251
|
Method for Detection of miRNAs in Non-Model Organisms with Unreported Database. Methods Mol Biol 2018. [PMID: 29959683 DOI: 10.1007/978-1-4939-8624-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Non-model organisms are studied very frequently, as a simple accessible and convenient system to investigate the role of miRNAs in particular aspect of biology or disease. However, the unavailability of the annotated genome and hence miRNA database of these non-model organisms pose a major constraint for using them more efficiently. Here, we describe a new method to identify miRNAs in non-model organisms without complex sequencing strategies and using miRNAs from close relative organisms as proxy/reference sequences.
Collapse
|
252
|
Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics 2018; 209:651-673. [PMID: 29967059 PMCID: PMC6028246 DOI: 10.1534/genetics.118.300291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are small, noncoding RNAs that regulate gene expression at the post-transcriptional level in essentially all aspects of Caenorhabditis elegans biology. More than 140 genes that encode microRNAs in C. elegans regulate development, behavior, metabolism, and responses to physiological and environmental changes. Genetic analysis of C. elegans microRNA genes continues to enhance our fundamental understanding of how microRNAs are integrated into broader gene regulatory networks to control diverse biological processes, including growth, cell division, cell fate determination, behavior, longevity, and stress responses. As many of these microRNA sequences and the related processing machinery are conserved over nearly a billion years of animal phylogeny, the assignment of their functions via worm genetics may inform the functions of their orthologs in other animals, including humans. In vivo investigations are especially important for microRNAs because in silico extrapolation of their functions using mRNA target prediction programs can easily assign microRNAs to incorrect genetic pathways. At this mezzanine level of microRNA bioinformatic sophistication, genetic analysis continues to be the gold standard for pathway assignments.
Collapse
|
253
|
Abstract
Purpose of Review Systemic lupus erythematosus is a severe autoimmune/inflammatory condition of unknown pathophysiology. Though genetic predisposition is essential for disease expression, risk alleles in single genes are usually insufficient to confer disease. Epigenetic dysregulation has been suggested as the missing link between genetic risk and the development of clinically evident disease. Recent Findings Over the past decade, epigenetic events moved into the focus of research targeting the molecular pathophysiology of SLE. Epigenetic alteration can be the net result of preceding infections, medication, diet, and/or other environmental influences. While altered DNA methylation and histone modifications had already been established as pathomechanisms, DNA hydroxymethylation was more recently identified as an activating epigenetic mark. Summary Defective epigenetic control contributes to uncontrolled cytokine and co-receptor expression, resulting in immune activation and tissue damage in SLE. Epigenetic alterations promise potential as disease biomarkers and/or future therapeutic targets in SLE and other autoimmune/inflammatory conditions.
Collapse
Affiliation(s)
- Christian Michael Hedrich
- Division of Paediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Department of Women᾿s & Children᾿s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. .,Department of Paediatric Rheumatology, Alder Hey Children᾿s NHS Foundation Trust Hospital, East Prescott Road, Liverpool, L14 5AB, UK.
| |
Collapse
|
254
|
MicroRNA Control of TGF-β Signaling. Int J Mol Sci 2018; 19:ijms19071901. [PMID: 29958433 PMCID: PMC6073626 DOI: 10.3390/ijms19071901] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/17/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Transcriptional and post-transcriptional regulation shapes the transcriptome and proteome changes induced by various cellular signaling cascades. MicroRNAs (miRNAs) are small regulatory RNAs that are approximately 22 nucleotides long, which direct the post-transcriptional regulation of diverse target genes and control cell states. Transforming growth factor (TGF)-β family is a multifunctional cytokine family, which plays many regulatory roles in the development and pathogenesis of diverse diseases, including fibrotic disease, cardiovascular disease and cancer. Previous studies have shown that the TGF-β pathway includes the miRNA pathway as an important component of its downstream signaling cascades. Multiple studies of epithelial–mesenchymal transition (EMT)-related miRNAs have highlighted that miRNAs constitute the intrinsic bistable molecular switches of cell states by forming double negative feedback loops with EMT-inducing transcription factors. This may be important for understanding the reversibility of EMT at the single-cell level, the presence of distinct EMT transition states and the intra- and inter-tumor heterogeneity of cancer cell phenotypes. In the present review, I summarize the connection between TGF-β signaling and the miRNA pathway, placing particular emphasis on the regulation of miRNA expression by TGF-β signaling, the modulation of TGF-β signaling by miRNAs, the miRNA-mediated modulation of EMT and endothelial–mesenchymal transition as well as the crosstalk between miRNA and TGF-β pathways in the tumor microenvironment.
Collapse
|
255
|
Olina AV, Kulbachinskiy AV, Aravin AA, Esyunina DM. Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes. BIOCHEMISTRY (MOSCOW) 2018; 83:483-497. [PMID: 29738683 DOI: 10.1134/s0006297918050024] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Noncoding RNAs play essential roles in genetic regulation in all organisms. In eukaryotic cells, many small noncoding RNAs act in complex with Argonaute proteins and regulate gene expression by recognizing complementary RNA targets. The complexes of Argonaute proteins with small RNAs also play a key role in silencing of mobile genetic elements and, in some cases, viruses. These processes are collectively called RNA interference. RNA interference is a powerful tool for specific gene silencing in both basic research and therapeutic applications. Argonaute proteins are also found in prokaryotic organisms. Recent studies have shown that prokaryotic Argonautes can also cleave their target nucleic acids, in particular DNA. This activity of prokaryotic Argonautes might potentially be used to edit eukaryotic genomes. However, the molecular mechanisms of small nucleic acid biogenesis and the functions of Argonaute proteins, in particular in bacteria and archaea, remain largely unknown. Here we briefly review available data on the RNA interference processes and Argonaute proteins in eukaryotes and prokaryotes.
Collapse
Affiliation(s)
- A V Olina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - A V Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A A Aravin
- California Institute of Technology, Division of Biology, Pasadena, CA 91125, USA
| | - D M Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
256
|
fCLIP-seq for transcriptomic footprinting of dsRNA-binding proteins: Lessons from DROSHA. Methods 2018; 152:3-11. [PMID: 29902563 DOI: 10.1016/j.ymeth.2018.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 01/18/2023] Open
Abstract
CLIP-seq (crosslinking immunoprecipitation and sequencing) is widely used to map the binding sites of a protein of interest on the transcriptome, and generally employs UV to induce the covalent bonds between protein and RNA, which allows stringent washing. However, dsRNA is inefficiently crosslinked by UV, making it difficult to study the interactions between dsRNA binding proteins and their substrates. A dsRNA endoribonuclease DROSHA initiates the maturation of microRNA (miRNA) by cleaving primary miRNA (pri-miRNA). Despite the importance of DROSHA in miRNA maturation and sequence determination, accurate mapping of DROSHA cleavage sites has not been feasible due to rapid processing, modification, and degradation of the cleaved products in cells. Here, we present a high-throughput sequencing method that allows the mapping of in vivo DROSHA cleavage sites at single nucleotide resolution, termed formaldehyde crosslinking, immunoprecipitation, and sequencing (fCLIP-seq). The fCLIP-seq protocol has been improved significantly over the standard CLIP-seq methods by (1) using formaldehyde for efficient and reversible crosslinking, (2) employing polyethylene glycol and adaptors with randomized sequences to enhance ligation efficiency and minimize bias, and (3) performing ligation after elution, which exposes the RNA termini for efficient ligation. fCLIP-seq successfully captures the nascent products of DROSHA, which allows precise mapping of the DROSHA processing sites. Moreover, from the analysis of the distinctive cleavage pattern, we discover previously unknown substrates of DROSHA. fCLIP-seq is a useful tool to obtain transcriptome-wide information on DROSHA activity and can be applied further to investigate other dsRNA-protein interactions.
Collapse
|
257
|
Penas C, Navarro X. Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain After Neural Trauma. Front Cell Neurosci 2018; 12:158. [PMID: 29930500 PMCID: PMC5999732 DOI: 10.3389/fncel.2018.00158] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that epigenetic alterations lie behind the induction and maintenance of neuropathic pain. Neuropathic pain is usually a chronic condition caused by a lesion, or pathological change, within the nervous system. Neuropathic pain appears frequently after nerve and spinal cord injuries or diseases, producing a debilitation of the patient and a decrease of the quality of life. At the cellular level, neuropathic pain is the result of neuronal plasticity shaped by an increase in the sensitivity and excitability of sensory neurons of the central and peripheral nervous system. One of the mechanisms thought to contribute to hyperexcitability and therefore to the ontogeny of neuropathic pain is the altered expression, trafficking, and functioning of receptors and ion channels expressed by primary sensory neurons. Besides, neuronal and glial cells, such as microglia and astrocytes, together with blood borne macrophages, play a critical role in the induction and maintenance of neuropathic pain by releasing powerful neuromodulators such as pro-inflammatory cytokines and chemokines, which enhance neuronal excitability. Altered gene expression of neuronal receptors, ion channels, and pro-inflammatory cytokines and chemokines, have been associated to epigenetic adaptations of the injured tissue. Within this review, we discuss the involvement of these epigenetic changes, including histone modifications, DNA methylation, non-coding RNAs, and alteration of chromatin modifiers, that have been shown to trigger modification of nociception after neural lesions. In particular, the function on these processes of EZH2, JMJD3, MeCP2, several histone deacetylases (HDACs) and histone acetyl transferases (HATs), G9a, DNMT, REST and diverse non-coding RNAs, are described. Despite the effort on developing new therapies, current treatments have only produced limited relief of this pain in a portion of patients. Thus, the present review aims to contribute to find novel targets for chronic neuropathic pain treatment.
Collapse
Affiliation(s)
- Clara Penas
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Xavier Navarro
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
258
|
Affiliation(s)
- Kristen C. Brown
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Taiowa A. Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
259
|
Aalto AP, Nicastro IA, Broughton JP, Chipman LB, Schreiner WP, Chen JS, Pasquinelli AE. Opposing roles of microRNA Argonautes during Caenorhabditis elegans aging. PLoS Genet 2018; 14:e1007379. [PMID: 29927939 PMCID: PMC6013023 DOI: 10.1371/journal.pgen.1007379] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/25/2018] [Indexed: 01/08/2023] Open
Abstract
Argonaute (AGO) proteins partner with microRNAs (miRNAs) to target specific genes for post-transcriptional regulation. During larval development in Caenorhabditis elegans, Argonaute-Like Gene 1 (ALG-1) is the primary mediator of the miRNA pathway, while the related ALG-2 protein is largely dispensable. Here we show that in adult C. elegans these AGOs are differentially expressed and, surprisingly, work in opposition to each other; alg-1 promotes longevity, whereas alg-2 restricts lifespan. Transcriptional profiling of adult animals revealed that distinct miRNAs and largely non-overlapping sets of protein-coding genes are misregulated in alg-1 and alg-2 mutants. Interestingly, many of the differentially expressed genes are downstream targets of the Insulin/ IGF-1 Signaling (IIS) pathway, which controls lifespan by regulating the activity of the DAF-16/ FOXO transcription factor. Consistent with this observation, we show that daf-16 is required for the extended lifespan of alg-2 mutants. Furthermore, the long lifespan of daf-2 insulin receptor mutants, which depends on daf-16, is strongly reduced in animals lacking alg-1 activity. This work establishes an important role for AGO-mediated gene regulation in aging C. elegans and illustrates that the activity of homologous genes can switch from complementary to antagonistic, depending on the life stage.
Collapse
Affiliation(s)
- Antti P. Aalto
- Division of Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Ian A. Nicastro
- Division of Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - James P. Broughton
- Division of Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Laura B. Chipman
- Division of Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - William P. Schreiner
- Division of Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Jerry S. Chen
- Division of Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Amy E. Pasquinelli
- Division of Biology, University of California, San Diego, La Jolla, CA, United States of America
| |
Collapse
|
260
|
Role of GW182 protein in the cell. Int J Biochem Cell Biol 2018; 101:29-38. [PMID: 29791863 DOI: 10.1016/j.biocel.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022]
Abstract
GW182 proteins interact directly with the argonaute proteins and constitute key components of miRNA repressor complexes (miRISC) in metazoans. As argonautes are insufficient for silencing they recruit the GW182 s that act as scaffold proteins inducing downstream translational repression, target mRNA deadenylation and exonucleolytic mRNA degradation. Besides their role as part of repressor complexes inside the cell, they function in wide variety of cellular processes as highlighted in this review. The present review summarises and discusses in detail our current knowledge of the GW182 s and their role inside the cell.
Collapse
|
261
|
Jia X, Zhou M, Zou Z, Lin P, Wang Y, Zhang Z. Identification and comparative analysis of the ovary and testis microRNAome of mud crab Scylla paramamosain. Mol Reprod Dev 2018; 85:519-531. [DOI: 10.1002/mrd.22989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Xiwei Jia
- Fisheries College; Jimei University; Xiamen China
| | - Mingcan Zhou
- Fisheries College; Jimei University; Xiamen China
| | - Zhihua Zou
- Fisheries College; Jimei University; Xiamen China
| | - Peng Lin
- Fisheries College; Jimei University; Xiamen China
| | - Yilei Wang
- Fisheries College; Jimei University; Xiamen China
| | - Ziping Zhang
- College of Animal Science; Fujian Agriculture and Forestry University; Fuzhou China
| |
Collapse
|
262
|
The miR-200b/200a/429 cluster prevents metastasis and induces dormancy in a murine claudin-low mammary tumor cell line. Exp Cell Res 2018; 369:17-26. [PMID: 29702103 DOI: 10.1016/j.yexcr.2018.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022]
Abstract
The miR-200 family of microRNAs consisting of miR-141, miR-200a, miR-200b, miR-200c and miR-429 are emerging as important regulators of breast cancer progression. This family of microRNAs maintain mammary epithelial identity and downregulation of miR-200 expression has been associated with epithelial-to-mesenchymal transition in mammary tumors. Therefore, re-expression of one or more miR-200 family members in mammary tumor cells with mesenchymal characteristics may restore an epithelial phenotype including growth and metastasis suppression. To test this hypothesis, the miR-200b/200a/429 cluster was re-expressed in a murine claudin-low cell line, RJ423. Re-expression of the miR-200b/200a/429 cluster in RJ423 cells significantly suppressed the expression of Vim, Snai1, Twist1, Twist2 and Zeb1, reverted RJ423 cells to a more epithelial morphology and significantly inhibited proliferation in vitro. Moreover, the miR-200b/200a/429 cluster prevented lung metastasis in an experimental metastasis model and although tumor initiation was not prevented, re-expression of the miR-200b/200a/429 cluster induced a dormancy-like state where mammary tumors failed to grow beyond ~150 mm3 or grew extremely slowly following intra-mammary injection. These dormant tumors contained elevated levels of collagen and were highly vascularized. Therefore, re-expression of the miR-200b/200a/429 cluster in the claudin-low mammary tumor cell line, RJ423, is sufficient to alter cell morphology, impair metastasis and induce tumor dormancy.
Collapse
|
263
|
Abstract
MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
264
|
Barbier J, Chen X, Sanchez G, Cai M, Helsmoortel M, Higuchi T, Giraud P, Contreras X, Yuan G, Feng Z, Nait-Saidi R, Deas O, Bluy L, Judde JG, Rouquier S, Ritchie W, Sakamoto S, Xie D, Kiernan R. An NF90/NF110-mediated feedback amplification loop regulates dicer expression and controls ovarian carcinoma progression. Cell Res 2018; 28:556-571. [PMID: 29563539 DOI: 10.1038/s41422-018-0016-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 01/16/2023] Open
Abstract
Reduced expression of DICER, a key enzyme in the miRNA pathway, is frequently associated with aggressive, invasive disease, and poor survival in various malignancies. Regulation of DICER expression is, however, poorly understood. Here, we show that NF90/NF110 facilitates DICER expression by controlling the processing of a miRNA, miR-3173, which is embedded in DICER pre-mRNA. As miR-3173 in turn targets NF90, a feedback amplification loop controlling DICER expression is established. In a nude mouse model, NF90 overexpression reduced proliferation of ovarian cancer cells and significantly reduced tumor size and metastasis, whereas overexpression of miR-3173 dramatically increased metastasis in an NF90- and DICER-dependent manner. Clinically, low NF90 expression and high miR-3173-3p expression were found to be independent prognostic markers of poor survival in a cohort of ovarian carcinoma patients. These findings suggest that, by facilitating DICER expression, NF90 can act as a suppressor of ovarian carcinoma.
Collapse
Affiliation(s)
- Jérôme Barbier
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Xin Chen
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Gabriel Sanchez
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Muyan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Marion Helsmoortel
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Takuma Higuchi
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi University, Kochi, 783-8505, Japan
| | - Pierre Giraud
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Xavier Contreras
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Gangjun Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zihao Feng
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rima Nait-Saidi
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Olivier Deas
- XenTech SAS, 4 rue Pierre Fontaine, Evry, 91000, France
| | - Lisa Bluy
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | | | - Sylvie Rouquier
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - William Ritchie
- Institut de Génétique Humaine, CNRS, University of Montpellier, Machine Learning and Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, 34396, France
| | - Shuji Sakamoto
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi University, Kochi, 783-8505, Japan
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Rosemary Kiernan
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France.
| |
Collapse
|
265
|
Li Q, Yang H, He L, Wang Q. Characterization of the Es -DDX52 involved in the spermatogonial mitosis and spermatid differentiation in Chinese mitten crab ( Eriocheir sinensis ). Gene 2018; 646:106-119. [DOI: 10.1016/j.gene.2017.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 11/26/2022]
|
266
|
Di Mauro V, Barandalla-Sobrados M, Catalucci D. The noncoding-RNA landscape in cardiovascular health and disease. Noncoding RNA Res 2018; 3:12-19. [PMID: 30159435 PMCID: PMC6084835 DOI: 10.1016/j.ncrna.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 12/22/2022] Open
Abstract
The cardiovascular system plays a pivotal role in regulating and maintaining homeostasis in the human body. Therefore any alteration in regulatory networks that orchestrate heart development as well as adaptation to physiological and environmental stress might result in pathological conditions, which represent the leading cause of death worldwide [1]. The latest advances in genome-wide techniques challenged the "protein-central dogma" with the discovery of the so-called non-coding RNAs (ncRNAs). Despite their lack of protein coding potential, ncRNAs have been largely demonstrated to regulate the majority of biological processes and have also been largely implicated in cardiovascular disorders. This review will first discuss the important mechanistic aspects of some of the classes of ncRNAs such as biogenesis, mechanism of action, as well as their involvement in cardiac diseases. The ncRNA potential uses as therapeutic molecules, with a specific focus on the latest technologies for their in vivo delivery as drug targets, will be described.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Maria Barandalla-Sobrados
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Daniele Catalucci
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
267
|
Functional Redundancy of DICER Cofactors TARBP2 and PRKRA During Murine Embryogenesis Does Not Involve miRNA Biogenesis. Genetics 2018; 208:1513-1522. [PMID: 29467169 PMCID: PMC5887145 DOI: 10.1534/genetics.118.300791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/10/2018] [Indexed: 12/21/2022] Open
Abstract
Several in vitro studies have suggested that canonical microRNA (miRNA) biogenesis requires the DICER cofactors TARBP2 and PRKRA for processing of pre-miRNAs to mature miRNAs. To investigate the roles of TARBP2 and PRKRA in miRNA biogenesis in vivo, and to determine possible functional redundancy, we first compared the phenotypes of Tarbp2 and Prkra single and double mutants. In contrast to Dicer −/− embryos, which die by embryonic day 7.5 (E7.5), single Tarbp2 −/− and Prkra −/− mice survive beyond E7.5 and either die perinatally or survive and exhibit cranial/facial abnormalities, respectively. In contrast, only a few Tarbp2 −/−; Prkra −/− double mutants survived beyond E12.5, suggesting genetic redundancy between Tarbp2 and Prkra during embryonic development. Sequencing of miRNAs from single-mutant embryos at E15.5 revealed changes in abundance and isomiR type in Tarbp2 −/−, but not Prkra −/−, embryos, demonstrating that TARBP2, but not PRKRA, functions in miRNA biogenesis of a subclass of miRNAs, and suggesting that functional redundancy between TARBP2 and PRKRA does not involve miRNA biogenesis.
Collapse
|
268
|
MiRNAs at the Crossroads between Innate Immunity and Cancer: Focus on Macrophages. Cells 2018; 7:cells7020012. [PMID: 29419779 PMCID: PMC5850100 DOI: 10.3390/cells7020012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Innate immune cells form an integrative component of the tumor microenvironment (TME), which can control or prevent tumor initiation and progression, due to the simultaneous processing of both anti- and pro-growth signals. This decision-making process is a consequence of gene expression changes, which are in part dependent on post-transcriptional regulatory mechanisms. In this context, microRNAs have been shown to regulate both recruitment and activation of specific tumor-associated immune cells in the TME. This review aims to describe the most important microRNAs that target cancer-related innate immune pathways. The role of exosomal microRNAs in tumor progression and microRNA-based therapeutic strategies are also discussed.
Collapse
|
269
|
Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, Brevik K, Cappelle K, Chen MJM, Childers AK, Childers C, Christiaens O, Clements J, Didion EM, Elpidina EN, Engsontia P, Friedrich M, García-Robles I, Gibbs RA, Goswami C, Grapputo A, Gruden K, Grynberg M, Henrissat B, Jennings EC, Jones JW, Kalsi M, Khan SA, Kumar A, Li F, Lombard V, Ma X, Martynov A, Miller NJ, Mitchell RF, Munoz-Torres M, Muszewska A, Oppert B, Palli SR, Panfilio KA, Pauchet Y, Perkin LC, Petek M, Poelchau MF, Record É, Rinehart JP, Robertson HM, Rosendale AJ, Ruiz-Arroyo VM, Smagghe G, Szendrei Z, Thomas GWC, Torson AS, Vargas Jentzsch IM, Weirauch MT, Yates AD, Yocum GD, Yoon JS, Richards S. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep 2018; 8:1931. [PMID: 29386578 PMCID: PMC5792627 DOI: 10.1038/s41598-018-20154-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/13/2018] [Indexed: 01/04/2023] Open
Abstract
The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, USA.
| | - Yolanda H Chen
- Department of Plant and Soil Sciences, University of Vermont, Burlington, USA
| | | | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Anita Bhandari
- Department of Molecular Physiology, Christian-Albrechts-University at Kiel, Kiel, Germany
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, USA
| | - Kristian Brevik
- Department of Plant and Soil Sciences, University of Vermont, Burlington, USA
| | - Kaat Cappelle
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Mei-Ju M Chen
- USDA-ARS National Agricultural Library, Beltsville, MD, USA
| | - Anna K Childers
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | | | | | - Justin Clements
- Department of Entomology, University of Wisconsin-Madison, Madison, USA
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moskva, Russia
| | - Patamarerk Engsontia
- Department of Biology, Faculty of Science, Prince of Songkla University, Amphoe Hat Yai, Thailand
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, USA
| | | | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Chandan Goswami
- National Institute of Science Education and Research, Bhubaneswar, India
| | | | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288, Marseille, France
- INRA, USC 1408 AFMB, F-13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, King Abdulaziz, Saudi Arabia
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, USA
| | - Megha Kalsi
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Sher A Khan
- Department of Entomology, Texas A&M University, College Station, USA
| | - Abhishek Kumar
- Department of Genetics & Molecular Biology in Botany, Christian-Albrechts-University at Kiel, Kiel, Germany
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Fei Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288, Marseille, France
- INRA, USC 1408 AFMB, F-13288, Marseille, France
| | - Xingzhou Ma
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Alexander Martynov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nicholas J Miller
- Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Robert F Mitchell
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, USA
| | - Monica Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Brenda Oppert
- USDA-ARS Center for Grain and Animal Health Research, New York, USA
| | | | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne, Köln, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, England, UK
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lindsey C Perkin
- USDA-ARS Center for Grain and Animal Health Research, New York, USA
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Éric Record
- INRA, Aix-Marseille Université, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Joseph P Rinehart
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | | | - Guy Smagghe
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, USA
| | - Gregg W C Thomas
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, USA
| | - Alex S Torson
- Department of Biological Sciences, North Dakota State University, Fargo, USA
| | | | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Ashley D Yates
- Department of Entomology, The Ohio State University, Columbus, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, USA
| | - George D Yocum
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - June-Sun Yoon
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Stephen Richards
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
270
|
Mori F, Ferraiuolo M, Santoro R, Sacconi A, Goeman F, Pallocca M, Pulito C, Korita E, Fanciulli M, Muti P, Blandino G, Strano S. Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget 2018; 7:20532-48. [PMID: 26967561 PMCID: PMC4991473 DOI: 10.18632/oncotarget.7978] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
We have previously shown that melatonin exerts tumor suppressor activities by inducing the p38-p53 axis. This occurred within a few hours while no data are available on how melatonin pathway can be sustained on the long term. Here we show that miR-24, which has been demonstrated to target genes involved in the DNA repair process, targets p38, p53, PML and H2AX simultaneously. We show that long-term treatment with melatonin can decrease miR-24 levels post-transcriptionally, which pairs with a long-wave regulation of genes involved in cell proliferation, DNA damage, RNA metabolism and cell shape and transformation. Moreover, we show that melatonin can inhibit cell proliferation and migration, at least in part, by downregulating miR-24. Furthermore, we propose the involvement of hnRNP A1, which is downregulated by melatonin and involved in miRNA processing, in the regulation of miR-24 levels by melatonin. We conclude showing that miR-24 is upregulated in colon, breast and head and neck datasets and its levels negatively correlate with overall survival.
Collapse
Affiliation(s)
- Federica Mori
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Maria Ferraiuolo
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, 00144 Rome, Italy.,Translational Oncogenomics Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Raffaela Santoro
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Andrea Sacconi
- Translational Oncogenomics Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Frauke Goeman
- Translational Oncogenomics Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Matteo Pallocca
- Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Claudio Pulito
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Etleva Korita
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Maurizio Fanciulli
- Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center-McMaster University, Hamilton, ON L8V 5C2, Ontario, Canada
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, 00144 Rome, Italy.,Department of Oncology, Juravinski Cancer Center-McMaster University, Hamilton, ON L8V 5C2, Ontario, Canada
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, 00144 Rome, Italy.,Department of Oncology, Juravinski Cancer Center-McMaster University, Hamilton, ON L8V 5C2, Ontario, Canada
| |
Collapse
|
271
|
Abstract
MicroRNAs (miRNAs) are small RNA molecules, with their role in gene silencing and translational repression by binding to target mRNAs. Since it was discovered in 1993, miRNA are found in all eukaryotic cells conserved across the species. In recent years, regulation of miRNAs are extensively studied for their role in biological processes as well as in development and progression of various human diseases including retinal disorder, neurodegenerative diseases, cardiovascular disease and cancer. This chapter summarises miRNA biogenesis and explores their potential roles in a variety of diseases. miRNAs holds huge potential for diagnostic and prognostic biomarkers, and as predictors of drug response.
Collapse
|
272
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
273
|
Curtin CM, Castaño IM, O'Brien FJ. Scaffold-Based microRNA Therapies in Regenerative Medicine and Cancer. Adv Healthc Mater 2018; 7. [PMID: 29068566 DOI: 10.1002/adhm.201700695] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/21/2017] [Indexed: 12/17/2022]
Abstract
microRNA-based therapies are an advantageous strategy with applications in both regenerative medicine (RM) and cancer treatments. microRNAs (miRNAs) are an evolutionary conserved class of small RNA molecules that modulate up to one third of the human nonprotein coding genome. Thus, synthetic miRNA activators and inhibitors hold immense potential to finely balance gene expression and reestablish tissue health. Ongoing industry-sponsored clinical trials inspire a new miRNA therapeutics era, but progress largely relies on the development of safe and efficient delivery systems. The emerging application of biomaterial scaffolds for this purpose offers spatiotemporal control and circumvents biological and mechanical barriers that impede successful miRNA delivery. The nascent research in scaffold-mediated miRNA therapies translates know-how learnt from studies in antitumoral and genetic disorders as well as work on plasmid (p)DNA/siRNA delivery to expand the miRNA therapies arena. In this progress report, the state of the art methods of regulating miRNAs are reviewed. Relevant miRNA delivery vectors and scaffold systems applied to-date for RM and cancer treatment applications are discussed, as well as the challenges involved in their design. Overall, this progress report demonstrates the opportunity that exists for the application of miRNA-activated scaffolds in the future of RM and cancer treatments.
Collapse
Affiliation(s)
- Caroline M. Curtin
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| |
Collapse
|
274
|
Asiaf A, Ahmad ST, Arjumand W, Zargar MA. MicroRNAs in Breast Cancer: Diagnostic and Therapeutic Potential. Methods Mol Biol 2018; 1699:23-43. [PMID: 29086366 DOI: 10.1007/978-1-4939-7435-1_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a large family of small, approximately 20-22 nucleotide, noncoding RNAs that regulate the expression of target genes, at the post-transcriptional level. miRNAs are involved in virtually diverse biological processes and play crucial roles in cellular processes, such as cell differentiation, proliferation, and apoptosis. Accumulating lines of evidence have indicated that miRNAs play important roles in the maintenance of biological homeostasis and that aberrant expression levels of miRNAs are associated with the onset of many diseases, including cancer. It is possible that the diverse roles that miRNAs play, have potential to provide valuable information in a clinical setting, demonstrating the potential to act as both screening tools for the stratification of high-risk patients, while informing the treatment decision-making process. Increasing evidence suggests that some miRNAs may even provide assistance in the diagnosis of patients with breast cancer. In addition, miRNAs may themselves be considered therapeutic targets, with inhibition or reintroduction of a particular miRNA capable of inducing a response in-vivo. This chapter discusses the role of miRNAs as oncogenes and tumor suppressors in breast cancer development and metastasis . It focuses on miRNAs that have prognostic, diagnostic, or predictive potential in breast cancer as well as the possible challenges in the translation of such observations to the clinic.
Collapse
Affiliation(s)
- Asia Asiaf
- Department of Biochemistry, Faculty of Science, University of Kashmir, Hazratbal Srinagar, J&K, 190006, India
| | - Shiekh Tanveer Ahmad
- Clarke H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, 2A25 HRIC, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Wani Arjumand
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, 2A32 HRIC, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mohammad Afzal Zargar
- Department of Biochemistry, Faculty of Science, University of Kashmir, Hazratbal Srinagar, J&K, 190006, India.
| |
Collapse
|
275
|
McAlinden A, Im GI. MicroRNAs in orthopaedic research: Disease associations, potential therapeutic applications, and perspectives. J Orthop Res 2018; 36:33-51. [PMID: 29194736 PMCID: PMC5840038 DOI: 10.1002/jor.23822] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function to control many cellular processes by their ability to suppress expression of specific target genes. Tens to hundreds of target genes may be affected by one miRNA, thereby resulting in modulation of multiple pathways in any given cell type. Therefore, altered expression of miRNAs (i.e., during tissue development or in scenarios of disease or cellular stress) can have a profound impact on processes regulating cell differentiation, metabolism, proliferation, or apoptosis, for example. Over the past 5-10 years, thousands of reports have been published on miRNAs in cartilage and bone biology or disease, thus highlighting the significance of these non-coding RNAs in regulating skeletal development and homeostasis. For the purpose of this review, we will focus on miRNAs or miRNA families that have demonstrated function in vivo within the context of cartilage, bone or other orthopaedic-related tissues (excluding muscle). Specifically, we will discuss studies that have utilized miRNA transgenic mouse models or in vivo approaches to target a miRNA with the aim of altering conditions such as osteoarthritis, osteoporosis and bone fractures in rodents. We will not discuss miRNAs in the context skeletal cancers since this topic is worthy of a review of its own. Overall, we aim to provide a comprehensive description of where the field currently stands with respect to the therapeutic potential of specific miRNAs to treat orthopaedic conditions and current technologies to target and modify miRNA function in vivo. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:33-51, 2018.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110
| | - Gun-Il Im
- Department of Orthopaedic Surgery, Dongguk University Ilsan Hospital, 814 Siksa-Dong, Goyang, Korea
| |
Collapse
|
276
|
Abstract
MicroRNA (miRNA) biogenesis is regulated intricately at multiple levels. In addition to transcriptional control of pri-miRNA loci, sequence as well as structural features of the pri-miRNA-stem loop determine its processing efficiency by the endonucleases Drosha and Dicer. On the one hand, general features are necessary to allow a hairpin to be recognized by the processing machinery; on the other hand, specific sequence motifs of individual miRNA precursors can be read by RNA binding proteins (RBPs) that regulate processing, leading to increased or decreased levels of functional miRNAs. In a pulldown experiment using the pri-miRNA hairpin as immobilized bait, cognate RBPs can be isolated and analyzed by immunoblotting or mass spectrometry, allowing for the discovery or analysis of protein regulators of miRNA biogenesis.
Collapse
Affiliation(s)
- Thomas Treiber
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany
| | - Nora Treiber
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Laboratory for RNA Biology, Biochemistry Center Regensburg (BZR), University of Regensburg, Regensburg, Germany.
| |
Collapse
|
277
|
Kretov DA, Shafik AM, Cifuentes D. Assessing miR-451 Activity and Its Role in Erythropoiesis. Methods Mol Biol 2018; 1680:179-190. [PMID: 29030849 DOI: 10.1007/978-1-4939-7339-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to microinject small RNAs and mRNAs into zebrafish embryos, of different genetic backgrounds, allows for the precise dissection of microRNA processing pathways at the molecular level, while simultaneously provides insight into their physiologic role. Here, we apply such an approach to determine the impact of Argonaute 2 in the processing of miR-451, a vertebrate-specific microRNA required for terminal erythrocyte differentiation. This was achieved using fluorescent microRNA reporter sensor assays and phenotype rescue experiments.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Andrew M Shafik
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
| |
Collapse
|
278
|
Kai K, Dittmar RL, Sen S. Secretory microRNAs as biomarkers of cancer. Semin Cell Dev Biol 2017; 78:22-36. [PMID: 29258963 DOI: 10.1016/j.semcdb.2017.12.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression predominantly by inhibiting transcription and/or promoting degradation of target mRNAs also in addition to being involved in non-canonical mechanisms regulating transcription, translation and cell signaling processes. Extracellular secretory miRNAs, either in complex with specific proteins or encapsulated in microvesicles called exosomes, are transported between cells as means of intercellular communication. Secretory miRNAs in circulation remain functional after delivery to recipient cells, regulating target genes and their corresponding signaling pathways. Cancer cell secreted miRNA-mediated intercellular communication affects physiological processes associated with the disease, such as, angiogenesis, metabolic reprogramming, immune modulation, metastasis, and chemo-resistance. Given the stability of miRNAs in body fluids and their well-documented roles in deregulating cancer-relevant genetic pathways, there is considerable interest in developing secretory miRNAs as liquid biopsy biomarkers for detection, diagnosis and prognostication of cancer. In this review, we discuss salient features of miRNA biogenesis, secretion and function in cancer as well as the current state of secretory miRNA isolation and profiling methods. Furthermore, we discuss the challenges and opportunities of secretory miRNA biomarker assay development, which need to be addressed for clinical applications.
Collapse
Affiliation(s)
- Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Rachel L Dittmar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, United States
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, United States.
| |
Collapse
|
279
|
Abstract
DROSHA is the catalytic subunit of the Microprocessor complex, which initiates microRNA (miRNA) maturation in the nucleus by recognizing and cleaving hairpin precursors embedded in primary transcripts. However, accumulating evidence suggests that not all hairpin substrates of DROSHA are associated with the generation of functional small RNAs. By targeting those hairpins, DROSHA regulates diverse aspects of RNA metabolism across the transcriptome, serves as a line of defense against the expression of potentially deleterious elements, and permits cell fate determination and differentiation. DROSHA is also versatile in the way that it executes these noncanonical functions, occasionally depending on its RNA-binding activity rather than its catalytic activity. Herein, we discuss the functional and mechanistic diversity of DROSHA beyond the miRNA biogenesis pathway in light of recent findings.
Collapse
Affiliation(s)
- Dooyoung Lee
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - Chanseok Shin
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,b Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
280
|
Understanding microRNA Regulation Involved in the Metamorphosis of the Veined Rapa Whelk ( Rapana venosa). G3-GENES GENOMES GENETICS 2017; 7:3999-4008. [PMID: 29079680 PMCID: PMC5714496 DOI: 10.1534/g3.117.300210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The veined rapa whelk (Rapana venosa) is widely consumed in China. Nevertheless, it preys on oceanic bivalves, thereby reducing this resource worldwide. Its larval metamorphosis comprises a transition from pelagic to benthic form, which involves considerable physiological and structural changes and has vital roles in its natural populations and commercial breeding. Thus, understanding the endogenous microRNAs (miRNAs) that drive metamorphosis is of great interest. This is the first study to use high-throughput sequencing to examine the alterations in miRNA expression that occur during metamorphosis in a marine gastropod. A total of 195 differentially expressed miRNAs were obtained. Sixty-five of these were expressed during the transition from precompetent to competent larvae. Thirty-three of these were upregulated and the others were downregulated. Another 123 miRNAs were expressed during the transition from competent to postlarvae. Ninety-six of these were upregulated and the remaining 27 were downregulated. The expression of miR-276-y, miR-100-x, miR-183-x, and miR-263-x showed a >100-fold change during development, while the miR-242-x and novel-m0052-3p expression levels changed over 3000-fold. Putative target gene coexpression, gene ontology, and pathway analyses suggest that these miRNAs play important parts in cell proliferation, migration, apoptosis, metabolic regulation, and energy absorption. Twenty miRNAs and their target genes involved in ingestion, digestion, cytoskeleton, cell adhesion, and apoptosis were identified. Nine of them were analyzed with real-time polymerase chain reaction (PCR), which showed an inverse correlation between the miRNAs and their relative expression levels. Our data elucidate the role of miRNAs in R. venosa metamorphic transition and serve as a solid basis for further investigations into regulatory mechanisms of gastropod metamorphosis.
Collapse
|
281
|
Saliani N, Montazersaheb S, Montasser Kouhsari S. Micromanaging Glucose Tolerance and Diabetes. Adv Pharm Bull 2017; 7:547-556. [PMID: 29399544 PMCID: PMC5788209 DOI: 10.15171/apb.2017.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs that have significant roles in biological processes such as glucose homoeostasis. MiRNAs fine-tune target genes expression via sequence-specific binding of their seed sequence to the untranslated region of mRNAs and degrade target mRNAs. MicroRNAs in islet β-cells regulate β-cell differentiation, proliferation, insulin transcription and glucose-stimulated insulin secretion. Furthermore, miRNAs play key roles in the regulation of glucose and lipid metabolisms and modify insulin sensitivity by controlling metabolic functions in main target organs of insulin such as skeletal muscle, liver and adipose tissue. Moreover, since circulating miRNAs are detectable and stable in serum, levels of certain miRNAs seem to be novel biomarkers for prediction of diabetes mellitus. In this article, due to the prominent impact of miRNAs on diabetes, we overviewed the microRNAs regulatory functions in organs related to insulin resistance and diabetes and shed light on their potential as diagnostic and therapeutic markers for diabetes.
Collapse
Affiliation(s)
- Negar Saliani
- Department of Cellular and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | | | - Shideh Montasser Kouhsari
- Department of Cellular and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
282
|
White RJ, Collins JE, Sealy IM, Wali N, Dooley CM, Digby Z, Stemple DL, Murphy DN, Billis K, Hourlier T, Füllgrabe A, Davis MP, Enright AJ, Busch-Nentwich EM. A high-resolution mRNA expression time course of embryonic development in zebrafish. eLife 2017; 6. [PMID: 29144233 PMCID: PMC5690287 DOI: 10.7554/elife.30860] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/04/2017] [Indexed: 12/18/2022] Open
Abstract
We have produced an mRNA expression time course of zebrafish development across 18 time points from 1 cell to 5 days post-fertilisation sampling individual and pools of embryos. Using poly(A) pulldown stranded RNA-seq and a 3′ end transcript counting method we characterise temporal expression profiles of 23,642 genes. We identify temporal and functional transcript co-variance that associates 5024 unnamed genes with distinct developmental time points. Specifically, a class of over 100 previously uncharacterised zinc finger domain containing genes, located on the long arm of chromosome 4, is expressed in a sharp peak during zygotic genome activation. In addition, the data reveal new genes and transcripts, differential use of exons and previously unidentified 3′ ends across development, new primary microRNAs and temporal divergence of gene paralogues generated in the teleost genome duplication. To make this dataset a useful baseline reference, the data can be browsed and downloaded at Expression Atlas and Ensembl.
Collapse
Affiliation(s)
| | - John E Collins
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Ian M Sealy
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Neha Wali
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Zsofia Digby
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Daniel N Murphy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Anja Füllgrabe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Matthew P Davis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Anton J Enright
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Elisabeth M Busch-Nentwich
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
283
|
Amri EZ, Scheideler M. Small non coding RNAs in adipocyte biology and obesity. Mol Cell Endocrinol 2017; 456:87-94. [PMID: 28412522 DOI: 10.1016/j.mce.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
Obesity has reached epidemic proportions world-wide and constitutes a substantial risk factor for hypertension, type 2 diabetes, cardiovascular diseases and certain cancers. So far, regulation of energy intake by dietary and pharmacological treatments has met limited success. The main interest of current research is focused on understanding the role of different pathways involved in adipose tissue function and modulation of its mass. Whole-genome sequencing studies revealed that the majority of the human genome is transcribed, with thousands of non-protein-coding RNAs (ncRNA), which comprise small and long ncRNAs. ncRNAs regulate gene expression at the transcriptional and post-transcriptional level. Numerous studies described the involvement of ncRNAs in the pathogenesis of many diseases including obesity and associated metabolic disorders. ncRNAs represent potential diagnostic biomarkers and promising therapeutic targets. In this review, we focused on small ncRNAs involved in the formation and function of adipocytes and obesity.
Collapse
Affiliation(s)
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, University Hospital Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
284
|
The insertion in the double-stranded RNA binding domain of human Drosha is important for its function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1179-1188. [PMID: 29109067 DOI: 10.1016/j.bbagrm.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022]
Abstract
microRNAs (miRNAs) are first transcribed as long, primary transcripts, which are then processed by multiple enzymes and proteins to generate the single-stranded, approximately 22-nucleotide (nt)-long mature miRNAs. A critical step in animal miRNA biogenesis is the cleavage of primary miRNA transcripts (pri-miRNAs) to produce precursor miRNAs (pre-miRNAs) by the enzyme Drosha. How Drosha recognizes its substrates remains incompletely understood. In this study we constructed a series of human Drosha mutants and examined their enzymatic activities and interaction with RNAs. We found that the N-terminal region is required for the nuclear localization and cellular function of Drosha. And in contrast to previous reports, we showed that the double-stranded RNA binding domain (RBD) of Drosha exhibited a weak but noticeable affinity for RNA. Compared to the RBDs of other RNA-binding proteins, the RBD of Drosha has a short insert, whose mutations reduced RNA binding and pri-miRNA cleavage. Overexpression of Drosha RBD mutants in a reporter assay corroborated their deficiencies in Drosha activity in cell cultures. In addition, we found that point mutations in the RNaseIIIb domain of Drosha implicated in Wilms tumors differentially affected cleavage of the 5' and 3' strands of pri-miRNAs in vitro. In conclusion, our results provided important insights into the mechanism of pri-miRNA processing by human Drosha.
Collapse
|
285
|
Herrera-Carrillo E, Berkhout B. Dicer-independent processing of small RNA duplexes: mechanistic insights and applications. Nucleic Acids Res 2017; 45:10369-10379. [PMID: 28977573 PMCID: PMC5737282 DOI: 10.1093/nar/gkx779] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play a pivotal role in the regulation of cellular gene expression via the conserved RNA interference (RNAi) mechanism. Biogenesis of the unusual miR-451 does not require Dicer. This molecule is instead processed by the Argonaute 2 (Ago2) enzyme. Similarly, unconventional short hairpin RNA (shRNA) molecules have been designed as miR-451 mimics that rely exclusively on Ago2 for maturation. We will review recent progress made in the understanding of this alternative processing route. Next, we describe different Dicer-independent shRNA designs that have been developed and discuss their therapeutic advantages and disadvantages. As an example, we will present the route towards development of a durable gene therapy against HIV-1.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
286
|
Wang C, Gupta P, Fressigne L, Bossé GD, Wang X, Simard MJ, Hansen D. TEG-1 CD2BP2 controls miRNA levels by regulating miRISC stability in C. elegans and human cells. Nucleic Acids Res 2017; 45:1488-1500. [PMID: 28180320 PMCID: PMC5388422 DOI: 10.1093/nar/gkw836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022] Open
Abstract
MiRNAs post-transcriptionally regulate gene expression by recruiting the miRNA-induced silencing complex (miRISC) to target mRNAs. However, the mechanisms by which miRISC components are maintained at appropriate levels for proper function are largely unknown. Here, we demonstrate that Caenorhabditis elegans TEG-1 regulates the stability of two miRISC effectors, VIG-1 and ALG-1, which in turn affects the abundance of miRNAs in various families. We demonstrate that TEG-1 physically interacts with VIG-1, and complexes with mature let-7 miRNA. Also, loss of teg-1 in vivo phenocopies heterochronic defects observed in let-7 mutants, suggesting the association of TEG-1 with miRISC is necessary for let-7 to function properly during development. Loss of TEG-1 function also affects the abundance and function of other microRNAs, suggesting that TEG-1's role is not specific to let-7. We further demonstrate that the human orthologs of TEG-1, VIG-1 and ALG-1 (CD2BP2, SERBP1/PAI-RBP1 and AGO2) are found in a complex in HeLa cells, and knockdown of CD2BP2 results in reduced miRNA levels; therefore, TEG-1's role in affecting miRNA levels and function is likely conserved. Together, these data demonstrate that TEG-1 CD2BP2 stabilizes miRISC and mature miRNAs, maintaining them at levels necessary to properly regulate target gene expression.
Collapse
Affiliation(s)
- Chris Wang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Pratyush Gupta
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lucile Fressigne
- St-Patrick Research Group in Basic Oncology Hotel-Dieu de Quebec (Centre Hospitalier Universitaire de Quebec), Laval University Cancer Research Centre, Quebec City, Canada
| | - Gabriel D Bossé
- St-Patrick Research Group in Basic Oncology Hotel-Dieu de Quebec (Centre Hospitalier Universitaire de Quebec), Laval University Cancer Research Centre, Quebec City, Canada
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology Hotel-Dieu de Quebec (Centre Hospitalier Universitaire de Quebec), Laval University Cancer Research Centre, Quebec City, Canada
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
287
|
Flamand MN, Gan HH, Mayya VK, Gunsalus KC, Duchaine TF. A non-canonical site reveals the cooperative mechanisms of microRNA-mediated silencing. Nucleic Acids Res 2017; 45:7212-7225. [PMID: 28482037 PMCID: PMC5499589 DOI: 10.1093/nar/gkx340] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/18/2017] [Indexed: 01/08/2023] Open
Abstract
Although strong evidence supports the importance of their cooperative interactions, microRNA (miRNA)-binding sites are still largely investigated as functionally independent regulatory units. Here, a survey of alternative 3΄UTR isoforms implicates a non-canonical seedless site in cooperative miRNA-mediated silencing. While required for target mRNA deadenylation and silencing, this site is not sufficient on its own to physically recruit miRISC. Instead, it relies on facilitating interactions with a nearby canonical seed-pairing site to recruit the Argonaute complexes. We further show that cooperation between miRNA target sites is necessary for silencing in vivo in the C. elegans embryo, and for the recruitment of the Ccr4-Not effector complex. Using a structural model of cooperating miRISCs, we identified allosteric determinants of cooperative miRNA-mediated silencing that are required for both embryonic and larval miRNA functions. Our results delineate multiple cooperative mechanisms in miRNA-mediated silencing and further support the consideration of target site cooperation as a fundamental characteristic of miRNA function.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry & Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Vinay K Mayya
- Department of Biochemistry & Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.,Division of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Thomas F Duchaine
- Department of Biochemistry & Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6 Canada
| |
Collapse
|
288
|
do Amaral AE, Cisilotto J, Creczynski-Pasa TB, de Lucca Schiavon L. Circulating miRNAs in nontumoral liver diseases. Pharmacol Res 2017; 128:274-287. [PMID: 29037479 DOI: 10.1016/j.phrs.2017.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/23/2022]
Abstract
In recent years, there has been increasing interest in finding new biomarkers for diagnosis and prognostication of liver diseases. MicroRNAs (miRNAs) are small noncoding RNA molecules involved in the regulation of gene expression and have been studied in relation to several conditions, including liver disease. Mature miRNAs can reach the bloodstream by passive release or by incorporation into lipoprotein complexes or microvesicles, and have stable and reproducible concentrations among individuals. In this review, we summarize studies involving circulating miRNAs sourced from the serum or plasma of patients with nontumoral liver diseases in attempt to bring insights in the use of miRNAs as biomarkers for diagnosis, as well as for prognosis of such diseases. In addition, we present pre-analytical aspects involving miRNA analysis and strategies for normalization of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) data related to the studies evaluated.
Collapse
Affiliation(s)
- Alex Evangelista do Amaral
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Júlia Cisilotto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Leonardo de Lucca Schiavon
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Maria Flora Pausewang Street, 88036-800 Florianopolis, SC, Brazil.
| |
Collapse
|
289
|
Brown KC, Svendsen JM, Tucci RM, Montgomery BE, Montgomery TA. ALG-5 is a miRNA-associated Argonaute required for proper developmental timing in the Caenorhabditis elegans germline. Nucleic Acids Res 2017. [PMID: 28645154 PMCID: PMC5587817 DOI: 10.1093/nar/gkx536] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Caenorhabditis elegans contains 25 Argonautes, of which, ALG-1 and ALG-2 are known to primarily interact with miRNAs. ALG-5 belongs to the AGO subfamily of Argonautes that includes ALG-1 and ALG-2, but its role in small RNA pathways is unknown. We analyzed by high-throughput sequencing the small RNAs associated with ALG-5, ALG-1 and ALG-2, as well as changes in mRNA expression in alg-5, alg-1 and alg-2 mutants. We show that ALG-5 defines a distinct branch of the miRNA pathway affecting the expression of genes involved in immunity, defense, and development. In contrast to ALG-1 and ALG-2, which associate with most miRNAs and have general roles throughout development, ALG-5 interacts with only a small subset of miRNAs and is specifically expressed in the germline where it localizes alongside the piRNA and siRNA machinery at P granules. alg-5 is required for optimal fertility and mutations in alg-5 lead to a precocious transition from spermatogenesis to oogenesis. Our results provide a near-comprehensive analysis of miRNA-Argonaute interactions in C. elegans and reveal a new role for miRNAs in the germline.
Collapse
Affiliation(s)
- Kristen C Brown
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Joshua M Svendsen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Rachel M Tucci
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Brooke E Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
290
|
Hajarnis S, Yheskel M, Williams D, Brefort T, Glaudemans B, Debaix H, Baum M, Devuyst O, Patel V. Suppression of microRNA Activity in Kidney Collecting Ducts Induces Partial Loss of Epithelial Phenotype and Renal Fibrosis. J Am Soc Nephrol 2017; 29:518-531. [PMID: 29021386 DOI: 10.1681/asn.2017030334] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022] Open
Abstract
microRNAs (miRNAs) are sequence-specific inhibitors of post-transcriptional gene expression. The physiologic function of these noncoding RNAs in postnatal renal tubules still remains unclear. Surprisingly, they appear to be dispensable for mammalian proximal tubule (PT) function. Here, we examined the effects of miRNA suppression in collecting ducts (CDs). To conclusively evaluate the role of miRNAs, we generated three mouse models with CD-specific inactivation of key miRNA pathway genes Dicer, Dgcr8, and the entire Argonaute gene family (Ago1, 2, 3, and 4). Characterization of these three mouse models revealed that inhibition of miRNAs in CDs spontaneously evokes a renal tubule injury-like response, which culminates in progressive tubulointerstitial fibrosis (TIF) and renal failure. Global miRNA profiling of microdissected renal tubules showed that miRNAs exhibit segmental distribution along the nephron and CDs. In particular, the expression of miR-200c is nearly 70-fold higher in CDs compared with PTs. Accordingly, miR-200s are downregulated in Dicer-KO CDs, its direct target genes Zeb1, Zeb2, and Snail2 are upregulated, and miRNA-depleted CDs undergo partial epithelial-to-mesenchymal transition (EMT). Thus, miRNAs are essential for CD homeostasis. Downregulation of CD-enriched miRNAs and the subsequent induction of partial EMT may be a new mechanism for TIF progression.
Collapse
Affiliation(s)
- Sachin Hajarnis
- Division of Nephrology, Department of Internal Medicine, and
| | - Matanel Yheskel
- Division of Nephrology, Department of Internal Medicine, and
| | - Darren Williams
- Division of Nephrology, Department of Internal Medicine, and
| | - Thomas Brefort
- Comprehensive Biomarker Center, Heidelberg, Germany; and
| | - Bob Glaudemans
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Huguette Debaix
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Michel Baum
- Division of Nephrology, Department of Internal Medicine, and.,Division of Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Vishal Patel
- Division of Nephrology, Department of Internal Medicine, and
| |
Collapse
|
291
|
Castillejo-López C, Cai X, Fahmy K, Baumgartner S. Drosophila exoribonuclease nibbler is a tumor suppressor, acts within the RNA i machinery and is not enriched in the nuage during early oogenesis. Hereditas 2017; 155:12. [PMID: 28974923 PMCID: PMC5622571 DOI: 10.1186/s41065-017-0047-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023] Open
Abstract
Background micro RNAs (miRNAs) are important regulators of many biological pathways. A plethora of steps are required to form, from a precursor, the mature miRNA that eventually acts on its target RNA to repress its expression or to inhibit translation. Recently, Drosophila nibbler (nbr) has been shown to be an important player in the maturation process of miRNA and piRNA. Nbr is an exoribonuclease which helps to shape the 3′ end of miRNAs by trimming the 3′ overhang to a final length. Results In contrast to previous reports on the localization of Nbr, we report that 1) Nbr is expressed only during a short time of oogenesis and appears ubiquitously localized within oocytes, and that 2) Nbr was is not enriched in the nuage where it was shown to be involved in piwi-mediated mechanisms. To date, there is little information available on the function of nbr for cellular and developmental processes. Due to the fact that nbr mutants are viable with minor deleterious effects, we used the GAL4/UAS over-expression system to define novel functions of nbr. We disclose hitherto unknown functions of nbr 1) as a tumor suppressor and 2) as a suppressor of RNAi. Finally, we confirm that nbr is a suppressor of transposon activity. Conclusions Our data suggest that nbr exerts much more widespread functions than previously reported from trimming 3′ ends of miRNAs only.
Collapse
Affiliation(s)
- Casimiro Castillejo-López
- Department of Experimental Medical Science, Lund University, BMC D10, 22184 Lund, Sweden.,Present address: Department of Molecular Epidemiology, Uppsala University, 75185 Uppsala, Sweden
| | - Xiaoli Cai
- Department of Experimental Medical Science, Lund University, BMC D10, 22184 Lund, Sweden
| | - Khalid Fahmy
- Department of Experimental Medical Science, Lund University, BMC D10, 22184 Lund, Sweden.,Present address: Department of Genetics, Ain Shams University, Cairo, Egypt
| | - Stefan Baumgartner
- Department of Experimental Medical Science, Lund University, BMC D10, 22184 Lund, Sweden
| |
Collapse
|
292
|
Ando H, Hirose M, Kurosawa G, Impey S, Mikoshiba K. Time-lapse imaging of microRNA activity reveals the kinetics of microRNA activation in single living cells. Sci Rep 2017; 7:12642. [PMID: 28974737 PMCID: PMC5626736 DOI: 10.1038/s41598-017-12879-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/15/2017] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play critical roles in the post-transcriptional regulation of gene expression. Although the molecular mechanisms of the biogenesis and activation of miRNA have been extensively studied, the details of their kinetics within individual living cells remain largely unknown. We developed a novel method for time-lapse imaging of the rapid dynamics of miRNA activity in living cells using destabilized fluorescent proteins (dsFPs). Real-time monitoring of dsFP-based miRNA sensors revealed the duration necessary for miRNA biogenesis to occur, from primary miRNA transcription to mature miRNA activation, at single-cell resolution. Mathematical modeling, which included the decay kinetics of the fluorescence of the miRNA sensors, demonstrated that miRNAs induce translational repression depending on their complementarity with targets. We also developed a dual-color imaging system, and demonstrated that miR-9-5p and miR-9-3p were produced and activated from a common hairpin precursor with similar kinetics, in single cells. Furthermore, a dsFP-based miR-132 sensor revealed the rapid kinetics of miR-132 activation in cortical neurons under physiological conditions. The timescale of miRNA biogenesis and activation is much shorter than the median half-lives of the proteome, suggesting that the degradation rates of miRNA target proteins are the dominant rate-limiting factors for miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
| | - Matsumi Hirose
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Gen Kurosawa
- Theoretical Biology Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
293
|
Huang X, Fejes Tóth K, Aravin AA. piRNA Biogenesis in Drosophila melanogaster. Trends Genet 2017; 33:882-894. [PMID: 28964526 DOI: 10.1016/j.tig.2017.09.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a conserved defense system that protects the genome integrity of the animal germline from deleterious transposable elements. Targets of silencing are recognized by small noncoding piRNAs that are processed from long precursor molecules. Although piRNAs and other classes of small noncoding RNAs, such as miRNAs and small interfering (si)RNAs, interact with members of the same family of Argonaute (Ago) proteins and their function in target repression is similar, the biogenesis of piRNAs differs from those of the other two small RNAs. Recently, many aspects of piRNA biogenesis have been revealed in Drosophila melanogaster. In this review, we elaborate on piRNA biogenesis in Drosophila somatic and germline cells. We focus on the mechanisms by which piRNA precursor transcription is regulated and highlight recent work that has advanced our understanding of piRNA precursor processing to mature piRNAs. We finish by discussing current models to the still unresolved question of how piRNA precursors are selected and channeled into the processing machinery.
Collapse
Affiliation(s)
- Xiawei Huang
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
294
|
Yang X, Wu D, Du H, Nie F, Pang X, Xu Y. MicroRNA-135a is involved in podocyte injury in a transient receptor potential channel 1-dependent manner. Int J Mol Med 2017; 40:1511-1519. [PMID: 28949388 PMCID: PMC5627871 DOI: 10.3892/ijmm.2017.3152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/18/2017] [Indexed: 12/03/2022] Open
Abstract
Transient receptor potential (TRP) cation channels are essential for normal cellular physiology, and their abnormal expression may lead to a number of disorders, including podocytopathy. Therefore, it is crucial to understand the mechanisms underlying the regulation of TRP channels. In the present study, microRNA (miR)-135a was found to be upregulated in patients with focal segmental glomerulosclerosis and mice treated with adriamycin (ADR). In cultured podocytes, transforming growth factor (TGF)-β and ADR were found to promote miR-135a expression. Conversely, TRP channel 1 (TRPC1) protein levels were markedly downregulated in podocytes from mice treated with ADR, as well as in cultured podocytes treated with ADR and TGF-β. Ectopic expression of miR-135a led to severe podocyte injury and disarray of the podocyte cytoskeleton, whereas podocyte-specific expression of TRPC1 was able to reverse the pathological effects of miR-135a in cultured podocytes. Moreover, using Luciferase reporter assays and western blot analysis, TRPC1 was identified as a target gene of miR-135a. To the best of our knowledge, this is the first study to demonstrate the role of TRPC1 in the development of podocyte injury and disorders of the podocyte cytoskeleton, which may contribute to the development of novel therapeutics for podocyte injury-associated kidney diseases.
Collapse
Affiliation(s)
- Xianggui Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chengdu Medical University, Chengdu, Sichuan 610500, P.R. China
| | - Dongming Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chengdu Medical University, Chengdu, Sichuan 610500, P.R. China
| | - Hongfei Du
- Department of Laboratory Medicine, The First Affiliated Hospital of Chengdu Medical University, Chengdu, Sichuan 610500, P.R. China
| | - Fang Nie
- Department of Laboratory Medicine, The First Affiliated Hospital of Chengdu Medical University, Chengdu, Sichuan 610500, P.R. China
| | - Xueli Pang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chengdu Medical University, Chengdu, Sichuan 610500, P.R. China
| | - Ying Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chengdu Medical University, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
295
|
Pieczora L, Stracke L, Vorgerd M, Hahn S, Theiss C, Theis V. Unveiling of miRNA Expression Patterns in Purkinje Cells During Development. THE CEREBELLUM 2017; 16:376-387. [PMID: 27387430 DOI: 10.1007/s12311-016-0814-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs of 19-25 nucleotides in length that regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs is associated with many disorders and neurodegenerative diseases affecting numerous different pathways and processes, of which many have not yet been completely explored. Recent studies even indicate a crucial role of miRNAs during brain development, with differential expression patterns of several miRNAs seen in both developing and mature cells. A miRNA profiling in brain tissue and the fundamental understanding of their effects might optimize the therapeutical treatment of various neurological disorders. In this study, we performed miRNA array analysis of enriched cerebellar Purkinje cell (PC) samples from both young and mature rat cerebella. We used laser microdissection (LMD) to enrich PC for a highly specific miRNA profiling. Altogether, we present the expression profile of at least 27 miRNAs expressed in rat cerebellar PC and disclose a different expression pattern of at least three of these miRNAs during development. These miRNAs are potential candidates for the regulation and control of cerebellar PC development, including neuritic and dendritic outgrowth as well as spine formation.
Collapse
Affiliation(s)
- Lukas Pieczora
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Lara Stracke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Stephan Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
296
|
Darrington M, Dalmay T, Morrison NI, Chapman T. Implementing the sterile insect technique with RNA interference - a review. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA 2017; 164:155-175. [PMID: 29200471 PMCID: PMC5697603 DOI: 10.1111/eea.12575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 05/22/2023]
Abstract
We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect technique (SIT)-related control. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster Meigen and Homo sapiens L. The underlying genes that enable RNAi are generally conserved across taxa, although variance exists in both their form and function. RNAi represents a plausible, non-GM system for targeting populations of insects for control purposes, if RNAi effector molecules can be delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders and review to what extent taxonomy, genetics, and differing methods of double-stranded (ds) RNA synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects cannot be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects acquire dsRNA from their environment require further research, but the evidence to date suggests that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate the potential for RNAi.
Collapse
Affiliation(s)
- Michael Darrington
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | - Tamas Dalmay
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | | | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| |
Collapse
|
297
|
Paicu C, Mohorianu I, Stocks M, Xu P, Coince A, Billmeier M, Dalmay T, Moulton V, Moxon S. miRCat2: accurate prediction of plant and animal microRNAs from next-generation sequencing datasets. Bioinformatics 2017; 33:2446-2454. [PMID: 28407097 PMCID: PMC5870699 DOI: 10.1093/bioinformatics/btx210] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION MicroRNAs are a class of ∼21-22 nt small RNAs which are excised from a stable hairpin-like secondary structure. They have important gene regulatory functions and are involved in many pathways including developmental timing, organogenesis and development in eukaryotes. There are several computational tools for miRNA detection from next-generation sequencing datasets. However, many of these tools suffer from high false positive and false negative rates. Here we present a novel miRNA prediction algorithm, miRCat2. miRCat2 incorporates a new entropy-based approach to detect miRNA loci, which is designed to cope with the high sequencing depth of current next-generation sequencing datasets. It has a user-friendly interface and produces graphical representations of the hairpin structure and plots depicting the alignment of sequences on the secondary structure. RESULTS We test miRCat2 on a number of animal and plant datasets and present a comparative analysis with miRCat, miRDeep2, miRPlant and miReap. We also use mutants in the miRNA biogenesis pathway to evaluate the predictions of these tools. Results indicate that miRCat2 has an improved accuracy compared with other methods tested. Moreover, miRCat2 predicts several new miRNAs that are differentially expressed in wild-type versus mutants in the miRNA biogenesis pathway. AVAILABILITY AND IMPLEMENTATION miRCat2 is part of the UEA small RNA Workbench and is freely available from http://srna-workbench.cmp.uea.ac.uk/. CONTACT v.moulton@uea.ac.uk or s.moxon@uea.ac.uk. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Claudia Paicu
- The Earlham Institute, Norwich Research Park, Norwich, UK
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Irina Mohorianu
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Matthew Stocks
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ping Xu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Aurore Coince
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Martina Billmeier
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
298
|
Abstract
The discovery of the microRNAs, lin-4 and let-7 as critical mediators of normal development in Caenorhabditis elegans and their conservation throughout evolution has spearheaded research toward identifying novel roles of microRNAs in other cellular processes. To accurately elucidate these fundamental functions, especially in the context of an intact organism, various microRNA transgenic models have been generated and evaluated. Transgenic C. elegans (worms), Drosophila melanogaster (flies), Danio rerio (zebrafish), and Mus musculus (mouse) have contributed immensely toward uncovering the roles of multiple microRNAs in cellular processes such as proliferation, differentiation, and apoptosis, pathways that are severely altered in human diseases such as cancer. The simple model organisms, C. elegans, D. melanogaster, and D. rerio, do not develop cancers but have proved to be convenient systesm in microRNA research, especially in characterizing the microRNA biogenesis machinery which is often dysregulated during human tumorigenesis. The microRNA-dependent events delineated via these simple in vivo systems have been further verified in vitro, and in more complex models of cancers, such as M. musculus. The focus of this review is to provide an overview of the important contributions made in the microRNA field using model organisms. The simple model systems provided the basis for the importance of microRNAs in normal cellular physiology, while the more complex animal systems provided evidence for the role of microRNAs dysregulation in cancers. Highlights include an overview of the various strategies used to generate transgenic organisms and a review of the use of transgenic mice for evaluating preclinical efficacy of microRNA-based cancer therapeutics.
Collapse
Affiliation(s)
- Arpita S Pal
- PULSe Graduate Program, Purdue University, West Lafayette, IN, United States
| | - Andrea L Kasinski
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
299
|
Brandão BB, Guerra BA, Mori MA. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol 2017; 12:82-102. [PMID: 28214707 PMCID: PMC5312655 DOI: 10.1016/j.redox.2017.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Metabolic diseases such as type 2 diabetes are a major public health issue worldwide. These diseases are often linked to a dysfunctional adipose tissue. Fat is a large, heterogenic, pleiotropic and rather complex tissue. It is found in virtually all cavities of the human body, shows unique plasticity among tissues, and harbors many cell types in addition to its main functional unit - the adipocyte. Adipose tissue function varies depending on the localization of the fat depot, the cell composition of the tissue and the energy status of the organism. While the white adipose tissue (WAT) serves as the main site for triglyceride storage and acts as an important endocrine organ, the brown adipose tissue (BAT) is responsible for thermogenesis. Beige adipocytes can also appear in WAT depots to sustain heat production upon certain conditions, and it is becoming clear that adipose tissue depots can switch phenotypes depending on cell autonomous and non-autonomous stimuli. To maintain such degree of plasticity and respond adequately to changes in the energy balance, three basic processes need to be properly functioning in the adipose tissue: i) adipogenesis and adipocyte turnover, ii) metabolism, and iii) signaling. Here we review the fundamental role of small non-coding RNAs (sncRNAs) in these processes, with focus on microRNAs, and demonstrate their importance in adipose tissue function and whole body metabolic control in mammals.
Collapse
Affiliation(s)
- Bruna B Brandão
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Beatriz A Guerra
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marcelo A Mori
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
300
|
Kel I, Chang Z, Galluccio N, Romeo M, Beretta S, Diomede L, Mezzelani A, Milanesi L, Dieterich C, Merelli I. SPIRE, a modular pipeline for eQTL analysis of RNA-Seq data, reveals a regulatory hotspot controlling miRNA expression in C. elegans. MOLECULAR BIOSYSTEMS 2017; 12:3447-3458. [PMID: 27722582 DOI: 10.1039/c6mb00453a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interpretation of genome-wide association study is difficult, as it is hard to understand how polymorphisms can affect gene regulation, in particular for trans-regulatory elements located far from their controlling gene. Using RNA or protein expression data as phenotypes, it is possible to correlate their variations with specific genotypes. This technique is usually referred to as expression Quantitative Trait Loci (eQTLs) analysis and only few packages exist for the integration of genotype patterns and expression profiles. In particular, tools are needed for the analysis of next-generation sequencing (NGS) data on a genome-wide scale, which is essential to identify eQTLs able to control a large number of genes (hotspots). Here we present SPIRE (Software for Polymorphism Identification Regulating Expression), a generic, modular and functionally highly flexible pipeline for eQTL processing. SPIRE integrates different univariate and multivariate approaches for eQTL analysis, paying particular attention to the scalability of the procedure in order to support cis- as well as trans-mapping, thus allowing the identification of hotspots in NGS data. In particular, we demonstrated how SPIRE can handle big association study datasets, reproducing published results and improving the identification of trans-eQTLs. Furthermore, we employed the pipeline to analyse novel data concerning the genotypes of two different C. elegans strains (N2 and Hawaii) and related miRNA expression data, obtained using RNA-Seq. A miRNA regulatory hotspot was identified in chromosome 1, overlapping the transcription factor grh-1, known to be involved in the early phases of embryonic development of C. elegans. In a follow-up qPCR experiment we were able to verify most of the predicted eQTLs, as well as to show, for a novel miRNA, a significant difference in the sequences of the two analysed strains of C. elegans. SPIRE is publicly available as open source software at , together with some example data, a readme file, supplementary material and a short tutorial.
Collapse
Affiliation(s)
- Ivan Kel
- Instituto di Tecnologie Biomediche - Consiglio Nazionale delle Ricerche, via F.lli Cervi 93, 20090, Segrate, Milano, Italy.
| | - Zisong Chang
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| | - Nadia Galluccio
- Instituto di Tecnologie Biomediche - Consiglio Nazionale delle Ricerche, via F.lli Cervi 93, 20090, Segrate, Milano, Italy.
| | - Margherita Romeo
- Dipartimento di Biochimica e Farmacologia Molecolare, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Giuseppe La Masa 19, Milan, Italy.
| | - Stefano Beretta
- Dipartimento di Informatica Sistemistica e Comunicazione, Università degli studi di Milano-Biccoca, Viale Sarca 336, 20125 Milano, Italy.
| | - Luisa Diomede
- Dipartimento di Biochimica e Farmacologia Molecolare, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Giuseppe La Masa 19, Milan, Italy.
| | - Alessandra Mezzelani
- Instituto di Tecnologie Biomediche - Consiglio Nazionale delle Ricerche, via F.lli Cervi 93, 20090, Segrate, Milano, Italy.
| | - Luciano Milanesi
- Instituto di Tecnologie Biomediche - Consiglio Nazionale delle Ricerche, via F.lli Cervi 93, 20090, Segrate, Milano, Italy.
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, University of Heidelberg, Grabengasse 1, 69117 Heidelberg, Germany.
| | - Ivan Merelli
- Instituto di Tecnologie Biomediche - Consiglio Nazionale delle Ricerche, via F.lli Cervi 93, 20090, Segrate, Milano, Italy.
| |
Collapse
|