251
|
Stringlis IA, Zhang H, Pieterse CMJ, Bolton MD, de Jonge R. Microbial small molecules - weapons of plant subversion. Nat Prod Rep 2019; 35:410-433. [PMID: 29756135 DOI: 10.1039/c7np00062f] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: up to 2018 Plants live in close association with a myriad of microbes that are generally harmless. However, the minority of microbes that are pathogens can severely impact crop quality and yield, thereby endangering food security. By contrast, beneficial microbes provide plants with important services, such as enhanced nutrient uptake and protection against pests and diseases. Like pathogens, beneficial microbes can modulate host immunity to efficiently colonize the nutrient-rich niches within and around the roots and aerial tissues of a plant, a phenomenon mirroring the establishment of commensal microbes in the human gut. Numerous ingenious mechanisms have been described by which pathogenic and beneficial microbes in the plant microbiome communicate with their host, including the delivery of immune-suppressive effector proteins and the production of phytohormones, toxins and other bioactive molecules. Plants signal to their associated microbes via exudation of photosynthetically fixed carbon sources, quorum-sensing mimicry molecules and selective secondary metabolites such as strigolactones and flavonoids. Molecular communication thus forms an integral part of the establishment of both beneficial and pathogenic plant-microbe relations. Here, we review the current knowledge on microbe-derived small molecules that can act as signalling compounds to stimulate plant growth and health by beneficial microbes on the one hand, but also as weapons for plant invasion by pathogens on the other. As an exemplary case, we used comparative genomics to assess the small molecule biosynthetic capabilities of the Pseudomonas genus; a genus rich in both plant pathogenic and beneficial microbes. We highlight the biosynthetic potential of individual microbial genomes and the population at large, providing evidence for the hypothesis that the distinction between detrimental and beneficial microbes is increasingly fading. Knowledge on the biosynthesis and molecular activity of microbial small molecules will aid in the development of successful biological agents boosting crop resiliency in a sustainable manner and could also provide scientific routes to pathogen inhibition or eradication.
Collapse
Affiliation(s)
- Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
252
|
Mao X, Kim JI, Wheeler MT, Heintzelman AK, Weake VM, Chapple C. Mutation of Mediator subunit CDK8 counteracts the stunted growth and salicylic acid hyperaccumulation phenotypes of an Arabidopsis MED5 mutant. THE NEW PHYTOLOGIST 2019; 223:233-245. [PMID: 30756399 DOI: 10.1111/nph.15741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/08/2019] [Indexed: 05/13/2023]
Abstract
The Mediator complex functions as a hub for transcriptional regulation. MED5, an Arabidopsis Mediator tail subunit, is required for maintaining phenylpropanoid homeostasis. A semidominant mutation (ref4-3) that causes a single amino acid substitution in MED5b functions as a strong suppressor of the pathway, leading to decreased soluble phenylpropanoid accumulation, reduced lignin content and dwarfism. By contrast, loss of MED5 results in increased concentrations of phenylpropanoids. We used a reverse genetic approach to identify suppressors of ref4-3 and found that ref4-3 requires CDK8, a kinase module subunit of Mediator, to repress plant growth. The genetic interaction between MED5 and CDK8 was further characterized using mRNA-sequencing (RNA-seq) and metabolite analysis. Growth inhibition and suppression of phenylpropanoid metabolism can be genetically separated in ref4-3 by elimination of CDK8 kinase activity; however, the stunted growth of ref4-3 is not dependent on the phosphorylation event introduced by the G383S mutation. In addition, rather than perturbation of lignin biosynthesis, misregulation of DJC66, a gene encoding a DNAJ protein, is involved in the dwarfism of the med5 mutants. Together, our study reveals genetic interactions between Mediator tail and kinase module subunits and enhances our understanding of dwarfing in phenylpropanoid pathway mutants.
Collapse
Affiliation(s)
- Xiangying Mao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jeong Im Kim
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Mitchell T Wheeler
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Anne K Heintzelman
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Northwest Missouri State University, Maryville, MO, 64468, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
253
|
Vï Lz R, Kim SK, Mi J, Mariappan KG, Siodmak A, Al-Babili S, Hirt H. A Chimeric IDD4 Repressor Constitutively Induces Immunity in Arabidopsis via the Modulation of Salicylic Acid and Jasmonic Acid Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1536-1555. [PMID: 30989238 DOI: 10.1093/pcp/pcz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
INDETERMINATE DOMAIN (IDD)/BIRD proteins belong to a highly conserved plant-specific group of transcription factors with dedicated functions in plant physiology and development. Here, we took advantage of the chimeric repressor gene-silencing technology (CRES-T, SRDX) to widen our view on the role of IDD4/IMPERIAL EAGLE and IDD family members in plant immunity. The hypomorphic idd4SRDX lines are compromised in growth and show a robust autoimmune phenotype. Hormonal measurements revealed the concomitant accumulation of salicylic acid and jasmonic acid suggesting that IDDs are involved in regulating the metabolism of these biotic stress hormones. The analysis of immunity-pathways showed enhanced activation of immune MAP kinase-signaling pathways, the accumulation of hydrogen peroxide and spontaneous programmed cell death. The transcriptome of nonelicited idd4SRDX lines can be aligned to approximately 40% of differentially expressed genes (DEGs) in flg22-treated wild-type plants. The pattern of DEGs implies IDDs as pivotal repressors of flg22-dependent gene induction. Infection experiments showed the increased resistance of idd4SRDX lines to Pseudomonas syringae and Botrytis cinerea implying a function of IDDs in defense adaptation to hemibiotrophs and necrotrophs. Genome-wide IDD4 DNA-binding studies (DAP-SEQ) combined with DEG analysis of idd4SRDX lines identified IDD4-regulated functional gene clusters that contribute to plant growth and development. In summary, we discovered that the expression of idd4SRDX activates a wide range of defense-related traits opening up the possibility to apply idd4SRDX as a powerful tool to stimulate innate immunity in engineered crops.
Collapse
Affiliation(s)
- Ronny Vï Lz
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Plant Immunity Research Center, Seoul National University, Seoul, Korea
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jianing Mi
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anna Siodmak
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Universit� Paris-Sud, Universit� Evry, Universit� Paris-Saclay, B�timent 630, Orsay, France
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
254
|
Jin H, Choi SM, Kang MJ, Yun SH, Kwon DJ, Noh YS, Noh B. Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis. Nucleic Acids Res 2019; 46:11712-11725. [PMID: 30239885 PMCID: PMC6294559 DOI: 10.1093/nar/gky847] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Plant immunity depends on massive expression of pathogenesis-related genes (PRs) whose transcription is de-repressed by pathogen-induced signals. Salicylic acid (SA) acts as a major signaling molecule in plant immunity and systemic acquired resistance triggered by bacterial or viral pathogens. SA signal results in the activation of the master immune regulator, Nonexpressor of pathogenesis-related genes 1 (NPR1), which is thought to be recruited by transcription factors such as TGAs to numerous downstream PRs. Despite its key role in SA-triggered immunity, the biochemical nature of the transcriptional coactivator function of NPR1 and the massive transcriptional reprogramming induced by it remain obscure. Here we demonstrate that the CBP/p300-family histone acetyltransferases, HACs and NPR1 are both essential to develop SA-triggered immunity and PR induction. Indeed HACs and NPR1 form a coactivator complex and are recruited to PR chromatin through TGAs upon SA signal, and finally the HAC−NPR1−TGA complex activates PR transcription by histone acetylation-mediated epigenetic reprogramming. Thus, our study reveals a molecular mechanism of NPR1-mediated transcriptional reprogramming and a key epigenetic aspect of the central immune system in plants.
Collapse
Affiliation(s)
- Hongshi Jin
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Sun-Mee Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Min-Jeong Kang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Se-Hun Yun
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Dong-Jin Kwon
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoo-Sun Noh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Bosl Noh
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
255
|
Yang S, Pan L, Chen Y, Yang D, Liu Q, Jian H. Heterodera avenae GLAND5 Effector Interacts With Pyruvate Dehydrogenase Subunit of Plant to Promote Nematode Parasitism. Front Microbiol 2019; 10:1241. [PMID: 31214156 PMCID: PMC6558007 DOI: 10.3389/fmicb.2019.01241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/17/2019] [Indexed: 01/04/2023] Open
Abstract
Heterodera avenae mainly infects cereal crops and causes severe economic losses. Many studies have shown that parasitic nematodes can secrete effector proteins to suppress plant immune responses and then promote parasitism. In this study, we showed that HaGland5, a novel effector of H. avenae, was exclusively expressed in dorsal esophageal gland cell of nematode, and up-regulated in the early parasitic stage. Transgenic Arabidopsis thaliana lines expressing HaGland5 were significantly more susceptible to H. schachtii than wild-type control plants. Conversely, silencing of HaGland5 through barley stripe mosaic virus-medicated host-induced gene silencing technique substantially reduced the infection of H. avenae in wheat. Moreover, HaGland5 could suppress the plant defense responses, including the repression of plant defense-related genes, reducing deposition of cell wall callose and the burst of reactive oxygen species. Mass spectrometry, co-immunoprecipitation, and firefly luciferase complementation imaging assays confirmed that HaGland5 interacted specifically with Arabidopsis pyruvate dehydrogenase subunit (AtEMB3003).
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Lingling Pan
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Yongpan Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Dan Yang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Qian Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Heng Jian
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| |
Collapse
|
256
|
Zhang L, Chen L, Dong H. Plant Aquaporins in Infection by and Immunity Against Pathogens - A Critical Review. FRONTIERS IN PLANT SCIENCE 2019; 10:632. [PMID: 31191567 PMCID: PMC6546722 DOI: 10.3389/fpls.2019.00632] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/26/2019] [Indexed: 05/18/2023]
Abstract
Plant aquaporins (AQPs) of the plasma membrane intrinsic protein (PIP) family face constant risk of hijack by pathogens aiming to infect plants. PIPs can also be involved in plant immunity against infection. This review will utilize two case studies to discuss biochemical and structural mechanisms that govern the functions of PIPs in the regulation of plant infection and immunity. The first example concerns the interaction between rice Oryza sativa and the bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). To infect rice, Xoo uses the type III (T3) secretion system to secrete the proteic translocator Hpa1, and Hpa1 subsequently mediates the translocation of T3 effectors secreted by this system. Once shifted from bacteria into rice cells, effectors exert virulent or avirulent effects depending on the susceptibility of the rice varieties. The translocator function of Hpa1 requires cooperation with OsPIP1;3, the rice interactor of Hpa1. This role of OsPIP1;3 is related to regulatory models of effector translocation. The regulatory models have been proposed as, translocon-dependent delivery, translocon-independent pore formation, and effector endocytosis with membrane protein/lipid trafficking. The second case study includes the interaction of Hpa1 with the H2O2 transport channel AtPIP1;4, and the associated consequence for H2O2 signal transduction of immunity pathways in Arabidopsis thaliana, a non-host of Xoo. H2O2 is generated in the apoplast upon induction by a pathogen or microbial pattern. H2O2 from this source translocates quickly into Arabidopsis cells, where it interacts with pathways of intracellular immunity to confer plant resistance against diseases. To expedite H2O2 transport, AtPIP1;4 must adopt a specific conformation in a number of ways, including channel width extension through amino acid interactions and selectivity for H2O2 through amino acid protonation and tautomeric reactions. Both topics will reference relevant studies, conducted on other organisms and AQPs, to highlight possible mechanisms of T3 effector translocation currently under debate, and highlight the structural basis of AtPIP1;4 in H2O2 transport facilitated by gating and trafficking regulation.
Collapse
Affiliation(s)
- Liyuan Zhang
- Plant Immunity Research Group, National Key Laboratory of Crop Science, Department of Plant Pathology, Shandong Agricultural University, Tai’an, China
| | - Lei Chen
- Plant Immunity Research Group, National Key Laboratory of Crop Science, Department of Plant Pathology, Shandong Agricultural University, Tai’an, China
| | - Hansong Dong
- Plant Immunity Research Group, National Key Laboratory of Crop Science, Department of Plant Pathology, Shandong Agricultural University, Tai’an, China
- Plant Immunity Laboratory, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
257
|
Zhang W, Corwin JA, Copeland DH, Feusier J, Eshbaugh R, Cook DE, Atwell S, Kliebenstein DJ. Plant-necrotroph co-transcriptome networks illuminate a metabolic battlefield. eLife 2019; 8:e44279. [PMID: 31081752 PMCID: PMC6557632 DOI: 10.7554/elife.44279] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
A central goal of studying host-pathogen interaction is to understand how host and pathogen manipulate each other to promote their own fitness in a pathosystem. Co-transcriptomic approaches can simultaneously analyze dual transcriptomes during infection and provide a systematic map of the cross-kingdom communication between two species. Here we used the Arabidopsis-B. cinerea pathosystem to test how plant host and fungal pathogen interact at the transcriptomic level. We assessed the impact of genetic diversity in pathogen and host by utilization of a collection of 96 isolates infection on Arabidopsis wild-type and two mutants with jasmonate or salicylic acid compromised immunities. We identified ten B. cinereagene co-expression networks (GCNs) that encode known or novel virulence mechanisms. Construction of a dual interaction network by combining four host- and ten pathogen-GCNs revealed potential connections between the fungal and plant GCNs. These co-transcriptome data shed lights on the potential mechanisms underlying host-pathogen interaction.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plant PathologyKansas State UniversityManhattanUnited States
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - Jason A Corwin
- Department of Ecology and Evolution BiologyUniversity of ColoradoBoulderUnited States
| | | | - Julie Feusier
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - Robert Eshbaugh
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - David E Cook
- Department of Plant PathologyKansas State UniversityManhattanUnited States
| | - Suzi Atwell
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - Daniel J Kliebenstein
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
- DynaMo Center of ExcellenceUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
258
|
Sircar S, Parekh N. Meta-analysis of drought-tolerant genotypes in Oryza sativa: A network-based approach. PLoS One 2019; 14:e0216068. [PMID: 31059518 PMCID: PMC6502313 DOI: 10.1371/journal.pone.0216068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Drought is a severe environmental stress. It is estimated that about 50% of the world rice production is affected mainly by drought. Apart from conventional breeding strategies to develop drought-tolerant crops, innovative computational approaches may provide insights into the underlying molecular mechanisms of stress response and identify drought-responsive markers. Here we propose a network-based computational approach involving a meta-analytic study of seven drought-tolerant rice genotypes under drought stress. RESULTS Co-expression networks enable large-scale analysis of gene-pair associations and tightly coupled clusters that may represent coordinated biological processes. Considering differentially expressed genes in the co-expressed modules and supplementing external information such as resistance/tolerance QTLs, transcription factors, network-based topological measures, we identify and prioritize drought-adaptive co-expressed gene modules and potential candidate genes. Using the candidate genes that are well-represented across the datasets as 'seed' genes, two drought-specific protein-protein interaction networks (PPINs) are constructed with up- and down-regulated genes. Cluster analysis of the up-regulated PPIN revealed ABA signalling pathway as a central process in drought response with a probable crosstalk with energy metabolic processes. Tightly coupled gene clusters representing up-regulation of core cellular respiratory processes and enhanced degradation of branched chain amino acids and cell wall metabolism are identified. Cluster analysis of down-regulated PPIN provides a snapshot of major processes associated with photosynthesis, growth, development and protein synthesis, most of which are shut down during drought. Differential regulation of phytohormones, e.g., jasmonic acid, cell wall metabolism, signalling and posttranslational modifications associated with biotic stress are elucidated. Functional characterization of topologically important, drought-responsive uncharacterized genes that may play a role in important processes such as ABA signalling, calcium signalling, photosynthesis and cell wall metabolism is discussed. Further transgenic studies on these genes may help in elucidating their biological role under stress conditions. CONCLUSION Currently, a large number of resources for rice functional genomics exist which are mostly underutilized by the scientific community. In this study, a computational approach integrating information from various resources such as gene co-expression networks, protein-protein interactions and pathway-level information is proposed to provide a systems-level view of complex drought-responsive processes across the drought-tolerant genotypes.
Collapse
Affiliation(s)
- Sanchari Sircar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
- * E-mail:
| |
Collapse
|
259
|
Miao Y, Xu L, He X, Zhang L, Shaban M, Zhang X, Zhu L. Suppression of tryptophan synthase activates cotton immunity by triggering cell death via promoting SA synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:329-345. [PMID: 30604574 DOI: 10.1111/tpj.14222] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 02/11/2019] [Accepted: 12/17/2018] [Indexed: 05/14/2023]
Abstract
Primary metabolism plays an important role in plant growth and development, however the relationship between primary metabolism and the adaptive immune response is largely unknown. Here, we employed RNA interference (RNAi), virus-induced gene silencing (VIGS) technology, phytohormone profiling, genetic studies, and transcriptome and metabolome analysis to investigate the function of the tryptophan synthesis pathway in the resistance of cotton to V. dahliae. We found that knock-down of GbTSA1 (Tryptophan Synthase α) and GbTSB1 (tryptophan synthase β) induced a spontaneous cell death phenotype in a salicylic acid (SA)-dependent manner and enhanced resistance to V. dahliae in cotton plants. Metabolome analysis showed that indole and indolic metabolites were highly accumulated in GbTSA1- or GbTSB1-silenced plants. Transcriptomic analysis showed that exogenous indole promotes the expression levels of genes involved in SA synthesis and the defense response. Similarly, indole application strongly enhanced cotton resistance to V. dahliae. These results suggested that metabolic intermediates in the Trp synthesis pathway may be a signal to activate SA synthesis. These results also provided a strategy to elicit plant defense responses by the application of indole.
Collapse
Affiliation(s)
- Yuhuan Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lian Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Muhammad Shaban
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
260
|
Yin H, Hong G, Li L, Zhang X, Kong Y, Sun Z, Li J, Chen J, He Y. miR156/SPL9 Regulates Reactive Oxygen Species Accumulation and Immune Response in Arabidopsis thaliana. PHYTOPATHOLOGY 2019; 109:632-642. [PMID: 30526361 DOI: 10.1094/phyto-08-18-0306-r] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The functions of microRNA156 (miR156) and its targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor genes in plant development have been widely investigated. However, the role of the miR156/SPLs regulatory network in plant immune systems remains obscure. Here, we found that the accumulation of reactive oxygen species (ROS) and the transcripts of basal salicylic acid (SA) signaling pathway genes were lower in Arabidopsis Pro35S:MIR156 seedlings (miR156 overexpression mutants) but higher in Pro35S:MIM156 (miR156 repression mutants) and ProSPL9:rSPL9 (SPL9 overexpression mutants) seedlings compared with wild-type Col-0 plants (WT). As a result, Pro35S:MIR156 mutants induced greater susceptibility to Pseudomonas syringae pv. tomato DC3000 following syringe infiltration than WT, while Pro35S:MIM156 and ProSPL9:rSPL9 mutants showed enhanced resistance. In addition, foliar H2O2 application resulted in activation of SA-mediated defense response and ablation of miR156-induced susceptibility to P. syringae pv. tomato DC3000 infection. Collectively, our results provide new insights into the function of the miR156/SPL network in Arabidopsis immune response by regulating ROS accumulation and activating the SA signaling pathway.
Collapse
Affiliation(s)
- Hongbiao Yin
- 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
- 2 State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Gaojie Hong
- 2 State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| | - Linying Li
- 2 State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
- 3 School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xueying Zhang
- 2 State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
- 4 Department of Tea Science, Zhejiang University, Hangzhou 310058, China; and
| | - Yaze Kong
- 2 State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
- 5 College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; and
| | - Zongtao Sun
- 2 State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
- 6 Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Junmin Li
- 2 State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
- 6 Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
- 2 State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
- 6 Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuqing He
- 2 State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
| |
Collapse
|
261
|
NPR1 and Redox Rhythmx: Connections, between Circadian Clock and Plant Immunity. Int J Mol Sci 2019; 20:ijms20051211. [PMID: 30857376 PMCID: PMC6429127 DOI: 10.3390/ijms20051211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/08/2023] Open
Abstract
The circadian clock in plants synchronizes biological processes that display cyclic 24-h oscillation based on metabolic and physiological reactions. This clock is a precise timekeeping system, that helps anticipate diurnal changes; e.g., expression levels of clock-related genes move in synchrony with changes in pathogen infection and help prepare appropriate defense responses in advance. Salicylic acid (SA) is a plant hormone and immune signal involved in systemic acquired resistance (SAR)-mediated defense responses. SA signaling induces cellular redox changes, and degradation and rhythmic nuclear translocation of the non-expresser of PR genes 1 (NPR1) protein. Recent studies demonstrate the ability of the circadian clock to predict various potential attackers, and of redox signaling to determine appropriate defense against pathogen infection. Interaction of the circadian clock with redox rhythm promotes the balance between immunity and growth. We review here a variety of recent evidence for the intricate relationship between circadian clock and plant immune response, with a focus on the roles of redox rhythm and NPR1 in the circadian clock and plant immunity.
Collapse
|
262
|
Li N, Muthreich M, Huang LJ, Thurow C, Sun T, Zhang Y, Gatz C. TGACG-BINDING FACTORs (TGAs) and TGA-interacting CC-type glutaredoxins modulate hyponastic growth in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:1906-1918. [PMID: 30252136 DOI: 10.1111/nph.15496] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
TGACG-BINDING FACTORs (TGAs) control the developmental or defense-related processes. In Arabidopsis thaliana, the functions of at least TGA2 and PERIANTHIA (PAN) can be repressed by interacting with CC-type glutaredoxins, which have the potential to control the redox state of target proteins. As TGA1 can be redox modulated in planta, we analyzed whether some of the 21 CC-type glutaredoxins (ROXYs) encoded in the Arabidopsis genome can influence TGA1 activity in planta and whether the redox active cysteines of TGA1 are functionally important. We show that the tga1 tga4 mutant and plants ectopically expressing ROXY8 or ROXY9 are impaired in hyponastic growth. As expression of ROXY8 and ROXY9 is activated upon transfer of plants from hyponasty-inducing low light to normal light, they might interfere with the growth-promoting function of TGA1/TGA4 to facilitate reversal of hyponastic growth. The redox-sensitive cysteines of TGA1 are not required for induction or reversal of hyponastic growth. TGA1 and TGA4 interact with ROXYs 8, 9, 18, and 19/GRX480, but ectopically expressed ROXY18 and ROXY19/GRX480 do not interfere with hyponastic growth. Our results therefore demonstrate functional specificities of individual ROXYs for distinct TGAs despite promiscuous protein-protein interactions and point to different repression mechanisms, depending on the TGA/ROXY combination.
Collapse
Affiliation(s)
- Ning Li
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Martin Muthreich
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Li-Jun Huang
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Corinna Thurow
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christiane Gatz
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| |
Collapse
|
263
|
The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019; 11:v11030203. [PMID: 30823402 PMCID: PMC6466000 DOI: 10.3390/v11030203] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.
Collapse
|
264
|
Shine MB, Xiao X, Kachroo P, Kachroo A. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:81-86. [PMID: 30709496 DOI: 10.1016/j.plantsci.2018.01.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 05/20/2023]
Abstract
Plants respond to biotic stress by inducing a variety of responses, which not only protect against the immediate diseases but also provide immunity from future infections. One example is systemic acquired resistance (SAR), which provides long-lasting and broad-spectrum protection at the whole plant level. The induction of SAR prepares the plant for a more robust response to subsequent infections from related and unrelated pathogens. SAR involves the rapid generation of signals at the primary site of infection, which are transported to the systemic parts of the plant presumably via the phloem. SAR signal generation and perception requires an intact cuticle, a waxy layer covering all aerial parts of the plant. A chemically diverse set of SAR inducers has already been identified, including hormones (salicylic acid, methyl salicylate), primary/secondary metabolites (nitric oxide, reactive oxygen species, glycerol-3-phosphate, azelaic acid, pipecolic acid, dihyroabetinal), fatty acid/lipid derivatives (18 carbon unsaturated fatty acids, galactolipids), and proteins (DIR1-Defective in Induced Resistance 1, AZI1-Azelaic acid Induced 1). Some of these are demonstrably mobile and the phloem loading routes for three of these SAR inducers is known. Here we discuss the recent findings related to synthesis, transport, and the relationship between these various SAR inducers.
Collapse
Affiliation(s)
- M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Xueqiong Xiao
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
265
|
Zhang C, Gao H, Li R, Han D, Wang L, Wu J, Xu P, Zhang S. GmBTB/POZ, a novel BTB/POZ domain-containing nuclear protein, positively regulates the response of soybean to Phytophthora sojae infection. MOLECULAR PLANT PATHOLOGY 2019; 20:78-91. [PMID: 30113770 PMCID: PMC6430474 DOI: 10.1111/mpp.12741] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phytophthora sojae is a destructive pathogen of soybean [Glycine max (L.) Merr.] which causes stem and root rot on soybean plants worldwide. However, the pathogenesis and molecular mechanism of plant defence responses against P. sojae are largely unclear. Herein, we document the underlying mechanisms and function of a novel BTB/POZ protein, GmBTB/POZ, which contains a BTB/POZ domain found in certain animal transcriptional regulators, in host soybean plants in response to P. sojae. It is located in the cell nucleus and is transcriptionally up-regulated by P. sojae. Overexpression of GmBTB/POZ in soybean resulted in enhanced resistance to P. sojae. The activities and expression levels of enzymatic superoxide dismutase (SOD) and peroxidase (POD) antioxidants were significantly higher in GmBTB/POZ-overexpressing (GmBTB/POZ-OE) transgenic soybean plants than in wild-type (WT) plants treated with sterile water or infected with P. sojae. The transcript levels of defence-associated genes were also higher in overexpressing plants than in WT on infection. Moreover, salicylic acid (SA) levels and the transcript levels of SA biosynthesis-related genes were markedly higher in GmBTB/POZ-OE transgenic soybean than in WT, but there were almost no differences in jasmonic acid (JA) levels or JA biosynthesis-related gene expression between GmBTB/POZ-OE and WT soybean lines. Furthermore, exogenous SA application induced the expression of GmBTB/POZ and inhibited the increase in P. sojae biomass in both WT and GmBTB/POZ-OE transgenic soybean plants. Taken together, these results suggest that GmBTB/POZ plays a positive role in P. sojae resistance and the defence response in soybean via a process that might be dependent on SA.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Hong Gao
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Rongpeng Li
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Dan Han
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Le Wang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural SciencesKey Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. ChinaHarbin150086PR China
| | - Pengfei Xu
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Shuzhen Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| |
Collapse
|
266
|
Backer R, Naidoo S, van den Berg N. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:102. [PMID: 30815005 PMCID: PMC6381062 DOI: 10.3389/fpls.2019.00102] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 05/04/2023]
Abstract
The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related NPR1-like proteins are a functionally similar, yet surprisingly diverse family of transcription co-factors. Initially, NPR1 in Arabidopsis was identified as a positive regulator of systemic acquired resistance (SAR), paralogs NPR3 and NPR4 were later shown to be negative SAR regulators. The mechanisms involved have been the subject of extensive research and debate over the years, during which time a lot has been uncovered. The known roles of this protein family have extended to include influences over a broad range of systems including circadian rhythm, endoplasmic reticulum (ER) resident proteins and the development of lateral organs. Recently, important advances have been made in understanding the regulatory relationship between members of the NPR1-like protein family, providing new insight regarding their interactions, both with each other and other defense-related proteins. Most importantly the influence of salicylic acid (SA) on these interactions has become clearer with NPR1, NPR3, and NPR4 being considered bone fide SA receptors. Additionally, post-translational modification of NPR1 has garnered attention during the past years, adding to the growing regulatory complexity of this protein. Furthermore, growing interest in NPR1 overexpressing crops has provided new insights regarding the role of NPR1 in both biotic and abiotic stresses in several plant species. Given the wealth of information, this review aims to highlight and consolidate the most relevant and influential research in the field to date. In so doing, we attempt to provide insight into the mechanisms and interactions which underly the roles of the NPR1-like proteins in plant disease responses.
Collapse
Affiliation(s)
- Robert Backer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Noëlani van den Berg,
| |
Collapse
|
267
|
Han X, Kahmann R. Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:822. [PMID: 31297126 PMCID: PMC6606975 DOI: 10.3389/fpls.2019.00822] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 05/19/2023]
Abstract
Phytohormones regulate a large variety of physiological processes in plants. In addition, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are responsible for primary defense responses against abiotic and biotic stresses, while plant growth regulators, such as auxins, brassinosteroids (BRs), cytokinins (CKs), abscisic acid (ABA), and gibberellins (GAs), also contribute to plant immunity. To successfully colonize plants, filamentous pathogens like fungi and oomycetes have evolved diverse strategies to interfere with phytohormone pathways with the help of secreted effectors. These include proteins, toxins, polysaccharides as well as phytohormones or phytohormone mimics. Such pathogen effectors manipulate phytohormone pathways by directly altering hormone levels, by interfering with phytohormone biosynthesis, or by altering or blocking important components of phytohormone signaling pathways. In this review, we outline the various strategies used by filamentous phytopathogens to manipulate phytohormone pathways to cause disease.
Collapse
|
268
|
Ullah C, Tsai C, Unsicker SB, Xue L, Reichelt M, Gershenzon J, Hammerbacher A. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins. THE NEW PHYTOLOGIST 2019; 221:960-975. [PMID: 30168132 PMCID: PMC6585937 DOI: 10.1111/nph.15396] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/10/2018] [Indexed: 05/14/2023]
Abstract
Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection. We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses. Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB-bHLH-WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen. We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Chung‐Jui Tsai
- School of Forestry and Natural ResourcesDepartment of GeneticsDepartment of Plant BiologyUniversity of GeorgiaAthensGA30602USA
| | - Sybille B. Unsicker
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Liangjiao Xue
- Key Laboratory of Forest Genetics and BiotechnologyCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingJiangsu210037China
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPrivate Bag X20Pretoria0028South Africa
| |
Collapse
|
269
|
Ullah C, Unsicker SB, Reichelt M, Gershenzon J, Hammerbacher A. Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by Plectosphaerella populi: Hormonal Regulation, Biosynthesis and Antifungal Activity. FRONTIERS IN PLANT SCIENCE 2019; 10:1441. [PMID: 31803202 PMCID: PMC6873352 DOI: 10.3389/fpls.2019.01441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/16/2019] [Indexed: 05/08/2023]
Abstract
Flavan-3-ols including the monomeric catechin and the polymeric proanthocyanidins (PAs) are abundant phenolic metabolites in poplar (Populus spp.) previously described to protect leaves against pathogen infection. However, it is not known whether stems are also defended in this way. Here we investigated flavan-3-ol accumulation, activity, and the regulation of formation in black poplar (P. nigra) stems after infection by a newly described fungal stem pathogen, Plectosphaerella populi, which forms canker-like lesions in stems. We showed that flavan-3-ol contents increased in P. populi-infected black poplar stems over the course of infection compared to non-infected controls. Transcripts of leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) genes involved in the last steps of flavan-3-ol biosynthesis were also upregulated upon fungal infection indicating de novo biosynthesis. Amending culture medium with catechin and PAs reduced the mycelial growth of P. populi, suggesting that these metabolites act as anti-pathogen defenses in poplar in vivo. Among the hormones, salicylic acid (SA) was higher in P. populi-infected tissues compared to the non-infected controls over the course of infection studied, while jasmonic acid (JA) and JA-isoleucine (JA-Ile) levels were higher than controls only at the early stages of infection. Interestingly, cytokinins (CKs) were also upregulated in P. populi-infected stems. Poplar saplings treated with CK showed decreased levels of flavan-3-ols and SA in stems suggesting a negative association between CK and flavan-3-ol accumulation. Taken together, the sustained upregulation of SA in correlation with catechin and PA accumulation suggests that this is the dominant hormone inducing the formation of antifungal flavan-3-ols during P. populi infection of poplar stems.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Chhana Ullah,
| | - Sybille B. Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
270
|
Castelló MJ, Medina-Puche L, Lamilla J, Tornero P. NPR1 paralogs of Arabidopsis and their role in salicylic acid perception. PLoS One 2018; 13:e0209835. [PMID: 30592744 PMCID: PMC6310259 DOI: 10.1371/journal.pone.0209835] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 12/12/2018] [Indexed: 01/01/2023] Open
Abstract
Salicylic acid (SA) is responsible for certain plant defence responses and NON EXPRESSER OF PATHOGENESIS RELATED 1 (NPR1) is the master regulator of SA perception. In Arabidopsis thaliana there are five paralogs of NPR1. In this work we tested the role of these paralogs in SA perception by generating combinations of mutants and transgenics. NPR2 was the only paralog able to partially complement an npr1 mutant. The null npr2 reduces SA perception in combination with npr1 or other paralogs. NPR2 and NPR1 interacted in all the conditions tested, and NPR2 also interacted with other SA-related proteins as NPR1 does. The remaining paralogs behaved differently in SA perception, depending on the genetic background, and the expression of some of the genes induced by SA in an npr1 background was affected by the presence of the paralogs. NPR2 fits all the requirements of an SA receptor while the remaining paralogs also work as SA receptors with a strong hierarchy. According to the data presented here, the closer the gene is to NPR1, the more relevant its role in SA perception.
Collapse
Affiliation(s)
- María José Castelló
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Valencia, SPAIN
| | - Laura Medina-Puche
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Valencia, SPAIN
| | - Julián Lamilla
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Valencia, SPAIN
| | - Pablo Tornero
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Valencia, SPAIN
- * E-mail:
| |
Collapse
|
271
|
Thürich J, Meichsner D, Furch ACU, Pfalz J, Krüger T, Kniemeyer O, Brakhage A, Oelmüller R. Arabidopsis thaliana responds to colonisation of Piriformospora indica by secretion of symbiosis-specific proteins. PLoS One 2018; 13:e0209658. [PMID: 30589877 PMCID: PMC6307754 DOI: 10.1371/journal.pone.0209658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/10/2018] [Indexed: 11/24/2022] Open
Abstract
Plants interact with a wide variety of fungi in a mutualistic, parasitic or neutral way. The associations formed depend on the exchange of nutrients and signalling molecules between the partners. This includes a diverse set of protein classes involved in defence, nutrient uptake or establishing a symbiotic relationship. Here, we have analysed the secretomes of the mutualistic, root-endophytic fungus Piriformospora indica and Arabidopsis thaliana when cultivated alone or in a co-culture. More than one hundred proteins were identified as differentially secreted, including proteins associated with growth, development, abiotic and biotic stress response and mucilage. While some of the proteins have been associated before to be involved in plant-microbial interaction, other proteins are newly described in this context. One plant protein found in the co-culture is PLAT1 (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase). PLAT1 has not been associated with plant-fungal-interaction and is known to play a role in abiotic stress responses. In colonised roots PLAT1 shows an altered gene expression in a stage specific manner and plat1 knock-out plants are colonised stronger. It co-localises with Brassicaceae-specific endoplasmic reticulum bodies (ER-bodies) which are involved in the formation of the defence compound scopolin. We observed degraded ER-bodies in infected Arabidopsis roots and a change in the scopolin level in response to the presence of the fungus.
Collapse
Affiliation(s)
- Johannes Thürich
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Doreen Meichsner
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexandra C. U. Furch
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jeannette Pfalz
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Thomas Krüger
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute, Jena, Germany
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute, Jena, Germany
| | - Axel Brakhage
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
272
|
He X, Shi Y. Cloning and characterization of a Mimulus lewisii NPR1 gene involved in regulating plant resistance to Rhizoctonia solani. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:349-356. [PMID: 31892822 PMCID: PMC6905226 DOI: 10.5511/plantbiotechnology.18.0820a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/20/2018] [Indexed: 05/30/2023]
Abstract
The monkey flower Mimulus lewisii is a new emerging model plant for the study in corolla tube formation, pigmentation patterns and pollinator selection, etc. However, the cultivation and management of this plant are difficult due to its susceptibility to a wide range of pathogens and the lack of rigid varieties with high levels of resistance to pathogens. In this regard, genetic engineering is a promising tool that may possibly allow us to enhance the M. lewisii disease resistance against pathogens. Here, we reported the isolation and characterization of non-expressor of pathogenesis related gene 1 (NPR1) gene from M. lewisii. The phylogenetic tree constructed based on the deduced sequence of MlNPR1 with homologs from other species revealed that MlNPR1 grouped together with other known NPR1 proteins of Scrophulariaceae family, and was nearest to Mimulus guttatus. Furthermore, expression analysis showed that MlNPR1 was upregulated after SA treatment and fungal infection. To understand the defensive role of this gene, we overexpressed MlNPR1 in M. lewisii. The transgenic lines showed slight phenotypic abnormalities, but constitutive expression of MlNPR1 activates defense signaling pathways by priming the expression of antifungal PR genes. Moreover, MlNPR1 transgenic lines showed enhanced resistance to Rhizoctonia solani there was delay in symptoms and reduced disease severity than non-transgenic plants. Altogether, the present study suggests that increasing the expression level of MlNPR1 may be a promising approach for development of monkey flower cultivars with enhanced resistance to diseases.
Collapse
Affiliation(s)
- Xia He
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, PR China
| | - Yancai Shi
- Guangxi Institute of Botany, The Chinese Academy of Sciences, Guilin 541006, PR China
| |
Collapse
|
273
|
Yin L, Gan X, Shi J, Zan N, Zhang A, Ren X, Li M, Xie D, Hu D, Song B. Induced Resistance Mechanism of Novel Curcumin Analogs Bearing a Quinazoline Moiety to Plant Virus. Int J Mol Sci 2018; 19:E4065. [PMID: 30558295 PMCID: PMC6321402 DOI: 10.3390/ijms19124065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Plant immune activators can protect crops from plant virus pathogens by activating intrinsic immune mechanisms in plants and are widely used in agricultural production. In our previous work, we found that curcumin analogs exhibit excellent biological activity against plant viruses, especially protective activity. Inspired by these results, the active substructure of pentadienone and quinazoline were spliced to obtain curcumin analogs as potential exogenously induced resistant molecule. Bioassay results showed that compound A13 exhibited excellent protective activity for tobacco to against Tobacco mosaic virus (TMV) at 500 μg/mL, with a value of 70.4 ± 2.6% compared with control treatments, which was better than that of the plant immune activator chitosan oligosaccharide (49.0 ± 5.9%). The protective activity is due to compound A13 inducing tobacco resistance to TMV, which was related to defense-related enzymes, defense-related genes, and photosynthesis. This was confirmed by the up-regulated expression of proteins that mediate stress responses and oxidative phosphorylation.
Collapse
Affiliation(s)
- Limin Yin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Ningning Zan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Awei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Xiaoli Ren
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Miao Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Dandan Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
274
|
Different Pathogen Defense Strategies in Arabidopsis: More than Pathogen Recognition. Cells 2018; 7:cells7120252. [PMID: 30544557 PMCID: PMC6315839 DOI: 10.3390/cells7120252] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/03/2023] Open
Abstract
Plants constantly suffer from simultaneous infection by multiple pathogens, which can be divided into biotrophic, hemibiotrophic, and necrotrophic pathogens, according to their lifestyles. Many studies have contributed to improving our knowledge of how plants can defend against pathogens, involving different layers of defense mechanisms. In this sense, the review discusses: (1) the functions of PAMP (pathogen-associated molecular pattern)-triggered immunity (PTI) and effector-triggered immunity (ETI), (2) evidence highlighting the functions of salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET)-mediated signaling pathways downstream of PTI and ETI, and (3) other defense aspects, including many novel small molecules that are involved in defense and phenomena, including systemic acquired resistance (SAR) and priming. In particular, we mainly focus on SA and (JA)/ET-mediated signaling pathways. Interactions among them, including synergistic effects and antagonistic effects, are intensively explored. This might be critical to understanding dynamic disease regulation.
Collapse
|
275
|
Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ. Pandemonium Breaks Out: Disruption of Salicylic Acid-Mediated Defense by Plant Pathogens. MOLECULAR PLANT 2018; 11:1427-1439. [PMID: 30336330 DOI: 10.1016/j.molp.2018.10.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 05/26/2023]
Abstract
Salicylic acid (SA) or 2-hydroxybenoic acid is a phenolic plant hormone that plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. In Arabidopsis, SA is synthesized from chorismate in the chloroplast through the ICS1 (isochorismate synthase I) pathway during pathogen infection. The transcription co-activator NPR1 (Non-Expresser of Pathogenesis-Related Gene 1), as the master regulator of SA signaling, interacts with transcription factors to induce the expression of anti-microbial PR (Pathogenesis-Related) genes. To establish successful infections, plant bacterial, oomycete, fungal, and viral pathogens have evolved at least three major strategies to disrupt SA-mediated defense. The first strategy is to reduce SA accumulation directly by converting SA into its inactive derivatives. The second strategy is to interrupt SA biosynthesis by targeting the ICS1 pathway. In the third major strategy, plant pathogens deploy different mechanisms to interfere with SA downstream signaling. The wide array of strategies deployed by plant pathogens highlights the crucial role of disruption of SA-mediated plant defense in plant pathogenesis. A deeper understanding of this topic will greatly expand our knowledge of how plant pathogens cause diseases and consequently pave the way for the development of more effective ways to control these diseases.
Collapse
Affiliation(s)
- Guang Qi
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ming Chang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Katherine Hall
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - John Korin
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
276
|
Ramírez V, González B, López A, Castelló MJ, Gil MJ, Zheng B, Chen P, Vera P. A 2'-O-Methyltransferase Responsible for Transfer RNA Anticodon Modification Is Pivotal for Resistance to Pseudomonas syringae DC3000 in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1323-1336. [PMID: 29975160 DOI: 10.1094/mpmi-06-18-0148-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transfer RNA (tRNA) is the most highly modified class of RNA species in all living organisms. Recent discoveries have revealed unprecedented complexity in the tRNA chemical structures, modification patterns, regulation, and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge of the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2'-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance susceptibility during infection with the virulent bacterial pathogen Pseudomonas syringae DC3000. Lack of such tRNA modification, as observed in scs9 mutants, specifically dampens plant resistance against DC3000 without compromising the activation of the salicylic acid signaling pathway or the resistance to other biotrophic pathogens. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective disease resistance in Arabidopsis toward DC3000 and, therefore, expands the repertoire of molecular components essential for an efficient disease resistance response.
Collapse
Affiliation(s)
- Vicente Ramírez
- 1 Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Valencia, Spain
| | - Beatriz González
- 1 Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Valencia, Spain
| | - Ana López
- 1 Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Valencia, Spain
- 2 Institute for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, U.K
| | - Maria Jose Castelló
- 1 Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Valencia, Spain
| | - Maria José Gil
- 1 Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Valencia, Spain
| | - Bo Zheng
- 3 College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China; and
| | - Peng Chen
- 4 National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, HuaZhong Agricultural University, Wuhan, China
| | - Pablo Vera
- 1 Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Valencia, Spain
| |
Collapse
|
277
|
Boro P, Sultana A, Mandal K, Chattopadhyay S. Transcriptomic changes under stress conditions with special reference to glutathione contents. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0256-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
278
|
Kouzai Y, Noutoshi Y, Inoue K, Shimizu M, Onda Y, Mochida K. Benzothiadiazole, a plant defense inducer, negatively regulates sheath blight resistance in Brachypodium distachyon. Sci Rep 2018; 8:17358. [PMID: 30478396 PMCID: PMC6255916 DOI: 10.1038/s41598-018-35790-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/05/2018] [Indexed: 01/01/2023] Open
Abstract
Plant defense inducers that mimic functions of the plant immune hormone salicylic acid (SA) often affect plant growth. Although benzothiadiazole (BTH), a synthetic analog of SA, has been widely used to protect crops from diseases by inducing plant defense responses, we recently demonstrated that SA, but not BTH, confers resistance against Rhizoctonia solani, the causal agent of sheath blight disease, in Brachypodium distachyon. Here, we demonstrated that BTH compromised the resistance of Bd3-1 and Gaz4, the two sheath blight-resistant accessions of B. distachyon, which activate SA-dependent signaling following challenge by R. solani. Moreover, upon analyzing our published RNA-seq data from B. distachyon treated with SA or BTH, we found that BTH specifically induces expression of genes related to chloroplast function and jasmonic acid (JA) signaling, suggesting that BTH attenuates R. solani resistance by perturbing growth-defense trade-offs and/or by inducing a JA response that may increase susceptibility to R. solani. Our findings demonstrated that BTH does not work as a simple mimic of SA in B. distachyon, and consequently may presumably cause unfavorable side effects through the transcriptional alteration, particularly with respect to R. solani resistance.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka, Yokohama, 244-0813, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Minami Shimizu
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka, Yokohama, 244-0813, Japan
| | - Yoshihiko Onda
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka, Yokohama, 244-0813, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan. .,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka, Yokohama, 244-0813, Japan. .,Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Japan. .,Microalgae Production Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan.
| |
Collapse
|
279
|
Moon SJ, Park HJ, Kim TH, Kang JW, Lee JY, Cho JH, Lee JH, Park DS, Byun MO, Kim BG, Shin D. OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1. PLoS One 2018; 13:e0206910. [PMID: 30444888 PMCID: PMC6239283 DOI: 10.1371/journal.pone.0206910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
How plants defend themselves from microbial infection is one of the most critical issues for sustainable crop production. Some TGA transcription factors belonging to bZIP superfamily can regulate disease resistance through NPR1-mediated immunity mechanisms in Arabidopsis. Here, we examined biological roles of OsTGA2 (grouped into the same subclade as Arabidopsis TGAs) in bacterial leaf blight resistance. Transcriptional level of OsTGA2 was accumulated after treatment with salicylic acid, methyl jasmonate, and Xathomonas oryzae pv. Oryzae (Xoo), a bacterium causing serious blight of rice. OsTGA2 formed homo- and hetero-dimer with OsTGA3 and OsTGA5 and interacted with rice NPR1 homologs 1 (NH1) in rice. Results of quadruple 9-mer protein-binding microarray analysis indicated that OsTGA2 could bind to TGACGT DNA sequence. Overexpression of OsTGA2 increased resistance of rice to bacterial leaf blight, although overexpression of OsTGA3 resulted in disease symptoms similar to wild type plant upon Xoo infection. Overexpression of OsTGA2 enhanced the expression of defense related genes containing TGA binding cis-element in the promoter such as AP2/EREBP 129, ERD1, and HOP1. These results suggest that OsTGA2 can directly regulate the expression of defense related genes and increase the resistance of rice against bacterial leaf blight disease.
Collapse
Affiliation(s)
- Seok-Jun Moon
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Hee Jin Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Institute of Glocal Disease Control, Konkuk University, Seoul, Republic of Korea
| | - Tae-Heon Kim
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Ju-Won Kang
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Ji-Yoon Lee
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Jun-Hyun Cho
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Jong-Hee Lee
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Dong-Soo Park
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Myung-Ok Byun
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Beom-Gi Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Dongjin Shin
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
- * E-mail:
| |
Collapse
|
280
|
de Vries S, de Vries J, Teschke H, von Dahlen JK, Rose LE, Gould SB. Jasmonic and salicylic acid response in the fern Azolla filiculoides and its cyanobiont. PLANT, CELL & ENVIRONMENT 2018; 41:2530-2548. [PMID: 29314046 DOI: 10.1111/pce.13131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/05/2017] [Accepted: 12/21/2017] [Indexed: 05/16/2023]
Abstract
Plants sense and respond to microbes utilizing a multilayered signalling cascade. In seed plants, the phytohormones jasmonic and salicylic acid (JA and SA) are key denominators of how plants respond to certain microbes. Their interplay is especially well-known for tipping the scales in plants' strategies of dealing with phytopathogens. In non-angiosperm lineages, the interplay is less well understood, but current data indicate that it is intertwined to a lesser extent and the canonical JA/SA antagonism appears to be absent. Here, we used the water fern Azolla filiculoides to gain insights into the fern's JA/SA signalling and the molecular communication with its unique nitrogen fixing cyanobiont Nostoc azollae, which the fern inherits both during sexual and vegetative reproduction. By mining large-scale sequencing data, we demonstrate that Azolla has most of the genetic repertoire to produce and sense JA and SA. Using qRT-PCR on the identified biosynthesis and signalling marker genes, we show that Azolla is responsive to exogenously applied SA. Furthermore, exogenous SA application influenced the abundance and gene expression of Azolla's cyanobiont. Our data provide a framework for JA/SA signalling in ferns and suggest that SA might be involved in Azolla's communication with its vertically inherited cyanobiont.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Hendrik Teschke
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Janina K von Dahlen
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
- Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| |
Collapse
|
281
|
Huang Z, Carter N, Lu H, Zhang Z, Wang-Pruski G. Translocation of phosphite encourages the protection against Phytophthora infestans in potato: The efficiency and efficacy. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:122-130. [PMID: 30497702 DOI: 10.1016/j.pestbp.2018.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Phosphite (Phi)-based fungicides, such as the commercial product Phostrol™, are widely used in potato late blight control. However, the Phi translocation efficiency and the efficacy against pathogen are less discussed. In this study, the Phi concentration were quantified by high performance ion chromatography (HPIC) and the Phi translocation efficiency in potato tissues was evaluated using potato cultivar Russet Burbank with foliar application of the Phostrol solution both under greenhouse and field conditions. In the greenhouse trials, it was found that Phi was translocated from leaves to roots within 3 h and its concentration was significantly increased in the roots 24 h after the Phostrol application. In the field trials, the application rate of Phostrol affected the Phi translocation in potato tubers. To assess the efficacy of Phi against P. infestans, both the inhibition and infection tests were carried out. In the inhibition tests, three most common strains of P. infestans in Canada (US-8, US-23 and US-24) were inoculated on pea agar containing different levels of Phi. In the infection tests, both of detached leaves and whole tubers that received Phi were infected by the three strains of P. infestans. The in vitro tests indicated that the US-8 strain is the most tolerant whereas the US-23 strain is the most sensitive to Phi. Also, the in vivo tests demonstrated the dose-dependent translocation of Phi in potato leaves and tubers decreased the severity of infection by P. infestans. Moreover, potential defense mechanisms related to salicylic acid (SA) and jasmonic acid (JA) pathways that might be activated by Phi were also explored. Overall, the results of the study provided evidences that high Phi translocation efficiency encouraged late blight suppression in potato production.
Collapse
Affiliation(s)
- Zengrong Huang
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Neil Carter
- Engage Agro Corporation, Guelph, Ontario, Canada
| | - Hongliang Lu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Zhizhong Zhang
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada; Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada.
| |
Collapse
|
282
|
Liu Q, Li X, Yan S, Yu T, Yang J, Dong J, Zhang S, Zhao J, Yang T, Mao X, Zhu X, Liu B. OsWRKY67 positively regulates blast and bacteria blight resistance by direct activation of PR genes in rice. BMC PLANT BIOLOGY 2018; 18:257. [PMID: 30367631 PMCID: PMC6204034 DOI: 10.1186/s12870-018-1479-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 10/10/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND WRKY proteins are one of the largest gene families and are well-known for their regulatory roles in many aspects of plant development, including plant response to both biotic and abiotic stresses. Although the roles of WRKY proteins in leaf blast resistance have been well-documented in rice, their functions in panicle blast, the most destructive type of blast disease, are still largely unknown. RESULTS Here, we identified that the transcription of OsWRKY67 was strongly activated by leaf and panicle blast infection. OsWRKY67 is ubiquitously expressed and sub-localized in the nucleus. Rice plants overexpressing OsWRKY67 showed quantitatively enhanced resistance to leaf blast, panicle blast and bacterial blight. In contrast, silencing of OsWRKY67 increased the susceptibility to blast and bacterial blight diseases. RNA-seq analysis indicated that OsWRKY67 induces the transcription of a set of defense-related genes including the ones involved in the salicylic acid (SA)-dependent pathway. Consistent with this, the OsWRKY67-overexpressing plants accumulated higher amounts of endogenous SA, whereas lower endogenous SA levels were observed in OsWRKY67-silenced plants relative to wild-type Nipponbare plants before and after pathogen attack. Moreover, we also observed that OsWRKY67 directly binds to the promoters of PR1a and PR10 to activate their expression. CONCLUSIONS These results together suggest the positive role of OsWRKY67 in regulating rice responses to leaf blast, panicle blast and bacterial blight disease. Furthermore, conferring resistance to two major diseases makes it a good target of molecular breeding for crop improvement in rice.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xia Li
- School of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Ting Yu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jianyuan Yang
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jingfang Dong
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shaohong Zhang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Junliang Zhao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Tifeng Yang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xingxue Mao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xiaoyuan Zhu
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|
283
|
Shu LJ, Liao JY, Lin NC, Chung CL. Identification of a strawberry NPR-like gene involved in negative regulation of the salicylic acid-mediated defense pathway. PLoS One 2018; 13:e0205790. [PMID: 30312354 PMCID: PMC6185849 DOI: 10.1371/journal.pone.0205790] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Hormonal modulation plays a central role in triggering various resistant responses to biotic and abiotic stresses in plants. In cultivated strawberry (Fragaria x ananassa), the salicylic acid (SA)-dependent defense pathway has been associated with resistance to Colletotrichum spp. and the other pathogens. To better understand the SA-mediated defense mechanisms in strawberry, we analyzed two strawberry cultivars treated with SA for their resistance to anthracnose and gene expression profiles at 6, 12, 24, and 48 hr post-treatment. Strawberry genes related to SA biosynthesis, perception, and signaling were identified from SA-responsive transcriptomes of the two cultivars, and the induction of 17 candidate genes upon SA treatment was confirmed by qRT-PCR. Given the pivotal role of the non-expressor of pathogenesis-related (NPR) family in controlling the SA-mediated defense signaling pathway, we then analyzed NPR orthologous genes in strawberry. From the expression profile, FaNPRL-1 [ortholog of FvNPRL-1 (gene20070 in F. vesca)] was identified as an NPR-like gene significantly induced after SA treatment in both cultivars. With a conserved BTB/POZ domain, ankyrin repeat domain, and nuclear localization signal, FvNPRL-1 was found phylogenetically closer to NPR3/NPR4 than NPR1 in Arabidopsis. Ectopic expression of FvNPRL-1 in the Arabidopsis thaliana wild type suppressed the SA-mediated PR1 expression and the resistance to Pseudomonas syringae pv. tomato DC3000. Transient expression of FvNPRL-1 fused with green fluorescent protein in Arabidopsis protoplasts showed that SA affected nuclear translocation of FvNPRL-1. FvNPRL-1 likely functions similar to Arabidopsis NPR3/NPR4 as a negative regulator of the SA-mediated defense.
Collapse
Affiliation(s)
- Lin-Jie Shu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Jui-Yu Liao
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Nai-Chun Lin
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
284
|
Chen J, Wang H, Li Y, Pan J, Hu Y, Yu D. Arabidopsis VQ10 interacts with WRKY8 to modulate basal defense against Botrytis cinerea. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:956-969. [PMID: 29727045 DOI: 10.1111/jipb.12664] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/03/2018] [Indexed: 05/11/2023]
Abstract
Recent studies in Arabidopsis have revealed that some VQ motif-containing proteins physically interact with WRKY transcription factors; however, their specific biological functions are still poorly understood. In this study, we confirmed the interaction between VQ10 and WRKY8, and show that VQ10 and WRKY8 formed a complex in the plant cell nucleus. Yeast two-hybrid analysis showed that the middle region of WRKY8 and the VQ motif of VQ10 are critical for their interaction, and that this interaction promotes the DNA-binding activity of WRKY8. Further investigation revealed that the VQ10 protein was exclusively localized in the nucleus, and VQ10 was predominantly expressed in siliques. VQ10 expression was strongly responsive to the necrotrophic fungal pathogen, Botrytis cinerea and defense-related hormones. Phenotypic analysis showed that disruption of VQ10 increased mutant plants susceptibility to the fungal pathogen B. cinerea, whereas constitutive-expression of VQ10 enhanced resistance to B. cinerea. Consistent with these findings, expression of the defense-related PLANT DEFENSIN1.2 (PDF1.2) gene was decreased in vq10 mutant plants, after B. cinerea infection, but increased in VQ10-overexpressing transgenic plants. Taken together, our findings provide evidence that VQ10 physically interacts with WRKY8 and positively regulates plant basal resistance against the necrotrophic fungal pathogen B. cinerea.
Collapse
Affiliation(s)
- Junqiu Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houping Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjing Pan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| |
Collapse
|
285
|
Patwa N, Nithin C, Bahadur RP, Basak J. Identification and characterization of differentially expressed Phaseolus vulgaris miRNAs and their targets during mungbean yellow mosaic India virus infection reveals new insight into Phaseolus-MYMIV interaction. Genomics 2018; 111:1333-1342. [PMID: 30237075 DOI: 10.1016/j.ygeno.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/17/2018] [Accepted: 09/09/2018] [Indexed: 02/06/2023]
Abstract
Phaseolus vulgaris is an economically important legume in tropical and subtropical regions of Asia, Africa, Latin-America and parts of USA and Europe. However, its production gets severely affected by mungbean yellow mosaic India virus (MYMIV). We aim to identify and characterize differentially expressed miRNAs during MYMIV-infection in P. vulgaris. A total of 422 miRNAs are identified of which 292 are expressed in both MYMIV-treated and mock-treated samples, 109 are expressed only in MYMIV-treated and 21 are expressed only in mock-treated samples. Selected up- and down-regulated miRNAs are validated by RT-qPCR. 3367 target ORFs are identified for 270 miRNAs. Selected targets are validated by 5' RLM-RACE. Differentially expressed miRNAs regulate transcription factors and are involved in improving stress tolerance to MYMIV. These findings will provide an insight into the role of miRNAs during MYMIV infection in P. vulgaris in particular and during any biotic stress conditions in Leguminosae family in general.
Collapse
Affiliation(s)
- Nisha Patwa
- Laboratory of Plant Stress Biology, Department of Biotechnology, Visva-Bharati, Santiniketan 731235, India
| | - Chandran Nithin
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302, India
| | - Jolly Basak
- Laboratory of Plant Stress Biology, Department of Biotechnology, Visva-Bharati, Santiniketan 731235, India.
| |
Collapse
|
286
|
Chang L, Chang HH, Chang JC, Lu HC, Wang TT, Hsu DW, Tzean Y, Cheng AP, Chiu YS, Yeh HH. Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity. PLoS Pathog 2018; 14:e1007288. [PMID: 30212572 PMCID: PMC6155556 DOI: 10.1371/journal.ppat.1007288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/25/2018] [Accepted: 08/21/2018] [Indexed: 12/30/2022] Open
Abstract
Salicylic acid (SA) is a key phytohormone that mediates a broad spectrum of resistance against a diverse range of viruses; however, the downstream pathway of SA governed antiviral immune response remains largely to be explored. Here, we identified an orchid protein containing A20 and AN1 zinc finger domains, designated Pha13. Pha13 is up-regulated upon virus infection, and the transgenic monocot orchid and dicot Arabidopsis overexpressing orchid Pha13 conferred greater resistance to different viruses. In addition, our data showed that Arabidopsis homolog of Pha13, AtSAP5, is also involved in virus resistance. Pha13 and AtSAP5 are early induced by exogenous SA treatment, and participate in the expression of SA-mediated immune responsive genes, including the master regulator gene of plant immunity, NPR1, as well as NPR1-independent virus defense genes. SA also induced the proteasome degradation of Pha13. Functional domain analysis revealed that AN1 domain of Pha13 is involved in expression of orchid NPR1 through its AN1 domain, whereas dual A20/AN1 domains orchestrated the overall virus resistance. Subcellular localization analysis suggested that Pha13 can be found localized in the nucleus. Self-ubiquitination assay revealed that Pha13 confer E3 ligase activity, and the main E3 ligase activity was mapped to the A20 domain. Identification of Pha13 interacting proteins and substrate by yeast two-hybrid screening revealed mainly ubiquitin proteins. Further detailed biochemical analysis revealed that A20 domain of Pha13 binds to various polyubiquitin chains, suggesting that Pha13 may interact with multiple ubiquitinated proteins. Our findings revealed that Pha13 serves as an important regulatory hub in plant antiviral immunity, and uncover a delicate mode of immune regulation through the coordination of A20 and/or AN1 domains, as well as through the modulation of E3 ligase and ubiquitin chain binding activity of Pha13.
Collapse
Affiliation(s)
- Li Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ho-Hsiung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jui-Che Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Chia Lu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Tan-Tung Wang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Yuh Tzean
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - An-Po Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Shu Chiu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
287
|
Song GC, Ryu CM. Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles. Mol Cells 2018; 41:724-732. [PMID: 29991670 PMCID: PMC6125420 DOI: 10.14348/molcells.2018.0104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local part of a plant is exposed to elicitors, the entire plant exhibits a resistance response. In the natural environment, plants are continuously exposed to avirulent pathogens that induce SAR and volatile emissions affecting neighbouring plants as well as the plant itself. However, the underlying mechanism has not been intensively studied. In this study, we evaluated whether plants "memorise" the previous activation of plant immunity when exposed repeatedly to plant defensive volatiles such as methyl salicylate and methyl jasmonate. We hypothesised that stronger SAR responses would occur in plants treated with repeated applications of the volatile plant defence compound MeSA than in those exposed to a single or no treatment. Nicotiana benthamiana seedlings subjected to repeated applications of MeSA exhibited greater protection against Pseudomonas syringae pv. tabaci and Pectobacterium carotovorum subsp. carotovorum than the control. The increase in SAR capacity in response to repeated MeSA treatment was confirmed by analysing the defence priming of the expression of N. benthamiana Pathogenesis-Related 1a (NbPR1a) and NbPR2 by quantitative reverse-transcription PCR compared with the control. We propose the concept of plant memory of plant defence volatiles and suggest that SAR is strengthened by the repeated perception of volatile compounds in plants.
Collapse
Affiliation(s)
- Geun Cheol Song
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141,
Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141,
Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 34113,
Korea
| |
Collapse
|
288
|
Adams EHG, Spoel SH. The ubiquitin-proteasome system as a transcriptional regulator of plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4529-4537. [PMID: 29873762 DOI: 10.1093/jxb/ery216] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 05/23/2023]
Abstract
The ubiquitin-proteasome system (UPS) has been shown to play vital roles in diverse plant developmental and stress responses. The UPS post-translationally modifies cellular proteins with the small molecule ubiquitin, resulting in their regulated degradation by the proteasome. Of particular importance is the role of the UPS in regulating hormone-responsive gene expression profiles, including those triggered by the immune hormone salicylic acid (SA). SA utilizes components of the UPS pathway to reprogram the transcriptome for establishment of local and systemic immunity. Emerging evidence has shown that SA induces the activity of Cullin-RING ligases (CRLs) that fuse chains of ubiquitin to downstream transcriptional regulators and consequently target them for degradation by the proteasome. Here we review how CRL-mediated degradation of transcriptional regulators may control SA-responsive immune gene expression programmes and discuss how the UPS can be modulated by both endogenous and foreign exogenous signals. The highlighted research findings paint a clear picture of the UPS as a central hub for immune activation as well as a battle ground for hijacking by pathogens.
Collapse
Affiliation(s)
- Eleanor H G Adams
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
289
|
Salicylic acid loaded chitosan microparticles applied to lettuce seedlings: Recycling shrimp fishing industry waste. Carbohydr Polym 2018; 200:321-331. [PMID: 30177172 DOI: 10.1016/j.carbpol.2018.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/05/2018] [Accepted: 08/05/2018] [Indexed: 01/02/2023]
Abstract
Shrimp fishing industry wastes are still a main problem with high environmental impact worldwide. In this study, chitosan with ultra-high molecular weight and deacetylation degree ≥85% was obtained from shrimp fishing industry waste from Argentinean Patagonia. Chitosan based microparticles capable to entrap salicylic acid, a phytohormone known to play major role in the regulation of plant defense response against various pathogens, were prepared using TPP as crosslinker. Unloaded microparticles and microparticles loading several salicylic acid amount were fully characterized exhibiting a size between 1.57 μm and 2.45 μm. Furthermore, a good PDI, entrappment efficiencies from 59% to 98% and salicylic acid sustained release over 24 h were achieved. Chitosan based microparticles were non toxic in most of the doses applied in lettuce seedlings. Instead, microparticles can positively modulate plant growth and have the potential to improve plant defense responses. In particular salicylic acid loaded microparticles effect was very promising for its application as activators of salicylic acid dependent plant defense responses in lettuce as a model of horticultural plant species.
Collapse
|
290
|
Wu L, Zhang X, Xu B, Li Y, Jia L, Wang R, Ren X, Wang G, Xia Q. Identification and expression analysis of EDR1-like genes in tobacco ( Nicotiana tabacum) in response to Golovinomyces orontii. PeerJ 2018; 6:e5244. [PMID: 30018863 PMCID: PMC6044316 DOI: 10.7717/peerj.5244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
ENHANCED DISEASE RESISTANCE1 (EDR1) encodes a Raf-like mitogen-activated protein kinase, and it acts as a negative regulator of disease resistance and ethylene-induced senescence. Mutations in the EDR1 gene can enhance resistance to powdery mildew both in monocotyledonous and dicotyledonous plants. However, little is known about EDR1-like gene members from a genome-wide perspective in plants. In this study, the tobacco (Nicotiana tabacum)EDR1-like gene family was first systematically analyzed. We identified 19 EDR1-like genes in tobacco, and compared them to those from Arabidopsis, tomato and rice. Phylogenetic analyses divided the EDR1-like gene family into six clades, among them monocot and dicot plants were respectively divided into two sub-clades. NtEDR1-1A and NtEDR1-1B were classified into clade I in which the other members have been reported to negatively regulate plant resistance to powdery mildew. The expression patterns of tobacco EDR1-like genes were analyzed after plants were challenged by Golovinomyces orontii, and showed that several other EDR1-like genes were induced after infection, as well as NtEDR1-1A and NtEDR1-1B. Expression analysis showed that NtEDR1-13 and NtEDR1-16 had exclusively abundant expression patterns in roots and leaves, respectively, and the remaining NtEDR1-like members were actively expressed in most of the tissue/organ samples investigated. Our findings will contribute to further study of the physiological functions of EDR1-like genes in tobacco.
Collapse
Affiliation(s)
- Lei Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiaoying Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bingxin Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yueyue Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Rengang Wang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Xueliang Ren
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
291
|
Gruner K, Zeier T, Aretz C, Zeier J. A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1064-1082. [PMID: 29660188 DOI: 10.1111/tpj.13920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR-defective mlo2 mutants were still competent in systemically increasing the levels of the SAR-activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR-related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA- or Pip-inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during challenge by P. syringae.
Collapse
Affiliation(s)
- Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Tatyana Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Christina Aretz
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, Düsseldorf, D-40225, Germany
| |
Collapse
|
292
|
Abstract
Salicylic acid (SA) is a potent inducer of defense gene expression in plants, but how SA activates transcription has been controversial. In this issue of Cell, Ding et al. show that the SA-binding proteins NPR3 and NPR4 function as transcriptional co-repressors, with this activity being blocked by SA.
Collapse
|
293
|
He X, Huo Y, Liu X, Zhou Q, Feng S, Shen X, Li B, Wu S, Chen X. Activation of disease resistance against Botryosphaeria dothidea by downregulating the expression of MdSYP121 in apple. HORTICULTURE RESEARCH 2018; 5:24. [PMID: 29736249 PMCID: PMC5928070 DOI: 10.1038/s41438-018-0030-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/24/2018] [Accepted: 03/01/2018] [Indexed: 05/03/2023]
Abstract
In plants, the vesicle fusion process plays a vital role in pathogen defence. However, the importance of the vesicle fusion process in apple ring rot has not been studied. Here, we isolated and characterised the apple syntaxin gene MdSYP121. Silencing the MdSYP121 gene in transgenic apple calli increased tolerance to Botryosphaeria dothidea infection; this increased tolerance was correlated with salicylic acid (SA) synthesis-related and signalling-related gene transcription. In contrast, overexpressing MdSYP121 in apple calli resulted in the opposite phenotypes. In addition, the results of RNA sequencing (RNA-Seq) and quantitative real-time PCR (qRT-PCR) assays suggested that MdSYP121 plays an important role in responses to oxidation-reduction reactions. Silencing MdSYP121 in apple calli enhanced the expression levels of reactive oxygen species (ROS)-related genes and the activity of ROS-related enzymes. The enhanced defence response status in MdSYP121-RNAi lines suggests that syntaxins are involved in the defence response to B. dothidea. More importantly, we showed that MdSYP121 forms a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex with MdSNAP33, and the complex may participate in regulating resistance to B. dothidea. In conclusion, by regulating the interaction of SA pathway and oxidation-reduction process, MdSYP121 can influence the pathogen infection process in apple.
Collapse
Affiliation(s)
- Xiaowen He
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Daizong Street No. 61, Tai’an, Shandong 271018 China
| | - Yanhong Huo
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Daizong Street No. 61, Tai’an, Shandong 271018 China
| | - Xiuxia Liu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Daizong Street No. 61, Tai’an, Shandong 271018 China
| | - Qianqian Zhou
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Daizong Street No. 61, Tai’an, Shandong 271018 China
| | - Shouqian Feng
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Daizong Street No. 61, Tai’an, Shandong 271018 China
| | - Xiang Shen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Daizong Street No. 61, Tai’an, Shandong 271018 China
| | - Baohua Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Changcheng Road No. 700, Qingdao, Shandong 266109 China
| | - Shujing Wu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Daizong Street No. 61, Tai’an, Shandong 271018 China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Daizong Street No. 61, Tai’an, Shandong 271018 China
| |
Collapse
|
294
|
Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, Zhang Y. Opposite Roles of Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Transcriptional Regulation of Plant Immunity. Cell 2018; 173:1454-1467.e15. [PMID: 29656896 DOI: 10.1016/j.cell.2018.03.044] [Citation(s) in RCA: 431] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/13/2018] [Accepted: 03/14/2018] [Indexed: 11/17/2022]
Abstract
Salicylic acid (SA) is a plant defense hormone required for immunity. Arabidopsis NPR1 and NPR3/NPR4 were previously shown to bind SA and all three proteins were proposed as SA receptors. NPR1 functions as a transcriptional co-activator, whereas NPR3/NPR4 were suggested to function as E3 ligases that promote NPR1 degradation. Here we report that NPR3/NPR4 function as transcriptional co-repressors and SA inhibits their activities to promote the expression of downstream immune regulators. npr4-4D, a gain-of-function npr4 allele that renders NPR4 unable to bind SA, constitutively represses SA-induced immune responses. In contrast, the equivalent mutation in NPR1 abolishes its ability to bind SA and promote SA-induced defense gene expression. Further analysis revealed that NPR3/NPR4 and NPR1 function independently to regulate SA-induced immune responses. Our study indicates that both NPR1 and NPR3/NPR4 are bona fide SA receptors, but play opposite roles in transcriptional regulation of SA-induced defense gene expression.
Collapse
Affiliation(s)
- Yuli Ding
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kevin Ao
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yujun Peng
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yaxi Zhang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
295
|
Natarajan B, Kalsi HS, Godbole P, Malankar N, Thiagarayaselvam A, Siddappa S, Thulasiram HV, Chakrabarti SK, Banerjee AK. MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2023-2036. [PMID: 29390146 PMCID: PMC6018911 DOI: 10.1093/jxb/ery025] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/23/2018] [Indexed: 05/16/2023]
Abstract
To combat pathogen infection, plants employ local defenses in infected sites and elicit systemic acquired resistance (SAR) in distant tissues. MicroRNAs have been shown to play a significant role in local defense, but their association with SAR is unknown. In addition, no such studies of the interaction between potato and Phytophthora infestans have been reported. We investigated the role of miR160 in local and SAR responses to P. infestans infection in potato. Expression analysis revealed induced levels of miR160 in both local and systemic leaves of infected wild-type plants. miR160 overexpression and knockdown plants exhibited increased susceptibility to infection, suggesting that miR160 levels equivalent to those of wild-type plants may be necessary for mounting local defense responses. Additionally, miR160 knockdown lines failed to elicit SAR, and grafting assays indicated that miR160 is required in both local and systemic leaves to trigger SAR. Consistently, SAR-associated signals and genes were dysregulated in miR160 knockdown lines. Furthermore, analysis of the expression of defense and auxin pathway genes and direct regulation of StGH3.6, a mediator of salicylic acid-auxin cross-talk, by the miR160 target StARF10 revealed the involvement of miR160 in antagonistic cross-talk between salicylic acid-mediated defense and auxin-mediated growth pathways. Overall, our study demonstrates that miR160 plays a crucial role in local defense and SAR responses during the interaction between potato and P. infestans.
Collapse
Affiliation(s)
- Bhavani Natarajan
- Biology Division, Indian Institute of Science Education and Research (IISER Pune), Pune, Maharashtra, India
| | - Harpreet S Kalsi
- Biology Division, Indian Institute of Science Education and Research (IISER Pune), Pune, Maharashtra, India
| | - Prajakta Godbole
- Biology Division, Indian Institute of Science Education and Research (IISER Pune), Pune, Maharashtra, India
| | - Nilam Malankar
- Biology Division, Indian Institute of Science Education and Research (IISER Pune), Pune, Maharashtra, India
| | | | | | | | | | - Anjan K Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER Pune), Pune, Maharashtra, India
| |
Collapse
|
296
|
Williams A, Pétriacq P, Schwarzenbacher RE, Beerling DJ, Ton J. Mechanisms of glacial-to-future atmospheric CO 2 effects on plant immunity. THE NEW PHYTOLOGIST 2018; 218:752-761. [PMID: 29424932 PMCID: PMC5873421 DOI: 10.1111/nph.15018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/26/2017] [Indexed: 05/22/2023]
Abstract
The impacts of rising atmospheric CO2 concentrations on plant disease have received increasing attention, but with little consensus emerging on the direct mechanisms by which CO2 shapes plant immunity. Furthermore, the impact of sub-ambient CO2 concentrations, which plants have experienced repeatedly over the past 800 000 yr, has been largely overlooked. A combination of gene expression analysis, phenotypic characterisation of mutants and mass spectrometry-based metabolic profiling was used to determine development-independent effects of sub-ambient CO2 (saCO2 ) and elevated CO2 (eCO2 ) on Arabidopsis immunity. Resistance to the necrotrophic Plectosphaerella cucumerina (Pc) was repressed at saCO2 and enhanced at eCO2 . This CO2 -dependent resistance was associated with priming of jasmonic acid (JA)-dependent gene expression and required intact JA biosynthesis and signalling. Resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) increased at both eCO2 and saCO2 . Although eCO2 primed salicylic acid (SA)-dependent gene expression, mutations affecting SA signalling only partially suppressed Hpa resistance at eCO2 , suggesting additional mechanisms are involved. Induced production of intracellular reactive oxygen species (ROS) at saCO2 corresponded to a loss of resistance in glycolate oxidase mutants and increased transcription of the peroxisomal catalase gene CAT2, unveiling a mechanism by which photorespiration-derived ROS determined Hpa resistance at saCO2 . By separating indirect developmental impacts from direct immunological effects, we uncover distinct mechanisms by which CO2 shapes plant immunity and discuss their evolutionary significance.
Collapse
Affiliation(s)
- Alex Williams
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
- P Institute for Translational Soil and Plant BiologyDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Pierre Pétriacq
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
- P Institute for Translational Soil and Plant BiologyDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
- biOMICS FacilityDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Roland E. Schwarzenbacher
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
- P Institute for Translational Soil and Plant BiologyDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - David J. Beerling
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
- P Institute for Translational Soil and Plant BiologyDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Jurriaan Ton
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
- P Institute for Translational Soil and Plant BiologyDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| |
Collapse
|
297
|
Chatukuta P, Dikobe TB, Kawadza DT, Sehlabane KS, Takundwa MM, Wong A, Gehring C, Ruzvidzo O. An Arabidopsis Clathrin Assembly Protein with a Predicted Role in Plant Defense Can Function as an Adenylate Cyclase. Biomolecules 2018; 8:biom8020015. [PMID: 29570675 PMCID: PMC6022867 DOI: 10.3390/biom8020015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 11/29/2022] Open
Abstract
Adenylate cyclases (ACs), much like guanylate cyclases (GCs), are increasingly recognized as essential parts of many plant processes including biotic and abiotic stress responses. In order to identify novel ACs, we have applied a search motif derived from experimentally tested GCs and identified a number of Arabidopsis thaliana candidates including a clathrin assembly protein (AT1G68110; AtClAP). AtClAP contains a catalytic centre that can complement the AC-deficient mutant cyaA in E. coli, and a recombinant AtClAP fragment (AtClAP261–379) can produce cyclic adenosine 3′,5′ monophosphate (cAMP) from adenosine triphosphate (ATP) in vitro. Furthermore, an integrated analysis of gene expression and expression correlation implicate cAMP in pathogen defense and in actin cytoskeletal remodeling during endocytic internalization.
Collapse
Affiliation(s)
- Patience Chatukuta
- Department of Botany, School of Biological Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Tshegofatso B Dikobe
- Department of Botany, School of Biological Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - David T Kawadza
- Department of Botany, School of Biological Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Katlego S Sehlabane
- Department of Botany, School of Biological Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Mutsa M Takundwa
- Department of Botany, School of Biological Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Aloysius Wong
- College of Natural, Applied and Health Sciences, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, Zhejiang Province, China.
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | - Oziniel Ruzvidzo
- Department of Botany, School of Biological Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
298
|
Abstract
Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.
Collapse
|
299
|
Zhao W, Zhou X, Lei H, Fan J, Yang R, Li Z, Hu C, Li M, Zhao F, Wang S. Transcriptional evidence for cross talk between JA and ET or SA during root-knot nematode invasion in tomato. Physiol Genomics 2018; 50:197-207. [PMID: 29341868 DOI: 10.1152/physiolgenomics.00079.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
studies have demonstrated that jasmonic acid (JA) reduces root-knot nematode (RKN) infections in tomato plants. RKN invasion is sensed by roots, and root-derived JA signaling activates systemic defense responses, though this is poorly understood. Here, we investigate variations in the RKN-induced transcriptome in scion phloem between two tomato plant grafts: CM/CM ( Lycopersicum esculentum Mill. cv. Castlemart) and CM/ spr2 (a JA-deficient mutant). A total of 8,716 genes were differentially expressed in the scion phloem of the plants with JA-deficient rootstock via RNA sequencing. Among these genes, 535 upregulated and 153 downregulated genes with high copy numbers were identified as significantly differentially expressed. Among them, 34 predicted transcription factor genes were identified. Additionally, we used real-time quantitative PCR to analyze the expression patterns of 42 genes involved in the JA, ethylene, or salicylic acid pathway in phloem under RKN infection. The results suggested that in the absence of JA signaling, the ET signaling pathway is enhanced after RKN infection; however, alterations in the SA signaling pathway were not observed.
Collapse
Affiliation(s)
- Wenchao Zhao
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaoxuan Zhou
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hui Lei
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jingwei Fan
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zilong Li
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Canli Hu
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Mengyan Li
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Fukuan Zhao
- College of Biotechnology, Beijing University of Agriculture, Beijing, China
| | - Shaohui Wang
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
300
|
Wang C, Zhang X, Li J, Zhang Y, Mou Z. The Elongator complex-associated protein DRL1 plays a positive role in immune responses against necrotrophic fungal pathogens in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2018; 19:286-299. [PMID: 27868335 PMCID: PMC6637984 DOI: 10.1111/mpp.12516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 05/24/2023]
Abstract
DEFORMED ROOT AND LEAVES1 (DRL1) is an Arabidopsis homologue of the yeast TOXIN TARGET4 (TOT4)/KILLER TOXIN-INSENSITIVE12 (KTI12) protein that is physically associated with the RNA polymerase II-interacting protein complex named Elongator. Mutations in DRL1 and Elongator lead to similar morphological and molecular phenotypes, suggesting that DRL1 and Elongator may functionally overlap in Arabidopsis. We have shown previously that Elongator plays an important role in both salicylic acid (SA)- and jasmonic acid (JA)/ethylene (ET)-mediated defence responses. Here, we tested whether DRL1 also plays a similar role as Elongator in plant immune responses. Our results show that, although DRL1 partially contributes to SA-induced cytotoxicity, it does not play a significant role in SA-mediated expression of PATHOGENESIS-RELATED genes and resistance to the virulent bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. In contrast, DRL1 is required for JA/ET- and necrotrophic fungal pathogen Botrytis cinerea-induced defence gene expression and for resistance to B. cinerea and Alternaria brassicicola. Furthermore, unlike the TOT4/KTI12 gene which, when overexpressed in yeast, confers zymocin resistance, a phenotype of the tot4/kti12 mutant, overexpression of DRL1 does not change B. cinerea-induced defence gene expression and resistance to this pathogen. Finally, DRL1 contains an N-terminal P-loop and a C-terminal calmodulin (CaM)-binding domain and is a CaM-binding protein. We demonstrate that both the P-loop and the CaM-binding domain are essential for the function of DRL1 in B. cinerea-induced expression of PDF1.2 and ORA59, and in resistance to B. cinerea, suggesting that the function of DRL1 in plant immunity may be regulated by ATP/GTP and CaM binding.
Collapse
Affiliation(s)
- Chenggang Wang
- Department of Microbiology and Cell ScienceUniversity of Florida, PO Box 110700GainesvilleFL32611USA
| | - Xudong Zhang
- Department of Microbiology and Cell ScienceUniversity of Florida, PO Box 110700GainesvilleFL32611USA
| | - Jian‐Liang Li
- Sanford Burnham Prebys Medical Discovery Institute at Lake NonaOrlandoFL32827USA
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, PO Box 103622GainesvilleFL32610USA
| | - Zhonglin Mou
- Department of Microbiology and Cell ScienceUniversity of Florida, PO Box 110700GainesvilleFL32611USA
| |
Collapse
|