251
|
Abstract
The aging phenotype is the result of a complex interaction between genetic, epigenetic and environmental factors, and it is among the most complex phenotypes studied to date. Evidence suggests that epigenetic factors, including DNA methylation, histone modifications and microRNA expression, may affect the aging process and may be one of the central mechanisms by which aging predisposes to many age-related diseases. The total number of altered methylation sites increases with increasing age, such that they could serve as a biomarker for chronological age. This chapter summarizes the mechanisms by which these epigenetic factors contribute to aging and how they may affect the complex physiology of aging, lifespan and age-associated diseases.
Collapse
Affiliation(s)
- Dan Ben-Avraham
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA,
| |
Collapse
|
252
|
Abstract
Aging is a complex, multifaceted process that induces a myriad of physiological changes over an extended period of time. Aging is accompanied by major biochemical and biomechanical changes at macroscopic and microscopic length scales that affect not only tissues and organs but also cells and subcellular organelles. These changes include transcriptional and epigenetic modifications; changes in energy production within mitochondria; and alterations in the overall mechanics of cells, their nuclei, and their surrounding extracellular matrix. In addition, aging influences the ability of cells to sense changes in extracellular-matrix compliance (mechanosensation) and to transduce these changes into biochemical signals (mechanotransduction). Moreover, following a complex positive-feedback loop, aging is accompanied by changes in the composition and structure of the extracellular matrix, resulting in changes in the mechanics of connective tissues in older individuals. Consequently, these progressive dysfunctions facilitate many human pathologies and deficits that are associated with aging, including cardiovascular, musculoskeletal, and neurodegenerative disorders and diseases. Here, we critically review recent work highlighting some of the primary biophysical changes occurring in cells and tissues that accompany the aging process.
Collapse
Affiliation(s)
- Jude M Phillip
- Department of Chemical and Biomolecular Engineering, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Johns Hopkins Physical Sciences-Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Ivie Aifuwa
- Department of Chemical and Biomolecular Engineering, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Johns Hopkins Physical Sciences-Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Jeremy Walston
- Department of Medicine, Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Johns Hopkins Physical Sciences-Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Departments of Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| |
Collapse
|
253
|
Karambataki M, Malousi A, Kouidou S. Risk-associated coding synonymous SNPs in type 2 diabetes and neurodegenerative diseases: genetic silence and the underrated association with splicing regulation and epigenetics. Mutat Res 2014; 770:85-93. [PMID: 25771874 DOI: 10.1016/j.mrfmmm.2014.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
Single nucleotide polymorphisms (SNPs) are tentatively critical with regard to disease predisposition, but coding synonymous SNPs (sSNPs) are generally considered "neutral". Nevertheless, sSNPs in serine/arginine-rich (SR) and splice-site (SS) exonic splicing enhancers (ESEs) or in exonic CpG methylation targets, could be decisive for splicing, particularly in aging-related conditions, where mis-splicing is frequently observed. We presently identified 33 genes T2D-related and 28 related to neurodegenerative diseases, by investigating the impact of the corresponding coding sSNPs on splicing and using gene ontology data and computational tools. Potentially critical (prominent) sSNPs comply with the following criteria: changing the splicing potential of prominent SR-ESEs or of significant SS-ESEs by >1.5 units (Δscore), or formation/deletion of ESEs with maximum splicing score. We also noted the formation/disruption of CpGs (tentative methylation sites of epigenetic sSNPs). All disease association studies involving sSNPs are also reported. Only 21/670 coding SNPs, mostly epigenetic, reported in 33 T2D-related genes, were found to be prominent coding synonymous. No prominent sSNPs have been recorded in three key T2D-related genes (GCGR, PPARGC1A, IGF1). Similarly, 20/366 coding synonymous were identified in ND related genes, mostly epigenetic. Meta-analysis showed that 17 of the above prominent sSNPs were previously investigated in association with various pathological conditions. Three out of four sSNPs (all epigenetic) were associated with T2D and one with NDs (branch site sSNP). Five were associated with other or related pathological conditions. None of the four sSNPs introducing new ESEs was found to be disease-associated. sSNPs introducing smaller Δscore changes (<1.5) in key proteins (INSR, IRS1, DISC1) were also correlated to pathological conditions. This data reveals that genetic variation in splicing-regulatory and particularly CpG sites might be related to disease predisposition and that in-silico analysis is useful for identifying sSNPs, which might be falsely identified as silent or synonymous.
Collapse
Affiliation(s)
- M Karambataki
- Lab of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Malousi
- Lab of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - S Kouidou
- Lab of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
254
|
Crujeiras AB, Casanueva FF. Obesity and the reproductive system disorders: epigenetics as a potential bridge. Hum Reprod Update 2014; 21:249-61. [DOI: 10.1093/humupd/dmu060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
255
|
Age-related DNA methylation changes for forensic age-prediction. Int J Legal Med 2014; 129:237-44. [PMID: 25399049 DOI: 10.1007/s00414-014-1100-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
There is no available method of age-prediction for biological samples. The accumulating evidences indicate that DNA methylation patterns change with age. Aging resembles a developmentally regulated process that is tightly controlled by specific epigenetic modifications and age-associated methylation changes exist in human genome. In this study, three age-related methylation fragments were isolated and identified in blood of 40 donors. Age-related methylation changes with each fragment was validated and replicated in a general population sample of 65 donors over a wide age range (11-72 years). Methylation of these fragments is linearly correlated with age over a range of six decades (r = 0.80-0.88). Using average methylation of CpG sites of three fragments, a regression model that explained 95 % of the variance in age was built and is able to predict an individual's age with great accuracy (R (2 )= 0.93). The predicted value is highly correlated with the observed age in the sample (r = 0.96) and has great accuracy of average 4 years difference between predicted age and true age. This study implicates that DNA methylation can be an available biological marker of age-prediction. Further measurement of relevant markers in the genome could be a tool in routine screening to predict age of forensic biological samples.
Collapse
|
256
|
Martín-Guerrero I, de Prado E, Lopez-Lopez E, Ardanaz M, Vitoria JC, Parada LA, García-Orad C, García-Orad A. Methylation of the nonhomologous end joining repair pathway genes does not explain the increase of translocations with aging. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9730. [PMID: 25399073 PMCID: PMC4233023 DOI: 10.1007/s11357-014-9730-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Chromosome translocations are especially frequent in human lymphomas and leukemias but are insufficient to drive carcinogenesis. Indeed, several of the so-called tumor specific translocations have been detected in peripheral blood of healthy individuals, finding a higher frequency of some of them with aging. The inappropriate repair of DNA double strand breaks by the nonhomologous end joining (NHEJ) pathway is one of the reasons for a translocation to occur. Moreover, fidelity of this pathway has been shown to decline with age. Although the mechanism underlying this inefficacy is unknown, other repair pathways are inactivated by methylation with aging. In this study, we analyzed the implication of NHEJ genes methylation in the increase of translocations with the age. To this aim, we determined the relationship between translocations and aging in 565 Spanish healthy individuals and correlated these data with the methylation status of 11 NHEJ genes. We found higher frequency of BCL2-JH and BCR-ABL (major) translocations with aging. In addition, we detected that two NHEJ genes (LIG4 and XRCC6) presented age-dependent promoter methylation changes. However, we did not observe a correlation between the increase of translocations and methylation, indicating that other molecular mechanisms are involved in the loss of NHEJ fidelity with aging.
Collapse
Affiliation(s)
- Idoia Martín-Guerrero
- />Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country UPV/EHU, Barrio Sarriena sn, 48940 Leioa, Bizkaia Spain
| | - Elena de Prado
- />Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country UPV/EHU, Barrio Sarriena sn, 48940 Leioa, Bizkaia Spain
| | - Elixabet Lopez-Lopez
- />Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country UPV/EHU, Barrio Sarriena sn, 48940 Leioa, Bizkaia Spain
| | | | | | - Luis A. Parada
- />Institute of Experimental Pathology, UNSa-CONICET, Salta, Argentina
| | - Cristina García-Orad
- />Assistance to primary health care center -Torrent 1, Hospital General Valencia, Valencia, Spain
| | - Africa García-Orad
- />Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country UPV/EHU, Barrio Sarriena sn, 48940 Leioa, Bizkaia Spain
- />BioCruces Health Research Institute, Barakaldo, Bizkaia Spain
| |
Collapse
|
257
|
O’Connor JE, Herrera G, Martínez-Romero A, de Oyanguren FS, Díaz L, Gomes A, Balaguer S, Callaghan RC. Systems Biology and immune aging. Immunol Lett 2014; 162:334-45. [DOI: 10.1016/j.imlet.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
258
|
Zbieć-Piekarska R, Spólnicka M, Kupiec T, Makowska Ż, Spas A, Parys-Proszek A, Kucharczyk K, Płoski R, Branicki W. Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci Int Genet 2014; 14:161-7. [PMID: 25450787 DOI: 10.1016/j.fsigen.2014.10.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/12/2014] [Accepted: 10/01/2014] [Indexed: 12/31/2022]
Abstract
Age estimation in forensic investigations may complement the prediction of externally visible characteristics and the inference of biogeographical ancestry, thus allowing a better description of an unknown individual. Multiple CpG sites that show linear correlation between age and degree of DNA methylation have been identified in the human genome, providing a selection of candidates for age prediction. In this study, we optimized an assay based on bisulfite conversion and pyrosequencing of 7 CpG sites located in the ELOVL2 gene. Examination of 303 blood samples collected from individuals aged 2-75 years allowed selection of the most informative site, explaining 83% of variation in age. The final linear regression model included two CpG sites in ELOVL2 and enabled age prediction with R(2)=0.859, prediction error=6.85 and mean absolute deviation MAD=5.03. Examination of a testing set of 124 blood samples (MAD=5.75) showed that 68.5% of samples were correctly predicted, assuming that chronological and predicted ages matched ± 7 years. It was found that the ELOVL2 methylation status in bloodstains had not changed significantly after 4 weeks of storage in room temperature conditions. Analysis of 45 bloodstains deposited on tissue paper after 5, 10 and 15 years of storage in room conditions indicated that although a gradual decrease of positive PCR results was observed, the general age prediction success rate remained similar and equaled 60-78%. The obtained results show that the ELOVL2 locus provides a very good source of information about human chronological age based on analysis of blood, including bloodstains, and it may constitute a powerful and reliable predictor in future forensic age estimation models.
Collapse
Affiliation(s)
| | - Magdalena Spólnicka
- Central Forensic Laboratory of the Police, Aleje Ujazdowskie 7, 00-583 Warsaw, Poland
| | - Tomasz Kupiec
- Institute of Forensic Research, Westerplatte 9, 31-033 Krakow, Poland
| | - Żanetta Makowska
- Central Forensic Laboratory of the Police, Aleje Ujazdowskie 7, 00-583 Warsaw, Poland
| | - Anna Spas
- Central Forensic Laboratory of the Police, Aleje Ujazdowskie 7, 00-583 Warsaw, Poland
| | | | | | - Rafał Płoski
- Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Wojciech Branicki
- Institute of Forensic Research, Westerplatte 9, 31-033 Krakow, Poland.
| |
Collapse
|
259
|
Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 2014; 20:870-80. [PMID: 25100532 DOI: 10.1038/nm.3651] [Citation(s) in RCA: 542] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/09/2014] [Indexed: 12/14/2022]
Abstract
Aging tissues experience a progressive decline in homeostatic and regenerative capacities, which has been attributed to degenerative changes in tissue-specific stem cells, stem cell niches and systemic cues that regulate stem cell activity. Understanding the molecular pathways involved in this age-dependent deterioration of stem cell function will be critical for developing new therapies for diseases of aging that target the specific causes of age-related functional decline. Here we explore key molecular pathways that are commonly perturbed as tissues and stem cells age and degenerate. We further consider experimental evidence both supporting and refuting the notion that modulation of these pathways per se can reverse aging phenotypes. Finally, we ask whether stem cell aging establishes an epigenetic 'memory' that is indelibly written or one that can be reset.
Collapse
|
260
|
Robins C, Conneely KN. Testing evolutionary models of senescence: traditional approaches and future directions. Hum Genet 2014; 133:1451-65. [DOI: 10.1007/s00439-014-1492-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/26/2014] [Indexed: 02/05/2023]
|
261
|
Phipson B, Oshlack A. DiffVar: a new method for detecting differential variability with application to methylation in cancer and aging. Genome Biol 2014; 15:465. [PMID: 25245051 PMCID: PMC4210618 DOI: 10.1186/s13059-014-0465-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 09/10/2014] [Indexed: 01/17/2023] Open
Abstract
Methylation of DNA is known to be essential to development and dramatically altered in cancers. The Illumina HumanMethylation450 BeadChip has been used extensively as a cost-effective way to profile nearly half a million CpG sites across the human genome. Here we present DiffVar, a novel method to test for differential variability between sample groups. DiffVar employs an empirical Bayes model framework that can take into account any experimental design and is robust to outliers. We applied DiffVar to several datasets from The Cancer Genome Atlas, as well as an aging dataset. DiffVar is available in the missMethyl Bioconductor R package.
Collapse
|
262
|
O'Connor JE, Herrera G, Martínez-Romero A, Oyanguren FSD, Díaz L, Gomes A, Balaguer S, Callaghan RC. WITHDRAWN: Systems Biology and Immune Aging. Immunol Lett 2014:S0165-2478(14)00197-7. [PMID: 25251659 DOI: 10.1016/j.imlet.2014.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of anarticle that has already been published, http://dx.doi.org/10.1016/j.imlet.2014.09.009. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- José-Enrique O'Connor
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain.
| | - Guadalupe Herrera
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Alicia Martínez-Romero
- Cytometry Technological Service, Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Francisco Sala-de Oyanguren
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Laura Díaz
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Angela Gomes
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Susana Balaguer
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Robert C Callaghan
- Department of Pathology, Faculty of Medicine, The University of Valencia, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| |
Collapse
|
263
|
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2014; 14:R115. [PMID: 24138928 PMCID: PMC4015143 DOI: 10.1186/gb-2013-14-10-r115] [Citation(s) in RCA: 4251] [Impact Index Per Article: 386.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/04/2013] [Indexed: 12/15/2022] Open
Abstract
Background It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. Results I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. Conclusions I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research.
Collapse
|
264
|
Jin L, Jiang Z, Xia Y, Lou P, Chen L, Wang H, Bai L, Xie Y, Liu Y, Li W, Zhong B, Shen J, Jiang A, Zhu L, Wang J, Li X, Li M. Genome-wide DNA methylation changes in skeletal muscle between young and middle-aged pigs. BMC Genomics 2014; 15:653. [PMID: 25096499 PMCID: PMC4147169 DOI: 10.1186/1471-2164-15-653] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/31/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Age-related physiological, biochemical and functional changes in mammalian skeletal muscle have been shown to begin at the mid-point of the lifespan. However, the underlying changes in DNA methylation that occur during this turning point of the muscle aging process have not been clarified. To explore age-related genomic methylation changes in skeletal muscle, we employed young (0.5 years old) and middle-aged (7 years old) pigs as models to survey genome-wide DNA methylation in the longissimus dorsi muscle using a methylated DNA immunoprecipitation sequencing approach. RESULTS We observed a tendency toward a global loss of DNA methylation in the gene-body region of the skeletal muscle of the middle-aged pigs compared with the young group. We determined the genome-wide gene expression pattern in the longissimus dorsi muscle using microarray analysis and performed a correlation analysis using DMR (differentially methylated region)-mRNA pairs, and we found a significant negative correlation between the changes in methylation levels within gene bodies and gene expression. Furthermore, we identified numerous genes that show age-related methylation changes that are potentially involved in the aging process. The methylation status of these genes was confirmed using bisulfite sequencing PCR. The genes that exhibited a hypomethylated gene body in middle-aged pigs were over-represented in various proteolysis and protein catabolic processes, suggesting an important role for these genes in age-related muscle atrophy. In addition, genes associated with tumorigenesis exhibited aged-related differences in methylation and expression levels, suggesting an increased risk of disease associated with increased age. CONCLUSIONS This study provides a comprehensive analysis of genome-wide DNA methylation patterns in aging pig skeletal muscle. Our findings will serve as a valuable resource in aging studies, promoting the pig as a model organism for human aging research and accelerating the development of comparative animal models in aging research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | | |
Collapse
|
265
|
Epigenetics of hematopoietic stem cell aging and disease. Int J Hematol 2014; 100:326-34. [DOI: 10.1007/s12185-014-1647-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 02/07/2023]
|
266
|
Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Sci Int Genet 2014; 13:147-53. [PMID: 25128690 DOI: 10.1016/j.fsigen.2014.07.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/04/2014] [Accepted: 07/19/2014] [Indexed: 12/31/2022]
Abstract
DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science.
Collapse
|
267
|
Teschendorff AE, Liu X, Caren H, Pollard SM, Beck S, Widschwendter M, Chen L. The dynamics of DNA methylation covariation patterns in carcinogenesis. PLoS Comput Biol 2014; 10:e1003709. [PMID: 25010556 PMCID: PMC4091688 DOI: 10.1371/journal.pcbi.1003709] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/22/2014] [Indexed: 11/20/2022] Open
Abstract
Recently it has been observed that cancer tissue is characterised by an increased variability in DNA methylation patterns. However, how the correlative patterns in genome-wide DNA methylation change during the carcinogenic progress has not yet been explored. Here we study genome-wide inter-CpG correlations in DNA methylation, in addition to single site variability, during cervical carcinogenesis. We demonstrate how the study of changes in DNA methylation covariation patterns across normal, intra-epithelial neoplasia and invasive cancer allows the identification of CpG sites that indicate the risk of neoplastic transformation in stages prior to neoplasia. Importantly, we show that the covariation in DNA methylation at these risk CpG loci is maximal immediately prior to the onset of cancer, supporting the view that high epigenetic diversity in normal cells increases the risk of cancer. Consistent with this, we observe that invasive cancers exhibit increased covariation in DNA methylation at the risk CpG sites relative to normal tissue, but lower levels relative to pre-cancerous lesions. We further show that the identified risk CpG sites undergo preferential DNA methylation changes in relation to human papilloma virus infection and age. Results are validated in independent data including prospectively collected samples prior to neoplastic transformation. Our data are consistent with a phase transition model of carcinogenesis, in which epigenetic diversity is maximal prior to the onset of cancer. The model and algorithm proposed here may allow, in future, network biomarkers predicting the risk of neoplastic transformation to be identified. DNA methylation is a covalent modification of DNA which can regulate how active genes are. DNA methylation is altered at many genomic loci in cancer cells, leading to widespread functional disruption. Importantly, DNA methylation alterations across the genome are seen even in early carcinogenesis. Although the pattern of DNA methylation change during carcinogenesis has been studied at individual genomic loci, no study has yet analysed how these patterns change at a systems-level, specifically how do DNA methylation patterns at pairs of genomic sites change during disease progression. Doing so can shed light on how the epigenetic diversity of cell populations changes during the carcinogenic process. This study performs a systems-level analysis of the dynamic changes in DNA methylation correlation pattern during cervical carcinogenesis, demonstrating that epigenetic diversity is maximal just prior to the onset of cancer. Importantly, this supports the view that the risk of cancer development is closely related to an increase in epigenetic diversity in apparently healthy cells. In addition, the study provides a computational algorithm which successfully identifies the altered genomic sites confering the risk of cervical cancer.
Collapse
Affiliation(s)
- Andrew E. Teschendorff
- CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, Shanghai, China
- Statistical Genomics Group, UCL Cancer Institute, University College London, London, United Kingdom
- * E-mail:
| | - Xiaoping Liu
- Key Laboratory of Systems Biology, SIBS-Nordisk Translational Research Centre for PreDiabetes, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Helena Caren
- Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Steve M. Pollard
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Stephan Beck
- Medical Genomics Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Martin Widschwendter
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Luonan Chen
- Key Laboratory of Systems Biology, SIBS-Nordisk Translational Research Centre for PreDiabetes, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
268
|
Causes and Consequences of Age-Related Changes in DNA Methylation: A Role for ROS? BIOLOGY 2014; 3:403-25. [PMID: 24945102 PMCID: PMC4085615 DOI: 10.3390/biology3020403] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 05/28/2014] [Accepted: 05/31/2014] [Indexed: 01/15/2023]
Abstract
Recent genome-wide analysis of C-phosphate-G (CpG) sites has shown that the DNA methylome changes with increasing age, giving rise to genome-wide hypomethylation with site‑specific incidences of hypermethylation. This notion has received a lot of attention, as it potentially explains why aged organisms generally have a higher risk of age-related diseases. However, very little is known about the mechanisms that could cause the occurrence of these changes. Moreover, there does not appear to be a clear link between popular theories of aging and alterations in the methylome. Some of the most fruitful of these theories attribute an important role to reactive oxygen species, which seem to be responsible for an increase in oxidative damage to macromolecules, such as DNA, during the lifetime of an organism. In this review, the connection between changes in DNA methylation and these reactive oxygen species is discussed, as well as the effect of these changes on health. Deeper insights into the nature, causes and consequences of the aging methylome might provide a deeper understanding of the molecular mechanisms of aging and eventually contribute to the development of new diagnostic and therapeutic tools.
Collapse
|
269
|
Xi Z, Rainero I, Rubino E, Pinessi L, Bruni AC, Maletta RG, Nacmias B, Sorbi S, Galimberti D, Surace EI, Zheng Y, Moreno D, Sato C, Liang Y, Zhou Y, Robertson J, Zinman L, Tartaglia MC, St George-Hyslop P, Rogaeva E. Hypermethylation of the CpG-island near the C9orf72 G₄C₂-repeat expansion in FTLD patients. Hum Mol Genet 2014; 23:5630-7. [PMID: 24908669 DOI: 10.1093/hmg/ddu279] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The G₄C₂-repeat expansion in C9orf72 is a common cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). C9orf72 transcription is reduced in expansion carriers implicating haploinsufficiency as one of the disease mechanisms. Indeed, our recent ALS study revealed that the expansion was associated with hypermethylation of the CpG-island (5'of the repeat) in DNA samples obtained from different tissues (blood, brain and spinal cord). However, the link between FTLD and methylation of the CpG-island is unknown. Hence, we investigated the methylation profile of the same CpG-island by bisulfite sequencing of DNA obtained from blood of 34 FTLD expansion carriers, 166 FTLD non-carriers and 103 controls. Methylation level was significantly higher in FTLD expansion carriers than non-carriers (P = 7.8E-13). Our results were confirmed by two methods (HhaI-assay and sequencing of cloned bisulfite PCR products). Hypermethylation occurred only in carriers of an allele with >50 repeats, and was not detected in non-carriers or individuals with an intermediate allele (22-43 repeats). As expected, the position/number of methylated CpGs was concordant between the sense and anti-sense DNA strand, suggesting that it is a stable epigenetic modification. Analysis of the combined ALS and FTLD datasets (82 expansion carriers) revealed that the degree of methylation of the entire CpG-island or contribution of specific CpGs (n = 26) is similar in both syndromes, with a trend towards a higher proportion of ALS patients with a high methylation level (P = 0.09). In conclusion, we demonstrated that hypermethylation of the CpG-island 5'of the G₄C₂-repeat is expansion-specific, but not syndrome-specific (ALS versus FTLD).
Collapse
Affiliation(s)
- Zhengrui Xi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Street, Toronto, Ontario, Canada M5T 2S8
| | - Innocenzo Rainero
- Neurology I, Rita Levi Montalcini Department of Neuroscience, University of Torino, Torino, Italy
| | - Elisa Rubino
- Neurology I, Rita Levi Montalcini Department of Neuroscience, University of Torino, Torino, Italy
| | - Lorenzo Pinessi
- Neurology I, Rita Levi Montalcini Department of Neuroscience, University of Torino, Torino, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre, Lamezia Terme, Azienda Sanitaria Provinciale Catanzaro, Catanzaro, Italy
| | - Raffaele G Maletta
- Regional Neurogenetic Centre, Lamezia Terme, Azienda Sanitaria Provinciale Catanzaro, Catanzaro, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Daniela Galimberti
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Centro Dino Ferrari, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Ezequiel I Surace
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Biología Molecular, Instituto de Investigaciones Neurológicas Dr. Raúl Carrea (FLENI), Buenos Aires, Argentina
| | - Yonglan Zheng
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Street, Toronto, Ontario, Canada M5T 2S8
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Street, Toronto, Ontario, Canada M5T 2S8
| | - Yan Liang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Street, Toronto, Ontario, Canada M5T 2S8
| | - Ye Zhou
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Street, Toronto, Ontario, Canada M5T 2S8
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Street, Toronto, Ontario, Canada M5T 2S8
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON, Canada M4N 3M5, Department of Medicine, Division of Neurology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8 and
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Street, Toronto, Ontario, Canada M5T 2S8, Department of Medicine, Division of Neurology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8 and
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Street, Toronto, Ontario, Canada M5T 2S8, Department of Medicine, Division of Neurology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8 and Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Street, Toronto, Ontario, Canada M5T 2S8, Department of Medicine, Division of Neurology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8 and
| |
Collapse
|
270
|
Gautrey HE, van Otterdijk SD, Cordell HJ, Mathers JC, Strathdee G. DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells. FASEB J 2014; 28:3261-72. [PMID: 24858281 DOI: 10.1096/fj.13-246173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abnormal patterns of DNA methylation are one of the hallmarks of cancer cells. The process of aging has also been associated with similar, albeit less dramatic, changes in methylation patterns, leading to the hypothesis that age-related changes in DNA methylation may partially underlie the increased risk of cancer in the elderly. Here we studied 377 participants aged 85 yr from the Newcastle 85+ Study to investigate the extent of, and interindividual variation in, age-related changes in DNA methylation at specific CpG islands. Using highly quantitative pyrosequencing analysis, we found extensive and highly variable methylation of promoter-associated CpG islands with levels ranging from 4% to 35%, even at known tumor suppressor genes such as TWIST2. Furthermore, the interindividual differences in methylation seen across this elderly population phenocopies multiple features of the altered methylation patterns seen in cancer cells. Both aging- and cancer-related methylation can occur at similar sets of genes, both result in the formation of densely methylated, and likely transcriptionally repressed, alleles, and both exhibit coordinate methylation across multiple loci. In addition, high methylation levels were associated with subsequent diagnosis of leukemia or lymphoma during a 3-yr follow-up period (P=0.00008). These data suggest that the accumulation of age-related changes in promoter-associated CpG islands may contribute to the increased cancer risk seen during aging.-Gautrey, H. E., van Otterdijk, S. D., Cordell, H. J., Newcastle 85+ study core team, Mathers, J. C., Strathdee, G. DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - John C Mathers
- Human Nutrition Research Centre, Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, UK; and
| | | |
Collapse
|
271
|
Bechtel-Walz W, Huber TB. Chromatin dynamics in kidney development and function. Cell Tissue Res 2014; 356:601-8. [PMID: 24817101 DOI: 10.1007/s00441-014-1884-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
Epigenetic mechanisms are fundamental key features of developing cells connecting developmental regulatory factors to chromatin modification. Changes in the environment during renal development can have long-lasting effects on the permanent tissue structure and the level of expression of important functional genes. These changes are believed to contribute to kidney disease occurrence and progression. Although the mechanisms of early patterning and cell fate have been well described for renal development, little is known about associated epigenetic modifications and their impact on how genes interact to specify the renal epithelial cells of nephrons and how this specification is relevant to maintaining normal renal function. A better understanding of the renal cell-specific epigenetic modifications and the interaction of different cell types to form this highly complex organ will not only help to better understand developmental defects and early loss of kidney function in children, but also help to understand and improve chronic disease progression, cell regeneration and renal aging.
Collapse
Affiliation(s)
- Wibke Bechtel-Walz
- Renal Division, University Hospital Freiburg, Breisacher Str. 66, 79106, Freiburg, Germany,
| | | |
Collapse
|
272
|
Qian H, Xu X. Reduction in DNA methyltransferases and alteration of DNA methylation pattern associate with mouse skin ageing. Exp Dermatol 2014; 23:357-9. [PMID: 24645644 DOI: 10.1111/exd.12375] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2014] [Indexed: 11/29/2022]
Abstract
Understanding molecular mechanisms of skin ageing is critical for developing effective anti-ageing strategies. Recently, it has been suggested that epigenetics maybe be involved in tissue ageing and age-related diseases; however, the evidence regarding skin ageing has been very limited. We ran a pilot study in mouse skin to test whether DNA methyltransferases (Dnmts), DNA demethylases such as ten-eleven translocation enzymes (Tets) and DNA methylation of gene promoters change with age by quantitative RT-PCR and methylated DNA immunoprecipitation (MeDIP)-chip. We discovered that the expression of Dnmt3a, Dnmt3b and Tet2 declines significantly with skin ageing. The genome-wide DNA methylation analysis indicates that both hypermethylation and hypomethylation in promoters of genes are taken place. Functional category of those genes suggests that inhibition of cell proliferation and activation of immune response are important adaptations likely induced by skin ageing. These findings shed new light on epigenetic regulation of skin ageing.
Collapse
Affiliation(s)
- Hong Qian
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
273
|
Wu Y, Patchev AV, Daniel G, Almeida OFX, Spengler D. Early-life stress reduces DNA methylation of the Pomc gene in male mice. Endocrinology 2014; 155:1751-62. [PMID: 24506071 DOI: 10.1210/en.2013-1868] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Early-life stress (ELS) increases the vulnerability thresholds for stress-related diseases such as major depression and anxiety by inducing alterations in the structure and function of neural circuits and endocrine pathways. We previously demonstrated the contribution of epigenetic mechanisms to the long-term programming of the hypothalamo-pituitary-adrenal axis activity following ELS exposure in male mice. Here, ELS comprising daily separation of pups from their dams on postnatal days 1-10 was observed to up-regulate the expression of the pituitary proopiomelanocortin (Pomc) gene; POMC serves as a prohormone for ACTH, a key mediator of the adrenocortical response to stress. Detailed analysis revealed that the increase in Pomc mRNA levels results from a reduction in DNA methylation at a critical regulatory region of the Pomc gene; interestingly, this change occurs with some delay after ELS and persists for up to 1 year. Using a Pomc-expressing pituitary cell line (AtT20), we confirmed a role for DNA methylation in restraining Pomc expression under resting conditions: specifically, we show that CpG site-specific methylation of the Pomc promoter represses Pomc mRNA transcription. Further, we show high-affinity binding of methyl-CpG binding protein-2 to the distal promoter of Pomc, suggesting that methyl-CpG binding protein-2 acts in association with the chromatin modifiers histone deacetylase 2 and DNA methyltransferase 1 to repress Pomc gene expression. Collectively, these experiments contribute to our understanding of the mechanisms through which environmental cues are translated into stable changes ("cellular memory") in neuroendocrine cells.
Collapse
Affiliation(s)
- Yonghe Wu
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | |
Collapse
|
274
|
Peripheral blood mononuclear cells as a laboratory to study dementia in the elderly. BIOMED RESEARCH INTERNATIONAL 2014; 2014:169203. [PMID: 24877062 PMCID: PMC4022117 DOI: 10.1155/2014/169203] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/28/2014] [Indexed: 02/08/2023]
Abstract
The steady and dramatic increase in the incidence of Alzheimer's disease (AD) and the lack of effective treatments have stimulated the search for strategies to prevent or delay its onset and/or progression. Since the diagnosis of dementia requires a number of established features that are present when the disease is fully developed, but not always in the early stages, the need for a biological marker has proven to be urgent, in terms of both diagnosis and monitoring of AD. AD has been shown to affect peripheral blood mononuclear cells (PBMCs) that are a critical component of the immune system which provide defence against infection. Although studies are continuously supplying additional data that emphasize the central role of inflammation in AD, PBMCs have not been sufficiently investigated in this context. Delineating biochemical alterations in AD blood constituents may prove valuable in identifying accessible footprints that reflect degenerative processes within the Central Nervous System (CNS). In this review, we address the role of biomarkers in AD with a focus on the notion that PBMCs may serve as a peripheral laboratory to find molecular signatures that could aid in differential diagnosis with other forms of dementia and in monitoring of disease progression.
Collapse
|
275
|
Acquisition of aberrant DNA methylation is associated with frailty in the very old: findings from the Newcastle 85+ Study. Biogerontology 2014; 15:317-28. [PMID: 24770842 DOI: 10.1007/s10522-014-9500-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/01/2014] [Indexed: 12/24/2022]
Abstract
Frailty is a major health problem in older people and, as the population ages, identification of its underlying biological mechanisms will be increasingly important. DNA methylation patterns within genomic DNA change during ageing and alterations in DNA methylation, particularly at gene promoter regions, can lead to altered gene expression. However the importance of altered DNA methylation in frailty is largely unknown. Using cross-sectional data from the Newcastle 85+ Study (all participants aged 85 years) frailty was operationalized by the Fried model. DNA methylation levels were assessed by highly quantitative pyrosequencing at the gene promoter associated CpG islands from a panel of five age-related methylation marker loci and at LINE-1 repetitive elements (as a surrogate for genome-wide methylation). While genome-wide methylation (as assessed at LINE-1 elements) showed no association with frailty status, there was a clear association between CpG island methylation and frailty. When compared to participants with CpG island methylation levels in the combined middle two (referent) quartiles, those in the lowest quartile had significantly decreased odds of frailty [odds ratio 0.47 (95 % CI 0.26-0.85); n = 321, p = 0.013]. Overall this study suggests a potential role for age-related changes in CpG island methylation in the development of frailty.
Collapse
|
276
|
Abstract
Aging is the strongest risk factor for cancer development, suggesting that molecular crosstalks between aging and tumorigenesis exist in many cellular pathways. Recently, Sirtuins (Sirt1-7), the mammalian homologues of aging-related sir2α in yeast, have been shown to modulate several major cellular pathways, such as DNA repair, inflammation, metabolism, cell death, and proliferation in response to diverse stresses, and may serve as a possible molecular link between aging and tumorignenesis. In addition, growing evidence suggests that sirtuins are directly implicated in the development of cancer, and they can act as either a tumor suppressor or promoter, depending on the cellular context and tumor types. While the functions of Sirt1 in tumorigenesis have been reported and reviewed in many studies, the connection between sirtuins 2-7 and the development of cancer is less established. Thus, this review will present the recent updates on the emerging roles of Sirt2-7 members in carcinogenesis. [BMB Reports 2013; 46(9): 429-438]
Collapse
Affiliation(s)
- Yong I Cha
- Department of Life Science, Ewha Womans University, Seoul 120-750, Korea
| | | |
Collapse
|
277
|
Martin SL, Hardy TM, Tollefsbol TO. Medicinal chemistry of the epigenetic diet and caloric restriction. Curr Med Chem 2014; 20:4050-9. [PMID: 23895687 DOI: 10.2174/09298673113209990189] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 06/12/2013] [Accepted: 07/23/2013] [Indexed: 12/18/2022]
Abstract
The pronounced effects of the epigenetic diet (ED) and caloric restriction (CR) have on epigenetic gene regulation have been documented in many pre-clinical and clinical studies. Understanding epigenetics is of high importance because of the concept that external factors such as nutrition and diet may possess the ability to alter gene expression without modifying the DNA sequence. The ED introduces bioactive medicinal chemistry compounds such as sulforaphane (SFN), curcumin (CCM), epigallocatechin gallate (EGCG) and resveratrol (RSV) that are thought to aid in extending the human lifespan. CR, although similar to ED in the target of longevity, mildly reduces the total daily calorie intake while concurrently providing all beneficial nutrients. Both CR and ED may act as epigenetic modifiers to slow the aging process through histone modification, DNA methylation, and by modulating microRNA expression. CR and ED have been proposed as two important mechanisms that modulate and potentially slow the progression of age-related diseases such as cardiovascular disease (CVD), cancer, obesity, Alzheimer's and osteoporosis to name a few. While many investigators have examined CR and ED as separate entities, this review will primarily focus on both as they relate to age-related diseases, their epigenetic effects and their medicinal chemistry.
Collapse
Affiliation(s)
- S L Martin
- CH175, 1300 University Boulevard, Birmingham, AL 35294-1170 USA.
| | | | | |
Collapse
|
278
|
Karlic H, Herrmann H, Varga F, Thaler R, Reitermaier R, Spitzer S, Ghanim V, Blatt K, Sperr WR, Valent P, Pfeilstöcker M. The role of epigenetics in the regulation of apoptosis in myelodysplastic syndromes and acute myeloid leukemia. Crit Rev Oncol Hematol 2014; 90:1-16. [DOI: 10.1016/j.critrevonc.2013.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 09/03/2013] [Accepted: 10/02/2013] [Indexed: 01/17/2023] Open
|
279
|
Li J, Ohliger J, Pei M. Significance of epigenetic landscape in cartilage regeneration from the cartilage development and pathology perspective. Stem Cells Dev 2014; 23:1178-94. [PMID: 24555773 DOI: 10.1089/scd.2014.0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Regenerative therapies for cartilage defects have been greatly advanced by progress in both the stem cell biology and tissue engineering fields. Despite notable successes, significant barriers remain including shortage of autologous cell sources and generation of a stable chondrocyte phenotype using progenitor cells. Increasing demands for the treatment of degenerative diseases, such as osteoarthritis and rheumatoid arthritis, highlight the importance of epigenetic remodeling in cartilage regeneration. Epigenetic regulatory mechanisms, such as microRNAs, DNA methylation, and histone modifications, have been intensively studied due to their direct regulatory role on gene expression. However, a thorough understanding of the environmental factors that initiate these epigenetic events may provide greater insight into the prevention of degenerative diseases and improve the efficacy of treatments. In other words, if we could identify a specific factor from the environment and its downstream signaling events, then we could stop or retard degradation and enhance cartilage regeneration. A more operational definition of epigenetic remodeling has recently been proposed by categorizing the signals during the epigenetic process into epigenators, initiators, and maintainers. This review seeks to compile and reorganize the existing literature pertaining to epigenetic remodeling events placing emphasis on perceiving the landscape of epigenetic mechanisms during cartilage regeneration with the new operational definition, especially from the environmental factors' point of view. Progress in understanding epigenetic regulatory mechanisms could benefit cartilage regeneration and engineering on a larger scale and provide more promising therapeutic applications.
Collapse
Affiliation(s)
- Jingting Li
- 1 Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University , Morgantown, West Virginia
| | | | | |
Collapse
|
280
|
Stable SREBP-1a knockdown decreases the cell proliferation rate in human preadipocyte cells without inducing senescence. Biochem Biophys Res Commun 2014; 447:51-6. [DOI: 10.1016/j.bbrc.2014.03.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/20/2014] [Indexed: 11/18/2022]
|
281
|
Yi SH, Xu LC, Mei K, Yang RZ, Huang DX. Isolation and identification of age-related DNA methylation markers for forensic age-prediction. Forensic Sci Int Genet 2014; 11:117-25. [PMID: 24727429 DOI: 10.1016/j.fsigen.2014.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 03/03/2014] [Accepted: 03/12/2014] [Indexed: 12/27/2022]
Abstract
Age-prediction is an important part of forensic science. There is no available method of individual age-prediction for general forensic biological samples at crime scenes. Accumulating evidence indicates that aging resembles a developmentally regulated process tightly controlled by specific age-associated methylation exists in human genome. This study isolated and identified eight gene fragments in which the degree of cytosine methylation is significantly correlated with age in blood of 40 donors. Furthermore, we validated two CpG sites of each gene fragment and replicated our results in a general population sample of 40 males and 25 females with a wide age-range (11-72 years). The methylation of these fragments is linear with age over a range of six decades (Fragment P1 (r=-0.64), P2 (r=-0.58), P3 (r=-0.79), R1 (r=0.82), R2 (r=0.63), R3 (r=0.59), R4 (r=0.63) and R5 (r=0.62)). Using average methylation of two CpG sites from each fragment, we built a regression model that explained 95% of the variance in age and is able to predict the age of an individual with great accuracy (R(2)=0.918). The predicted values are highly correlated with the observed age in the sample (r=0.91). This study implicates that DNA methylation will be an available biological marker of age-prediction. Furthermore, measurement of relevant sites in the genome could be a tool in routine forensic screening to predict age of biological samples.
Collapse
Affiliation(s)
- Shao Hua Yi
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Long Chang Xu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Kun Mei
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Rong Zhi Yang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Dai Xin Huang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
282
|
Zhang W, Hu D, Ji W, Yang L, Yang J, Yuan J, Xuan A, Zou F, Zhuang Z. Histone modifications contribute to cellular replicative and hydrogen peroxide-induced premature senescence in human embryonic lung fibroblasts. Free Radic Res 2014; 48:550-9. [PMID: 24528089 DOI: 10.3109/10715762.2014.893580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Histone modifications are major post-translational mechanisms responsible for regulation of gene transcription involved in cellular senescence. By using immunofluorescence and Western blot, we showed that the global acetylated levels of histone H3 and H4 were significantly reduced in both replicative and premature senescence of human embryonic lung fibroblasts. However the whole trimethylated level of histone H4 lysine 20 was higher in senescent cells. The alterations in the mRNA and protein levels of histone acetyltransferases (HATs), histone methyltransferase (HMT), and histone deacetylases (HDACs) indicate that differential expression exists between replicative and premature senescent cells. Meanwhile, the reduced activity of HDACs was accompanied by cellular senescence. By employing the quantitative chromatin immunoprecipitation assay in detecting specific histone modifications in senescence-related genes including p53 and p16, it was demonstrated that the mRNA expression of p53 was associated with increased H4 acetylation in replicative senescence and increased H4 acetylation and trimethylation of histone H3 at lysine 4 (H3K4me3) in premature senescence. Both acetylation and trimethylation of H3 were involved in replicative senescence, while the acetylation of histone H3 and H4 was predominant in premature senescence, contributing to the mRNA expression of p16. In summary, the global hypoacetylation of histone H3 and H4 and the hypertrimethylation of histone H4 lysine 20 account for epigenetic characteristics in senescence, controlled by HATs, HMT, and HDACs differentially between replicative and premature senescence. Taken together, these findings suggest that the specific histone modifications are involved in regulating the expression of genes related to senescence of human embryonic lung fibroblasts.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou , P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Arancio W, Pizzolanti G, Genovese SI, Pitrone M, Giordano C. Epigenetic involvement in Hutchinson-Gilford progeria syndrome: a mini-review. Gerontology 2014; 60:197-203. [PMID: 24603298 DOI: 10.1159/000357206] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 11/11/2013] [Indexed: 11/19/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare human genetic disease that leads to a severe premature ageing phenotype, caused by mutations in the LMNA gene. The LMNA gene codes for lamin-A and lamin-C proteins, which are structural components of the nuclear lamina. HGPS is usually caused by a de novo C1824T mutation that leads to the accumulation of a dominant negative form of lamin-A called progerin. Progerin also accumulates physiologically in normal ageing cells as a rare splicing form of lamin-A transcripts. From this perspective, HGPS cells seem to be good candidates for the study of the physiological mechanisms of ageing. Progerin accumulation leads to faster cellular senescence, stem cell depletion and the progeroid phenotype. Tissues of mesodermic origin are especially affected by HGPS. HGPS patients usually have a bad quality of life and, with current treatments, their life expectancy does not exceed their second decade at best. Though progerin can be expressed in almost any tissue, when death occurs, it is usually due to cardiovascular complications. In HGPS, severe epigenetic alterations have been reported. Histone-covalent modifications are radically different from control specimens, with the tendency to lose the bipartition into euchromatin and heterochromatin. This is reflected in an altered spatial compartmentalization and conformation of chromatin within the nucleus. Moreover, it seems that microRNAs and microRNA biosynthesis might play a role in HGPS. Exemplary in this connection is the suggested protective effect of miR-9 on the central nervous system of affected individuals. This mini-review will report on the state of the art of HGPS epigenetics, and there will be a discussion of how epigenetic alterations in HGPS cells can alter the cellular metabolism and lead to the systemic syndrome.
Collapse
Affiliation(s)
- Walter Arancio
- Section of Endocrinology, Diabetology and Metabolism, Biomedical Department of Internal and Specialized Medicine (DiBiMIS), University of Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
284
|
Chaturvedi P, Tyagi SC. Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int J Cardiol 2014; 173:1-11. [PMID: 24636549 DOI: 10.1016/j.ijcard.2014.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/29/2013] [Accepted: 02/08/2014] [Indexed: 01/08/2023]
Abstract
Epigenetic modifications which are defined by DNA methylation, histone modifications and microRNA mediated gene regulation, have been found to be associated with cardiac dysfunction and cardiac regeneration but the mechanisms are unclear. MicroRNA therapies have been proposed for cardiac regeneration and proliferation of stem cells into cardiomyocytes. Cardiovascular disorders are represented by abnormal methylation of CpG islands and drugs that inhibit DNA methyltransferases such as 5-methyl Aza cytidine are under trials. Histone modifications which include acetylation, methylation, phosphorylation, ADP ribosylation, sumoylation and biotinylation are represented within abnormal phenotypes of cardiac hypertrophy, cardiac development and contractility. MicroRNAs have been used efficiently to epigenetically reprogram fibroblasts into cardiomyocytes. MicroRNAs represent themselves as potential biomarkers for early detection of cardiac disorders which are difficult to diagnose and are captured at later stages. Because microRNAs regulate circadian genes, for example a nocturnin gene of circadian clockwork is regulated by miR122, they have a profound role in regulating biological clock and this may explain the high cardiovascular risk during the morning time. This review highlights the role of epigenetics which can be helpful in disease management strategies.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
285
|
Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jöckel KH, Erbel R, Mühleisen TW, Zenke M, Brümmendorf TH, Wagner W. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 2014; 15:R24. [PMID: 24490752 PMCID: PMC4053864 DOI: 10.1186/gb-2014-15-2-r24] [Citation(s) in RCA: 619] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 02/03/2014] [Indexed: 01/03/2023] Open
Abstract
Background Human aging is associated with DNA methylation changes at specific sites in the genome. These epigenetic modifications may be used to track donor age for forensic analysis or to estimate biological age. Results We perform a comprehensive analysis of methylation profiles to narrow down 102 age-related CpG sites in blood. We demonstrate that most of these age-associated methylation changes are reversed in induced pluripotent stem cells (iPSCs). Methylation levels at three age-related CpGs - located in the genes ITGA2B, ASPA and PDE4C - were subsequently analyzed by bisulfite pyrosequencing of 151 blood samples. This epigenetic aging signature facilitates age predictions with a mean absolute deviation from chronological age of less than 5 years. This precision is higher than age predictions based on telomere length. Variation of age predictions correlates moderately with clinical and lifestyle parameters supporting the notion that age-associated methylation changes are associated more with biological age than with chronological age. Furthermore, patients with acquired aplastic anemia or dyskeratosis congenita - two diseases associated with progressive bone marrow failure and severe telomere attrition - are predicted to be prematurely aged. Conclusions Our epigenetic aging signature provides a simple biomarker to estimate the state of aging in blood. Age-associated DNA methylation changes are counteracted in iPSCs. On the other hand, over-estimation of chronological age in bone marrow failure syndromes is indicative for exhaustion of the hematopoietic cell pool. Thus, epigenetic changes upon aging seem to reflect biological aging of blood.
Collapse
|
286
|
Langley-Evans SC. Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet 2014; 28 Suppl 1:1-14. [PMID: 24479490 DOI: 10.1111/jhn.12212] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Foetal development and infancy are life stages that are characterised by rapid growth, development and maturation of organs and systems. Variation in the quality or quantity of nutrients consumed by mothers during pregnancy, or infants during the first year of life, can exert permanent and powerful effects upon developing tissues. These effects are termed 'programming' and represent an important risk factor for noncommunicable diseases of adulthood, including the metabolic syndrome and coronary heart disease. This narrative review provides an overview of the evidence-base showing that indicators of nutritional deficit in pregnancy are associated with a greater risk of type-2 diabetes and cardiovascular mortality. There is also a limited evidence-base that suggests some relationship between breastfeeding and the timing and type of foods used in weaning, and disease in later life. Many of the associations reported between indicators of early growth and adult disease appear to interact with specific genotypes. This supports the idea that programming is one of several cumulative influences upon health and disease acting across the lifespan. Experimental studies have provided important clues to the mechanisms that link nutritional challenges in early life to disease in adulthood. It is suggested that nutritional programming is a product of the altered expression of genes that regulate the cell cycle, resulting in effective remodelling of tissue structure and functionality. The observation that traits programmed by nutritional exposures in foetal life can be transmitted to further generations adds weight the argument that heritable epigenetic modifications play a critical role in nutritional programming.
Collapse
Affiliation(s)
- S C Langley-Evans
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| |
Collapse
|
287
|
Nejman D, Straussman R, Steinfeld I, Ruvolo M, Roberts D, Yakhini Z, Cedar H. Molecular rules governing de novo methylation in cancer. Cancer Res 2014; 74:1475-83. [PMID: 24453003 DOI: 10.1158/0008-5472.can-13-3042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
De novo methylation of CpG islands is seen in many cancers, but the general rules governing this process are not known. By analyzing DNA from tumors, as well as normal tissues, and by utilizing a range of published data, we have identified a universal set of tumor targets, each with its own "coefficient" of methylation that is largely correlated with its inherent relative ability to recruit polycomb. This pattern is initially formed by a slow process of de novo methylation that occurs during aging and then undergoes expansion early in tumorigenesis, where we hypothesize that it may act as an inhibitor of development-associated gene activation.
Collapse
Affiliation(s)
- Deborah Nejman
- Authors' Affiliations: Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Ein Kerem, Jerusalem; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot; Department of Computer Sciences, Technion Israel Institute of Technology, Haifa; Agilent Laboratories, Tel Aviv, Israel; and Agilent Technologies, Inc., Santa Clara, California
| | | | | | | | | | | | | |
Collapse
|
288
|
Jiang L. Causes of aging are likely to be many: robin holliday and changing molecular approaches to cell aging, 1963-1988. JOURNAL OF THE HISTORY OF BIOLOGY 2014; 47:547-584. [PMID: 24777854 DOI: 10.1007/s10739-014-9382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Causal complexities involved in biological phenomena often generate ambiguous experimental results that may create epistemic niches for new approaches and interpretations. The exploration for new approaches may foment momentum of larger epistemological shifts, and thereby introduce the possibilities of adopting new technologies. This paper describes British molecular biologist Robin Holliday's cell aging research from 1963 to the 1980s that transformed from simple hypothesis testing to working on various alternative and integrative approaches designed to deal with complex data. In the 1960s, hoping to use biochemical investigations of cells to settle a debate about whether DNA mutations or protein errors caused aging, Holliday carried out a series of experiments with fruit flies, fungi, and human fibroblast cells. The results seemed to demonstrate that cytoplasmic protein errors caused cell aging. However, other scientists obtained contradictory results and raised issues about potential flaws in Holliday's experiments. In the 1970s, working as the director of the Genetics Division of the National Institute for Medical Research in Mill Hill, United Kingdom, Holliday relied on available talents of his associates, including computational expertise, to explore alternative hypotheses and approaches. By the early 1980s, they had worked out an epigenetic explanation and had established integrative, evolutionary models of cell aging that incorporated both DNA mutations and protein errors as critical factors. By delineating Holliday's research path from simply testing hypotheses to integrating multiple factors involved in aging, this paper offers an account of the difficulties in targeting molecular cause in cell aging around the 1970s, whose failures nevertheless opened up an epistemic niche for integration.
Collapse
Affiliation(s)
- Lijing Jiang
- Department of East Asian Studies & History of Science Program, Princeton University, 211 Jones Hall, Princeton, NJ, 08544, USA,
| |
Collapse
|
289
|
Abstract
Adipose tissue historically was believed to be an inert tissue, functioning primarily in the storage of energy and thermal homeostasis. However, recent discoveries point toward a critical role for adipocytes in endocrine function as well as immune regulation. Excess body fat, accumulated through aging and/or a calorie-rich diet, is associated with many chronic metabolic and inflammatory diseases. Within the stromal vascular fraction of adipose tissue, macrophages and T cells accumulate with increasing tissue mass, secreting pro- or anti-inflammatory cytokines. In this review we discuss the current understanding of immune cell function in both diet-induced and age-related obesity. In both models of obesity, the classically activated, pro-inflammatory (M1) subtype takes precedence over the alternatively activated, anti-inflammatory (M2) macrophages, causing tissue necrosis and releasing pro-inflammatory cytokines like interleukin-6. Other distinct adipose tissue macrophage subtypes have been identified by surface marker expression and their functions characterized. Adipose tissue T cell recruitment to adipose tissue is also different between aging- and diet-induced obesity. Under both conditions, T cells exhibit restricted T-cell receptor diversity and produce higher levels of pro-inflammatory signals like interferon-γ and granzyme B relative to young or healthy mice. However, numbers of regulatory T cells are dramatically different between the 2 models of obesity. Taken together, these findings suggest models of age- and diet-induced obesity may be more distinct than previously thought, with many questions yet to be resolved in this multidimensional disease.
Collapse
Affiliation(s)
- Sanjay K Garg
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Colin Delaney
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Hang Shi
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Raymond Yung
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
290
|
Sun Y, Liu C, Liu Y, Hosokawa T, Saito T, Kurasaki M. Changes in the expression of epigenetic factors during copper-induced apoptosis in PC12 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:1023-1028. [PMID: 24798901 DOI: 10.1080/10934529.2014.894847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Despite extensive research on copper toxicity the mechanisms involved are not fully characterized. There have been many recent reports concerning the relationship between epigenetic factors and cell metabolism, but the effects of copper exposure on epigenetic factors have not been investigated. In this study, an in vitro culture system was employed to study the influence of copper on apoptosis and epigenetic factors in PC12 cells. When PC12 cells were exposed to copper, DNA damage was observed as DNA fragmentation. In addition, cytosolic cytochrome c levels were increased by copper treatment. These results suggested that copper induced apoptosis via an oxidative stress pathway. This was consistent with the observation that copper-induced apoptosis was enhanced by further oxidative stress induced by exposing cells to H₂O₂. In addition, the epigenetic factors were significantly increased in apoptotic cells following exposure to copper and oxidative stress.
Collapse
Affiliation(s)
- Yongkun Sun
- a Group of Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University , Sapporo , Japan
| | | | | | | | | | | |
Collapse
|
291
|
Hoffmann G, Breitenbücher F, Schuler M, Ehrenhofer-Murray AE. A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J Biol Chem 2013; 289:5208-16. [PMID: 24379401 DOI: 10.1074/jbc.m113.487736] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sirtuin 2 (SIRT2) is an NAD(+)-dependent protein deacetylase whose targets include histone H4 lysine 16, p53, and α-tubulin. Because deacetylation of p53 regulates its effect on apoptosis, pharmacological inhibition of SIRT2-dependent p53 deacetylation is of great therapeutic interest for the treatment of cancer. Here, we have identified two structurally related compounds, AEM1 and AEM2, which are selective inhibitors of SIRT2 (IC50 values of 18.5 and 3.8 μM, respectively), but show only weak effects on other sirtuins such as SIRT1, SIRT3, and yeast Sir2. Interestingly, both compounds sensitized non-small cell lung cancer cell lines toward the induction of apoptosis by the DNA-damaging agent etoposide. Importantly, this sensitization was dependent on the presence of functional p53, thus establishing a link between SIRT2 inhibition by these compounds and p53 activation. Further, treatment with AEM1 and AEM2 led to elevated levels of p53 acetylation and to increased expression of CDKN1A, which encodes the cell cycle regulator p21(WAF1), as well as the pro-apoptotic genes PUMA and NOXA, three transcriptional targets of p53. Altogether, our data suggest that inhibition of SIRT2 by these compounds causes increased activation of p53 by decreasing SIRT2-dependent p53 deacetylation. These compounds thus provide a good opportunity for lead optimization and drug development to target p53-proficient cancers.
Collapse
Affiliation(s)
- Gesine Hoffmann
- From the Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, 45117 Essen, Germany
| | | | | | | |
Collapse
|
292
|
Connelly JJ, Cherepanova OA, Doss JF, Karaoli T, Lillard TS, Markunas CA, Nelson S, Wang T, Ellis PD, Langford CF, Haynes C, Seo DM, Goldschmidt-Clermont PJ, Shah SH, Kraus WE, Hauser ER, Gregory SG. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis. Hum Mol Genet 2013; 22:5107-20. [PMID: 23912340 PMCID: PMC3842173 DOI: 10.1093/hmg/ddt365] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/25/2013] [Indexed: 11/14/2022] Open
Abstract
Smooth muscle cell (SMC) proliferation is a hallmark of vascular injury and disease. Global hypomethylation occurs during SMC proliferation in culture and in vivo during neointimal formation. Regardless of the programmed or stochastic nature of hypomethylation, identifying these changes is important in understanding vascular disease, as maintenance of a cells' epigenetic profile is essential for maintaining cellular phenotype. Global hypomethylation of proliferating aortic SMCs and concomitant decrease of DNMT1 expression were identified in culture during passage. An epigenome screen identified regions of the genome that were hypomethylated during proliferation and a region containing Collagen, type XV, alpha 1 (COL15A1) was selected by 'genomic convergence' for characterization. COL15A1 transcript and protein levels increased with passage-dependent decreases in DNA methylation and the transcript was sensitive to treatment with 5-Aza-2'-deoxycytidine, suggesting DNA methylation-mediated gene expression. Phenotypically, knockdown of COL15A1 increased SMC migration and decreased proliferation and Col15a1 expression was induced in an atherosclerotic lesion and localized to the atherosclerotic cap. A sequence variant in COL15A1 that is significantly associated with atherosclerosis (rs4142986, P = 0.017, OR = 1.434) was methylated and methylation of the risk allele correlated with decreased gene expression and increased atherosclerosis in human aorta. In summary, hypomethylation of COL15A1 occurs during SMC proliferation and the consequent increased gene expression may impact SMC phenotype and atherosclerosis formation. Hypomethylated genes, such as COL15A1, provide evidence for concomitant epigenetic regulation and genetic susceptibility, and define a class of causal targets that sit at the intersection of genetic and epigenetic predisposition in the etiology of complex disease.
Collapse
Affiliation(s)
- Jessica J. Connelly
- Department of Medicine and Division of Cardiovascular Medicine and
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Olga A. Cherepanova
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Jennifer F. Doss
- Department of Medicine and Center for Human Genetics, Durham, NC, USA
| | - Themistoclis Karaoli
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Travis S. Lillard
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | | | - Sarah Nelson
- Department of Medicine and Center for Human Genetics, Durham, NC, USA
| | - Tianyuan Wang
- Department of Medicine and Center for Human Genetics, Durham, NC, USA
| | - Peter D. Ellis
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Carol Haynes
- Department of Medicine and Center for Human Genetics, Durham, NC, USA
| | - David M. Seo
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Svati H. Shah
- Department of Medicine and Center for Human Genetics, Durham, NC, USA
- Department of Medicine and Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - William E. Kraus
- Department of Medicine and Center for Human Genetics, Durham, NC, USA
- Department of Medicine and Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Elizabeth R. Hauser
- Department of Medicine and Center for Human Genetics, Durham, NC, USA
- Durham Epidemiologic Research and Information Center, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Simon G. Gregory
- Department of Medicine and Center for Human Genetics, Durham, NC, USA
| |
Collapse
|
293
|
A computational model for genetic and epigenetic signals in colon cancer. Interdiscip Sci 2013; 5:175-86. [PMID: 24307409 DOI: 10.1007/s12539-013-0172-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/30/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
Cancer, a class of diseases, characterized by abnormal cell growth, has one of the highest overall death rates world-wide. Its development has been linked to aberrant genetic and epigenetic events, affecting the regulation of key genes that control cellular mechanisms. However, a major issue in cancer research is the lack of precise information on tumour pathways; therefore, the delineation of these and of the processes underlying disease proliferation is an important area of investigation. A computational approach to modelling malignant system events can help to improve understanding likely "triggers", i.e. initiating abnormal micro-molecular signals that occur during cancer development. Here, we introduce a network-based model for genetic and epigenetic events observed at different stages of colon cancer, with a focus on the gene relationships and tumour pathways. Additionally, we describe a case study on tumour progression recorded for two gene networks on colon cancer, carcinoma in situ. Our results to date showed that tumour progression rate is higher for a small, closely-associated network of genes than for a larger, less-connected set; thus, disease development depends on assessment of network properties. The current work aims to provide improved insight on the way in which aberrant modifications characterize cancer initiation and progression. The framework dynamics are described in terms of interdependencies between three main layers: genetic and epigenetic events, gene relationships and cancer stage levels.
Collapse
|
294
|
Harlaar N, Hutchison KE. Alcohol and the methylome: design and analysis considerations for research using human samples. Drug Alcohol Depend 2013; 133:305-16. [PMID: 23968814 DOI: 10.1016/j.drugalcdep.2013.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND A growing number of studies in human samples have sought to determine whether chronic alcohol use and alcohol use disorders (AUDs) may be associated with epigenetic factors, such as DNA methylation. We review the extant literature in light of some of the challenges that currently affect the design and interpretation of epigenetic research in human samples. METHOD A literature search was used to identify studies that have examined DNA methylation in relation to alcohol use or AUDs in human samples (through July 2013). A total of 22 studies were identified. RESULTS Associations with quantitative or diagnostic phenotypes of alcohol use or AUDs have been reported for several genes. However, all studies to date have relied on relatively small samples and cross-sectional study designs. Additionally, attempts to replicate results have been rare. More generally, research progress is hampered by several issues, including limitations of the technologies used to assess DNA methylation, tissue- and cell-specificity of methylation patterns, the difficulties of relating observed methylation differences at a given locus to a functional effect, and limited knowledge about the molecular mechanisms underlying the effects of alcohol on DNA methylation. CONCLUSIONS Although we share the optimism that epigenetics may lead to new insights into the etiology and pathophysiology of AUDs, the methodological and scientific challenges associated with conducting methylomic research in human samples need to be carefully considered when designing and evaluating such studies.
Collapse
Affiliation(s)
- Nicole Harlaar
- University of Colorado Boulder, Boulder, CO 80309-0345, USA.
| | | |
Collapse
|
295
|
Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT, Yan IK, Pregent L, Daughrity L, Baker MC, Rademakers R, Boylan K, Patel TC, Dickson DW, Petrucelli L. Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol 2013; 126:895-905. [PMID: 24166615 PMCID: PMC3830740 DOI: 10.1007/s00401-013-1199-1] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022]
Abstract
Individuals carrying (GGGGCC) expanded repeats in the C9orf72 gene represent a significant portion of patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Elucidating how these expanded repeats cause "c9FTD/ALS" has since become an important goal of the field. Toward this end, we sought to investigate whether epigenetic changes are responsible for the decrease in C9orf72 expression levels observed in c9FTD/ALS patients. We obtained brain tissue from ten c9FTD/ALS individuals, nine FTD/ALS cases without a C9orf72 repeat expansion, and nine disease control participants, and generated fibroblastoid cell lines from seven C9orf72 expanded repeat carriers and seven participants carrying normal alleles. Chromatin immunoprecipitation using antibodies for histone H3 and H4 trimethylated at lysines 9 (H3K9), 27 (H3K27), 79 (H3K79), and 20 (H4K20) revealed that these trimethylated residues bind strongly to C9orf72 expanded repeats in brain tissue, but not to non-pathogenic repeats. Our finding that C9orf72 mRNA levels are reduced in the frontal cortices and cerebella of c9FTD/ALS patients is consistent with trimethylation of these histone residues, an event known to repress gene expression. Moreover, treating repeat carrier-derived fibroblasts with 5-aza-2-deoxycytidine, a DNA and histone demethylating agent, not only decreased C9orf72 binding to trimethylated histone residues, but also increased C9orf72 mRNA expression. Our results provide compelling evidence that trimethylation of lysine residues within histones H3 and H4 is a novel mechanism involved in reducing C9orf72 mRNA expression in expanded repeat carriers. Of importance, we show that mutant C9orf72 binding to trimethylated H3K9 and H3K27 is detectable in blood of c9FTD/ALS patients. Confirming these exciting results using blood from a larger cohort of patients may establish this novel epigenetic event as a biomarker for c9FTD/ALS.
Collapse
|
296
|
Armstrong VL, Rakoczy S, Rojanathammanee L, Brown-Borg HM. Expression of DNA methyltransferases is influenced by growth hormone in the long-living Ames dwarf mouse in vivo and in vitro. J Gerontol A Biol Sci Med Sci 2013; 69:923-33. [PMID: 24201695 DOI: 10.1093/gerona/glt133] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methyltransferase expression and DNA methylation are linked to aging and age-related disease. We utilized 3-, 12-, and 24-month-old Ames dwarf and their wild-type siblings to examine the genotype and age-related differences in the expression of methyltransferase enzymes related to DNA methylation in the liver, glycine-N-methyltransferase and DNA methyltransferase (DNMT). We found that DNMT proteins and transcripts are differentially expressed in dwarf mice compared with wild-type siblings that can be attributed to age and/or genotype. However, DNMT1 protein expression is drastically reduced compared with wild-type controls at every age. DNMT3a protein levels coincide with differences observed in DNMT activity. Growth hormone appears to modulate expression of DNMT1 and 3a in dwarf liver tissue and primary hepatocytes. Therefore, growth hormone may contribute to age-related processes, DNA methylation, and, ultimately, longevity.
Collapse
Affiliation(s)
- Vanessa L Armstrong
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks
| | - Sharlene Rakoczy
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks
| | - Lalida Rojanathammanee
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks
| | - Holly M Brown-Borg
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks.
| |
Collapse
|
297
|
Oh JH, Gertych A, Tajbakhsh J. Nuclear DNA methylation and chromatin condensation phenotypes are distinct between normally proliferating/aging, rapidly growing/immortal, and senescent cells. Oncotarget 2013; 4:474-93. [PMID: 23562889 PMCID: PMC3717309 DOI: 10.18632/oncotarget.942] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study reports on probing the utility of in situ chromatin texture features such as nuclear DNA methylation and chromatin condensation patterns — visualized by fluorescent staining and evaluated by dedicated three-dimensional (3D) quantitative and high-throughput cell-by-cell image analysis — in assessing the proliferative capacity, i.e. growth behavior of cells: to provide a more dynamic picture of a cell population with potential implications in basic science, cancer diagnostics/prognostics and therapeutic drug development. Two types of primary cells and four different cancer cell lines were propagated and subjected to cell-counting, flow cytometry, confocal imaging, and 3D image analysis at various points in culture. Additionally a subset of primary and cancer cells was accelerated into senescence by oxidative stress. DNA methylation and chromatin condensation levels decreased with declining doubling times when primary cells aged in culture with the lowest levels reached at the stage of proliferative senescence. In comparison, immortal cancer cells with constant but higher doubling times mostly displayed lower and constant levels of the two in situ-derived features. However, stress-induced senescent primary and cancer cells showed similar levels of these features compared with primary cells that had reached natural growth arrest. With regards to global DNA methylation and chromatin condensation levels, aggressively growing cancer cells seem to take an intermediate level between normally proliferating and senescent cells. Thus, normal cells apparently reach cancer-cell equivalent stages of the two parameters at some point in aging, which might challenge phenotypic distinction between these two types of cells. Companion high-resolution molecular profiling could provide information on possible underlying differences that would explain benign versus malign cell growth behaviors.
Collapse
Affiliation(s)
- Jin Ho Oh
- Translational Cytomics Group, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | |
Collapse
|
298
|
Woo HR, Kim HJ, Nam HG, Lim PO. Plant leaf senescence and death - regulation by multiple layers of control and implications for aging in general. J Cell Sci 2013; 126:4823-33. [PMID: 24144694 DOI: 10.1242/jcs.109116] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How do organisms, organs, tissues and cells change their fate when they age towards senescence and death? Plant leaves provide a unique window to explore this question because they show reproducible life history and are readily accessible for experimental assays. Throughout their lifespan, leaves undergo a series of developmental, physiological and metabolic transitions that culminate in senescence and death. Leaf senescence is an 'altruistic death' that allows for the degradation of the nutrients that are produced during the growth phase of the leaf and their redistribution to developing seeds or other parts of the plant, and thus is a strategy that has evolved to maximize the fitness of the plant. During the past decade, there has been significant progress towards understanding the key molecular principles of leaf senescence using genetic and molecular studies, as well as 'omics' analyses. It is now apparent that leaf senescence is a highly complex genetic program that is tightly controlled by multiple layers of regulation, including at the level of chromatin and transcription, as well as by post-transcriptional, translational and post-translational regulation. This Commentary discusses the latest understandings and insights into the underlying molecular mechanisms, and presents the perspectives necessary to enable our system-level understanding of leaf senescence, together with their possible implications for aging in general.
Collapse
Affiliation(s)
- Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
| | | | | | | |
Collapse
|
299
|
McClay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY, Hudson AD, Harada A, Hultman CM, Magnusson PKE, Sullivan PF, Van Den Oord EJCG. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet 2013; 23:1175-85. [PMID: 24135035 DOI: 10.1093/hmg/ddt511] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The central importance of epigenetics to the aging process is increasingly being recognized. Here we perform a methylome-wide association study (MWAS) of aging in whole blood DNA from 718 individuals, aged 25-92 years (mean = 55). We sequenced the methyl-CpG-enriched genomic DNA fraction, averaging 67.3 million reads per subject, to obtain methylation measurements for the ∼27 million autosomal CpGs in the human genome. Following extensive quality control, we adaptively combined methylation measures for neighboring, highly-correlated CpGs into 4 344 016 CpG blocks with which we performed association testing. Eleven age-associated differentially methylated regions (DMRs) passed Bonferroni correction (P-value < 1.15 × 10(-8)). Top findings replicated in an independent sample set of 558 subjects using pyrosequencing of bisulfite-converted DNA (min P-value < 10(-30)). To examine biological themes, we selected 70 DMRs with false discovery rate of <0.1. Of these, 42 showed hypomethylation and 28 showed hypermethylation with age. Hypermethylated DMRs were more likely to overlap with CpG islands and shores. Hypomethylated DMRs were more likely to be in regions associated with polycomb/regulatory proteins (e.g. EZH2) or histone modifications H3K27ac, H3K4m1, H3K4m2, H3K4m3 and H3K9ac. Among genes implicated by the top DMRs were protocadherins, homeobox genes, MAPKs and ryanodine receptors. Several of our DMRs are at genes with potential relevance for age-related disease. This study successfully demonstrates the application of next-generation sequencing to MWAS, by interrogating a large proportion of the methylome and returning potentially novel age DMRs, in addition to replicating several loci implicated in previous studies using microarrays.
Collapse
Affiliation(s)
- Joseph L McClay
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Contribution of genetic and epigenetic mechanisms to Wnt pathway activity in prevalent skeletal disorders. Gene 2013; 532:165-72. [PMID: 24096177 DOI: 10.1016/j.gene.2013.09.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/13/2013] [Accepted: 09/23/2013] [Indexed: 12/22/2022]
Abstract
We reported previously that the expression of Wnt-related genes is lower in osteoporotic hip fractures than in osteoarthritis. We aimed to confirm those results by analyzing β-catenin levels and explored potential genetic and epigenetic mechanisms involved. β-Catenin gene expression and nuclear levels were analyzed by real time PCR and confocal immunofluorescence. Increased nuclear β-catenin was found in osteoblasts isolated from patients with osteoarthritis (99 ± 4 units vs. 76 ± 12, p=0.01, n=10), without differences in gene transcription, which is consistent with a post-translational down-regulation of β-catenin and decreased Wnt pathway activity. Twenty four single nucleotide polymorphisms (SNPs) of genes showing differential expression between fractures and osteoarthritis (WNT4, WNT10A, WNT16 and SFRP1) were analyzed in DNA isolated from blood of 853 patients. The genotypic frequencies were similar in both groups of patients, with no significant differences. Methylation of Wnt pathway genes was analyzed in bone tissue samples (15 with fractures and 15 with osteoarthritis) by interrogating a CpG-based methylation array. Six genes showed significant methylation differences between both groups of patients: FZD10, TBL1X, CSNK1E, WNT8A, CSNK1A1L and SFRP4. The DNA demethylating agent 5-deoxycytidine up-regulated 8 genes, including FZD10, in an osteoblast-like cell line, whereas it down-regulated other 16 genes. In conclusion, Wnt activity is reduced in patients with hip fractures, in comparison with those with osteoarthritis. It does not appear to be related to differences in the allele frequencies of the Wnt genes studied. On the other hand, methylation differences between both groups could contribute to explain the differences in Wnt activity.
Collapse
Key Words
- 5-aza-2-deoxy-azacytidine
- AzadC
- Bone diseases
- C-terminal binding protein 1
- CACYBP
- CAMK2G
- CSNK1A1
- CSNK1A1L
- CSNK1E
- CTBP1
- Ct
- DNA methylation
- FDR
- FOS-like antigen 1
- FOSL1
- FRZB
- FZD10
- Fractures
- GSK3B
- GWAS
- HWE
- Hardy–Weinberg equilibrium
- LRP5
- PLCB3
- PPP2R1A
- RHOA
- SFRP1
- SFRP4
- TATA box binding protein
- TBL1X
- TBP
- WNT10A
- WNT16
- WNT4
- WNT8A
- Wnt
- calcium/calmodulin-dependent protein kinase II gamma
- calcyclin binding protein
- casein kinase 1, alpha 1
- casein kinase 1, alpha 1-like
- casein kinase 1, epsilon
- false discovery rate
- frizzled homolog 10
- frizzled-related protein
- genome-wide association study
- glycogen synthase kinase 3 beta
- lipoprotein receptor related protein 5
- phospholipase C, beta 3 (phosphatidylinositol-specific)
- protein phosphatase 2 (formerly 2A), regulatory subunit A, alpha isoform
- ras homolog gene family, member A
- secreted frizzled-related protein 1
- secreted frizzled-related protein 4
- threshold cycle
- transducin (beta)-like 1X-linked
- wingless-type MMTV integration site family, member 10A
- wingless-type MMTV integration site family, member 16
- wingless-type MMTV integration site family, member 4
- wingless-type MMTV integration site family, member 8A
- β-Catenin
Collapse
|