However, robust methods to control the size and morphology of organoids for high throughput studies need to be developed. Additionally, insights from multiple developmental contexts are required to reveal conserved genes and processes regulating organ growth and development. Positive feedback between quantitative studies using mammalian organoids and insect micro-organs enable identification of underlying principles for organ size and shape control. Advances in the field of multicellular systems engineering are enabling unprecedented high-content studies in developmental biology and disease modeling. These will lead to fundamental advances in regenerative medicine and tissue-engineered soft robotics.
Collapse
Affiliation(s)
- Cody Narciso
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States.
| |
Collapse
|
255
|
Hu JL, Todhunter ME, LaBarge MA, Gartner ZJ. Opportunities for organoids as new models of aging. J Cell Biol 2017; 217:39-50. [PMID: 29263081 PMCID: PMC5748992 DOI: 10.1083/jcb.201709054] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
The biology of aging is challenging to study, particularly in humans. As a result, model organisms are used to approximate the physiological context of aging in humans. However, the best model organisms remain expensive and time-consuming to use. More importantly, they may not reflect directly on the process of aging in people. Human cell culture provides an alternative, but many functional signs of aging occur at the level of tissues rather than cells and are therefore not readily apparent in traditional cell culture models. Organoids have the potential to effectively balance between the strengths and weaknesses of traditional models of aging. They have sufficient complexity to capture relevant signs of aging at the molecular, cellular, and tissue levels, while presenting an experimentally tractable alternative to animal studies. Organoid systems have been developed to model many human tissues and diseases. Here we provide a perspective on the potential for organoids to serve as models for aging and describe how current organoid techniques could be applied to aging research.
Collapse
Affiliation(s)
- Jennifer L Hu
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA
| | - Michael E Todhunter
- Center for Cancer and Aging, Beckman Research Institute at City of Hope, Duarte, CA
| | - Mark A LaBarge
- Center for Cancer and Aging, Beckman Research Institute at City of Hope, Duarte, CA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA .,National Science Foundation Center for Cellular Construction, University of California San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
256
|
Laurent J, Blin G, Chatelain F, Vanneaux V, Fuchs A, Larghero J, Théry M. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat Biomed Eng 2017; 1:939-956. [DOI: 10.1038/s41551-017-0166-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
|
257
|
|
258
|
Murata D, Akieda S, Misumi K, Nakayama K. Osteochondral Regeneration with a Scaffold-Free Three-Dimensional Construct of Adipose Tissue-Derived Mesenchymal Stromal Cells in Pigs. Tissue Eng Regen Med 2017; 15:101-113. [PMID: 30603538 PMCID: PMC6171634 DOI: 10.1007/s13770-017-0091-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/12/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
Osteochondral lesion is a major joint disease in humans. Therefore, this study was designed to investigate the regeneration of articular cartilage and subchondral bone, using three-dimensional constructs of autologous adipose tissue-derived mesenchymal stromal cells without any biocompatible scaffolds. Mesenchymal stromal cells were harvested by liposuction from seven pigs, isolated enzymatically, and expanded until construct creation. The pig models had two osteochondral defects (cylindrical defects with a diameter of 5.2 mm and a depth of 5 mm) in one of their patello-femoral grooves. A columnar structure consisting of approximately 770 spheroids of 5 × 104 autologous mesenchymal stromal cells were implanted into one of the defects (implanted defect), while the other defect was not implanted (control). The defects were evaluated pathologically at 6 months (in three pigs) and 12 months (in five pigs) after implantation. At 6 months after surgery, histopathology revealed active endochondral ossification underneath the plump fibrocartilage in the implanted defects, but a deficiency of fibrocartilaginous coverage in the controls. At 12 months after surgery, the fibrocartilage was transforming into hyaline cartilage as thick as the surrounding normal cartilage and the subchondral bone was thickening in the implanted defects. The histological averages of the implanted sites were significantly higher than those in the control sites at both 6 and 12 months after surgery. The implantation of a scaffold-free three-dimensional construct of autologous mesenchymal stromal cells into an osteochondral defect can induce regeneration of hyaline cartilage and subchondral bone structures over a period of 12 months.
Collapse
Affiliation(s)
- Daiki Murata
- 1Department of Veterinary Clinical Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 21-24 Korimoto 1-chome, Kagoshima, 890-0065 Japan
| | - Shizuka Akieda
- Cyfuse Biomedical K.K, 1-1 Maidashi 3-chome, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Kazuhiro Misumi
- 1Department of Veterinary Clinical Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 21-24 Korimoto 1-chome, Kagoshima, 890-0065 Japan
| | - Koichi Nakayama
- 3Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Honjyo 1-chome, Honjyo-cho, Saga, 840-8502 Japan
| |
Collapse
|
259
|
Kawamura R, Miyazaki M, Shimizu K, Matsumoto Y, Silberberg YR, Sathuluri RR, Iijima M, Kuroda S, Iwata F, Kobayashi T, Nakamura C. A New Cell Separation Method Based on Antibody-Immobilized Nanoneedle Arrays for the Detection of Intracellular Markers. NANO LETTERS 2017; 17:7117-7124. [PMID: 29047282 DOI: 10.1021/acs.nanolett.7b03918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Focusing on intracellular targets, we propose a new cell separation technique based on a nanoneedle array (NNA) device, which allows simultaneous insertion of multiple needles into multiple cells. The device is designed to target and lift ("fish") individual cells from a mixed population of cells on a substrate using an antibody-functionalized NNA. The mechanics underlying this approach were validated by force analysis using an atomic force microscope. Accurate high-throughput separation was achieved using one-to-one contacts between the nanoneedles and the cells by preparing a single-cell array in which the positions of the cells were aligned with 10,000 nanoneedles in the NNA. Cell-type-specific separation was realized by controlling the adhesion force so that the cells could be detached in cell-type-independent manner. Separation of nestin-expressing neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) was demonstrated using the proposed technology, and successful differentiation to neuronal cells was confirmed.
Collapse
Affiliation(s)
- Ryuzo Kawamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5 , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Minami Miyazaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-26 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Keita Shimizu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-26 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yuta Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-26 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yaron R Silberberg
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5 , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Ramachandra Rao Sathuluri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5 , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Masumi Iijima
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research (ISIR-Sanken), Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shun'ichi Kuroda
- Department of Biomolecular Science and Reaction, The Institute of Scientific and Industrial Research (ISIR-Sanken), Osaka University , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Futoshi Iwata
- Department of Mechanical Engineering, Shizuoka University , 3-5-1 Johoku, Hamamatsu 432-8561, Japan
| | - Takeshi Kobayashi
- Research Center for Ubiquitous MEMS and Micro Engineering, AIST , 1-2-1, Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Chikashi Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 5 , 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology , 2-24-26 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
260
|
In vivo and ex vivo methods of growing a liver bud through tissue connection. Sci Rep 2017; 7:14085. [PMID: 29074999 PMCID: PMC5658340 DOI: 10.1038/s41598-017-14542-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/12/2017] [Indexed: 12/28/2022] Open
Abstract
Cell-based therapy has been proposed as an alternative to orthotopic liver transplantation. The novel transplantation of an in vitro-generated liver bud might have therapeutic potential. In vivo and ex vivo methods for growing a liver bud are essential for paving the way for the clinical translation of liver bud transplantation. We herein report a novel transplantation method for liver buds that are grown in vivo involving orthotopic transplantation on the transected parenchyma of the liver, which showed long engraftment and marked growth in comparison to heterotopic transplantation. Furthermore, this study demonstrates a method for rapidly fabricating scalable liver-like tissue by fusing hundreds of liver bud-like spheroids using a 3D bioprinter. Its system to fix the shape of the 3D tissue with the needle-array system enabled the fabrication of elaborate geometry and the immediate execution of culture circulation after 3D printing—thereby avoiding an ischemic environment ex vivo. The ex vivo-fabricated human liver-like tissue exhibited self-tissue organization ex vivo and engraftment on the liver of nude rats. These achievements conclusively show both in vivo and ex vivo methods for growing in vitro-generated liver buds. These methods provide a new approach for in vitro-generated liver organoids transplantation.
Collapse
|
261
|
Xie AW, Binder BYK, Khalil AS, Schmitt SK, Johnson HJ, Zacharias NA, Murphy WL. Controlled Self-assembly of Stem Cell Aggregates Instructs Pluripotency and Lineage Bias. Sci Rep 2017; 7:14070. [PMID: 29070799 PMCID: PMC5656593 DOI: 10.1038/s41598-017-14325-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
Stem cell-derived organoids and other 3D microtissues offer enormous potential as models for drug screening, disease modeling, and regenerative medicine. Formation of stem/progenitor cell aggregates is common in biomanufacturing processes and critical to many organoid approaches. However, reproducibility of current protocols is limited by reliance on poorly controlled processes (e.g., spontaneous aggregation). Little is known about the effects of aggregation parameters on cell behavior, which may have implications for the production of cell aggregates and organoids. Here we introduce a bioengineered platform of labile substrate arrays that enable simple, scalable generation of cell aggregates via a controllable 2D-to-3D "self-assembly". As a proof-of-concept, we show that labile substrates generate size- and shape-controlled embryoid bodies (EBs) and can be easily modified to control EB self-assembly kinetics. We show that aggregation method instructs EB lineage bias, with faster aggregation promoting pluripotency loss and ectoderm, and slower aggregation favoring mesoderm and endoderm. We also find that aggregation kinetics of EBs markedly influence EB structure, with slower kinetics resulting in increased EB porosity and growth factor signaling. Our findings suggest that controlling internal structure of cell aggregates by modifying aggregation kinetics is a potential strategy for improving 3D microtissue models for research and translational applications.
Collapse
Affiliation(s)
- Angela W Xie
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Bernard Y K Binder
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Andrew S Khalil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Samantha K Schmitt
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Hunter J Johnson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Nicholas A Zacharias
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, United States.
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, 53705, United States.
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53705, United States.
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53705, United States.
| |
Collapse
|
262
|
Lou YR, Leung AW. Next generation organoids for biomedical research and applications. Biotechnol Adv 2017; 36:132-149. [PMID: 29056474 DOI: 10.1016/j.biotechadv.2017.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022]
Abstract
Organoids are in vitro cultures of miniature fetal or adult organ-like structures. Their potentials for use in tissue and organ replacement, disease modeling, toxicology studies, and drug discovery are tremendous. Currently, major challenges facing human organoid technology include (i) improving the range of cellular heterogeneity for a particular organoid system, (ii) mimicking the native micro- and matrix-environment encountered by cells within organoids, and (iii) developing robust protocols for the in vitro maturation of organoids that remain mostly fetal-like in cultures. To tackle these challenges, we advocate the principle of reverse engineering that replicates the inner workings of in vivo systems with the goal of achieving functionality and maturation of the resulting organoid structures with the input of minimal intrinsic (cellular) and environmental (matrix and niche) constituents. Here, we present an overview of organoid technology development in several systems that employ cell materials derived from fetal and adult tissues and pluripotent stem cell cultures. We focus on key studies that exploit the self-organizing property of embryonic progenitors and the role of designer matrices and cell-free scaffolds in assisting organoid formation. We further explore the relationship between adult stem cells, niche factors, and other current developments that aim to enhance robust organoid maturation. From these works, we propose a standardized pipeline for the development of future protocols that would help generate more physiologically relevant human organoids for various biomedical applications.
Collapse
Affiliation(s)
- Yan-Ru Lou
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Alan W Leung
- Yale Stem Cell Center, Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
263
|
Sgodda M, Dai Z, Zweigerdt R, Sharma AD, Ott M, Cantz T. A Scalable Approach for the Generation of Human Pluripotent Stem Cell-Derived Hepatic Organoids with Sensitive Hepatotoxicity Features. Stem Cells Dev 2017; 26:1490-1504. [DOI: 10.1089/scd.2017.0023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Malte Sgodda
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Zhen Dai
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Tobias Cantz
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Max Planck Institute for Molecular Biomedicine, Cell and Developmental Biology, Münster, Germany
| |
Collapse
|
264
|
Stem cells and genome editing: approaches to tissue regeneration and regenerative medicine. J Hum Genet 2017; 63:165-178. [PMID: 29192237 DOI: 10.1038/s10038-017-0348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Understanding the basis of regeneration of each tissue and organ, and incorporating this knowledge into clinical treatments for degenerative tissues and organs in patients, are major goals for researchers in regenerative biology. Here we provide an overview of current work, from high-regeneration animal models, to stem cell-based culture models, transplantation technologies, large-animal chimeric models, and programmable nuclease-based genome-editing technologies. Three-dimensional culture generating organoids, which represents intact tissue/organ identity including cell fate and morphology are getting more general approaches in the fields by taking advantage of embryonic stem cells, induced pluripotent stem cells and adult stem cells. The organoid culture system potentially has profound impact on the field of regenerative medicine. We also emphasize that the large animal model, in particular pig model would be a hope to manufacture humanized organs in in vivo empty (vacant) niche, which now potentially allows not only appropriate cell fate identity but nearly the same property as human organs in size. Therefore, integrative and collaborative researches across different fields might be critical to the aims needed in clinical trial.
Collapse
|
265
|
Garate A, Sánchez P, Delgado D, Bilbao AM, Muiños-López E, Granero-Moltó F, Orive G, Prosper F, Pedraz JL, Sánchez M. Autologous bioscaffolds based on different concentrations of platelet rich plasma and synovial fluid as a vehicle for mesenchymal stem cells. J Biomed Mater Res A 2017; 106:377-385. [PMID: 28960933 DOI: 10.1002/jbm.a.36247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 01/08/2023]
Abstract
In the field of tissue engineering, diverse types of bioscaffolds are being developed currently for osteochondral defect applications. In this work, a novel scaffold based on platelet rich plasma (PRP) and hyaluronic acid with mesenchymal stem cells (MSCs) has been evaluated to observe its effect on immobilized cells. The bioscaffolds were prepared by mixing different volumes of synovial fluid (SF) with PRP from patients obtaining three formulations at PRP-SF ratios of 3:1, 1:1 and 1:3 (v/v). The live/dead staining revealed that although the cell number of each type of bioscaffold was different, these this constructs provide cells with a suitable environment for their viability and proliferation. Moreover, immobilized MSCs showed their ability to secrete fibrinolytic enzymes, which vary depending on the fibrin amount of the scaffold. Immunohistochemical analysis revealed the positive staining for collagen type II in all cases, proving the biologic action of SF derived MSCs together with the suitable characteristics of the bioscaffold for chondrogenic differentiation. Considering all these aspects, this study demonstrates that these cells-based constructs represent an attractive method for cell immobilization, achieving completely autologous and biocompatible scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 377-385, 2018.
Collapse
Affiliation(s)
- Ane Garate
- Advanced Biological Therapy Unit- UTBA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advanced Biological Therapy Unit- UTBA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain.,NanoBioCel group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Diego Delgado
- Advanced Biological Therapy Unit- UTBA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain
| | - Ane Miren Bilbao
- Arthroscopic Surgery Unit-UCA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain
| | - Emma Muiños-López
- Cell Therapy and Experimental Orthopedics, University of Navarra Clinic, Pamplona, Spain
| | - Froilán Granero-Moltó
- Cell Therapy and Experimental Orthopedics, University of Navarra Clinic, Pamplona, Spain
| | - Gorka Orive
- NanoBioCel group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Felipe Prosper
- Cell Therapy and Experimental Orthopedics, University of Navarra Clinic, Pamplona, Spain.,Hematology and Cell Therapy department, University of Navarra Clinic, Pamplona, Spain
| | - José Luis Pedraz
- NanoBioCel group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Mikel Sánchez
- Advanced Biological Therapy Unit- UTBA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain.,Arthroscopic Surgery Unit-UCA, Hospital Vithas San Jose, Vitoria-Gasteiz, Spain
| |
Collapse
|
266
|
Morizane R, Miyoshi T, Bonventre JV. Concise Review: Kidney Generation with Human Pluripotent Stem Cells. Stem Cells 2017; 35:2209-2217. [PMID: 28869686 DOI: 10.1002/stem.2699] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 12/30/2022]
Abstract
Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217.
Collapse
Affiliation(s)
- Ryuji Morizane
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Tomoya Miyoshi
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph V Bonventre
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
267
|
Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells. Sci Rep 2017; 7:12317. [PMID: 28951614 PMCID: PMC5615065 DOI: 10.1038/s41598-017-12017-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/01/2017] [Indexed: 12/23/2022] Open
Abstract
In the present study, we successfully generated lung cancer stem cell (CSC)-like cells by introducing a small set of transcription factors into a lung cancer cell line. In addition to properties that are conventionally referred to as CSC properties, the lung induced CSCs exhibited the ability to form lung cancer-like tissues in vitro with vascular cells and mesenchymal stem cells, which showed structures and immunohistological patterns that were similar to human lung cancer tissues. We named them “lung cancer organoids”. We found that interleukin-6 (IL-6), which was expressed in the lung induced CSCs, facilitates the formation of lung cancer organoids via the conversion of mesenchymal stem cells into alpha-smooth muscle actin (αSMA)-positive cells. Interestingly, the combination of anti-IL-6 antibody and cisplatin could destroy the lung cancer organoids, while cisplatin alone could not. Furthermore, IL-6 mRNA-positive cancer cells were found in clinical lung cancer samples. These results suggest that IL-6 could be a novel therapeutic target in lung cancer.
Collapse
|
268
|
Picollet-D'hahan N, Dolega ME, Freida D, Martin DK, Gidrol X. Deciphering Cell Intrinsic Properties: A Key Issue for Robust Organoid Production. Trends Biotechnol 2017; 35:1035-1048. [PMID: 28927991 DOI: 10.1016/j.tibtech.2017.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/18/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
Abstract
We highlight the disposition of various cell types to self-organize into complex organ-like structures without necessarily the support of any stromal cells, provided they are placed into permissive 3D culture conditions. The goal of generating organoids reproducibly and efficiently has been hampered by poor understanding of the exact nature of the intrinsic cell properties at the origin of organoid generation, and of the signaling pathways governing their differentiation. Using microtechnologies like microfluidics to engineer organoids would create opportunities for single-cell genomics and high-throughput functional genomics to exhaustively characterize cell intrinsic properties. A more complete understanding of the development of organoids would enhance their relevance as models to study organ morphology, function, and disease and would open new avenues in drug development and regenerative medicine.
Collapse
Affiliation(s)
| | - Monika E Dolega
- Université Grenoble Alpes, INSERM, CEA, BIG, F-38000 Grenoble, France
| | - Delphine Freida
- Université Grenoble Alpes, INSERM, CEA, BIG, F-38000 Grenoble, France
| | - Donald K Martin
- Université Grenoble Alpes, F-38000 Grenoble, France; TIMC-IMAG/CNRS UMR 5525, F-38041 Grenoble, France
| | - Xavier Gidrol
- Université Grenoble Alpes, INSERM, CEA, BIG, F-38000 Grenoble, France.
| |
Collapse
|
269
|
Affiliation(s)
- Milica Radisic
- University of Toronto and Toronto General Research Institute
| | | |
Collapse
|
270
|
McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 2017; 144:958-962. [PMID: 28292841 DOI: 10.1242/dev.140731] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cell (PSC)-derived organoids are miniature, three-dimensional human tissues generated by the application of developmental biological principles to PSCs in vitro The approach to generate organoids uses a combination of directed differentiation, morphogenetic processes, and the intrinsically driven self-assembly of cells that mimics organogenesis in the developing embryo. The resulting organoids have remarkable cell type complexity, architecture and function similar to their in vivo counterparts. In the past five years, human PSC-derived organoids with components of all three germ layers have been generated, resulting in the establishment of a new human model system. Here, and in the accompanying poster, we provide an overview of how principles of developmental biology have been essential for generating human organoids in vitro, and how organoids are now being used as a primary research tool to investigate human developmental biology.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA .,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
271
|
Munsie M, Hyun I, Sugarman J. Ethical issues in human organoid and gastruloid research. Development 2017; 144:942-945. [PMID: 28292838 DOI: 10.1242/dev.140111] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Research involving human organoids and gastruloids involves ethical issues associated with their derivation as well as their current and future uses. These include unique issues related to the extent of maturation that can be achieved in vitro or through chimeric research, as well as fundamental ethical considerations such as those concerning the provenance of human biomaterials and the use of gene-editing technologies. Many of these issues are not specifically addressed by existing ethics oversight mechanisms, but these mechanisms might be easily extended to help ensure that human organoid and related research moves forward in an ethically appropriate manner.
Collapse
Affiliation(s)
- Megan Munsie
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Parkville, Victoria 3010, Australia
| | - Insoo Hyun
- Department of Bioethics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jeremy Sugarman
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
272
|
Muthuswamy SK. Bringing together the organoid field: from early beginnings to the road ahead. Development 2017; 144:963-967. [PMID: 28292842 DOI: 10.1242/dev.144444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
From October 12-15th, 2016, EMBO∣EMBL held a symposium to bring together those in the scientific community with a shared interest in using three-dimensional (3D) culture methods to study biology, model disease and personalize treatments. The symposium, entitled 'Organoids: modelling organ development and disease in 3D culture', which was organized by Juergen Knoblich, Mina Bissell and Esther Schnapp, was particularly timely as there were otherwise few opportunities for those interested in using 3D culture platforms to interact outside of their organ-specific scientific community. The meeting was a fantastic success, creating a lot of discussion and cross-fertilization of ideas from developmental biologists to bioengineers and biophysicists. This Meeting Review provides a summary of the talks presented and the major themes that emerged from the symposium.
Collapse
Affiliation(s)
- Senthil K Muthuswamy
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
273
|
Asai A, Aihara E, Watson C, Mourya R, Mizuochi T, Shivakumar P, Phelan K, Mayhew C, Helmrath M, Takebe T, Wells J, Bezerra JA. Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells. Development 2017; 144:1056-1064. [PMID: 28275009 DOI: 10.1242/dev.142794] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/01/2017] [Indexed: 12/17/2022]
Abstract
A self-organizing organoid model provides a new approach to study the mechanism of human liver organogenesis. Previous animal models documented that simultaneous paracrine signaling and cell-to-cell surface contact regulate hepatocyte differentiation. To dissect the relative contributions of the paracrine effects, we first established a liver organoid using human induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as previously reported. Time-lapse imaging showed that hepatic-specified endoderm iPSCs (HE-iPSCs) self-assembled into three-dimensional organoids, resulting in hepatic gene induction. Progressive differentiation was demonstrated by hepatic protein production after in vivo organoid transplantation. To assess the paracrine contributions, we employed a Transwell system in which HE-iPSCs were separately co-cultured with MSCs and/or HUVECs. Although the three-dimensional structure did not form, their soluble factors induced a hepatocyte-like phenotype in HE-iPSCs, resulting in the expression of bile salt export pump. In conclusion, the mesoderm-derived paracrine signals promote hepatocyte maturation in liver organoids, but organoid self-organization requires cell-to-cell surface contact. Our in vitro model demonstrates a novel approach to identify developmental paracrine signals regulating the differentiation of human hepatocytes.
Collapse
Affiliation(s)
- Akihiro Asai
- Pediatric Liver Care Center, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Carey Watson
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Reena Mourya
- Pediatric Liver Care Center, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tatsuki Mizuochi
- Pediatric Liver Care Center, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pranavkumar Shivakumar
- Pediatric Liver Care Center, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kieran Phelan
- Pediatric Liver Care Center, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Christopher Mayhew
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael Helmrath
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Takanori Takebe
- Department of Regenerative Medicine, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - James Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jorge A Bezerra
- Pediatric Liver Care Center, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
274
|
Lee CT, Bendriem RM, Wu WW, Shen RF. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J Biomed Sci 2017; 24:59. [PMID: 28822354 PMCID: PMC5563385 DOI: 10.1186/s12929-017-0362-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) brain organoids derived from human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), appear to recapitulate the brain's 3D cytoarchitectural arrangement and provide new opportunities to explore disease pathogenesis in the human brain. Human iPSC (hiPSC) reprogramming methods, combined with 3D brain organoid tools, may allow patient-derived organoids to serve as a preclinical platform to bridge the translational gap between animal models and human clinical trials. Studies using patient-derived brain organoids have already revealed novel insights into molecular and genetic mechanisms of certain complex human neurological disorders such as microcephaly, autism, and Alzheimer's disease. Furthermore, the combination of hiPSC technology and small-molecule high-throughput screening (HTS) facilitates the development of novel pharmacotherapeutic strategies, while transcriptome sequencing enables the transcriptional profiling of patient-derived brain organoids. Finally, the addition of CRISPR/Cas9 genome editing provides incredible potential for personalized cell replacement therapy with genetically corrected hiPSCs. This review describes the history and current state of 3D brain organoid differentiation strategies, a survey of applications of organoids towards studies of neurodevelopmental and neurodegenerative disorders, and the challenges associated with their use as in vitro models of neurological disorders.
Collapse
Affiliation(s)
- Chun-Ting Lee
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD 20993 USA
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Building 52, Rm 1121, 10903 New Hampshire Avenue, Silver Spring, MD 20993 USA
| | - Raphael M. Bendriem
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021 USA
| | - Wells W. Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD 20993 USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD 20993 USA
| |
Collapse
|
275
|
Enhanced Therapeutic Effects of Human iPS Cell Derived-Cardiomyocyte by Combined Cell-Sheets with Omental Flap Technique in Porcine Ischemic Cardiomyopathy Model. Sci Rep 2017; 7:8824. [PMID: 28821761 PMCID: PMC5562896 DOI: 10.1038/s41598-017-08869-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
Transplant of human induced pluripotent stem cell derived cardiomyocytes (hiPS-CMs) cell-sheet is a promising approach for treating ischemic cardiomyopathy (ICM). However, poor blood supply to the transplanted cell-sheet is a concern related to the effectiveness and durability of the treatment. Herein, we hypothesized that the combined the omentum flap might enhance survival and the therapeutic effects of hiPS-CM cell-sheet transplant for ICM treatment. Treatment by Wnt signaling molecules in hiPS cells produced hiPS-CMs, which were magnetically labeled by superparamagnetic iron oxide (SPIO), followed by culture in the thermoresponsive dishes to generate hiPS-CMs cell-sheets. A porcine ICM model included 4 groups; sham operation, omentum flap only, cell-sheet only, or combination therapy. Ejection fraction (EF) was significantly greater in the cell-sheet only and combination group compared to the other groups during the follow-up period. At 3 months, the EF of the combination group was significantly greater than that of the cell-sheet only group. Consistently, the survival rate of the SPIO-labeled hiPS-CMs, as assessed by MRI, was significantly greater in the combination group than in the cell-sheet only group. This cell delivery system would be useful in optimizing the hiPS-CM cell-sheet transplant for treating severe heart failure.
Collapse
|
276
|
Galivo F, Benedetti E, Wang Y, Pelz C, Schug J, Kaestner KH, Grompe M. Reprogramming human gallbladder cells into insulin-producing β-like cells. PLoS One 2017; 12:e0181812. [PMID: 28813430 PMCID: PMC5558938 DOI: 10.1371/journal.pone.0181812] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022] Open
Abstract
The gallbladder and cystic duct (GBCs) are parts of the extrahepatic biliary tree and share a common developmental origin with the ventral pancreas. Here, we report on the very first genetic reprogramming of patient-derived human GBCs to β-like cells for potential autologous cell replacement therapy for type 1 diabetes. We developed a robust method for large-scale expansion of human GBCs ex vivo. GBCs were reprogrammed into insulin-producing pancreatic β-like cells by a combined adenoviral-mediated expression of hallmark pancreatic endocrine transcription factors PDX1, MAFA, NEUROG3, and PAX6 and differentiation culture in vitro. The reprogrammed GBCs (rGBCs) strongly induced the production of insulin and pancreatic endocrine genes and these responded to glucose stimulation in vitro. rGBCs also expressed an islet-specific surface marker, which was used to enrich for the most highly reprogrammed cells. More importantly, global mRNA and microRNA expression profiles and protein immunostaining indicated that rGBCs adopted an overall β-like state and these rGBCs engrafted in immunodeficient mice. Furthermore, comparative global expression analyses identified putative regulators of human biliary to β cell fate conversion. In summary, we have developed, for the first time, a reliable and robust genetic reprogramming and culture expansion of primary human GBCs—derived from multiple unrelated donors—into pancreatic β-like cells ex vivo, thus showing that human gallbladder is a potentially rich source of reprogrammable cells for autologous cell therapy in diabetes.
Collapse
Affiliation(s)
- Feorillo Galivo
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (FG); (MG)
| | - Eric Benedetti
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Yuhan Wang
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Carl Pelz
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jonathan Schug
- Department of Genetics, School of Medicine and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Klaus H. Kaestner
- Department of Genetics, School of Medicine and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (FG); (MG)
| |
Collapse
|
277
|
Platelet-Rich Plasma as an Autologous and Proangiogenic Cell Delivery System. Mediators Inflamm 2017; 2017:1075975. [PMID: 28845088 PMCID: PMC5563430 DOI: 10.1155/2017/1075975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a key factor in early stages of wound healing and is crucial for the repair of vascularized tissues such as the bone. However, supporting timely revascularization of the defect site still presents a clinical challenge. Tissue engineering approaches delivering endothelial cells or prevascularized constructs may overcome this problem. In the current study, we investigated platelet-rich plasma (PRP) gels as autologous, injectable cell delivery systems for prevascularized constructs. PRP was produced from human thrombocyte concentrates. GFP-expressing human umbilical vein endothelial cells (HUVECs) and human bone marrow-derived mesenchymal stem cells (MSCs) were encapsulated in PRP gels in different proportions. The formation of cellular networks was assessed over 14 days by time-lapse microscopy, gene expression analysis, and immunohistology. PRP gels presented a favorable environment for the formation of a three-dimensional (3D) cellular network. The formation of these networks was apparent as early as 3 days after seeding. Networks increased in complexity and branching over time but were only stable in HUVEC-MSC cocultures. The high cell viability together with the 3D capillary-like networks observed at early time points suggests that PRP can be used as an autologous and proangiogenic cell delivery system for the repair of vascularized tissues such as the bone.
Collapse
|
278
|
Little MH. Growing Kidney Tissue from Stem Cells: How Far from "Party Trick" to Medical Application? Cell Stem Cell 2017; 18:695-698. [PMID: 27257757 DOI: 10.1016/j.stem.2016.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The successful generation of kidney-like structures from human pluripotent stem cells, although slower to come than other tissue types, brings the hope of new therapies. While the demand for alternative treatments for kidney failure is acute, huge challenges remain to move these exciting but preliminary results toward clinical use.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Childrens Research Institute, Flemington Road, Parkville 3052, Australia; Department of Pediatrics, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Parkville 3052, Australia.
| |
Collapse
|
279
|
Abstract
Human pluripotent stem cell differentiation protocols based on mimicking developmental pathways are getting close to generating fully fledged pancreatic endocrine cells, including insulin-producing beta cells. However, challenges remain in identifying pathways to trigger the attainment of robust glucose responsiveness that occurs postnatally in beta cells.
Collapse
Affiliation(s)
- Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
280
|
Ishida R, Koyanagi-Aoi M, Oshima N, Kakeji Y, Aoi T. The Tissue-Reconstructing Ability of Colon CSCs Is Enhanced by FK506 and Suppressed by GSK3 Inhibition. Mol Cancer Res 2017; 15:1455-1466. [DOI: 10.1158/1541-7786.mcr-17-0071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/06/2017] [Accepted: 07/11/2017] [Indexed: 11/16/2022]
|
281
|
Inspiration from heart development: Biomimetic development of functional human cardiac organoids. Biomaterials 2017; 142:112-123. [PMID: 28732246 DOI: 10.1016/j.biomaterials.2017.07.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/02/2023]
Abstract
Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair.
Collapse
|
282
|
Grant R, Hay DC, Callanan A. A Drug-Induced Hybrid Electrospun Poly-Capro-Lactone: Cell-Derived Extracellular Matrix Scaffold for Liver Tissue Engineering. Tissue Eng Part A 2017; 23:650-662. [PMID: 28437180 DOI: 10.1089/ten.tea.2016.0419] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Liver transplant is the only treatment option for patients with end-stage liver failure, however, there are too few donor livers available for transplant. Whole organ tissue engineering presents a potential solution to the problem of rapidly escalating donor liver shortages worldwide. A major challenge for liver tissue engineers is the creation of a hepatocyte microenvironment; a niche in which liver cells can survive and function optimally. While polymers and decellularized tissues pose an attractive option for scaffold manufacturing, neither alone has thus far proved sufficient. This study exploited cell's native extracellular matrix (ECM) producing capabilities using two different histone deacetylase inhibitors, and combined these with the customizability and reproducibility of electrospun polymer scaffolds to produce a "best of both worlds" niche microenvironment for hepatocytes. The resulting hybrid poly-capro-lactone (PCL)-ECM scaffolds were validated using HepG2 hepatocytes. The hybrid PCL-ECM scaffolds maintained hepatocyte growth and function, as evidenced by metabolic activity and DNA quantitation. Mechanical testing revealed little significant difference between scaffolds, indicating that cells were responding to a biochemical and topographical profile rather than mechanical changes. Immunohistochemistry showed that the biochemical profile of the drug-derived and nondrug-derived ECMs differed in ratio of Collagen I, Laminin, and Fibronectin. Furthermore, the hybrid PCL-ECM scaffolds influence the gene expression profile of the HepG2s drastically; with expression of Albumin, Cytochrome P450 Family 1 Subfamily A Polypeptide 1, Cytochrome P450 Family 1 Subfamily A Polypeptide 2, Cytochrome P450 Family 3 Subfamily A Polypeptide 4, Fibronectin, Collagen I, and Collagen IV undergoing significant changes. Our results demonstrate that drug-induced hybrid PCL-ECM scaffolds provide a viable, translatable platform for creating a niche microenvironment for hepatocytes, supporting in vivo phenotype and function. These scaffolds offer great potential for tissue engineering and regenerative medicine strategies for whole organ tissue engineering.
Collapse
Affiliation(s)
- Rhiannon Grant
- 1 Institute for Bioengineering, School of Engineering, University of Edinburgh , Edinburgh, United Kingdom
| | - David C Hay
- 2 MRC Scottish Centre for Regenerative Medicine, University of Edinburgh , Edinburgh, United Kingdom
| | - Anthony Callanan
- 1 Institute for Bioengineering, School of Engineering, University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
283
|
Isshiki H, Arimura Y, Nagaishi K, Kawakami K, Onodera K, Yamashita K, Naishiro Y, Fujimiya M, Imai K, Shinomura Y. Establishment of a refined culture method for rat colon organoids. Biochem Biophys Res Commun 2017; 489:305-311. [DOI: 10.1016/j.bbrc.2017.05.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 01/18/2023]
|
284
|
Glover JD, Wells KL, Matthäus F, Painter KJ, Ho W, Riddell J, Johansson JA, Ford MJ, Jahoda CAB, Klika V, Mort RL, Headon DJ. Hierarchical patterning modes orchestrate hair follicle morphogenesis. PLoS Biol 2017; 15:e2002117. [PMID: 28700594 PMCID: PMC5507405 DOI: 10.1371/journal.pbio.2002117] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/07/2017] [Indexed: 12/19/2022] Open
Abstract
Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction-diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern. Early hair follicle development is characterised by the rapid appearance of periodic arrangements of altered gene expression in the epidermis and prominent clustering of the adjacent dermal mesenchymal cells. We assess the contributions and interplay between reaction-diffusion and mesenchymal self-organisation processes in hair follicle patterning, identifying a network of fibroblast growth factor (FGF), wingless-related integration site (WNT), and bone morphogenetic protein (BMP) signalling interactions capable of spontaneously producing a periodic pattern. Using time-lapse imaging, we find that mesenchymal cell condensation at hair follicles is locally directed by an epidermal prepattern. However, imposing this prepattern's condition of high FGF and low BMP activity across the entire skin reveals a latent dermal capacity to undergo spatially patterned self-organisation in the absence of epithelial direction. This mesenchymal self-organisation relies on restricted transforming growth factor (TGF) β signalling, which serves to drive chemotactic mesenchymal patterning when reaction-diffusion patterning is suppressed, but, in normal conditions, facilitates cell movement to locally prepatterned sources of FGF. This work illustrates a hierarchy of periodic patterning modes operating in organogenesis.
Collapse
Affiliation(s)
- James D. Glover
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kirsty L. Wells
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Franziska Matthäus
- FIAS and Faculty of Biological Sciences, University of Frankfurt, Germany
| | - Kevin J. Painter
- School of Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - William Ho
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jon Riddell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeanette A. Johansson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew J. Ford
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Colin A. B. Jahoda
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Vaclav Klika
- Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Richard L. Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster, United Kingdom
| | - Denis J. Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
285
|
Camp JG, Sekine K, Gerber T, Loeffler-Wirth H, Binder H, Gac M, Kanton S, Kageyama J, Damm G, Seehofer D, Belicova L, Bickle M, Barsacchi R, Okuda R, Yoshizawa E, Kimura M, Ayabe H, Taniguchi H, Takebe T, Treutlein B. Multilineage communication regulates human liver bud development from pluripotency. Nature 2017; 546:533-538. [PMID: 28614297 DOI: 10.1038/nature22796] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Abstract
Conventional two-dimensional differentiation from pluripotency fails to recapitulate cell interactions occurring during organogenesis. Three-dimensional organoids generate complex organ-like tissues; however, it is unclear how heterotypic interactions affect lineage identity. Here we use single-cell RNA sequencing to reconstruct hepatocyte-like lineage progression from pluripotency in two-dimensional culture. We then derive three-dimensional liver bud organoids by reconstituting hepatic, stromal, and endothelial interactions, and deconstruct heterogeneity during liver bud development. We find that liver bud hepatoblasts diverge from the two-dimensional lineage, and express epithelial migration signatures characteristic of organ budding. We benchmark three-dimensional liver buds against fetal and adult human liver single-cell RNA sequencing data, and find a striking correspondence between the three-dimensional liver bud and fetal liver cells. We use a receptor-ligand pairing analysis and a high-throughput inhibitor assay to interrogate signalling in liver buds, and show that vascular endothelial growth factor (VEGF) crosstalk potentiates endothelial network formation and hepatoblast differentiation. Our molecular dissection reveals interlineage communication regulating organoid development, and illuminates previously inaccessible aspects of human liver development.
Collapse
Affiliation(s)
- J Gray Camp
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Tobias Gerber
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, Leipzig University, 16 Härtelstrasse, Leipzig 04107, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, Leipzig University, 16 Härtelstrasse, Leipzig 04107, Germany
| | - Malgorzata Gac
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Sabina Kanton
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Jorge Kageyama
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Georg Damm
- Department of Hepatobiliary and Transplantation Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig 04103, Germany.,Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, 55 Philipp-Rosenthal-Strasse, Leipzig 04103, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary and Transplantation Surgery, University Hospital of Leipzig, Liebigstrasse 20, Leipzig 04103, Germany.,Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, 55 Philipp-Rosenthal-Strasse, Leipzig 04103, Germany
| | - Lenka Belicova
- Max Planck Institute of Molecular Cell Biology and Genetics, 108 Pfotenhauerstrasse, Dresden 01307, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, 108 Pfotenhauerstrasse, Dresden 01307, Germany
| | - Rico Barsacchi
- Max Planck Institute of Molecular Cell Biology and Genetics, 108 Pfotenhauerstrasse, Dresden 01307, Germany
| | - Ryo Okuda
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Emi Yoshizawa
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Masaki Kimura
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroaki Ayabe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Takanori Takebe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA
| | - Barbara Treutlein
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, 108 Pfotenhauerstrasse, Dresden 01307, Germany
| |
Collapse
|
286
|
Iseoka H, Miyagawa S, Fukushima S, Saito A, Masuda S, Yajima S, Ito E, Sougawa N, Takeda M, Harada A, Lee JK, Sawa Y. Pivotal Role of Non-cardiomyocytes in Electromechanical and Therapeutic Potential of Induced Pluripotent Stem Cell-Derived Engineered Cardiac Tissue. Tissue Eng Part A 2017; 24:287-300. [PMID: 28498040 PMCID: PMC5792250 DOI: 10.1089/ten.tea.2016.0535] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although engineered cardiac tissues (ECTs) derived from induced pluripotent stem cells (iPSCs) are promising for myocardial regenerative therapy, the appropriate ratio of cardiomyocytes to non-cardiomyocytes is not fully understood. Here, we determined whether ECT-cell content is a key determinant of its structure/function, thereby affecting ECT therapeutic potential for advanced heart failure. Scaffold-free ECTs containing different ratios (25%, 50%, 70%, or 90%) of iPSC-derived cardiomyocytes were generated by magnetic-activated cell sorting by using cardiac-specific markers. Notably, ECTs showed synchronized spontaneous beating when cardiomyocytes constituted ≥50% of total cells, with the electrical-conduction velocity increasing depending on cardiomyocyte ratio; however, ECTs containing 90% cardiomyocytes failed to form stable structures. ECTs containing 25% or 50% cardiomyocytes predominantly expressed collagen and fibronectin, whereas ECTs containing 70% cardiomyocytes predominantly expressed laminin and exhibited the highest contractile/relaxation properties. Furthermore, transplantation of ECTs containing 50% or 70% cardiomyocytes into a rat chronic myocardial infarction model led to a more profound functional recovery as compared with controls. Notably, transplanted ECTs showed electrical synchronization with the native heart under Langendorff perfusion. Collectively, these results indicate that the quantity of non-cardiomyocytes is critical in generating functional iPSC-derived ECTs as grafts for cardiac-regeneration therapy, with ECTs containing 50–70% cardiomyocytes exhibiting stable structures and increased cardiotherapeutic potential.
Collapse
Affiliation(s)
- Hiroko Iseoka
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Osaka, Japan .,2 Terumo Corporation , Tokyo, Japan
| | - Shigeru Miyagawa
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Satsuki Fukushima
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Atsuhiro Saito
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Shigeo Masuda
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Shin Yajima
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Emiko Ito
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Nagako Sougawa
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Maki Takeda
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Akima Harada
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Jong-Kook Lee
- 3 Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Yoshiki Sawa
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Osaka, Japan
| |
Collapse
|
287
|
Farahat M, Sathi GA, Hara ES, Taketa H, Kuboki T, Matsumoto T. MSCs feeder layers induce SMG self-organization and branching morphogenesis. PLoS One 2017; 12:e0176453. [PMID: 28448600 PMCID: PMC5407632 DOI: 10.1371/journal.pone.0176453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/11/2017] [Indexed: 01/14/2023] Open
Abstract
Dysfunction of salivary glands leads to several oral health problems, including dental caries, mastication and swallowing dysfunctions and multiple oral infections. Conventional treatments for such condition fell short of providing satisfying therapeutic results. Recent advances in organ regeneration therapy which utilize tissue stem cells to fabricate bioengineered 3D organ buds, have introduced a promising therapeutic tool for full functional organ regeneration. However, finding a sustainable and easily accessible cell source for such approaches is still challenging, especially in case of severely atrophied tissues such as irradiated salivary glands. In response to this, we hypothesized that bone marrow derived mesenchymal stem cells (MSCs) could be used as feeder cells to induce salivary epithelial tissues/cells branching. Indeed, in 2D cultures, MSCs supported branching of embryonic submandibular salivary gland (SMG) epithelium. Interestingly, this enhancing effect was dependent on the initial number of MSC feeder cells. In addition, MSCs supported the self-assembly of SMG epithelial progenitor cells into well-patterned and branched 3D salivary organoids. Therefore, these findings propose MSCs as a valuable candidate cell source for induced SMG epithelial branching, which can potentially be applied in future methods for SMG regeneration approaches.
Collapse
Affiliation(s)
- Mahmoud Farahat
- Department of Biomaterials, Okayama University, Okayama, Japan
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University, Okayama, Japan
| | - Gulsan Ara Sathi
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | | | - Hiroaki Taketa
- Department of Biomaterials, Okayama University, Okayama, Japan
- Center for the Development of Medical and Health Care Education, Okayama University, Okayama, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University, Okayama, Japan
| | | |
Collapse
|
288
|
On the adhesion-cohesion balance and oxygen consumption characteristics of liver organoids. PLoS One 2017; 12:e0173206. [PMID: 28267799 PMCID: PMC5340403 DOI: 10.1371/journal.pone.0173206] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/16/2017] [Indexed: 01/16/2023] Open
Abstract
Liver organoids (LOs) are of interest in tissue replacement, hepatotoxicity and pathophysiological studies. However, it is still unclear what triggers LO self-assembly and what the optimal environment is for their culture. Hypothesizing that LO formation occurs as a result of a fine balance between cell-substrate adhesion and cell-cell cohesion, we used 3 cell types (hepatocytes, liver sinusoidal endothelial cells and mesenchymal stem cells) to investigate LO self-assembly on different substrates keeping the culture parameters (e.g. culture media, cell types/number) and substrate stiffness constant. As cellular spheroids may suffer from oxygen depletion in the core, we also sought to identify the optimal culture conditions for LOs in order to guarantee an adequate supply of oxygen during proliferation and differentiation. The oxygen consumption characteristics of LOs were measured using an O2 sensor and used to model the O2 concentration gradient in the organoids. We show that no LO formation occurs on highly adhesive hepatic extra-cellular matrix-based substrates, suggesting that cellular aggregation requires an optimal trade-off between the adhesiveness of a substrate and the cohesive forces between cells and that this balance is modulated by substrate mechanics. Thus, in addition to substrate stiffness, physicochemical properties, which are also critical for cell adhesion, play a role in LO self-assembly.
Collapse
|
289
|
|
290
|
Hung SSC, Khan S, Lo CY, Hewitt AW, Wong RCB. Drug discovery using induced pluripotent stem cell models of neurodegenerative and ocular diseases. Pharmacol Ther 2017; 177:32-43. [PMID: 28223228 DOI: 10.1016/j.pharmthera.2017.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The revolution of induced pluripotent stem cell (iPSC) technology provides a platform for development of cell therapy, disease modeling and drug discovery. Recent technological advances now allow us to reprogram a patient's somatic cells into induced pluripotent stem cells (iPSCs). Together with methods to differentiate these iPSCs into disease-relevant cell types, we are now able to model disease in vitro using iPSCs. Importantly, this represents a robust in vitro platform using patient-specific cells, providing opportunity for personalized precision medicine. Here we provide a review of advances using iPSC for drug development, and discuss the potential and limitations of iPSCs for drug discovery in neurodegenerative and ocular diseases. Emerging technologies that can facilitate the search for new drugs by assessment using in vitro disease models will also be discussed, including organoid differentiation, organ-on-chip, direct reprogramming and humanized animal models.
Collapse
Affiliation(s)
- Sandy S C Hung
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia
| | - Shahnaz Khan
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia
| | - Camden Y Lo
- Monash Micro Imaging, Monash University, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia; Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia.
| |
Collapse
|
291
|
Morizane R, Bonventre JV. Kidney Organoids: A Translational Journey. Trends Mol Med 2017; 23:246-263. [PMID: 28188103 DOI: 10.1016/j.molmed.2017.01.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells (hPSCs) are attractive sources for regenerative medicine and disease modeling in vitro. Directed hPSC differentiation approaches have derived from knowledge of cell development in vivo rather than from stochastic cell differentiation. Moreover, there has been great success in the generation of 3D organ-buds termed 'organoids' from hPSCs; these consist of a variety of cell types in vitro that mimic organs in vivo. The organoid bears great potential in the study of human diseases in vitro, especially when combined with CRISPR/Cas9-based genome-editing. We summarize the current literature describing organoid studies with a special focus on kidney organoids, and discuss goals and future opportunities for organoid-based studies.
Collapse
Affiliation(s)
- Ryuji Morizane
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
292
|
Ohkoshi S, Hara H, Hirono H, Watanabe K, Hasegawa K. Regenerative medicine using dental pulp stem cells for liver diseases. World J Gastrointest Pharmacol Ther 2017; 8:1-6. [PMID: 28217369 PMCID: PMC5292602 DOI: 10.4292/wjgpt.v8.i1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/01/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure is a refractory disease and its prognosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a central role. Mesenchymal stem cells (MSCs) are known to differentiate into multiple cell lineages including hepatocytes. Autologous cell transplant without any foreign gene induction is feasible using MSCs, thereby avoiding possible risks of tumorigenesis and immune rejection. Dental pulp also contains an MSC population that differentiates into hepatocytes. A point worthy of special mention is that dental pulp can be obtained from deciduous teeth during childhood and can be subsequently harvested when necessary after deposition in a tooth bank. MSCs have not only a regenerative capacity but also act in an anti-inflammatory manner via paracrine mechanisms. Promising efficacies and difficulties with the use of MSC derived from teeth are summarized in this review.
Collapse
|
293
|
|
294
|
Entangling Relation of Micro RNA-let7, miRNA-200 and miRNA-125 with Various Cancers. Pathol Oncol Res 2017; 23:707-715. [DOI: 10.1007/s12253-016-0184-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/29/2016] [Indexed: 12/18/2022]
|
295
|
Takagi C, Yagi H, Hieda M, Tajima K, Hibi T, Abe Y, Kitago M, Shinoda M, Itano O, Kitagawa Y. Mesenchymal Stem Cells Contribute to Hepatic Maturation of Human Induced Pluripotent Stem Cells. Eur Surg Res 2017; 58:27-39. [DOI: 10.1159/000448516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
<b><i>Background:</i></b> Induced pluripotent stem cells (iPSCs) are human somatic cells that have been reprogrammed to a pluripotent state. Several methods have been used to generate hepatocyte-like cells from iPSCs. However, these hepatic cells have limited clinical application because of their immature function compared to primary hepatocytes. Mesenchymal stem cells (MSCs) have been reported to inhibit apoptosis of hepatic cells and to improve hepatic regeneration in acute liver injury. Therefore, we expected that MSCs had the potential to positively contribute to the maturation of hepatic cells. Here we demonstrate the effect of MSCs on the maturation of hepatoblasts derived from human iPSCs. <b><i>Methods:</i></b> MSCs were isolated from human bone marrow and cultured to 70-80% confluence. MSC-conditioned medium (MSC-CM) was collected 48 h after culture in hepatic maturation medium. Human iPSC-derived hepatoblasts were then cultured for 6 days with MSC-CM. Hepatic functions were analyzed and compared to those from cells cultured in general maturation medium. <b><i>Results:</i></b> Cells in both groups had a cuboidal morphology typical of hepatocytes. The proportion of Oct4-positive cells was decreased and those of albumin- and alpha-fetoprotein-positive cells were increased in the MSC-CM group. Albumin secretion and urea synthesis as well as cytochrome P450 (CYP) 3A4 activity were enhanced in the MSC-CM group. The gene expressions of some CYP enzymes were upregulated as demonstrated by RT-PCR. <b><i>Conclusion:</i></b> Secreted molecules from human MSCs could enhance the hepatic function of human iPSC-derived hepatocyte-like cells. Although more technological innovations are needed, MSC-CM will be useful as a novel efficient strategy for clinically relevant hepatic cell maturation.
Collapse
|
296
|
Nashimoto Y, Hayashi T, Kunita I, Nakamasu A, Torisawa YS, Nakayama M, Takigawa-Imamura H, Kotera H, Nishiyama K, Miura T, Yokokawa R. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr Biol (Camb) 2017; 9:506-518. [DOI: 10.1039/c7ib00024c] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Creating vascular networks in tissues is crucial for tissue engineering.
Collapse
Affiliation(s)
- Yuji Nashimoto
- Department of Micro Engineering
- Kyoto University
- Kyoto 615-8540
- Japan
| | - Tomoya Hayashi
- Department of Micro Engineering
- Kyoto University
- Kyoto 615-8540
- Japan
| | - Itsuki Kunita
- International Research Center for Medical Sciences (IRCMS)
- Kumamoto University
- Kumamoto 860-8556
- Japan
| | - Akiko Nakamasu
- Graduate School of Medical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Yu-suke Torisawa
- Department of Micro Engineering
- Kyoto University
- Kyoto 615-8540
- Japan
- Hakubi Center for Advanced Research
| | | | | | - Hidetoshi Kotera
- Department of Micro Engineering
- Kyoto University
- Kyoto 615-8540
- Japan
| | - Koichi Nishiyama
- International Research Center for Medical Sciences (IRCMS)
- Kumamoto University
- Kumamoto 860-8556
- Japan
| | - Takashi Miura
- Graduate School of Medical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering
- Kyoto University
- Kyoto 615-8540
- Japan
| |
Collapse
|
297
|
Peng Z, Chen L, Nüssler AK, Liu L, Yang W. Current sights for mechanisms of deoxynivalenol-induced hepatotoxicity and prospective views for future scientific research: A mini review. J Appl Toxicol 2016; 37:518-529. [DOI: 10.1002/jat.3428] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Andreas K. Nüssler
- Department of Traumatology, BG Trauma center; University of Tübingen; Schnarrenbergstr. 95 72076 Tübingen Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| |
Collapse
|
298
|
Kelava I, Lancaster MA. Dishing out mini-brains: Current progress and future prospects in brain organoid research. Dev Biol 2016; 420:199-209. [PMID: 27402594 PMCID: PMC5161139 DOI: 10.1016/j.ydbio.2016.06.037] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/16/2016] [Accepted: 06/25/2016] [Indexed: 01/15/2023]
Abstract
The ability to model human brain development in vitro represents an important step in our study of developmental processes and neurological disorders. Protocols that utilize human embryonic and induced pluripotent stem cells can now generate organoids which faithfully recapitulate, on a cell-biological and gene expression level, the early period of human embryonic and fetal brain development. In combination with novel gene editing tools, such as CRISPR, these methods represent an unprecedented model system in the field of mammalian neural development. In this review, we focus on the similarities of current organoid methods to in vivo brain development, discuss their limitations and potential improvements, and explore the future venues of brain organoid research.
Collapse
Affiliation(s)
- Iva Kelava
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH Cambridge, United Kingdom
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH Cambridge, United Kingdom.
| |
Collapse
|
299
|
Abstract
Defined genetic models based on human pluripotent stem cells have opened new avenues for understanding disease mechanisms and drug screening. Many of these models assume cell-autonomous mechanisms of disease but it is possible that disease phenotypes or drug responses will only be evident if all cellular and extracellular components of a tissue are present and functionally mature. To derive optimal benefit from such models, complex multicellular structures with vascular components that mimic tissue niches will thus likely be necessary. Here we consider emerging research creating human tissue mimics and provide some recommendations for moving the field forward.
Collapse
|
300
|
Ito K, Sakuma S, Kimura M, Takebe T, Kaneko M, Arai F. Temporal Transition of Mechanical Characteristics of HUVEC/MSC Spheroids Using a Microfluidic Chip with Force Sensor Probes. MICROMACHINES 2016; 7:E221. [PMID: 30404392 PMCID: PMC6189739 DOI: 10.3390/mi7120221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/27/2016] [Accepted: 11/30/2016] [Indexed: 01/01/2023]
Abstract
In this paper, we focus on the mechanical characterization of co-cultured spheroids of human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSC) (HUVEC/MSC spheroids). HUVEC/MSC spheroids aggregate during culture, thereby decreasing in size. Since this size decrease can be caused by the contractility generated by the actomyosin of MSCs, which are intracellular frames, we can expect that there is a temporal transition for the mechanical characteristics, such as stiffness, during culture. To measure the mechanical characteristics, we use a microfluidic chip that is integrated with force sensor probes. We show the details of the measurement configuration and the results of mechanical characterization of the HUVEC/MSC spheroids. To evaluate the stiffness of the spheroids, we introduce the stiffness index, which essentially shows a spring constant per unit size of the spheroid at a certain time during measurement. From the measurement results, we confirmed that the stiffness index firstly increased during the days of culture, although after four days of culture, the stiffness index decreased. We confirmed that the proposed system can measure the stiffness of HUVEC/MSC spheroids.
Collapse
Affiliation(s)
- Keitaro Ito
- Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603, Aichi, Japan.
| | - Shinya Sakuma
- Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603, Aichi, Japan.
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
- Department of Regenerative Medicine, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan.
| | - Makoto Kaneko
- Department of Mechanical Engineering, Osaka University, Suita 565-0871, Osaka, Japan.
| | - Fumihito Arai
- Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603, Aichi, Japan.
| |
Collapse
|