251
|
Thorsen M, Perrone GG, Kristiansson E, Traini M, Ye T, Dawes IW, Nerman O, Tamás MJ. Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genomics 2009; 10:105. [PMID: 19284616 PMCID: PMC2660369 DOI: 10.1186/1471-2164-10-105] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 03/12/2009] [Indexed: 11/10/2022] Open
Abstract
Background Arsenic and cadmium are widely distributed in nature and pose serious threats to the environment and human health. Exposure to these nonessential toxic metals may result in a variety of human diseases including cancer. However, arsenic and cadmium toxicity targets and the cellular systems contributing to tolerance acquisition are not fully known. Results To gain insight into metal action and cellular tolerance mechanisms, we carried out genome-wide screening of the Saccharomyces cerevisiae haploid and homozygous diploid deletion mutant collections and scored for reduced growth in the presence of arsenite or cadmium. Processes found to be required for tolerance to both metals included sulphur and glutathione biosynthesis, environmental sensing, mRNA synthesis and transcription, and vacuolar/endosomal transport and sorting. We also identified metal-specific defence processes. Arsenite-specific defence functions were related to cell cycle regulation, lipid and fatty acid metabolism, mitochondrial biogenesis, and the cytoskeleton whereas cadmium-specific defence functions were mainly related to sugar/carbohydrate metabolism, and metal-ion homeostasis and transport. Molecular evidence indicated that the cytoskeleton is targeted by arsenite and that phosphorylation of the Snf1p kinase is required for cadmium tolerance. Conclusion This study has pin-pointed core functions that protect cells from arsenite and cadmium toxicity. It also emphasizes the existence of both common and specific defence systems. Since many of the yeast genes that confer tolerance to these agents have homologues in humans, similar biological processes may act in yeast and humans to prevent metal toxicity and carcinogenesis.
Collapse
Affiliation(s)
- Michael Thorsen
- Department of Cell and Molecular Biology/Microbiology, University of Gothenburg, S-405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Vandamme D, Lambert E, Waterschoot D, Tondeleir D, Vandekerckhove J, Machesky LM, Constantin B, Rommelaere H, Ampe C. Phenotypes induced by NM causing alpha-skeletal muscle actin mutants in fibroblasts, Sol 8 myoblasts and myotubes. BMC Res Notes 2009; 2:40. [PMID: 19284548 PMCID: PMC2657152 DOI: 10.1186/1756-0500-2-40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/10/2009] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Nemaline myopathy is a neuromuscular disorder characterized by the presence of nemaline bodies in patient muscles. 20% of the cases are associated with alpha-skeletal muscle actin mutations. We previously showed that actin mutations can cause four different biochemical phenotypes and that expression of NM associated actin mutants in fibroblasts, myoblasts and myotubes induces a range of cellular defects. FINDINGS We conducted the same biochemical experiments for twelve new actin mutants associated with nemaline myopathy. We observed folding and polymerization defects. Immunostainings of these and eight other mutants in transfected cells revealed typical cellular defects such as nemaline rods or aggregates, decreased incorporation in F-actin structures, membrane blebbing, the formation of thickened actin fibres and cell membrane blebbing in myotubes. CONCLUSION Our results confirm that NM associated alpha-actin mutations induce a range of defects at the biochemical level as well as in cultured fibroblasts and muscle cells.
Collapse
Affiliation(s)
- Drieke Vandamme
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
| | - Ellen Lambert
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
- Department of Plant Production, Faculty of Bioscience Engineering, UGent, Coupure associations 653, Gent, Belgium
| | - Davy Waterschoot
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
| | - Davina Tondeleir
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
| | - Joël Vandekerckhove
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
| | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Switchback Rd., Bearsden, Glasgow, G63 9AE, UK
| | - Bruno Constantin
- Institut de Physiologie et Biologie Cellulaire, UMR CNRS/Université de Poitiers 6187, Pôle Biologie Santé, 86022 Poitiers cedex, France
| | - Heidi Rommelaere
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
- Current address : Ablynx N.V., Technologiepark 4, 9052 Zwijnaarde, Belgium
| | - Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
| |
Collapse
|
253
|
Abstract
Contemporary protein architectures can be regarded as molecular fossils, historical imprints that mark important milestones in the history of life. Whereas sequences change at a considerable pace, higher-order structures are constrained by the energetic landscape of protein folding, the exploration of sequence and structure space, and complex interactions mediated by the proteostasis and proteolytic machineries of the cell. The survey of architectures in the living world that was fuelled by recent structural genomic initiatives has been summarized in protein classification schemes, and the overall structure of fold space explored with novel bioinformatic approaches. However, metrics of general structural comparison have not yet unified architectural complexity using the 'shared and derived' tenet of evolutionary analysis. In contrast, a shift of focus from molecules to proteomes and a census of protein structure in fully sequenced genomes were able to uncover global evolutionary patterns in the structure of proteins. Timelines of discovery of architectures and functions unfolded episodes of specialization, reductive evolutionary tendencies of architectural repertoires in proteomes and the rise of modularity in the protein world. They revealed a biologically complex ancestral proteome and the early origin of the archaeal lineage. Studies also identified an origin of the protein world in enzymes of nucleotide metabolism harbouring the P-loop-containing triphosphate hydrolase fold and the explosive discovery of metabolic functions that recapitulated well-defined prebiotic shells and involved the recruitment of structures and functions. These observations have important implications for origins of modern biochemistry and diversification of life.
Collapse
|
254
|
Malta-Vacas J, Nolasco S, Monteiro C, Soares H, Brito M. Translation termination and protein folding pathway genes are not correlated in gastric cancer. Clin Chem Lab Med 2009; 47:427-31. [DOI: 10.1515/cclm.2009.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
255
|
Feng JJ, Marston S. Genotype–phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscul Disord 2009; 19:6-16. [DOI: 10.1016/j.nmd.2008.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 12/01/2022]
|
256
|
Prefoldin 6 is required for normal microtubule dynamics and organization in Arabidopsis. Proc Natl Acad Sci U S A 2008; 105:18064-9. [PMID: 19004800 DOI: 10.1073/pnas.0808652105] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Newly translated tubulin molecules undergo a series of complex interactions with nascent chain-binding chaperones, including prefoldin (PFD) and chaperonin-containing TCP-1 (CCT). By screening for oryzalin hypersensitivity, we identified several mutants of Arabidopsis that have lesions in PFD subunits. The pfd6-1 mutant exhibits a range of microtubule defects, including hypersensitivity to oryzalin, defects in cell division, cortical array organization, and microtubule dynamicity. Consistent with phenotypic analysis, proteomic analysis indicates several isoforms of tubulins were reduced in pfd6-1. These results support the concept that the function of microtubules is critically dependent on the absolute amount of tubulins.
Collapse
|
257
|
Kida H, Sugano Y, Iizuka R, Fujihashi M, Yohda M, Miki K. Structural and Molecular Characterization of the Prefoldin β Subunit from Thermococcus Strain KS-1. J Mol Biol 2008; 383:465-74. [DOI: 10.1016/j.jmb.2008.08.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/12/2008] [Accepted: 08/14/2008] [Indexed: 11/24/2022]
|
258
|
Sakono M, Zako T, Ueda H, Yohda M, Maeda M. Formation of highly toxic soluble amyloid beta oligomers by the molecular chaperone prefoldin. FEBS J 2008; 275:5982-93. [DOI: 10.1111/j.1742-4658.2008.06727.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
259
|
Willis MS, Schisler JC, Portbury AL, Patterson C. Build it up-Tear it down: protein quality control in the cardiac sarcomere. Cardiovasc Res 2008; 81:439-48. [PMID: 18974044 DOI: 10.1093/cvr/cvn289] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The assembly and maintenance of the cardiac sarcomere, which contains the basic contractile components of actin and myosin, are essential for cardiac function. While often described as a static structure, the sarcomere is actually dynamic and undergoes constant turnover, allowing it to adapt to physiological changes while still maintaining function. A host of new factors have been identified that play a role in the regulation of protein quality control in the sarcomere, including chaperones that mediate the assembly of sarcomere components and ubiquitin ligases that control their specific degradation. There is clear evidence of sarcomere disorganization in animal models lacking muscle-specific chaperone proteins, illustrating the importance of these molecules in sarcomere structure and function. Although ubiquitin ligases have been found within the sarcomere structure itself, the role of the ubiquitin proteasome system in cardiac sarcomere regulation, and the factors that control its activity, are only just now being elucidated. The number of ubiquitin ligases identified with specificity for sarcomere proteins, each with distinct target substrates, is growing, allowing for tight regulation of this system. In this review, we highlight the dynamic interplay between sarcomere-specific chaperones and ubiquitin-dependent degradation of sarcomere proteins that is necessary in order to maintain structure and function of the cardiac sarcomere.
Collapse
Affiliation(s)
- Monte S Willis
- Carolina Cardiovascular Biology Center, University of North Carolina, 8200 Medical Biomolecular Research Bldg, 103 Mason Farm Road, Chapel Hill, NC 27599-7126, USA
| | | | | | | |
Collapse
|
260
|
Expression Profiles and Physiological Roles of Two Types of Prefoldins from the Hyperthermophilic Archaeon Thermococcus kodakaraensis. J Mol Biol 2008; 382:298-311. [DOI: 10.1016/j.jmb.2008.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 07/11/2008] [Accepted: 07/14/2008] [Indexed: 11/21/2022]
|
261
|
Abstract
BACKGROUND Synthetic lethality defines a genetic interaction where the combination of mutations in two or more genes leads to cell death. The implications of synthetic lethal screens have been discussed in the context of drug development as synthetic lethal pairs could be used to selectively kill cancer cells, but leave normal cells relatively unharmed. A challenge is to assess genome-wide experimental data and integrate the results to better understand the underlying biological processes. We propose statistical and computational tools that can be used to find relationships between synthetic lethality and cellular organizational units. RESULTS In Saccharomyces cerevisiae, we identified multi-protein complexes and pairs of multi-protein complexes that share an unusually high number of synthetic genetic interactions. As previously predicted, we found that synthetic lethality can arise from subunits of an essential multi-protein complex or between pairs of multi-protein complexes. Finally, using multi-protein complexes allowed us to take into account the pleiotropic nature of the gene products. CONCLUSIONS Modeling synthetic lethality using current estimates of the yeast interactome is an efficient approach to disentangle some of the complex molecular interactions that drive a cell. Our model in conjunction with applied statistical methods and computational methods provides new tools to better characterize synthetic genetic interactions.
Collapse
Affiliation(s)
- Nolwenn Le Meur
- Division of Public Health Sciences, Fred Hutchinson Cancer Center Research, Program in Computational Biology, Seattle, WA 98109, USA.
| | | |
Collapse
|
262
|
Differentially expressed proteins of mesenchymal stem cells derived from human cord blood (hUCB) during osteogenic differentiation. Biosci Biotechnol Biochem 2008; 72:2309-17. [PMID: 18776689 DOI: 10.1271/bbb.80224] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multipotent mesenchymal stem cells (MSCs) derived from human umbilical cord blood (hUCB) represent promising candidates for the development of future cellular therapy strategies. MSCs have been found to be able to differentiate into various tissues. One of the primary limitations in our understanding of the biology of human MSCs is the absence of prospective markers required for the monitoring of lineage-specific differentiation. hUCB-derived MSCs have been found to have significantly greater osteogenic potential. In this study, we focused on proteins that were differentially expressed during osteogenic differentiation of hUCB-MSCs. And we analyzed the protein expression inherent to osteogenic differentiation by two-dimensional gel electrophoresis, ESI-Q-TOF, and Western blotting. Eleven differentially expressed spots were observed between the two groups (before and after differentiation) on the 2-DE map. These might also be proved as useful cytosolic biomarker proteins for osteogenesis, and might be employed in quality control of osteoblasts in cell-therapy applications.
Collapse
|
263
|
Kabir MA, Sherman F. Overexpressed ribosomal proteins suppress defective chaperonins in Saccharomyces cerevisiae. FEMS Yeast Res 2008; 8:1236-44. [PMID: 18680526 DOI: 10.1111/j.1567-1364.2008.00425.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The chaperonin Cct complex of the yeast Saccharomyces cerevisiae is composed of eight different subunits encoded by eight essential genes, CCT1-CCT8. This Cct complex is responsible for the folding of a number of proteins including actin and tubulin. We have isolated and characterized 22 multicopy suppressors of the temperature-sensitive allele, cct4-1, which encodes an altered protein with a G345D replacement that diminishes ATP hydrolysis. Fourteen of the suppressors encode ribosomal proteins, four have roles in ribosome biogenesis, two have phosphatase activities, one is involved in protein synthesis and one of the suppressors corresponded to Cct4p. Some of the suppressors also acted on certain cct1, cct2, cct3 and cct6 mutations. We suggest that certain overexpressed ribosomal and other proteins can act as weak chaperones, phenotypically alleviating the partial defects of mutationally altered Cct subunits.
Collapse
Affiliation(s)
- M Anaul Kabir
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
264
|
Huang GP, Pan ZJ, Huang JP, Yang JF, Guo CJ, Wang YG, Zheng Q, Chen R, Xu YL, Wang GZ, Xi YM, Shen D, Jin J, Wang JF. Proteomic analysis of human bone marrow mesenchymal stem cells transduced with human telomerase reverse transcriptase gene during proliferation. Cell Prolif 2008; 41:625-44. [PMID: 18616696 PMCID: PMC6495906 DOI: 10.1111/j.1365-2184.2008.00543.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 11/19/2007] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Previous studies have reported immortalization and tumorigenicity of human mesenchymal stem cells (hMSCs) transduced with exogenous human telomerase reverse transcriptase (hTERT). We also have established a line of hMSCs transduced with hTERT (hTERT-hMSCs) and we have cultured these cells for 290 population doublings (PDs) during which they demonstrated a large proliferation potential but with no tumorigenicity. The aim of this study was to investigate the protein expression profile of hTERT-hMSCs with two-dimensional gel electrophoresis and peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, to be able to analyse the effects of exogenous hTERT on protein expression in hMSCs. MATERIALS AND METHODS We generated proteome maps of primary hMSCs and hTERT-hMSCs at PD 95 and PD 275. RESULTS A total of 1543 +/- 145 protein spots in gels of primary MSCs at PD 12, 1611 +/- 186 protein spots in gels of hTERT-hMSCs at PD 95 and 1451 +/- 126 protein spots in gels of hTERT-hMSCs at 275 PD were detected. One hundred of these were successfully identified, including 20 which were differentially expressed. CONCLUSIONS The results suggest that sustaining levels of prohibitin and p53 expression along with differential expression of proteins in hTERT-hMSCs provide an insight into lack of transforming activity of hTERT-hMSCs during cell proliferation.
Collapse
Affiliation(s)
- G P Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Cao S, Carlesso G, Osipovich AB, Llanes J, Lin Q, Hoek KL, Khan WN, Ruley HE. Subunit 1 of the prefoldin chaperone complex is required for lymphocyte development and function. THE JOURNAL OF IMMUNOLOGY 2008; 181:476-84. [PMID: 18566413 DOI: 10.4049/jimmunol.181.1.476] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prefoldin is a hexameric chaperone that facilitates posttranslational folding of actins and other cytoskeletal proteins by the Tcp1-containing ring complex chaperonin, TriC. The present study characterized mice with a null mutation in Pfdn1, which encodes the first subunit of the Prefoldin complex. Pfdn1-deficient mice displayed phenotypes characteristic of defects in cytoskeletal function, including manifestations of ciliary dyskinesia, neuronal loss, and defects in B and T cell development and function. B and T cell maturation was markedly impaired at relatively early stages, namely at the transitions from pre-pro-B to pre-B cells in the bone marrow and from CD4-CD8- double-negative to CD4+CD8+ double-positive T cells in the thymus. In addition, mature B and T lymphocytes displayed cell activation defects upon Ag receptor cross-linking accompanied by impaired Ag receptor capping in B cells. These phenotypes illustrate the importance of cytoskeletal function in immune cell development and activation.
Collapse
Affiliation(s)
- Shang Cao
- Department of Microbiology and Immunology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
266
|
The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. Nat Struct Mol Biol 2008; 15:858-64. [PMID: 18660820 DOI: 10.1038/nsmb.1464] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 06/19/2008] [Indexed: 11/08/2022]
Abstract
Chaperones, a group of proteins that assist the folding of other proteins, seem to work in a coordinated manner. Two major chaperone families are heat-shock protein families Hsp60 and Hsp70. Here we show for the first time the formation of a stable complex between chaperonin-containing TCP-1 (CCT) and Hsc70, two eukaryotic representatives of these chaperone families. This interaction takes place between the apical domain of the CCT beta subunit and the nucleotide binding domain of Hsc70, and may serve to deliver the unfolded substrate from Hsc70 to the substrate binding region of CCT. We also show that a similar interaction does not occur between their prokaryotic counterparts GroEL and DnaK, suggesting that in eukarya the two types of chaperones have evolved to a concerted action that makes the folding task more efficient.
Collapse
|
267
|
Abstract
Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones.
Collapse
Affiliation(s)
| | | | | | - Michael E. Cheetham
- Division of Molecular and Cellular Neuroscience, UCL Institute of
Ophthalmology, 11–43 Bath Street, London EC1 V 9EL, UK
| |
Collapse
|
268
|
Pérez de Diego R, Ortiz-Lombardía M, Bravo J. Crystallization and preliminary X-ray diffraction analysis of the beta subunit Yke2 of the Gim complex from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:501-3. [PMID: 18540060 PMCID: PMC2496857 DOI: 10.1107/s1744309108011846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/24/2008] [Indexed: 11/10/2022]
Abstract
The Gim complex (GimC) from Saccharomyces cerevisiae is a heterohexameric protein complex, also known as prefoldin (PFD), which binds and stabilizes unfolded target polypeptides and subsequently delivers them to chaperonins for completion of folding. In this study, the crystallization and preliminary X-ray analysis of one of the beta subunits of the Gim complex (Yke2) from S. cerevisiae are described. The purified protein was crystallized by the vapour-diffusion method, producing two types of crystals that belonged to the orthorhombic space group C222 or the primitive monoclinic space group P2(1). The unit-cell parameters for the C-centred orthorhombic crystal were a = 48.2, b = 168.86, c = 131.81 A and the unit-cell parameters for the primitive monoclinic crystal were a = 47.83, b = 134.90, c = 81.50 A, beta = 100.71 degrees . The Yke2 crystals diffracted to 4.2 and 3.1 A resolution, respectively, on a rotating-anode generator under cryoconditions. This is the first report concerning the crystallization of a beta subunit of a eukaryotic prefoldin.
Collapse
Affiliation(s)
- Rebeca Pérez de Diego
- Signal Transduction Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Miguel Ortiz-Lombardía
- Signal Transduction Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Jerónimo Bravo
- Signal Transduction Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| |
Collapse
|
269
|
Dekker C, Stirling PC, McCormack EA, Filmore H, Paul A, Brost RL, Costanzo M, Boone C, Leroux MR, Willison KR. The interaction network of the chaperonin CCT. EMBO J 2008; 27:1827-39. [PMID: 18511909 DOI: 10.1038/emboj.2008.108] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 05/08/2008] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic cytosolic chaperonin containing TCP-1 (CCT) has an important function in maintaining cellular homoeostasis by assisting the folding of many proteins, including the cytoskeletal components actin and tubulin. Yet the nature of the proteins and cellular pathways dependent on CCT function has not been established globally. Here, we use proteomic and genomic approaches to define CCT interaction networks involving 136 proteins/genes that include links to the nuclear pore complex, chromatin remodelling, and protein degradation. Our study also identifies a third eukaryotic cytoskeletal system connected with CCT: the septin ring complex, which is essential for cytokinesis. CCT interactions with septins are ATP dependent, and disrupting the function of the chaperonin in yeast leads to loss of CCT-septin interaction and aberrant septin ring assembly. Our results therefore provide a rich framework for understanding the function of CCT in several essential cellular processes, including epigenetics and cell division.
Collapse
Affiliation(s)
- Carien Dekker
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Protein quality control gets muscle into shape. Trends Cell Biol 2008; 18:264-72. [PMID: 18495480 DOI: 10.1016/j.tcb.2008.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 01/08/2023]
Abstract
The synthesis, assembly and organisation of structural and motor proteins during muscle formation requires temporal and spatial control directed by specialized chaperones. For example, alphaB-crystallin, GimC and TRiC facilitate the assembly of sarcomeric proteins such as desmin and actin. Recent studies have demonstrated that the chaperone family of UCS proteins (UNC-45-CRO1-She4p) is required for the proper function of myosin motors. Mutations in the myosin-directed chaperone unc-45, a founding member of this family, lead to disorganisation of striated muscle in Caenorhabditiselegans. In addition to the involvement of client-specific chaperones, myofibrillogenesis also involves ubiquitin-dependent degradation of regulatory muscle proteins. Here, we highlight the interplay between chaperone activity and protein degradation in respect to the formation and maintenance of muscle during physiological and pathological conditions.
Collapse
|
271
|
Okochi M, Kanie K, Kurimoto M, Yohda M, Honda H. Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance. Appl Microbiol Biotechnol 2008; 79:443-9. [PMID: 18443786 DOI: 10.1007/s00253-008-1450-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 03/06/2008] [Accepted: 03/08/2008] [Indexed: 11/26/2022]
Abstract
Prefoldin is a jellyfish-shaped hexameric chaperone that captures a protein-folding intermediate and transfers it to the group II chaperonin for correct folding. In this work, we characterized the organic solvent tolerance of Escherichia coli cells that overexpress prefoldin and group II chaperonin from a hyperthermophilic archeaum, Pyrococcus horikoshii OT3. The colony-forming efficiency of E. coli cells overexpressing prefoldin increased by 1,000-fold and decreased the accumulation of intracellular organic solvent. The effect was impaired by deletions of the region responsible for the chaperone function of prefoldin. Therefore, we concluded that prefoldin endows E. coli cells by preventing accumulation of intracellular organic solvent through its molecular chaperone activity.
Collapse
Affiliation(s)
- Mina Okochi
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
272
|
Castellano MM, Sablowski R. Phosducin-Like Protein 3 is required for microtubule-dependent steps of cell division but not for meristem growth in Arabidopsis. THE PLANT CELL 2008; 20:969-81. [PMID: 18390592 PMCID: PMC2390725 DOI: 10.1105/tpc.107.057737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/21/2008] [Accepted: 03/14/2008] [Indexed: 05/02/2023]
Abstract
Given the central role of cell division in meristems, one might expect meristem growth to be regulated by mitotic checkpoints, including checkpoints for correct microtubule function. Here, we studied the role of two close Phosducin-Like Protein 3 homologs from Arabidopsis thaliana (PLP3a and PLP3b) in the microtubule assembly pathway and determined the consequences of inhibiting PLP3a and PLP3b expression in the meristem. PLP3 function is essential in Arabidopsis: impairing PLP3a and PLP3b expression disrupted microtubule arrays and caused polyploidy, aneuploidy, defective cytokinesis, and disoriented cell growth. Consistent with a role in microtubule formation, PLP3a interacted with beta-tubulin in the yeast two-hybrid assay and, when overexpressed, increased resistance to drugs that inhibit tubulin polymerization. Inhibition of PLP3 function targeted to the meristem caused severe mitotic defects, but the cells carried on cycling through DNA replication and abortive cytokinesis. Thus, we showed that PLP3 is involved in microtubule formation in Arabidopsis and provided genetic evidence that cell viability and growth in the meristem are not subordinate to successful completion of microtubule-dependent steps of cell division.
Collapse
Affiliation(s)
- M Mar Castellano
- Department of Cell and Developmental Biology, John Ines Centre, Norwich, NR4 7UH, United Kingdom
| | | |
Collapse
|
273
|
Iizuka R, Sugano Y, Ide N, Ohtaki A, Yoshida T, Fujiwara S, Imanaka T, Yohda M. Functional Characterization of Recombinant Prefoldin Complexes from a Hyperthermophilic Archaeon, Thermococcus sp. Strain KS-1. J Mol Biol 2008; 377:972-83. [DOI: 10.1016/j.jmb.2008.01.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/07/2008] [Accepted: 01/22/2008] [Indexed: 11/30/2022]
|
274
|
Djouder N, Metzler SC, Schmidt A, Wirbelauer C, Gstaiger M, Aebersold R, Hess D, Krek W. S6K1-mediated disassembly of mitochondrial URI/PP1gamma complexes activates a negative feedback program that counters S6K1 survival signaling. Mol Cell 2008; 28:28-40. [PMID: 17936702 DOI: 10.1016/j.molcel.2007.08.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 04/27/2007] [Accepted: 08/13/2007] [Indexed: 12/29/2022]
Abstract
S6 kinase 1 (S6K1) acts to integrate nutrient and growth factor signals to promote cell growth but also cell survival as a mitochondria-tethered protein kinase that phosphorylates and inactivates the proapoptotic molecule BAD. Here we report that the prefoldin chaperone URI represents a mitochondrial substrate of S6K1. In growth factor-deprived or rapamycin-treated cells, URI forms stable complexes with protein phosphatase (PP)1gamma at mitochondria, thereby inhibiting the activity of the bound enzyme. Growth factor stimulation induces disassembly of URI/PP1gamma complexes through S6K1-mediated phosphorylation of URI at serine 371. This activates a PP1gamma-dependent negative feedback program that decreases S6K1 activity and BAD phosphorylation, thereby altering the threshold for apoptosis. These findings establish URI and PP1gamma as integral components of an S6K1-regulated mitochondrial pathway dedicated, in part, to oppose sustained S6K1 survival signaling and to ensure that the mitochondrial threshold for apoptosis is set in accord with nutrient and growth factor availability.
Collapse
Affiliation(s)
- Nabil Djouder
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Ohtaki A, Kida H, Miyata Y, Ide N, Yonezawa A, Arakawa T, Iizuka R, Noguchi K, Kita A, Odaka M, Miki K, Yohda M. Structure and Molecular Dynamics Simulation of Archaeal Prefoldin: The Molecular Mechanism for Binding and Recognition of Nonnative Substrate Proteins. J Mol Biol 2008; 376:1130-41. [DOI: 10.1016/j.jmb.2007.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/28/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
|
276
|
Tian G, Kong XP, Jaglin XH, Chelly J, Keays D, Cowan NJ. A pachygyria-causing alpha-tubulin mutation results in inefficient cycling with CCT and a deficient interaction with TBCB. Mol Biol Cell 2008; 19:1152-61. [PMID: 18199681 DOI: 10.1091/mbc.e07-09-0861] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The agyria (lissencephaly)/pachygyria phenotypes are catastrophic developmental diseases characterized by abnormal folds on the surface of the brain and disorganized cortical layering. In addition to mutations in at least four genes--LIS1, DCX, ARX and RELN--mutations in a human alpha-tubulin gene, TUBA1A, have recently been identified that cause these diseases. Here, we show that one such mutation, R264C, leads to a diminished capacity of de novo tubulin heterodimer formation. We identify the mechanisms that contribute to this defect. First, there is a reduced efficiency whereby quasinative alpha-tubulin folding intermediates are generated via ATP-dependent interaction with the cytosolic chaperonin CCT. Second, there is a failure of CCT-generated folding intermediates to stably interact with TBCB, one of the five tubulin chaperones (TBCA-E) that participate in the pathway leading to the de novo assembly of the tubulin heterodimer. We describe the behavior of the R264C mutation in terms of its effect on the structural integrity of alpha-tubulin and its interaction with TBCB. In spite of its compromised folding efficiency, R264C molecules that do productively assemble into heterodimers are capable of copolymerizing into dynamic microtubules in vivo. The diminished production of TUBA1A tubulin in R264C individuals is consistent with haploinsufficiency as a cause of the disease phenotype.
Collapse
Affiliation(s)
- Guoling Tian
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
277
|
Abstract
Tubulin, the most abundant axonemal protein, is extensively modified by several highly conserved post-translational mechanisms including acetylation, detyrosination, glutamylation, and glycylation. We discuss the pathways that contribute to the assembly and maintenance of axonemal microtubules, with emphasis on the potential functions of post-translational modifications that affect tubulin. The recent identification of a number of tubulin modifying enzymes and mutational studies of modification sites on tubulin have allowed for significant functional insights. Polymeric modifications of tubulin (glutamylation and glycylation) have emerged as important determinants of the 9 + 2 axoneme assembly and motility.
Collapse
Affiliation(s)
- Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
278
|
Abstract
Chaperonins are large ring assemblies that assist protein folding to the native state by binding nonnative proteins in their central cavities and then, upon binding ATP, release the substrate protein into a now-encapsulated cavity to fold productively. Two families of such components have been identified: type I in mitochondria, chloroplasts, and the bacterial cytosol, which rely on a detachable "lid" structure for encapsulation, and type II in archaea and the eukaryotic cytosol, which contain a built-in protrusion structure. We discuss here a number of issues under current study. What is the range of substrates acted on by the two classes of chaperonin, in particular by GroEL in the bacterial cytoplasm and CCT in the eukaryotic cytosol, and are all these substrates subject to encapsulation? What are the determinants for substrate binding by the type II chaperonins? And is the encapsulated chaperonin cavity a passive container that prevents aggregation, or could it be playing an active role in polypeptide folding?
Collapse
Affiliation(s)
- Arthur L Horwich
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | |
Collapse
|
279
|
Lundin VF, Srayko M, Hyman AA, Leroux MR. Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans. Dev Biol 2007; 313:320-34. [PMID: 18062952 DOI: 10.1016/j.ydbio.2007.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 11/29/2022]
Abstract
The efficient folding of actin and tubulin in vitro and in Saccharomyces cerevisiae is known to require the molecular chaperones prefoldin and CCT, yet little is known about the functions of these chaperones in multicellular organisms. Whereas none of the six prefoldin genes are essential in yeast, where prefoldin-independent folding of actin and tubulin is sufficient for viability, we demonstrate that reducing prefoldin function by RNAi in Caenorhabditis elegans causes defects in cell division that result in embryonic lethality. Our analyses suggest that these defects result mainly from a decrease in alpha-tubulin levels and a subsequent reduction in the microtubule growth rate. Prefoldin subunit 1 (pfd-1) mutant animals with maternally contributed PFD-1 develop to the L4 larval stage with gonadogenesis defects that include aberrant distal tip cell migration. Importantly, RNAi knockdown of prefoldin, CCT or tubulin in developing animals phenocopy the pfd-1 cell migration phenotype. Furthermore, reducing CCT function causes more severe phenotypes (compared with prefoldin knockdown) in the embryo and developing gonad, consistent with a broader role for CCT in protein folding. Overall, our results suggest that efficient chaperone-mediated tubulin biogenesis is essential in C. elegans, owing to the critical role of the microtubule cytoskeleton in metazoan development.
Collapse
Affiliation(s)
- Victor F Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | | | | | | |
Collapse
|
280
|
Kurimoto E, Nishi Y, Yamaguchi Y, Zako T, Iizuka R, Ide N, Yohda M, Kato K. Dynamics of group II chaperonin and prefoldin probed by 13C NMR spectroscopy. Proteins 2007; 70:1257-63. [PMID: 17876827 DOI: 10.1002/prot.21606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Group II chaperonin (CPN) cooperates with prefoldin (PFD), which forms a jellyfish-shaped heterohexameric complex with a molecular mass of 87 kDa. PFD captures an unfolded protein with the tentacles and transfers it to the cavity of CPN. Although X-ray crystal structures of CPN and PFD have been reported, no structural information has been so far available for the terminal regions of the PFD tentacles nor for the C-terminal segments of CPNs, which were regarded to be functionally significant in the previous studies. Here we report 13C NMR analyses on archaeal PFD, CPN, and their complex, focusing on those structurally uncharacterized regions. The PFD and CPN complexes selectively labeled with 13C at methionyl carbonyl carbons were separately and jointly subjected to NMR measurements. 13C NMR spectral data demonstrated that the N-terminal segment of the alpha and beta subunits of PFD as well as the C-terminal segments of the CPN hexadecamer retain significant degrees of freedom in internal motion even in the complex with a molecular mass of 1.1 MDa.
Collapse
Affiliation(s)
- Eiji Kurimoto
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Mousnier A, Kubat N, Massias-Simon A, Ségéral E, Rain JC, Benarous R, Emiliani S, Dargemont C. von Hippel Lindau binding protein 1-mediated degradation of integrase affects HIV-1 gene expression at a postintegration step. Proc Natl Acad Sci U S A 2007; 104:13615-20. [PMID: 17698809 PMCID: PMC1959430 DOI: 10.1073/pnas.0705162104] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
HIV-1 integrase, the viral enzyme responsible for provirus integration into the host genome, can be actively degraded by the ubiquitin-proteasome pathway. Here, we identify von Hippel-Lindau binding protein 1(VBP1), a subunit of the prefoldin chaperone, as an integrase cellular binding protein that bridges interaction between integrase and the cullin2 (Cul2)-based von Hippel-Lindau (VHL) ubiquitin ligase. We demonstrate that VBP1 and Cul2/VHL are required for proper HIV-1 expression at a step between integrase-dependent proviral integration into the host genome and transcription of viral genes. Using both an siRNA approach and Cul2/VHL mutant cells, we show that VBP1 and the Cul2/VHL ligase cooperate in the efficient polyubiquitylation of integrase and its subsequent proteasome-mediated degradation. Results presented here support a role for integrase degradation by the prefoldin-VHL-proteasome pathway in the integration-transcription transition of the viral replication cycle.
Collapse
Affiliation(s)
- Aurélie Mousnier
- *Institut Jacques Monod, Centre National de la Recherche Scientifique, Universités Paris 6 et 7, F-75251 Paris, France; and
| | - Nicole Kubat
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 8104
- Institut National de la Santé et de la Recherche Médicale, U567, and
| | - Aurélie Massias-Simon
- *Institut Jacques Monod, Centre National de la Recherche Scientifique, Universités Paris 6 et 7, F-75251 Paris, France; and
| | - Emmanuel Ségéral
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 8104
- Institut National de la Santé et de la Recherche Médicale, U567, and
| | | | - Richard Benarous
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 8104
- Institut National de la Santé et de la Recherche Médicale, U567, and
| | - Stéphane Emiliani
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 8104
- Institut National de la Santé et de la Recherche Médicale, U567, and
- To whom correspondence may be addressed at:
Département des Maladies Infectieuses, Institut Cochin, 27 Rue du Faubourg Saint Jacques, Batiment Gustave Roussy, F-75014 Paris, France. E-mail:
| | - Catherine Dargemont
- *Institut Jacques Monod, Centre National de la Recherche Scientifique, Universités Paris 6 et 7, F-75251 Paris, France; and
- To whom correspondence may be addressed at:
Institut Jacques Monod, UMR7592 CNRS, Universités Paris 6 et 7, 2 Place Jussieu, Tour 43, F-75251 Paris Cedex 05, France. E-mail:
| |
Collapse
|
282
|
Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C, Thérien C, Bergeron D, Bourassa S, Greenblatt J, Chabot B, Poirier GG, Hughes TR, Blanchette M, Price DH, Coulombe B. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 2007; 27:262-274. [PMID: 17643375 PMCID: PMC4498903 DOI: 10.1016/j.molcel.2007.06.027] [Citation(s) in RCA: 361] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 05/16/2007] [Accepted: 06/22/2007] [Indexed: 01/20/2023]
Abstract
We have performed a survey of soluble human protein complexes containing components of the transcription and RNA processing machineries using protein affinity purification coupled to mass spectrometry. Thirty-two tagged polypeptides yielded a network of 805 high-confidence interactions. Remarkably, the network is significantly enriched in proteins that regulate the formation of protein complexes, including a number of previously uncharacterized proteins for which we have inferred functions. The RNA polymerase II (RNAP II)-associated proteins (RPAPs) are physically and functionally associated with RNAP II, forming an interface between the enzyme and chaperone/scaffolding proteins. BCDIN3 is the 7SK snRNA methylphosphate capping enzyme (MePCE) present in an snRNP complex containing both RNA processing and transcription factors, including the elongation factor P-TEFb. Our results define a high-density protein interaction network for the mammalian transcription machinery and uncover multiple regulatory factors that target the transcription machinery.
Collapse
Affiliation(s)
- Célia Jeronimo
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Diane Forget
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Annie Bouchard
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Qintong Li
- Biochemistry Department, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Gordon Chua
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Christian Poitras
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Cynthia Thérien
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Dominique Bergeron
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Sylvie Bourassa
- Centre hospitalier universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Jack Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Benoit Chabot
- Département de microbiologie et infectiologie, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Guy G Poirier
- Centre hospitalier universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Timothy R Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics, McGill University, Montréal, QC H3A 2B4, Canada
| | - David H Price
- Biochemistry Department, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Benoit Coulombe
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada.
| |
Collapse
|
283
|
Sun S, Tang Y, Lou X, Zhu L, Yang K, Zhang B, Shi H, Wang C. UXT is a novel and essential cofactor in the NF-kappaB transcriptional enhanceosome. ACTA ACUST UNITED AC 2007; 178:231-44. [PMID: 17620405 PMCID: PMC2064443 DOI: 10.1083/jcb.200611081] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As a latent transcription factor, nuclear factor κB (NF-κB) translocates from the cytoplasm into the nucleus upon stimulation and mediates the expression of genes that are important in immunity, inflammation, and development. However, little is known about how it is regulated inside the nucleus. By a two-hybrid approach, we identify a prefoldin-like protein, ubiquitously expressed transcript (UXT), that is expressed predominantly and interacts specifically with NF-κB inside the nucleus. RNA interference knockdown of UXT leads to impaired NF-κB activity and dramatically attenuates the expression of NF-κB–dependent genes. This interference also sensitizes cells to apoptosis by tumor necrosis factor-α. Furthermore, UXT forms a dynamic complex with NF-κB and is recruited to the NF-κB enhanceosome upon stimulation. Interestingly, the UXT protein level correlates with constitutive NF-κB activity in human prostate cancer cell lines. The presence of NF-κB within the nucleus of stimulated or constitutively active cells is considerably diminished with decreased endogenous UXT levels. Our results reveal that UXT is an integral component of the NF-κB enhanceosome and is essential for its nuclear function, which uncovers a new mechanism of NF-κB regulation.
Collapse
Affiliation(s)
- Shaogang Sun
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Whitehead TA, Boonyaratanakornkit BB, Höllrigl V, Clark DS. A filamentous molecular chaperone of the prefoldin family from the deep-sea hyperthermophile Methanocaldococcus jannaschii. Protein Sci 2007; 16:626-34. [PMID: 17384227 PMCID: PMC2203346 DOI: 10.1110/ps.062599907] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Prefoldin is a molecular chaperone found in the domains eukarya and archaea that acts in conjunction with Group II chaperonin to correctly fold other nascent proteins. Previously, our group identified a putative single subunit of prefoldin, gamma PFD, that was up-regulated in response to heat stress in the hyperthermophilic archaeon Methanocaldococcus jannaschii. In order to characterize this protein, we subcloned and expressed it and the other two prefoldin subunits from M. jannaschii, alpha and beta PFD, into Eschericia coli and characterized the proteins. Whereas alpha and beta PFD readily assembled into the expected hexamer, gamma PFD would not assemble with either protein. Instead, gamma PFD forms long filaments of defined dimensions measuring 8.5 nm x 1.7-3.5 nm and lengths exceeding 1 microm. Filamentous gamma PFD acts as a molecular chaperone through in vitro assays, in a manner comparable to PFD. A possible molecular model for filament assembly is discussed.
Collapse
Affiliation(s)
- Timothy A Whitehead
- Department of Chemical Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
285
|
Stirling PC, Srayko M, Takhar KS, Pozniakovsky A, Hyman AA, Leroux MR. Functional interaction between phosducin-like protein 2 and cytosolic chaperonin is essential for cytoskeletal protein function and cell cycle progression. Mol Biol Cell 2007; 18:2336-45. [PMID: 17429077 PMCID: PMC1877119 DOI: 10.1091/mbc.e07-01-0069] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Chaperonin Containing Tcp1 (CCT) maintains cellular protein folding homeostasis in the eukaryotic cytosol by assisting the biogenesis of many proteins, including actins, tubulins, and regulators of the cell cycle. Here, we demonstrate that the essential and conserved eukaryotic phosducin-like protein 2 (PhLP2/PLP2) physically interacts with CCT and modulates its folding activity. Consistent with this functional interaction, temperature-sensitive alleles of Saccharomyces cerevisiae PLP2 exhibit cytoskeletal and cell cycle defects. We uncovered several high-copy suppressors of the plp2 alleles, all of which are associated with G1/S cell cycle progression but which do not appreciably affect cytoskeletal protein function or fully rescue the growth defects. Our data support a model in which Plp2p modulates the biogenesis of several CCT substrates relating to cell cycle and cytoskeletal function, which together contribute to the essential function of PLP2.
Collapse
Affiliation(s)
- Peter C. Stirling
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; and
| | - Martin Srayko
- Max-Planck Institute of Molecular Cell Biology and Genetics, 03107 Dresden, Germany
| | - Karam S. Takhar
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; and
| | - Andrei Pozniakovsky
- Max-Planck Institute of Molecular Cell Biology and Genetics, 03107 Dresden, Germany
| | - Anthony A. Hyman
- Max-Planck Institute of Molecular Cell Biology and Genetics, 03107 Dresden, Germany
| | - Michel R. Leroux
- *Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; and
| |
Collapse
|
286
|
Ruano-Rubio V, Fares MA. Testing the Neutral Fixation of Hetero-Oligomerism in the Archaeal Chaperonin CCT. Mol Biol Evol 2007; 24:1384-96. [PMID: 17406022 DOI: 10.1093/molbev/msm065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolutionary transition from homo-oligomerism to hetero-oligomerism in multimeric proteins and its contribution to function innovation and organism complexity remain to be investigated. Here, we undertake the challenge of contributing to this theoretical ground by investigating the hetero-oligomerism in the molecular chaperonin cytosolic chaperonin containing tailless complex polypeptide 1 (CCT) from archaea. CCT is amenable to this study because, in contrast to eukaryotic CCTs where sub-functionalization after gene duplication has been taken to completion, archaeal CCTs present no evidence for subunit functional specialization. Our analyses yield additional information to previous reports on archaeal CCT paralogy by identifying new duplication events. Analyses of selective constraints show that amino acid sites from 1 subunit have fixed slightly deleterious mutations at inter-subunit interfaces after gene duplication. These mutations have been followed by compensatory mutations in nearby regions of the same subunit and in the interface contact regions of its paralogous subunit. The strong selective constraints in these regions after speciation support the evolutionary entrapment of CCTs as hetero-oligomers. In addition, our results unveil different evolutionary dynamics depending on the degree of CCT hetero-oligomerism. Archaeal CCT protein complexes comprising 3 distinct classes of subunits present 2 evolutionary processes. First, slightly deleterious and compensatory mutations were fixed neutrally at inter-subunit regions. Second, sub-functionalization may have occurred at substrate-binding and adenosine triphosphate-binding regions after the 2nd gene duplication event took place. CCTs with 2 distinct types of subunits did not present evidence of sub-functionalization. Our results provide the 1st in silico evidence for the neutral fixation of hetero-oligomerism in archaeal CCTs and provide information on the evolution of hetero-oligomerism toward sub-functionalization in archaeal CCTs.
Collapse
Affiliation(s)
- Valentin Ruano-Rubio
- Evolutionary Genetics and Bioinformatics Laboratory, Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | | |
Collapse
|
287
|
Martín-Benito J, Gómez-Reino J, Stirling PC, Lundin VF, Gómez-Puertas P, Boskovic J, Chacón P, Fernández JJ, Berenguer J, Leroux MR, Valpuesta JM. Divergent substrate-binding mechanisms reveal an evolutionary specialization of eukaryotic prefoldin compared to its archaeal counterpart. Structure 2007; 15:101-10. [PMID: 17223536 DOI: 10.1016/j.str.2006.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/28/2006] [Accepted: 11/28/2006] [Indexed: 11/24/2022]
Abstract
Prefoldin (PFD) is a molecular chaperone that stabilizes and then delivers unfolded proteins to a chaperonin for facilitated folding. The PFD hexamer has undergone an evolutionary change in subunit composition, from two PFDalpha and four PFDbeta subunits in archaea to six different subunits (two alpha-like and four beta-like subunits) in eukaryotes. Here, we show by electron microscopy that PFD from the archaeum Pyrococcus horikoshii (PhPFD) selectively uses an increasing number of subunits to interact with nonnative protein substrates of larger sizes. PhPFD stabilizes unfolded proteins by interacting with the distal regions of the chaperone tentacles, a mechanism different from that of eukaryotic PFD, which encapsulates its substrate inside the cavity. This suggests that although the fundamental functions of archaeal and eukaryal PFD are conserved, their mechanism of substrate interaction have diverged, potentially reflecting a narrower range of substrates stabilized by the eukaryotic PFD.
Collapse
Affiliation(s)
- Jaime Martín-Benito
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de la Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Semeralul MO, Boutros PC, Likhodi O, Okey AB, Van Tol HHM, Wong AHC. Microarray analysis of the developing cortex. ACTA ACUST UNITED AC 2007; 66:1646-58. [PMID: 17013924 DOI: 10.1002/neu.20302] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abnormal development of the prefrontal cortex (PFC) is associated with a number of neuropsychiatric disorders that have an onset in childhood or adolescence. Although the basic laminar structure of the PFC is established in utero, extensive remodeling continues into adolescence. To map the overall pattern of changes in cortical gene transcripts during postnatal development, we made serial measurements of mRNA levels in mouse PFC using oligonucleotide microarrays. We observed changes in mRNA transcripts consistent with known postnatal morphological and biochemical events. Overall, most transcripts that changed significantly showed a progressive decrease in abundance after birth, with the majority of change between postnatal weeks 2 and 4. Genes with cell proliferative, cytoskeletal, extracellular matrix, plasma membrane lipid/transport, protein folding, and regulatory functions had decreases in mRNA levels. Quantitative PCR verified the microarray results for six selected genes: DNA methyltransferase 3A (Dnmt3a), procollagen, type III, alpha 1 (Col3a1), solute carrier family 16 (monocarboxylic acid transporters), member 1 (Slc16a1), MARCKS-like 1 (Marcksl1), nidogen 1 (Nid1) and 3-hydroxybutyrate dehydrogenase (heart, mitochondrial) (Bdh).
Collapse
Affiliation(s)
- Mawahib O Semeralul
- Department of Pharmacology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
289
|
Xin L, Cao WX, Fei XF, Wang Y, Liu WT, Liu BY, Zhu ZG. Applying proteomic methodologies to analyze the effect of methionine restriction on proliferation of human gastric cancer SGC7901 cells. Clin Chim Acta 2007; 377:206-12. [PMID: 17116298 DOI: 10.1016/j.cca.2006.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND Methionine dependence is a feature unique to cancer cells, exhibited as inability to grow in a methionine-depleted environment supplemented with homocysteine, the immediate metabolic precursor of methionine. However, the molecular mechanisms by which methionine restriction inhibits cancer cells growth have not been elucidated. The effect of methionine restriction on the protein expression in gastric cancer cells was studied. METHODS SGC7901 cells were treated with M-H+ medium for 5 days, which was followed by analysis of total cellular protein from cells by a combination of 2-DE and MS. Then the differential expressional levels of partially identified proteins were determined by Western blot analysis. RESULTS The well-resolved, reproducible 2-DE patterns of SGC7901 cells cultured in M+H- or M-H+ medium were established. The 10 differential proteins between pairs of gastric cancer cells SGC7901 cultured either in M+H- medium or M-H+ medium, were identified by MALDI-TOF/TOF MS, and the differential expression levels of 2 identified proteins were confirmed. CONCLUSION These data will be valuable for further study of the molecular mechanisms by which methionine restriction induces cell cycle arrest and apoptosis in human gastric cancer.
Collapse
Affiliation(s)
- Lin Xin
- Shanghai Institute of Digestive Surgery, Department of Clinical Nutrition, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
290
|
Ostrov DA, Barnes CL, Smith LE, Binns S, Brusko TM, Brown AC, Quint PS, Litherland SA, Roopenian DC, Iczkowski KA. Characterization of HKE2: an ancient antigen encoded in the major histocompatibility complex. ACTA ACUST UNITED AC 2007; 69:181-8. [PMID: 17257322 DOI: 10.1111/j.1399-0039.2006.00730.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genes at the centromeric end of the human leukocyte antigen region influence adaptive autoimmune diseases and cancer. In this study, we characterized protein expression of HKE2, a gene located in the centromeric portion of the class II region of the major histocompatibility complex encoding subunit 6 of prefoldin. Immunohistochemical analysis using an anti-HKE2 antibody indicated that HKE2 protein expression is dramatically upregulated as a consequence of activation. In a tissue microarray and in several tumors, HKE2 was overexpressed in certain cancers compared with normal counterparts. The localization of the HKE2 gene to the class II region, its cytoplasmic expression and putative protein-binding domain suggest that HKE2 may function in adaptive immunity and cancer.
Collapse
Affiliation(s)
- D A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Stirling PC, Bakhoum SF, Feigl AB, Leroux MR. Convergent evolution of clamp-like binding sites in diverse chaperones. Nat Struct Mol Biol 2006; 13:865-70. [PMID: 17021621 DOI: 10.1038/nsmb1153] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Molecular chaperones have evolved diverse tertiary and quaternary structures to stabilize non-native polypeptides and facilitate their transition to the native state. Indeed, different families of chaperones lack sequence similarity, and few are represented ubiquitously in all three domains of life. Despite their discrete evolutionary paths, recent crystal structures reveal that many chaperones use seemingly convergent strategies to bind non-native proteins. This crystallographic evidence shows, or strongly suggests, that chaperones including prefoldin, Skp, trigger factor, Hsp40 and Hsp90 have clamp-like structural features used to grip substrate proteins. We explore the notion that clamp-like structures are evolutionarily favored by both ATP-dependent and ATP-independent molecular chaperones. Presumably, clamps present a multivalent binding surface ideal for protecting unstable protein conformers until they reach the native state or are transferred to another component of the folding machinery.
Collapse
Affiliation(s)
- Peter C Stirling
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | | | | | | |
Collapse
|
292
|
Zako T, Murase Y, Iizuka R, Yoshida T, Kanzaki T, Ide N, Maeda M, Funatsu T, Yohda M. Localization of Prefoldin Interaction Sites in the Hyperthermophilic Group II Chaperonin and Correlations between Binding Rate and Protein Transfer Rate. J Mol Biol 2006; 364:110-20. [PMID: 17010374 DOI: 10.1016/j.jmb.2006.08.088] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 08/20/2006] [Accepted: 08/29/2006] [Indexed: 11/17/2022]
Abstract
Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. The manner by which prefoldin interacts with a group II chaperonin is poorly understood. Here, we have examined the prefoldin interaction site in the archaeal group II chaperonin, comparing the interaction of two Thermococcus chaperonins and their mutants with Pyrococcus prefoldin by surface plasmon resonance. We show that the mutations of Lys250 and Lys256 of Thermococcus alpha chaperonin residues to Glu residues increase the affinity to Pyrococcus prefoldin to the level of Thermococcus beta chaperonin and Pyrococcus chaperonin, indicating that their Glu250 and Glu256 residues of the helical protrusion region are responsible for relatively stronger binding to Pyrococcus prefoldin than Thermococcus alpha chaperonin. Since the putative chaperonin binding sites in the distal ends of Pyrococcus prefoldin are rich in basic residues, electrostatic interaction seems to be important for their interaction. The substrate protein transfer rate from prefoldin correlates well with its affinity for chaperonin.
Collapse
Affiliation(s)
- Tamotsu Zako
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-Shi, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Yoshida T, Iizuka R, Itami K, Yasunaga T, Sakuraba H, Ohshima T, Yohda M, Maruyama T. Comparative analysis of the protein folding activities of two chaperonin subunits of Thermococcus strain KS-1: the effects of beryllium fluoride. Extremophiles 2006; 11:225-35. [PMID: 17072688 DOI: 10.1007/s00792-006-0026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
We conducted a comparative analysis of the effects of beryllium fluoride (BeFx) on protein folding mediated by the alpha- and beta-subunit homooligomers (alpha16mer or beta16mer) from the hyperthermophilic archaeum Thermococcus strain KS-1. BeFx inhibited the ATPase activities of both alpha16mer and beta16mer with equal efficiency. This indicated that BeFx replaces the gamma-phosphate of chaperonin-bound ATP, thereby forming a stable chaperonin-ADP-BeFx complex. In the presence of ATP and BeFx, both of the two chaperonin subunits mediated green fluorescent protein (GFP) folding. Gel filtration chromatography revealed that the refolded GFP was retained by both chaperonins. Protease digestion and electron microscopic analyses showed that both chaperonin-ADP-BeFx complexes of the two subunits adopted a symmetric closed conformation with the built-in lids of both rings closed and that protein folding took place in their central cavities. These data indicated that basic protein folding mechanisms of alpha16mer and beta16mer are likely similar although there were some apparent differences. While beta16mer-mediated GFP refolding in the presence of ATP-BeFx that proceeded more rapidly than in the presence of ATP alone and reached a twofold higher plateau than that achieved with AMP-PNP, the folding mediated by the alpha16mer that proceeded with much lower yields. A mutant of alpha16mer, trapalpha, which traps the unfolded and partially folded substrate protein, did not affect the ATP-BeFx-dependent GFP folding by beta16mer but it suppressed that mediated by alpha16mer to the level of spontaneous folding. These results suggested that beta16mer differed from the alpha16mer in nucleotide binding affinity or the rate of nucleotide hydrolysis.
Collapse
Affiliation(s)
- Takao Yoshida
- Research Program for Marine Biology and Ecology, Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Lin Q, Donahue SL, Moore-Jarrett T, Cao S, Osipovich AB, Ruley HE. Mutagenesis of diploid mammalian genes by gene entrapment. Nucleic Acids Res 2006; 34:e139. [PMID: 17062627 PMCID: PMC1635309 DOI: 10.1093/nar/gkl728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The present study describes a genome-wide method for biallelic mutagenesis in mammalian cells. Novel poly(A) gene trap vectors, which contain features for direct cloning vector–cell fusion transcripts and for post-entrapment genome engineering, were used to generate a library of 979 mutant ES cells. The entrapment mutations generally disrupted gene expression and were readily transmitted through the germline, establishing the library as a resource for constructing mutant mice. Cells homozygous for most entrapment loci could be isolated by selecting for enhanced expression of an inserted neomycin-resistance gene that resulted from losses of heterozygosity (LOH). The frequencies of LOH measured at 37 sites in the genome ranged from 1.3 × 10−5 to 1.2 × 10−4 per cell and increased with increasing distance from the centromere, implicating mitotic recombination in the process. The ease and efficiency of obtaining homozygous mutations will (i) facilitate genetic studies of gene function in cultured cells, (ii) permit genome-wide studies of recombination events that result in LOH and mediate a type of chromosomal instability important in carcinogenesis, and (iii) provide new strategies for phenotype-driven mutagenesis screens in mammalian cells.
Collapse
Affiliation(s)
| | | | | | | | | | - H. Earl Ruley
- To whom correspondence should be addressed. Tel: +615 343 1379; Fax: +615 343 7392;
| |
Collapse
|
295
|
Tsao ML, Chao CH, Yeh CT. Interaction of hepatitis C virus F protein with prefoldin 2 perturbs tubulin cytoskeleton organization. Biochem Biophys Res Commun 2006; 348:271-7. [PMID: 16876117 DOI: 10.1016/j.bbrc.2006.07.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 07/12/2006] [Indexed: 12/25/2022]
Abstract
By use of the yeast two-hybrid system, hepatitis C virus (HCV) F protein was found to interact with a cellular protein named prefoldin 2. The interaction was confirmed by confocal immunofluorescence microscopy as well as coimmunoprecipitation experiments. Prefoldin 2 is a subunit of a hexameric molecular chaperone complex, named prefoldin, which delivers nascent actin and tubulin proteins to the eukaryotic cytosolic chaperonin for facilitated folding. Functional prefoldin spontaneously assembles from its six subunits (prefoldin 1-6). In the yeast three-hybrid system, it was found that expression of HCV F protein impeded the interaction between prefoldin 1 and 2. By performing immunofluorescence experiment and non-denaturing gel electrophoresis, it was shown that expression of HCV F protein resulted in aberrant organization of tubulin cytoskeleton. Since HCV replication requires intact microtubule and actin polymerization, HCV F protein may serve as a modulator to prevent high level of HCV replication and thus contributes to viral persistence in chronic HCV infection.
Collapse
Affiliation(s)
- Mei-Ling Tsao
- Liver Research Unit, Chang Gung Memorial Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
296
|
Guimarães GS, Latini FRM, Camacho CP, Maciel RMB, Dias-Neto E, Cerutti JM. Identification of candidates for tumor-specific alternative splicing in the thyroid. Genes Chromosomes Cancer 2006; 45:540-53. [PMID: 16493598 DOI: 10.1002/gcc.20316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing is the differential processing of exon junctions to produce a new transcript variant from one gene. Some aberrant splicing, however, has been shown to be cancer specific. Identification of these specific splice variations will provide important insight into the molecular mechanism of normal cellular physiology as well as the disease processes. To gain knowledge about whether alternative splicing is linked to thyroid tumorigenesis, we used our prediction database to select targets for analysis. Fifteen putatively new alternative splicing isoforms were selected on the basis of their expression in thyroid libraries and/or their origin in genes previously associated with carcinogenesis. Using a set of 66 normal, benign, and malignant thyroid tissue samples, new splicing events were confirmed by RT-PCR for 13 of 15 genes (a validation rate of 87%). In addition, new alternative splicing isoforms not predicted by the system and not previously described in public databases were identified. Five genes (PTPN18, ABI3BP, PFDN5, SULF2, and ST5) presented new and/or additional unpredicted isoforms differentially expressed between malignant and benign or normal thyroid tissues, confirmed by sequencing. PTPN18, ABI3BP, and PFDN5 revealed a statistically significant differential splicing profile. In addition, real-time PCR analysis revealed that expression of an alternative PFDN5 variant was higher in malignant lesions than in benign lesions or normal tissues.
Collapse
Affiliation(s)
- Gustavo S Guimarães
- Laboratory of Molecular Endocrinology, Department of Medicine, Federal University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
297
|
Pucciarelli S, Parker SK, Detrich HW, Melki R. Characterization of the cytoplasmic chaperonin containing TCP-1 from the Antarctic fish Notothenia coriiceps. Extremophiles 2006; 10:537-49. [PMID: 16770691 DOI: 10.1007/s00792-006-0528-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
The cytoplasmic chaperonin containing TCP-1 (CCT) plays a critically important role in the folding and biogenesis of many cytoskeletal proteins, including tubulin and actin. For marine ectotherms, the chronically cold Southern Ocean (-2 to +2 degrees C) poses energetic challenges to protein folding, both at the level of substrate proteins and with respect to the chaperonin/chaperone folding system. Here we report the partial functional and structural characterization of CCT from an Antarctic notothenioid fish, Notothenia coriiceps. We find that the mechanism of folding by the Antarctic fish CCT differed from that of mammalian CCT: (1) the former complex was able to bind denatured beta-tubulin but (2) when reconstituted with rabbit Cofactor A, failed to release the protein to yield the tubulin/cofactor intermediate. Moreover, the amino acid sequences of the N. coriiceps CCT beta and theta chains contained residue substitutions in the equatorial, apical, and intermediate domains that would be expected to increase the flexibility of the subunits, thus facilitating function of the chaperonin in an energy poor environment. Our work contributes to the growing realization that protein function in cold-adapted organisms reflects a delicate balance between the necessity of structural flexibility for catalytic activity and the concomitant hazard of cold-induced denaturation.
Collapse
Affiliation(s)
- Sandra Pucciarelli
- Dipartimento di Biologia, Molecolare, Cellulare, ed Animale, Università di Camerino, 62032 Camerino, Italy.
| | | | | | | |
Collapse
|
298
|
Zhang J, Liu L, Zhang X, Jin F, Chen J, Ji C, Gu S, Xie Y, Mao Y. Cloning and Characterization of a Novel Human Prefoldin and SPEC Domain Protein Gene (PFD6L) From the Fetal Brain. Biochem Genet 2006; 44:69-74. [PMID: 16710767 DOI: 10.1007/s10528-006-9008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 08/16/2005] [Indexed: 10/24/2022]
Affiliation(s)
- Jiayi Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Abstract
Revertants of a colcemid-resistant Chinese hamster ovary cell line with an altered (D45Y) beta-tubulin have allowed the identification of four cis-acting mutations (L187R, Y398C, a 12-amino acid in-frame deletion, and a C-terminal truncation) that act by destabilizing the mutant tubulin and preventing it from incorporating into microtubules. These unstable beta-tubulins fail to form heterodimers and are predominantly found in association with the chaperonin CCT, suggesting that they cannot undergo productive folding. In agreement with these in vivo observations, we show that the defective beta-tubulins do not stably interact with cofactors involved in the tubulin folding pathway and, hence, fail to exchange with beta-tubulin in purified alphabeta heterodimers. Treatment of cells with MG132 causes an accumulation of the aberrant tubulins, indicating that improperly folded beta-tubulin is degraded by the proteasome. Rapid degradation of the mutant tubulin does not elicit compensatory changes in wild-type tubulin synthesis or assembly. Instead, loss of beta-tubulin from the mutant allele causes a 30-40% decrease in cellular tubulin content with no obvious effect on cell growth or survival.
Collapse
Affiliation(s)
- Yaqing Wang
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, Texas 77030
| | - Guoling Tian
- Department of Biochemistry, New York University Medical Center, New York, New York 10016
| | - Nicholas J Cowan
- Department of Biochemistry, New York University Medical Center, New York, New York 10016
| | - Fernando Cabral
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, Texas 77030.
| |
Collapse
|
300
|
Hagio Y, Kimura Y, Taira T, Fujioka Y, Iguchi-Ariga SMM, Ariga H. Distinct localizations and repression activities of MM-1 isoforms toward c-Myc. J Cell Biochem 2006; 97:145-55. [PMID: 16173081 DOI: 10.1002/jcb.20619] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MM-1 was identified as a c-Myc-binding protein and has been reported to repress the E-box-dependent transcription activity of c-Myc by recruiting HDAC1 complex via TIF1 beta/KAP1. In this study, originally isolated MM-1 was found to be a fusion protein comprised of the N-terminal 13 amino acids from the sequence of chromosome 14 and of the rest of the amino acids from that of chromosome 12 and was found to be expressed ubiquitously in all human tissues. Four splicing isoforms of MM-1, MM-1alpha, MM-1beta, MM-1gamma, and MM-1delta, which are derived from the sequence of chromosome 12, were then identified. Of these isoforms, MM-1alpha, MM-1gamma, and MM-1delta were found to be expressed in tissue-specific manners and MM-1beta was found to be expressed ubiquitously. Although all of the isoforms potentially possessed c-Myc- and TIF1beta-binding activities, MM-1beta and MM-1delta were found to be mainly localized in the cytoplasm and MM-1alpha and MM-1gamma were found to be localized in the nucleus together with both c-Myc and TIF1beta. Furthermore, when repression activities of MM-1 isoforms toward c-Myc transcription activity were examined by reporter gene assays in HeLa cells, MM-1alpha, MM-1gamma, and MM-1gamma, but not MM-1beta, were found to repress transcription activity of c-Myc, and the degrees of repression by MM-1gamma and MM-1delta were smaller than those by MM-1 and MM-1alpha. These results suggest that each MM-1 isoform distinctly regulates c-Myc transcription activity in respective tissues.
Collapse
Affiliation(s)
- Yuko Hagio
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|