251
|
Abstract
This year, 2011, marks the forty-year anniversary of the statistical analysis of retinoblastoma that provided the first evidence that tumorigenesis can be initiated by as few as two mutations. This work provided the foundation for the two-hit hypothesis that explained the role of recessive tumour suppressor genes (TSGs) in dominantly inherited cancer susceptibility syndromes. However, four decades later, it is now known that even partial inactivation of tumour suppressors can critically contribute to tumorigenesis. Here we analyse this evidence and propose a continuum model of TSG function to explain the full range of TSG mutations found in cancer.
Collapse
|
252
|
Ellwood-Yen K, Keilhack H, Kunii K, Dolinski B, Connor Y, Hu K, Nagashima K, O'Hare E, Erkul Y, Di Bacco A, Gargano D, Shomer NH, Angagaw M, Leccese E, Andrade P, Hurd M, Shin MK, Vogt TF, Northrup A, Bobkova EV, Kasibhatla S, Bronson RT, Scott ML, Draetta G, Richon V, Kohl N, Blume-Jensen P, Andersen JN, Kraus M. PDK1 attenuation fails to prevent tumor formation in PTEN-deficient transgenic mouse models. Cancer Res 2011; 71:3052-65. [PMID: 21493594 DOI: 10.1158/0008-5472.can-10-2282] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PDK1 activates AKT suggesting that PDK1 inhibition might suppress tumor development. However, while PDK1 has been investigated intensively as an oncology target, selective inhibitors suitable for in vivo studies have remained elusive. In this study we present the results of in vivo PDK1 inhibition through a universally applicable RNAi approach for functional drug target validation in oncogenic pathway contexts. This approach, which relies on doxycycline-inducible shRNA expression from the Rosa26 locus, is ideal for functional studies of genes like PDK1 where constitutive mouse models lead to strong developmental phenotypes or embryonic lethality. We achieved more than 90% PDK1 knockdown in vivo, a level sufficient to impact physiological functions resulting in hyperinsulinemia and hyperglycemia. This phenotype was reversible on PDK1 reexpression. Unexpectedly, long-term PDK1 knockdown revealed a lack of potent antitumor efficacy in 3 different mouse models of PTEN-deficient cancer. Thus, despite efficient PDK1 knockdown, inhibition of the PI3K pathway was marginal suggesting that PDK1 was not a rate limiting factor. Ex vivo analysis of pharmacological inhibitors revealed that AKT and mTOR inhibitors undergoing clinical development are more effective than PDK1 inhibitors at blocking activated PI3K pathway signaling. Taken together our findings weaken the widely held expectation that PDK1 represents an appealing oncology target.
Collapse
|
253
|
Mutti NS, Wang Y, Kaftanoglu O, Amdam GV. Honey bee PTEN--description, developmental knockdown, and tissue-specific expression of splice-variants correlated with alternative social phenotypes. PLoS One 2011; 6:e22195. [PMID: 21779392 PMCID: PMC3136494 DOI: 10.1371/journal.pone.0022195] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/17/2011] [Indexed: 01/06/2023] Open
Abstract
Background Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we characterized the bee PTEN gene homologue for the first time and begin to explore its potential function during bee development and adult life. Results Honey bee PTEN is alternatively spliced, resulting in three splice variants. Next, we show that the expression of PTEN can be down-regulated by RNA interference (RNAi) in the larval stage, when female caste fate is determined. Relative to controls, we observed that RNAi efficacy is dependent on the amount of PTEN dsRNA that is delivered to larvae. For larvae fed queen or worker diets containing a high amount of PTEN dsRNA, PTEN knockdown was significant at a whole-body level but lethal. A lower dosage did not result in a significant gene down-regulation. Finally, we compared same-aged adult workers with different behavior: nursing vs. foraging. We show that between nurses and foragers, PTEN isoforms were differentially expressed within brain, ovary and fat body tissues. All isoforms were expressed at higher levels in the brain and ovaries of the foragers. In fat body, isoform B was expressed at higher level in the nurse bees. Conclusion Our results suggest that PTEN plays a central role during growth and development in queen- and worker-destined honey bees. In adult workers, moreover, tissue-specific patterns of PTEN isoform expression are correlated with differences in complex division of labor between same-aged individuals. Therefore, we propose that knowledge on the roles of IIS and Egfr activity in developmental and behavioral control may increase through studies of how PTEN functions can impact bee social phenotypes.
Collapse
Affiliation(s)
- Navdeep S Mutti
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America.
| | | | | | | |
Collapse
|
254
|
Abstract
The serine/threonine kinase Akt is frequently activated in human cancers and is considered an attractive therapeutic target. However, the relative contributions of the different Akt isoforms to tumorigenesis, and the effect of their deficiencies on cancer development are not well understood. We had previously shown that Akt1 deficiency is sufficient to markedly reduce the incidence of tumors in Pten+/− mice. Particularly, Akt1 deficiency inhibits endometrial carcinoma and prostate neoplasia in Pten+/− mice. Here, we analyzed the effect of Akt2 deficiency on the incidence of tumors in Pten+/− mice. Relative to Akt1, Akt2 deficiency had little-to-no effect on the incidence of prostate neoplasia, endometrial carcinoma, intestinal polyps and adrenal lesions in Pten+/− mice. However, Akt2 deficiency significantly decreased the incidence of thyroid tumors in Pten+/−, which correlates with the relatively high level of Akt2 expression in the thyroid. Thus, unlike Akt1 deletion, Akt2 deletion is not sufficient to markedly inhibit tumorigenesis in Pten+/− mice in most tested tissues. The relatively small effect of Akt2 deletion on the inhibition of tumorigenesis in Pten+/− mice could be explained, in part, by an insufficient decrease in total Akt activity, due to the relatively lower Akt2 versus Akt1 expression, and relatively high blood insulin levels in Pten+/−Akt2−/− mice. The relatively high blood insulin levels in Pten+/−Akt2−/− mice may elevate the activity of Akt1, and possibly Akt3, thus, limiting the reduction of total Akt activity and preventing this activity from dropping to a threshold level required to inhibit tumorigenesis.
Collapse
|
255
|
Mattmann ME, Stoops SL, Lindsley CW. Inhibition of Akt with small molecules and biologics: historical perspective and current status of the patent landscape. Expert Opin Ther Pat 2011; 21:1309-38. [PMID: 21635152 DOI: 10.1517/13543776.2011.587959] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Akt plays a pivotal role in cell survival and proliferation through a number of downstream effectors; unregulated activation of the PI3K/PTEN/Akt pathway is a prominent feature of many human cancers. Akt is considered an attractive target for cancer therapy by the inhibition of Akt alone or in combination with standard cancer chemotherapeutics. Both preclinical animal studies and clinical trials in humans have validated Akt as an important target of cancer drug discovery. AREA COVERED A historical perspective of Akt inhibitors, including PI analogs, ATP-competitive and allosteric Akt inhibitors, along with other inhibitory mechanisms are reviewed in this paper with a focus on issued patents, patent applications and a summary of clinical trial updates since the last review in 2007. EXPERT OPINION A vast diversity of inhibitors of Akt, both small molecule and biologic, have been developed in the past 5 years, with over a dozen in various phases of clinical development, and several displaying efficacy in humans. While it is not yet clear which mechanism of Akt inhibition will be optimal in humans, or which Akt isoforms to inhibit, or whether a small molecule or biologic agent will be best, data to all of these points will be available in the near future.
Collapse
Affiliation(s)
- Margrith E Mattmann
- Vanderbilt University, Vanderbilt Medical Center, Vanderbilt Program in Drug Discovery, Department of Pharmacology , Department of Chemistry , Nashville, TN 37232 , USA
| | | | | |
Collapse
|
256
|
Abstract
Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Epilepsy Research Laboratory Department of Pediatrics Children's Hospital of Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
257
|
Ptenb mediates gastrulation cell movements via Cdc42/AKT1 in zebrafish. PLoS One 2011; 6:e18702. [PMID: 21494560 PMCID: PMC3073981 DOI: 10.1371/journal.pone.0018702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/15/2011] [Indexed: 01/12/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3 kinase) mediates gastrulation cell migration in zebrafish via its regulation of PIP2/PIP3 balance. Although PI3 kinase counter enzyme PTEN has also been reported to be essential for gastrulation, its role in zebrafish gastrulation has been controversial due to the lack of gastrulation defects in pten-null mutants. To clarify this issue, we knocked down a pten isoform, ptenb by using anti-sense morpholino oligos (MOs) in zebrafish embryos and found that ptenb MOs inhibit convergent extension by affecting cell motility and protrusion during gastrulation. The ptenb MO-induced convergence defect could be rescued by a PI3-kinase inhibitor, LY294002 and by overexpressing dominant negative Cdc42. Overexpression of human constitutively active akt1 showed similar convergent extension defects in zebrafish embryos. We also observed a clear enhancement of actin polymerization in ptenb morphants under cofocal microscopy and in actin polymerization assay. These results suggest that Ptenb by antagonizing PI3 kinase and its downstream Akt1 and Cdc42 to regulate actin polymerization that is critical for proper cell motility and migration control during gastrulation in zebrafish.
Collapse
|
258
|
Guo D, Teng Q, Ji C. NOTCH and phosphatidylinositide 3-kinase/phosphatase and tensin homolog deleted on chromosome ten/AKT/mammalian target of rapamycin (mTOR) signaling in T-cell development and T-cell acute lymphoblastic leukemia. Leuk Lymphoma 2011; 52:1200-10. [PMID: 21463127 DOI: 10.3109/10428194.2011.564696] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activating mutations in NOTCH1 consitute the most prominent genetic abnormality in T-cell acute lymphoblastic leukemia (T-ALL). However, most T-ALL cell lines with NOTCH1 mutations are resistant to treatment with γ-secretase inhibitors (GSIs). The spotlight is now shifting to the phosphatidylinositide 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome ten (PTEN)/AKT/mammalian target of rapamycin (mTOR) pathway as another key potential target. These two signaling routes are deregulated in many types of cancer. In this review we discuss these two pathways with respect to their signaling mechanisms, functions during T-cell development, and their mutual roles in the development of T-ALL.
Collapse
Affiliation(s)
- Dongmei Guo
- Department of Hematology, The Central Hospital of Taian, Taian, Shandong, P R China.
| | | | | |
Collapse
|
259
|
Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 2011; 11:289-301. [PMID: 21430697 PMCID: PMC6946181 DOI: 10.1038/nrc3037] [Citation(s) in RCA: 638] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PTEN is among the most frequently inactivated tumour suppressor genes in sporadic cancer. PTEN has dual protein and lipid phosphatase activity, and its tumour suppressor activity is dependent on its lipid phosphatase activity, which negatively regulates the PI3K-AKT-mTOR pathway. Germline mutations in PTEN have been described in a variety of rare syndromes that are collectively known as the PTEN hamartoma tumour syndromes (PHTS). Cowden syndrome is the best-described syndrome within PHTS, with approximately 80% of patients having germline PTEN mutations. Patients with Cowden syndrome have an increased incidence of cancers of the breast, thyroid and endometrium, which correspond to sporadic tumour types that commonly exhibit somatic PTEN inactivation. Pten deletion in mice leads to Cowden syndrome-like phenotypes, and tissue-specific Pten deletion has provided clues to the role of PTEN mutation and loss in specific tumour types. Studying PTEN in the continuum of rare syndromes, common cancers and mouse models provides insight into the role of PTEN in tumorigenesis and will inform targeted drug development.
Collapse
Affiliation(s)
- M Christine Hollander
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
260
|
García-Martínez JM, Wullschleger S, Preston G, Guichard S, Fleming S, Alessi DR, Duce SL. Effect of PI3K- and mTOR-specific inhibitors on spontaneous B-cell follicular lymphomas in PTEN/LKB1-deficient mice. Br J Cancer 2011; 104:1116-25. [PMID: 21407213 PMCID: PMC3068512 DOI: 10.1038/bjc.2011.83] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/07/2011] [Accepted: 02/16/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The PI3K-mTOR (phosphoinositide 3-kinase-mammalian target of rapamycin kinase) pathway is activated in the majority of tumours, and there is interest in assessing whether inhibitors of PI3K or mTOR kinase have efficacy in treating cancer. Here, we define the effectiveness of specific mTOR (AZD8055) and PI3K (GDC-0941) inhibitors, currently in clinical trials, in treating spontaneous B-cell follicular lymphoma that develops in PTEN(+/-)LKB1(+/hypo) mice. METHODS The PTEN(+/-)LKB1(+/hypo) mice were administered AZD8055 or GDC-0941, and the volumes of B-cell follicular lymphoma were measured by MRI. Tumour samples were analysed by immunohistochemistry, immunoblot and flow cytometry. RESULTS The AZD8055 or GDC-0941 induced ∼40% reduction in tumour volume within 2 weeks, accompanied by ablation of phosphorylation of AKT, S6K and SGK (serum and glucocorticoid protein kinase) protein kinases. The drugs reduced tumour cell proliferation, promoted apoptosis and suppressed centroblast population. The AZD8055 or GDC-0941 treatment beyond 3 weeks caused a moderate additional decrease in tumour volume, reaching ∼50% of the initial volume after 6 weeks of treatment. Tumours grew back at an increased rate and displayed similar high grade and diffuse morphology as the control untreated tumours upon cessation of drug treatment. CONCLUSION These results define the effects that newly designed and specific mTOR and PI3K inhibitors have on a spontaneous tumour model, which may be more representative than xenograft models frequently employed to assess effectiveness of kinase inhibitors. Our data suggest that mTOR and PI3K inhibitors would benefit treatment of cancers in which the PI3K pathway is inappropriately activated; however, when administered alone, may not cause complete regression of such tumours.
Collapse
Affiliation(s)
- J M García-Martínez
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - S Wullschleger
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - G Preston
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - S Guichard
- Cancer Bioscience, AstraZeneca, Alderley Park, Cheshire SK10 4TG, UK
| | - S Fleming
- Department of Molecular Pathology, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - D R Alessi
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - S L Duce
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
261
|
Kersseboom R, Dubbink HJ, Corver WE, van Tilburg AJP, Poley JW, van Leerdam ME, Atmodimedjo PN, van de Laar IMBH, Collée JM, Dinjens WNM, Morreau H, Wagner A. PTEN in colorectal cancer: a report on two Cowden syndrome patients. Clin Genet 2011; 81:555-62. [PMID: 21291452 DOI: 10.1111/j.1399-0004.2011.01639.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterozygous germline PTEN mutations cause Cowden syndrome. The risk of colorectal cancer in Cowden patients, however, remains a matter of debate. We describe two patients presenting with colorectal cancer at a young age (28 and 39 years) and dysmorphisms fitting the Cowden spectrum. Heterozygous germline mutations in PTEN were found in both patients. Moreover, analysis of the resected colorectal cancer specimens revealed loss of heterozygosity at the PTEN locus with retention of the mutated alleles, and greatly reduced or absent PTEN expression. Histologically and molecularly, the tumours showed resemblance with sporadic colorectal cancers, although they had prominent fibrotic stroma. Our data indicate that PTEN loss was involved in carcinogenesis in the two patients, supporting that colorectal cancer is part of the Cowden syndrome-spectrum. This is in line with data on sporadic colorectal cancer, mice studies and emerging epidemiological data on Cowden syndrome. Although the exact role of germline PTEN mutations in the carcinogenesis of colorectal cancer remains unclear, we think that Cowden syndrome should be in the differential diagnosis of colorectal cancer certainly in view of the possible prognostic and therapeutic consequences. Prospective follow-up and surveillance of PTEN mutation carriers from the age of 25 to 30 years in a study setting should clarify this issue.
Collapse
Affiliation(s)
- R Kersseboom
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Bayascas JR. PDK1: the major transducer of PI 3-kinase actions. Curr Top Microbiol Immunol 2011; 346:9-29. [PMID: 20563709 DOI: 10.1007/82_2010_43] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most of the cellular responses to phosphatidylinositol 3-kinase activation and phosphatidylinositol 3,4,5-trisphosphate production are mediated by the activation of a group of AGC kinases comprising PKB, S6K, RSK, SGK and PKC isoforms, which play essential roles in regulating physiological processes related to cell growth, proliferation, survival and metabolism. All these growth-factor-stimulated AGC kinases possess a common upstream activator, namely PDK1, a master kinase, which, being constitutively active, is still able to phosphorylate and activate its AGC substrates in response to rises in the levels of the PtdIns(3,4,5)P(3) second messenger. In this chapter, the biochemical, structural and genetic data on the mechanism of action and physiological roles of PDK1 are reviewed, and its potential as a pharmaceutical target for the design of drugs therapeutically beneficial to treat human disease such us diabetes and cancer is discussed.
Collapse
Affiliation(s)
- José Ramón Bayascas
- Institut de Neurociències & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
263
|
Wullschleger S, Sakamoto K, Johnstone L, Duce S, Fleming S, Alessi DR. How moderate changes in Akt T-loop phosphorylation impact on tumorigenesis and insulin resistance. Dis Model Mech 2011; 4:95-103. [PMID: 20959631 PMCID: PMC3008965 DOI: 10.1242/dmm.005603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 08/11/2010] [Indexed: 01/01/2023] Open
Abstract
The Akt signalling pathway plays vital roles in controlling cellular responses to insulin as well as in proliferation and survival. Inhibition of Akt signalling leads to insulin resistance and type 2 diabetes, whereas hyperactivation of Akt promotes tumorigenesis. In this study, we investigate how modest changes in the activity of the Akt signalling pathway, to an extent that might be achieved by drug treatment, would impact on insulin resistance and tumorigenesis. Using insulin-resistant PDK1(K465E/K465E) PH domain knock-in mice, we found that introducing the PTEN(+/-) mutation to slightly stimulate Akt restored normal insulin sensitivity. Introducing the PDK1(K465E/K465E) PH domain knock-in mutation into cancer-prone PTEN(+/-) mice, lowered Akt activity only by about 50%, but led to a delay in tumour onset of ∼4 months in a broad range of tumours. This was also accompanied by slower growth of B cell follicular lymphomas, as monitored by magnetic resonance imaging. Our findings imply that signal transduction inhibitors that lead to a modest reduction in Akt activity would not only delay onset of tumours possessing elevated phosphoinositide 3-kinase pathway activity but would also reduce the growth rate of developed tumours.
Collapse
Affiliation(s)
- Stephan Wullschleger
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kei Sakamoto
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Lana Johnstone
- Department of Molecular Pathology, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Suzanne Duce
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Stewart Fleming
- Department of Molecular Pathology, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Dario R. Alessi
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
264
|
Radulescu S, Ridgway RA, Appleton P, Kroboth K, Patel S, Woodgett J, Taylor S, Nathke IS, Sansom OJ. Defining the role of APC in the mitotic spindle checkpoint in vivo: APC-deficient cells are resistant to Taxol. Oncogene 2010; 29:6418-27. [PMID: 20729907 PMCID: PMC3016607 DOI: 10.1038/onc.2010.373] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/28/2010] [Accepted: 06/03/2010] [Indexed: 12/13/2022]
Abstract
Mutations in the adenomatous polyposis coli (APC) tumour suppressor are the key initiating event of colorectal cancer. Although the control of WNT signalling is well established as a central tumour-suppressive function, the significance of APC in regulating chromosome instability is less well established. In this study, we test whether APC-deficient cells have a functional spindle assembly checkpoint (SAC) in vivo by examining the response of these cells to Taxol and Vinorelbine. We also show for the first time that APC deficiency compromises the arrest response to Taxol in vivo. This effect is independent of the role that APC has in WNT signalling. At higher levels of Taxol, APC-deficient cells arrest as efficiently as wild-type cells. Importantly, this dose of Taxol strongly suppresses intestinal tumourigenesis in models of benign (APC(Min/+) mouse) and invasive (AhCreER(+)APC(fl/+)PTEN(fl/fl)) cancer. In contrast to intestinal enterocytes with a general SAC defect because of Bub1 (budding uninhibited by benzimidazole 1) deletion, APC-deficient enterocytes arrest equivalently to wild type when treated with Vinorelbine. This suggests that the failed arrest in response to Taxol is because of a specific defect in microtubule stabilization following Taxol treatment rather than a general role of the APC protein in the mitotic spindle checkpoint. In summary, this study clarifies the role of APC as a mitotic spindle checkpoint protein in vivo and shows that APC-deficient cells have a compromised response to Taxol.
Collapse
Affiliation(s)
- Sorina Radulescu
- CR-UK Beatson Institute of Cancer Research, Glasgow, G61 1BD, UK
| | - Rachel A Ridgway
- CR-UK Beatson Institute of Cancer Research, Glasgow, G61 1BD, UK
| | | | | | - Satish Patel
- Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | - James Woodgett
- Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | - Stephen Taylor
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | - Owen J Sansom
- CR-UK Beatson Institute of Cancer Research, Glasgow, G61 1BD, UK
| |
Collapse
|
265
|
Shen-Li H, Koujak S, Szablocs M, Parsons R. Reduction of Pten dose leads to neoplastic development in multiple organs of Pten (shRNA) mice. Cancer Biol Ther 2010; 10:1194-200. [PMID: 20980828 PMCID: PMC3018670 DOI: 10.4161/cbt.10.11.13814] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 12/13/2022] Open
Abstract
To address the impact of partial reduction of Pten on tumor initiation, we generated PtenshRNA mice, in which PTEN expression was reduced below normal levels in various tissues. PtenshRNA mice frequently developed lymphoid and prostatic hyperplasia, splenomegaly, and sebaceous adenomas. Our observations support the notion that partial reduction of the dose of Pten with shRNA is sufficient to induce neoplastic disease in multiple organ systems.
Collapse
Affiliation(s)
- Hong Shen-Li
- Institute for Cancer Genetics; Columbia University Medical Center; New York, NY USA
| | - Susan Koujak
- Institute for Cancer Genetics; Columbia University Medical Center; New York, NY USA
| | - Matthias Szablocs
- Department of Pathology; Columbia University Medical Center; New York, NY USA
- Herber Irving Comprehensive Cancer Center; Columbia University Medical Center; New York, NY USA
| | - Ramon Parsons
- Institute for Cancer Genetics; Columbia University Medical Center; New York, NY USA
- Department of Pathology; Columbia University Medical Center; New York, NY USA
- Department of Medicine; Columbia University Medical Center; New York, NY USA
- Herber Irving Comprehensive Cancer Center; Columbia University Medical Center; New York, NY USA
| |
Collapse
|
266
|
Nogueira C, Kim KH, Sung H, Paraiso K, Dannenberg JH, Bosenberg M, Chin L, Kim M. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis. Oncogene 2010; 29:6222-32. [PMID: 20711233 PMCID: PMC2989338 DOI: 10.1038/onc.2010.349] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 06/10/2010] [Accepted: 06/23/2010] [Indexed: 12/30/2022]
Abstract
Mitogen-activated protein kinase (MAPK) and AKT pathways are frequently co-activated in melanoma through overexpression of receptor tyrosine kinases, mutations in their signaling surrogates, such as RAS and BRAF, or loss of negative regulators such as PTEN. As RAS can be a positive upstream regulator of PI3-K, it has been proposed that the loss of PTEN and the activation of RAS are redundant events in melanoma pathogenesis. Here, in genetically engineered mouse models of cutaneous melanomas, we sought to better understand the genetic interactions between HRAS activation and PTEN inactivation in melanoma genesis and progression in vivo. We showed that HRAS activation cooperates with Pten+/- and Ink4a/Arf-/- to increase melanoma penetrance and promote metastasis. Correspondingly, gain- and loss-of-function studies established that Pten loss increases invasion and migration of melanoma cells and non-transformed melanocytes, and such biological activity correlates with a shift to phosphorylation of AKT2 isoform and E-cadherin down-regulation. Thus, Pten inactivation can drive the genesis and promote the metastatic progression of RAS activated Ink4a/Arf deficient melanomas.
Collapse
Affiliation(s)
- Cristina Nogueira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115
- Institute of Molecular Pathology and Immunology of the University of Porto, (IPATIMUP)/Medical Faculty, University of Porto, Porto, Portugal
| | - Kwan-Hyun Kim
- Molecular Oncology Department, Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612
| | - Hyeran Sung
- Molecular Oncology Department, Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612
| | - Kim Paraiso
- Molecular Oncology Department, Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612
| | - Jan-Hermen Dannenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115
| | - Marcus Bosenberg
- Department of Pathology, University of Vermont, Burlington, Vermont
| | - Lynda Chin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Minjung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115
- Molecular Oncology Department, Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612
| |
Collapse
|
267
|
Diegel CR, Cho KR, El-Naggar AK, Williams BO, Lindvall C. Mammalian target of rapamycin-dependent acinar cell neoplasia after inactivation of Apc and Pten in the mouse salivary gland: implications for human acinic cell carcinoma. Cancer Res 2010; 70:9143-52. [PMID: 21062985 DOI: 10.1158/0008-5472.can-10-1758] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cross-talk between the canonical Wnt and mammalian target of rapamycin (mTOR) signaling pathways occurs at multiple levels in the cell and likely contributes to the oncogenic effects of these pathways in human cancer. To gain more insight into the interplay between Wnt and mTOR signaling in salivary gland tumorigenesis, we developed a mouse model in which both pathways are constitutively activated by the conditional inactivation of the Apc and Pten tumor suppressor genes. Loss of either Apc or Pten alone did not cause tumor development. However, deletion of both genes resulted in the formation of salivary gland tumors with 100% penetrance and short latency that showed a remarkable morphologic similarity to human acinic cell carcinoma. Treatment of tumor-bearing mice using the mTOR inhibitor rapamycin led to complete regression of tumors, indicating that tumor growth was dependent on continued mTOR signaling. Importantly, we found that human salivary gland acinic cell carcinomas also express markers of activated mTOR signaling. Together, these results suggest that aberrant activation of mTOR signaling plays a pivotal role in acinar cell neoplasia of the salivary gland. Because rapamycin analogues are approved for treating other types of human malignancies, our findings suggest that rapamycin therapy should be evaluated for treating patients with salivary gland acinic cell carcinoma.
Collapse
Affiliation(s)
- Cassandra R Diegel
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, Michigan 49504, USA
| | | | | | | | | |
Collapse
|
268
|
Berger AH, Pandolfi PP. Haplo-insufficiency: a driving force in cancer. J Pathol 2010; 223:137-46. [PMID: 21125671 DOI: 10.1002/path.2800] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 09/22/2010] [Accepted: 09/30/2010] [Indexed: 01/10/2023]
Abstract
It was originally proposed that tumour suppressor genes (TSGs) act in a recessive manner. Instead, numerous TSGs, including p53 and PTEN, exhibit haplo-insufficiency as a consequence of the dose-dependency of TSG function. Due to the challenges of identifying haplo-insufficient TSGs by human genetics analysis alone, mouse models play a pivotal role in firmly establishing the haplo-insufficiency of a gene, as in the recent identification of DOK2 as a haplo-insufficient lung TSG. In many cases, TSGs exhibit conditional or compound haplo-insufficiency, in which loss of one TSG allele is functionally important only in certain settings or after compound loss of other genes. The 5q deletion syndrome (5q(-) ) is a paradigm of compound haplo-insufficiency and demonstrates the importance of combinatorial interactions to elicit specific phenotypes. These concepts must be integrated into basic science studies to avoid delay in the identification of important TSGs. In the clinical realm, the challenges for molecular pathologists are the development of quantitative measures that can accurately and systematically ascertain the status of haplo-insufficient genes in tumour biopsies, and the use of this information to accurately predict prognosis and response to therapy.
Collapse
Affiliation(s)
- Alice H Berger
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
269
|
Restuccia DF, Hemmings BA. From man to mouse and back again: advances in defining tumor AKTivities in vivo. Dis Model Mech 2010; 3:705-20. [PMID: 20940316 DOI: 10.1242/dmm.004671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AKT hyperactivation is a common event in human cancers, and inhibition of oncogenic AKT activation is a major goal of drug discovery programs. Mouse tumor models that replicate AKT activation typical of human cancers provide a powerful means by which to investigate mechanisms of oncogenic signaling, identify potential therapeutic targets and determine treatment regimes with maximal therapeutic efficacy. This Perspective highlights recent advances using in vivo studies that reveal how AKT signaling supports tumor formation, cooperates with other mutations to promote tumor progression and facilitates tumor-cell dissemination, focusing on well-characterized prostate carcinoma mouse models that are highly sensitive to AKT activation. The implications of these findings on the therapeutic targeting of AKT and potential new drug targets are also explored.
Collapse
Affiliation(s)
- David F Restuccia
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
270
|
Abstract
The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt axis is a key signal transduction node that regulates crucial cellular functions, including insulin and other growth factors signaling, lipid and glucose metabolism, as well as cell survival and apoptosis. In this pathway, PTEN acts as a phosphoinositide phosphatase, which terminates PI3K-propagated signaling by dephosphorylating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. However, the role of PTEN does not appear to be restricted only to PI3K signaling antagonism, and new functions have been recently discovered for this protein. In addition to the well-established role of PTEN as a tumor suppressor, increasing evidence now suggests that a dysregulated PTEN expression and/or activity is also linked to the development of several hepatic pathologies. Dysregulated PTEN expression/activity is observed with obesity, insulin resistance, diabetes, hepatitis B virus/hepatitis C virus infections, and abusive alcohol consumption, whereas mutations/deletions have also been associated with the occurrence of hepatocellular carcinoma. Thus, it appears that alterations of PTEN expression and activity in hepatocytes are common and recurrent molecular events associated with liver disorders of various etiologies. These recent findings suggest that PTEN might represent a potential common therapeutic target for a number of liver pathologies.
Collapse
|
271
|
Dong Y, Sui L, Yamaguchi F, Kamitori K, Hirata Y, Hossain MA, Suzuki A, Holley MC, Tokuda M. Phosphatase and tensin homolog deleted on chromosome 10 regulates sensory cell proliferation and differentiation of hair bundles in the mammalian cochlea. Neuroscience 2010; 170:1304-13. [PMID: 20727948 DOI: 10.1016/j.neuroscience.2010.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/05/2010] [Accepted: 08/12/2010] [Indexed: 01/16/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that regulates cell proliferation, differentiation and growth. It regulates neural and glioma stem/progenitor cell renewal and PTEN deletion can drive expansion of epithelial progenitors in the lung, enhancing their capacity for regeneration. Because it is expressed at relatively high levels in developing mammalian auditory hair cells we have analyzed the phenotype of the auditory epithelium in PTEN knock-out mice. PTEN(+/-) heterozygous littermates have only one functional copy of the gene and show clear evidence for haploinsufficiency in the organ of Corti. Auditory sensory epithelial progenitors withdraw from the cell cycle later than in wild-type animals and this is associated with increases in the numbers of both inner and outer hair cells. The cytoskeletal differentiation of hair cells was also affected. While many hair bundles on the hair cells appeared to develop normally, others were structurally disorganized and a number were missing, apparently lost after they had been formed. The results show that PTEN plays a novel role in regulating cell proliferation and differentiation of hair bundles in auditory sensory epithelial cells and suggest that PTEN signaling pathways may provide therapeutic targets for auditory sensory regeneration.
Collapse
Affiliation(s)
- Y Dong
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Fayard E, Moncayo G, Hemmings BA, Holländer GA. Phosphatidylinositol 3-kinase signaling in thymocytes: the need for stringent control. Sci Signal 2010; 3:re5. [PMID: 20716765 DOI: 10.1126/scisignal.3135re5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The thymus serves as the primary site for the lifelong formation of new T lymphocytes; hence, it is essential for the maintenance of an effective immune system. Although thymocyte development has been widely studied, the mechanisms involved are incompletely defined. A comprehensive understanding of the molecular events that control regular thymocyte development will not only shed light on the physiological control of T cell differentiation but also probably provide insight into the pathophysiology of T cell immunodeficiencies, the molecular basis that underpins autoimmunity, and the mechanisms that instigate the formation of T cell lymphomas. Phosphatidylinositol 3-kinases (PI3Ks) play a critical role in thymocyte development, although not all of their downstream mediators have yet been identified. Here, we discuss experimental evidence that argues for a critical role of the PI3K-phosphoinositide-dependent protein kinase (PDK1)-protein kinase B (PKB) signaling pathway in the development of both normal and malignant thymocytes, and we highlight molecules that can potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Elisabeth Fayard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | | | | | |
Collapse
|
273
|
Guo J, Zhu T, Chen L, Nishioka T, Tsuji T, Xiao ZXJ, Chen CY. Differential sensitization of different prostate cancer cells to apoptosis. Genes Cancer 2010; 1:836-46. [PMID: 21132068 PMCID: PMC2995449 DOI: 10.1177/1947601910381645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 07/02/2010] [Accepted: 07/20/2010] [Indexed: 11/17/2022] Open
Abstract
Although protein kinase C (PKC) plays an important role in sensitizing prostate cancer cells to apoptosis, and suppression of PKC is able to trigger an apoptotic crisis in cells harboring oncogenic ras, little is known about whether dyregulation of Ras effectors in prostate cancer cells, together with loss of PKC, is synthetically lethal. The current study aims at investigating whether prostate cancer cells with aberrant Ras effector signaling are sensitive to treatment with HMG (a PKC inhibitor) for the induction of apoptosis. We show that prostate cancer DU145 cells expressing a high level of JNK1 become susceptible to apoptosis after treatment with HMG, in which caspase 8 is activated and cytochrome c is released to the cytosol. In contrast, the addition of HMG sensitizes LNCaP or PC3 prostate cancer cells harboring an active Akt to apoptosis, in which ROS is upregulated to induce the UPR and GADD153 expression. The concurrent activation of JNK1 and Akt has an additive effect on apoptosis following PKC suppression. Thus, the data identify Akt and JNK1 as potential targets in prostate cancer cells for PKC inhibition-induced apoptosis.
Collapse
Affiliation(s)
- Jinjin Guo
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tongbo Zhu
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lihua Chen
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Takashi Nishioka
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Takanori Tsuji
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhi-Xiong J. Xiao
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Chang Yan Chen
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
274
|
Zhang D, Fan F, Yang J, Wang X, Qiu D, Jiang L. FgTep1p is linked to the phosphatidylinositol-3 kinase signalling pathway and plays a role in the virulence of Fusarium graminearum on wheat. MOLECULAR PLANT PATHOLOGY 2010; 11:495-502. [PMID: 20618707 PMCID: PMC6640377 DOI: 10.1111/j.1364-3703.2010.00626.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Both mammalian tensin-like phosphatase 1 [TEP1; also known as phosphatase deleted on chromosome 10 (PTEN) or mutated in multiple advanced cancer 1 (MMAC1)] and Saccharomyces cerevisiae ScTep1p are involved in the phosphatidylinositol pathway. In this study, we identified the Fusarium graminearum locus FGSG_04982.3 (named FgTEP1) as the functional homologue of ScTEP1 in the sensitivity of S. cerevisiae cells to wortmannin, the phosphatidylinositol-3 kinase inhibitor. Deletion of FgTEP1 causes F. graminearum mycelial growth to become sensitive to lithium and reduces the production of conidia. Although conidia lacking FgTEP1 germinate normally, they show reduced germination efficiency in the presence of wortmannin. In addition, we showed that deletion of FgTEP1 reduces the virulence of F. graminearum on wheat. These results indicate that FgTep1p is linked to the phosphatidylinositol-3 kinase signalling pathway in this plant fungal pathogen.
Collapse
Affiliation(s)
- Dajun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, China
| | | | | | | | | | | |
Collapse
|
275
|
Wang S, Cheng Z, Yang X, Deng K, Cao Y, Chen H, Pan L. Effect of wild type PTEN gene on proliferation and invasion of multiple myeloma. Int J Hematol 2010; 92:83-94. [PMID: 20582577 DOI: 10.1007/s12185-010-0604-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 01/09/2023]
Abstract
We explored the effect of the wild type PTEN gene on the proliferation, apoptosis and invasive ability of multiple myeloma (MM) cells from MM patients and RPMI 8226 cells (a human myeloma cell line), and the effect of the PTEN/focal adhesion kinase (FAK)/MMP signaling pathway on the invasion activity of RPMI 8226 cells. The proliferation of RPMI 8226 cells and purified myeloma cells from MM patients were markedly inhibited after these cells were transfected with recombinant adenovirus-PTEN vectors containing green fluorescent protein (Ad-PTEN-GFP). Maximum growth inhibition of RPMI 8226 cells and purified myeloma cells from MM patients by AD-PTEN-GFP was 42.01 and 24.75%, respectively. After transfection with PTEN-siRNA, the proliferation of RPMI 8226 cells was increased significantly compared with NS-siRNA transfected controls. The maximal survival rate was 141.55 +/- 8.34% in PTEN-siRNA transfected RPMI 8226 cells. Apoptosis of RPMI 8226 cells or purified myeloma cells from MM patients in the Ad-PTEN-GFP group was increased significantly when compared with that in the Ad-GFP (adenovirus vectors only expressing green fluorescent protein) group (p < 0.01). The cell cycle of RPMI 8226 cells was arrested at the G2/M phase. Furthermore, the number of cells that migrated through the matrigel and filter from the upper chamber to the lower chamber in the transwell assay in the Ad-GFP group was significantly larger than that in the Ad-PTEN-GFP group (52.65 +/- 7.39 vs. 23.50 +/- 6.12, p < 0.01). In the PTEN-siRNA group, the cell number (79.50 +/- 11.89) was significantly larger than that in the NS-siRNA group (47.17 +/- 7.76, p < 0.01). When RPMI 8226 cells were transfected with Ad-PTEN-GFP or NS-siRNA, the expression level of PTEN mRNA was up-regulated, and the expression levels of FAK, MMP-2 and MMP-9 mRNA were down-regulated significantly compared with that of the Ad-GFP group and the PTEN-siRNA group (p < 0.01, p < 0.05). The protein levels of FAK and p-FAK, MMP-2 and MMP-9 in RPMI 8226 cells which were transfected with Ad-PTEN-GFP decreased significantly, but increased significantly in PTEN-siRNA transfected RPMI 8226 cells (p < 0.01, p<0.05). These results indicated that wild type PTEN, which inhibited FAK, MMP-2, and MMP-9, could suppress the proliferation and invasion ability of multiple myeloma cells. Modulating the expression of PTEN may be a potential strategy for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Suyun Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | |
Collapse
|
276
|
He L, Ingram A, Rybak AP, Tang D. Shank-interacting protein-like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells. J Clin Invest 2010; 120:2094-108. [PMID: 20458142 DOI: 10.1172/jci40778] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 03/17/2010] [Indexed: 01/26/2023] Open
Abstract
Inactivation of phosphatase and tensin homolog (PTEN) is a critical step during tumorigenesis, and PTEN inactivation by genetic and epigenetic means has been well studied. There is also evidence suggesting that PTEN negative regulators (PTEN-NRs) have a role in PTEN inactivation during tumorigenesis, but their identity has remained elusive. Here we have identified shank-interacting protein-like 1 (SIPL1) as a PTEN-NR in human tumor cell lines and human primary cervical cancer cells. Ectopic SIPL1 expression protected human U87 glioma cells from PTEN-mediated growth inhibition and promoted the formation of HeLa cell-derived xenograft tumors in immunocompromised mice. Conversely, siRNA-mediated knockdown of SIPL1 expression inhibited the growth of both HeLa cells and DU145 human prostate carcinoma cells in vitro and in vivo in a xenograft tumor model. These inhibitions were reversed by concomitant knockdown of PTEN, demonstrating that SIPL1 affects tumorigenesis via inhibition of PTEN function. Mechanistically, SIPL1 was found to interact with PTEN through its ubiquitin-like domain (UBL), inhibiting the phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase activity of PTEN. Furthermore, SIPL1 expression correlated with loss of PTEN function in PTEN-positive human primary cervical cancer tissue. Taken together, these observations indicate that SIPL1 is a PTEN-NR and that it facilitates tumorigenesis, at least in part, through its PTEN inhibitory function.
Collapse
Affiliation(s)
- Lizhi He
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
277
|
Ma J, Sawai H, Matsuo Y, Ochi N, Yasuda A, Takahashi H, Wakasugi T, Funahashi H, Sato M, Takeyama H. IGF-1 mediates PTEN suppression and enhances cell invasion and proliferation via activation of the IGF-1/PI3K/Akt signaling pathway in pancreatic cancer cells. J Surg Res 2010; 160:90-101. [PMID: 19560785 DOI: 10.1016/j.jss.2008.08.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/19/2008] [Accepted: 08/11/2008] [Indexed: 12/13/2022]
Abstract
BACKGROUND Type-1 insulin-like growth factor (IGF-1) up-regulates cell proliferation and invasiveness through activation of PI3K/Akt signaling pathway. IGF-1 also down-regulates the tumor suppressor chromosome 10 (PTEN). We investigated the mechanism by which IGF-1 affects cell proliferation and invasion by suppression of PTEN phosphorylation and interaction with PI3K/PTEN/Akt/NF-small ka, CyrillicB signaling pathway in pancreatic cancer. MATERIALS AND METHODS The expression of IGF-1 receptor (IGF-1R) and PTEN in five pancreatic cancer cell lines was determined by RT-PCR and Western blot. Proliferation and invasion were investigated by WST-1 assay and Matrigel-double chamber assay. Pancreatic cancer cells were transfected with PTEN siRNA to investigate which signaling pathway correlates in regulation of cancer cell proliferation and invasion. RESULTS Five pancreatic cancer cell lines expressed PTEN and IGF-1R in mRNA and protein levels. Suppression of PTEN phosphorylation strongly enhanced cell proliferation and invasion stimulated with IGF-1 via activation of PI3K/Akt/NF-small ka, CyrillicB signaling pathway. In addition, knockdown of PTEN by siRNA transfection also enhanced activation of PI3K/Akt/NF-small ka, CyrillicB pathway, subsequently up-regulating cell invasiveness and proliferation. CONCLUSIONS The IGF-1/PI3K/PTEN/Akt/NF-small ka, CyrillicB cascade may be a key pathway stimulating metastasis of pancreatic cancer cells. We suggest that interfering with the functions of IGF-1/PI3K/Akt/NF-small ka, CyrillicB might be a novel therapeutic approach to inhibit aggressive spread of pancreatic cancer.
Collapse
Affiliation(s)
- Jiachi Ma
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A, Salmena L, Sampieri K, Haveman WJ, Brogi E, Richardson AL, Zhang J, Pandolfi PP. Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 2010; 42:454-8. [PMID: 20400965 PMCID: PMC3118559 DOI: 10.1038/ng.556] [Citation(s) in RCA: 472] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/23/2010] [Indexed: 01/10/2023]
Abstract
Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG). It has been hypothesized that subtle variations in TSG expression can promote cancer development. However, this hypothesis has not yet been definitively supported in vivo. Pten is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes. Here we analyze Pten hypermorphic mice (Pten(hy/+)), expressing 80% normal levels of Pten. Pten(hy/+) mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosity. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner.
Collapse
Affiliation(s)
- Andrea Alimonti
- Cancer Genetics Program, Department of Medicine, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Chagpar RB, Links PH, Pastor MC, Furber LA, Hawrysh AD, Chamberlain MD, Anderson DH. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 2010; 107:5471-6. [PMID: 20212113 PMCID: PMC2851819 DOI: 10.1073/pnas.0908899107] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is deregulated in many human diseases including cancer, diabetes, obesity, and autoimmunity. PI3K consists of a p110 catalytic protein and a p85alpha regulatory protein, required for the stabilization and localization of p110-PI3K activity. The p110-PI3K enzyme generates the key signaling lipid phosphatidylinositol 3,4,5-trisphosphate, which is dephosphorylated by the PI3-phosphatase PTEN. Here we show another function for the p85alpha regulatory protein: it binds directly to and enhances PTEN lipid phosphatase activity. We demonstrate that ectopically expressed FLAG-tagged p85 coimmunoprecipitates endogenous PTEN in an epidermal growth factor dependent manner. We also show epidermal growth factor dependent coimmunoprecipitation of endogenous p85 and PTEN proteins in HeLa cells. Thus p85 regulates both p110-PI3K and PTEN-phosphatase enzymes through direct interaction. This finding underscores the need for caution in analyzing PI3K activity because anti-p85 immunoprecipitations may contain both p85:p110-PI3K and p85:PTEN-phosphatase enzymes and thus measure net PI3K activity. We identify the N-terminal SH3-BH region of p85alpha, absent in the smaller p55alpha and p50alpha isoforms, as the region that mediates PTEN binding and regulation. Cellular expression of p85DeltaSH3-BH results in substantially increased magnitude and duration of pAkt levels in response to growth factor stimulation. The ability of p85 to bind and directly regulate both p110-PI3K and PTEN-PI3-phosphatase allows us to explain the paradoxical insulin signaling phenotypes observed in mice with reduced PI3K or PTEN proteins. This discovery will impact ongoing studies using therapeutics targeting the PI3K/PTEN/Akt pathway.
Collapse
Affiliation(s)
- Ryaz B. Chagpar
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; and
| | - Philip H. Links
- Cancer Research Unit, Research Division, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada
| | - M. Chris Pastor
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; and
| | - Levi A. Furber
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; and
| | - Andrea D. Hawrysh
- Cancer Research Unit, Research Division, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada
| | - M. Dean Chamberlain
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; and
| | - Deborah H. Anderson
- Cancer Research Unit, Research Division, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada
| |
Collapse
|
280
|
Faro A, Boj SF, Clevers H. Fishing for intestinal cancer models: unraveling gastrointestinal homeostasis and tumorigenesis in zebrafish. Zebrafish 2010; 6:361-76. [PMID: 19929219 DOI: 10.1089/zeb.2009.0617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zebrafish has proven to be a highly versatile model for comprehensive studies of gene function in development. Given that the molecular pathways involved in epithelial carcinogenesis appear to be conserved across vertebrates, zebrafish is now considered as a valid model to study tumor biology. Development and homeostasis in multicellular organisms are dependent on a complex interplay between cell proliferation, migration, differentiation, and cell death. The Wnt signaling pathway is a major signaling pathway during embryonic development and is the key regulator of self-renewal homeostasis in several adult tissues. A large body of knowledge on adult stem-cell biology has arisen from the study of the intestinal epithelium over the past 20 years. The Wnt pathway has appeared as its principal regulator of homeostatic self-renewal. Moreover, most cancers of the intestine are caused by activating mutations in the Wnt pathway. Recently, zebrafish models have been developed to study Wnt pathway-induced cancer. An appealing avenue for cancer research in zebrafish is large-scale screens to identify chemotherapeutic and chemopreventive agents in conjunction with the in vivo imaging approaches that zebrafish affords.
Collapse
Affiliation(s)
- Ana Faro
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | | | | |
Collapse
|
281
|
Abstract
Germline mutations in the tumor suppressor gene PTEN (phosphatase and tensin homology deleted on chromosome 10) cause Cowden and Bannayan-Riley-Ruvalcaba (BRR) syndromes, two dominantly inherited disorders characterized by mental retardation, multiple hamartomas, and variable cancer risk. Here, we modeled three sentinel mutant alleles of PTEN identified in patients with Cowden syndrome and show that the nonsense Pten(4-5) and missense Pten(C124R) and Pten(G129E) alleles lacking lipid phosphatase activity cause similar developmental abnormalities but distinct tumor spectra with varying severity and age of onset. Allele-specific differences may be accounted for by loss of function for Pten(4-5), hypomorphic function for Pten(C124R), and gain of function for Pten(G129E). These data demonstrate that the variable tumor phenotypes observed in patients with Cowden and BRR syndromes can be attributed to specific mutations in PTEN that alter protein function through distinct mechanisms.
Collapse
|
282
|
Saarikangas J, Zhao H, Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 2010; 90:259-89. [PMID: 20086078 DOI: 10.1152/physrev.00036.2009] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.
Collapse
Affiliation(s)
- Juha Saarikangas
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
283
|
Thomsen MK, Ambroisine L, Wynn S, Cheah KSE, Foster CS, Fisher G, Berney DM, Møller H, Reuter VE, Scardino P, Cuzick J, Ragavan N, Singh PB, Martin FL, Butler CM, Cooper CS, Swain A. SOX9 elevation in the prostate promotes proliferation and cooperates with PTEN loss to drive tumor formation. Cancer Res 2010; 70:979-87. [PMID: 20103652 DOI: 10.1158/0008-5472.can-09-2370] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dysregulation of tissue development pathways can contribute to cancer initiation and progression. In murine embryonic prostate epithelia, the transcription factor SOX9 is required for proper prostate development. In this study, we examined a role for SOX9 in prostate cancer in mouse and human. In Pten and Nkx3.1 mutant mice, cells with increased levels of SOX9 appeared within prostate epithelia at early stages of neoplasia, and higher expression correlated with progression at all stages of disease. In transgenic mice, SOX9 overexpression in prostate epithelia increased cell proliferation without inducing hyperplasia. In transgenic mice that were also heterozygous for mutant Pten, SOX9 overexpression quickened the induction of high-grade prostate intraepithelial neoplasia. In contrast, Sox9 attenuation led to a decrease proliferating prostate epithelia cells in normal and homozygous Pten mutant mice with prostate neoplasia. Analysis of a cohort of 880 human prostate cancer samples showed that SOX9 expression was associated with increasing Gleason grades and higher Ki67 staining. Our findings identify SOX9 as part of a developmental pathway that is reactivated in prostate neoplasia where it promotes tumor cell proliferation.
Collapse
Affiliation(s)
- Martin K Thomsen
- Section of Gene Function and Regulation, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Vasudevan KM, Garraway LA. AKT Signaling in Physiology and Disease. Curr Top Microbiol Immunol 2010; 347:105-33. [DOI: 10.1007/82_2010_66] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
285
|
Protein Kinase B (PKB/Akt), a Key Mediator of the PI3K Signaling Pathway. Curr Top Microbiol Immunol 2010; 346:31-56. [DOI: 10.1007/82_2010_58] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
286
|
Nardella C, Carracedo A, Salmena L, Pandolfi PP. Faithfull modeling of PTEN loss driven diseases in the mouse. Curr Top Microbiol Immunol 2010; 347:135-68. [PMID: 20549475 DOI: 10.1007/82_2010_62] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A decade of work has indisputably defined PTEN as a pivotal player in human health and disease. Above all, PTEN has been identified as one of the most commonly lost or mutated tumor suppressor genes in human cancers. For this reason, the generation of a multitude of mouse models has been an invaluable strategy to dissect the function and consequences-of-loss of this essential, evolutionary conserved lipid phosphatase in tumor initiation and progression.In this chapter, we will summarize the mouse models that have allowed us to faithfully recapitulate features of human cancers and to highlight the network of connections between the PTEN signaling cascade and other oncogenic or tumor suppressive pathways.Notably, PTEN represents one of the most extensively modeled genes involved in human cancer and exemplifies the strength of genetic mouse modeling as an approach to gain information aimed to improve our understanding of and ability to alleviate human disease.
Collapse
Affiliation(s)
- Caterina Nardella
- Department of Medicine and Pathology, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
287
|
Mu P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P, de Stanchina E, D'Andrea A, Sander C, Ventura A. Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev 2009; 23:2806-11. [PMID: 20008931 DOI: 10.1101/gad.1872909] [Citation(s) in RCA: 396] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The miR-17 approximately 92 cluster is frequently amplified or overexpressed in human cancers and has emerged as the prototypical oncogenic polycistron microRNA (miRNA). miR-17 approximately 92 is a direct transcriptional target of c-Myc, and experiments in a mouse model of B-cell lymphomas have shown cooperation between these two oncogenes. However, both the molecular mechanism underlying this cooperation and the individual miRNAs that are responsible for it are unknown. By using a conditional knockout allele of miR-17 approximately 92, we show here that sustained expression of endogenous miR-17 approximately 92 is required to suppress apoptosis in Myc-driven B-cell lymphomas. Furthermore, we show that among the six miRNAs that are encoded by miR-17 approximately 92, miR-19a and miR-19b are absolutely required and largely sufficient to recapitulate the oncogenic properties of the entire cluster. Finally, by combining computational target prediction, gene expression profiling, and an in vitro screening strategy, we identify a subset of miR-19 targets that mediate its prosurvival activity.
Collapse
Affiliation(s)
- Ping Mu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss. Blood 2009; 115:1175-84. [PMID: 20008304 DOI: 10.1182/blood-2009-04-214718] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
NOTCH1 is activated by mutation in more than 50% of human T-cell acute lymphoblastic leukemias (T-ALLs) and inhibition of Notch signaling causes cell-cycle/growth arrest, providing rationale for NOTCH1 as a therapeutic target. The tumor suppressor phosphatase and tensin homolog (PTEN) is also mutated or lost in up to 20% of cases. It was recently observed among human T-ALL cell lines that PTEN loss correlated with resistance to Notch inhibition, raising concern that patients with PTEN-negative disease may fail Notch inhibitor therapy. As these studies were limited to established cell lines, we addressed this issue using a genetically defined mouse retroviral transduction/bone marrow transplantation model and observed primary murine leukemias to remain dependent on NOTCH1 signaling despite Pten loss, with or without additional deletion of p16(Ink4a)/p19(Arf). We also examined 13 primary human T-ALL samples obtained at diagnosis and found no correlation between PTEN status and resistance to Notch inhibition. Furthermore, we noted in the mouse model that Pten loss accelerated disease onset and produced multiclonal tumors, suggesting NOTCH1 activation and Pten loss may collaborate in leukemia induction. Thus, in contrast to previous findings with established cell lines, these results indicate PTEN loss does not relieve primary T-ALL cells of their "addiction" to Notch signaling.
Collapse
|
289
|
Abstract
Urothelium, one of the slowest cycling epithelia in the body, embodies a unique biological context for cellular transformation. Introduction of oncogenes into or removing tumor suppressor genes from the urothelial cells or a combination of both using the transgenic and/or knockout mouse approaches has provided useful insights into the molecular mechanisms of urothelial transformation and tumorigenesis. It is becoming increasingly clear that over-activation of the receptor tyrosine kinase (RTK) pathway, as exemplified by the constitutively activated Ha-ras oncogene, is both necessary and sufficient to initiate the low-grade, non-invasive urothelial carcinomas. Dosage of the mutated Ha-ras, but not concurrent inactivation of pro-senescence molecules p16Ink4a and p19Arf, dictates whether and when the low-grade urothelial carcinomas arise. Inactivation of both p53 and pRb, a prevailing paradigm previously proposed for muscle-invasive urothelial tumorigenesis, is found to be necessary but insufficient to initiate this urothelial carcinoma variant. Instead, downregulation in p53/pRb co-deficient urothelial cells of p107, a pRb family member, is associated with the genesis of the muscle-invasive bladder cancers. p53 deficiency also seems to be capable of cooperating with that of PTEN in eliciting invasive urothelial carcinomas. The genetically engineered mice have improved the molecular definition of the divergent pathways of urothelial tumorigenesis and progression, helped delineate the intricate crosstalk among different genetic alterations within a urothelium-specific context, identified new prognostic markers and novel therapeutic targets potentially applicable for clinical intervention, and provided in vivo platforms for testing preventive strategies of bladder cancer.
Collapse
Affiliation(s)
- Xue-Ru Wu
- Department of Urology and Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
290
|
Abstract
The tumor suppressor gene phosphatase and tensin homolog (PTEN) is inactivated in many human cancers. However, it is unknown whether PTEN functions as a tumor suppressor in human Philadelphia chromosome-positive leukemia that includes chronic myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL) and is induced by the BCR-ABL oncogene. By using our mouse model of BCR-ABL-induced leukemias, we show that Pten is down-regulated by BCR-ABL in leukemia stem cells in CML and that PTEN deletion causes acceleration of CML development. In addition, overexpression of PTEN delays the development of CML and B-ALL and prolongs survival of leukemia mice. PTEN suppresses leukemia stem cells and induces cell-cycle arrest of leukemia cells. Moreover, PTEN suppresses B-ALL development through regulating its downstream gene Akt1. These results demonstrate a critical role of PTEN in BCR-ABL-induced leukemias and suggest a potential strategy for the treatment of Philadelphia chromosome-positive leukemia.
Collapse
|
291
|
Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ, Kong QL, Xu LH, Zhang X, Liu WL, Li MZ, Zhang L, Kang TB, Fu LW, Huang WL, Xia YF, Tsao SW, Li M, Band V, Band H, Shi QH, Zeng YX, Zeng MS. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest 2009; 119:3626-36. [PMID: 19884659 DOI: 10.1172/jci39374] [Citation(s) in RCA: 345] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 09/09/2009] [Indexed: 12/14/2022] Open
Abstract
The polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) is dysregulated in various cancers, and its upregulation strongly correlates with an invasive phenotype and poor prognosis in patients with nasopharyngeal carcinomas. However, the underlying mechanism of Bmi-1-mediated invasiveness remains unknown. In the current study, we found that upregulation of Bmi-1 induced epithelial-mesenchymal transition (EMT) and enhanced the motility and invasiveness of human nasopharyngeal epithelial cells, whereas silencing endogenous Bmi-1 expression reversed EMT and reduced motility. Furthermore, upregulation of Bmi-1 led to the stabilization of Snail, a transcriptional repressor associated with EMT, via modulation of PI3K/Akt/GSK-3beta signaling. Chromatin immunoprecipitation assays revealed that Bmi-1 transcriptionally downregulated expression of the tumor suppressor PTEN in tumor cells through direct association with the PTEN locus. This in vitro analysis was consistent with the statistical inverse correlation detected between Bmi-1 and PTEN expression in a cohort of human nasopharyngeal carcinoma biopsies. Moreover, ablation of PTEN expression partially rescued the migratory/invasive phenotype of Bmi-1-silenced cells, indicating that PTEN might be a major mediator of Bmi-1-induced EMT. Our results provide functional and mechanistic links between the oncoprotein Bmi-1 and the tumor suppressor PTEN in the development and progression of cancer.
Collapse
Affiliation(s)
- Li-Bing Song
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Ming M, Han W, Maddox J, Soltani K, Shea CR, Freeman DM, He YY. UVB-induced ERK/AKT-dependent PTEN suppression promotes survival of epidermal keratinocytes. Oncogene 2009; 29:492-502. [PMID: 19881543 PMCID: PMC2813408 DOI: 10.1038/onc.2009.357] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ultraviolet (UV) radiation in sunlight is the major environmental cause of skin cancer. PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a proven critical tumor suppressor. We report here that UVB down-regulates PTEN in primary human keratinocytes, human HaCaT keratinocytes, and mouse skin. As compared to normal skin, the PTEN levels are reduced in human actinic keratosis, a precancerous skin lesion caused by solar UV. PTEN down-regulation is mediated by two mechanisms: (1) PTEN is cleaved by active caspase in apoptotic cells in which AKT activation is reduced; and (2) PTEN transcription is suppressed in surviving cells, and this suppression is independent of caspase activation and occurs in parallel with increased ERK and AKT activation. We report here that the combination of ERK and AKT activation is crucial for PTEN suppression in surviving cells following UVB irradiation. PTEN remains suppressed in these cells. AKT activation is higher in UVB-irradiated surviving cells as compared to UVB protected control cells. ERK and AKT pathways are involved in sustaining PTEN suppression in UVB-exposed cells. Increasing PTEN expression enhances apoptosis of keratinocytes in response to UVB radiation. Our findings indicate that (1) UVB radiation suppresses PTEN expression in keratinocytes, and (2) the ERK/AKT/PTEN axis may form a positive feedback loop following UVB irradiation. Identification of PTEN as a critical molecular target of UVB will add to our understanding of the pathogenesis of skin cancer.
Collapse
Affiliation(s)
- M Ming
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
293
|
Puig I, Champeval D, De Santa Barbara P, Jaubert F, Lyonnet S, Larue L. Deletion of Pten in the mouse enteric nervous system induces ganglioneuromatosis and mimics intestinal pseudoobstruction. J Clin Invest 2009; 119:3586-96. [PMID: 19884655 DOI: 10.1172/jci39929] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 09/09/2009] [Indexed: 01/21/2023] Open
Abstract
Intestinal ganglioneuromatosis is a benign proliferation of nerve ganglion cells, nerve fibers, and supporting cells of the enteric nervous system (ENS) that can result in abnormally large enteric neuronal cells (ENCs) in the myenteric plexus and chronic intestinal pseudoobstruction (CIPO). As phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a phosphatase that is critical for controlling cell growth, proliferation, and death, we investigated the role of PTEN in the ENS by generating mice with an embryonic, ENC-selective deletion within the Pten locus. Mutant mice died 2 to 3 weeks after birth, with clinical signs of CIPO and hyperplasia and hypertrophy of ENCs resulting from increased activity of the PI3K/PTEN-AKT-S6K signaling pathway. Further analysis revealed that PTEN was only expressed in developing mouse embryonic ENCs from E15.5 and that the rate of ENC proliferation decreased once PTEN was expressed. Specific deletion of the Pten gene in ENCs therefore induced hyperplasia and hypertrophy in the later stages of embryogenesis. This phenotype was reversed by administration of a pharmacological inhibitor of AKT. In some human ganglioneuromatosis forms of CIPO, PTEN expression was found to be abnormally low and S6 phosphorylation increased. Our study thus reveals that loss of PTEN disrupts development of the ENS and identifies the PI3K/PTEN-AKT-S6K signaling pathway as a potential therapeutic target for ganglioneuromatosis forms of CIPO.
Collapse
Affiliation(s)
- Isabel Puig
- Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, Orsay, France
| | | | | | | | | | | |
Collapse
|
294
|
Qian CN, Furge KA, Knol J, Huang D, Chen J, Dykema KJ, Kort EJ, Massie A, Khoo SK, Vanden Beldt K, Resau JH, Anema J, Kahnoski RJ, Morreau H, Camparo P, Comperat E, Sibony M, Denoux Y, Molinie V, Vieillefond A, Eng C, Williams BO, Teh BT. Activation of the PI3K/AKT pathway induces urothelial carcinoma of the renal pelvis: identification in human tumors and confirmation in animal models. Cancer Res 2009; 69:8256-64. [PMID: 19843858 DOI: 10.1158/0008-5472.can-09-1689] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urothelial carcinoma of the renal pelvis is a deadly disease with an unclear tumorigenic mechanism. We conducted gene expression profiling on a set of human tumors of this type and identified a phosphatidylinositol 3-kinase (PI3K)/AKT activation expression signature in 76.9% (n = 13) of our samples. Sequence analysis found both activating mutations of PIK3CA (13.6%, n = 22) and loss of heterozygosity at the PTEN locus (25%, n = 8). In contrast, none of the other subtypes of kidney neoplasms (e.g., clear-cell renal cell carcinoma) harbored PIK3CA mutations (n = 87; P < 0.001). Immunohistochemical analysis of urothelial carcinoma samples found loss of PTEN protein expression (36.4%, n = 11) and elevation of phosphorylated mammalian target of rapamycin (mTOR; 63.6%, n = 11). To confirm the role of the PI3K/AKT pathway in urothelial carcinoma, we generated mice containing biallelic inactivation of Pten in the urogenital epithelia. These mice developed typical renal pelvic urothelial carcinomas, with an incidence of 57.1% in mice older than 1 year. Laser capture microdissection followed by PCR confirmed the deletion of Pten exons 4 and 5 in the animal tumor cells. Immunohistochemical analyses showed increased phospho-mTOR and phospho-S6K levels in the animal tumors. Renal lymph node metastases were found in 15.8% of the animals with urothelial carcinoma. In conclusion, we identified and confirmed an important role for the PI3K/AKT pathway in the development of urothelial carcinoma and suggested that inhibitors of this pathway (e.g., mTOR inhibitor) may serve as effective therapeutic agents.
Collapse
Affiliation(s)
- Chao-Nan Qian
- Laboratories of Cancer Genetics, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Sughrue ME, Yang I, Kane AJ, Rutkowski MJ, Fang S, James CD, Parsa AT. Immunological considerations of modern animal models of malignant primary brain tumors. J Transl Med 2009; 7:84. [PMID: 19814820 PMCID: PMC2768693 DOI: 10.1186/1479-5876-7-84] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 10/08/2009] [Indexed: 12/26/2022] Open
Abstract
Recent advances in animal models of glioma have facilitated a better understanding of biological mechanisms underlying gliomagenesis and glioma progression. The limitations of existing therapy, including surgery, chemotherapy, and radiotherapy, have prompted numerous investigators to search for new therapeutic approaches to improve quantity and quality of survival from these aggressive lesions. One of these approaches involves triggering a tumor specific immune response. However, a difficulty in this approach is the the scarcity of animal models of primary CNS neoplasms which faithfully recapitulate these tumors and their interaction with the host's immune system. In this article, we review the existing methods utilized to date for modeling gliomas in rodents, with a focus on the known as well as potential immunological aspects of these models. As this review demonstrates, many of these models have inherent immune system limitations, and the impact of these limitations on studies on the influence of pre-clinical therapeutics testing warrants further attention.
Collapse
Affiliation(s)
- Michael E Sughrue
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California, USA.
| | | | | | | | | | | | | |
Collapse
|
296
|
D’Arcangelo G. From human tissue to animal models: Insights into the pathogenesis of cortical dysplasia. Epilepsia 2009; 50 Suppl 9:28-33. [DOI: 10.1111/j.1528-1167.2009.02290.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
297
|
Abstract
Neural stem cells exist in the mammalian developing and adult nervous system. Recently, tremendous interest in the potential of neural stem cells for the treatment of neurodegenerative diseases and brain injuries has substantially promoted research on neural stem cell self-renewal and differentiation. Multiple cell-intrinsic regulators coordinate with the microenvironment through various signaling pathways to regulate neural stem cell maintenance, self-renewal, and fate determination. This review focuses on essential intracellular regulators that control neural stem cell maintenance and self-renewal in both embryonic brains and adult nervous system. These factors include the orphan nuclear receptor TLX, the high-mobility-group DNA binding protein Sox2, the basic helix-loop-helix transcription factor Hes, the tumor suppressor gene Pten, the membrane-associated protein Numb, and its cytoplasmic homolog Numblike. The aim of this review is to summarize our current understanding of neural stem cell regulation through these important stem cell regulators.
Collapse
Affiliation(s)
- Qiuhao Qu
- Department of Neurosciences, Center for Gene Expression and Drug Discovery, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | |
Collapse
|
298
|
Fong MY, Kakar SS. Ovarian cancer mouse models: a summary of current models and their limitations. J Ovarian Res 2009; 2:12. [PMID: 19781107 PMCID: PMC2762470 DOI: 10.1186/1757-2215-2-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 09/28/2009] [Indexed: 01/04/2023] Open
Abstract
Development of mouse models representing human spontaneous ovarian cancer has been hampered by the lack of understanding of the etiology of this very complex disease. Mouse models representing the different types of ovarian cancer are needed to understand how epithelial ovarian cancer differs from granulosa cell tumors. Many different methods have been used to generate a viable genetic model with limited success. This review focuses on the methods of various investigators and the limitations of each model in establishing a reproducible and inheritable line to study this disease.
Collapse
Affiliation(s)
- Miranda Y Fong
- Department of Physiology and Biophysics, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | |
Collapse
|
299
|
Abstract
Skin cancer is the most common cancer in the United States. UV radiation in sunlight is the major environmental factor causing skin cancer development. PTEN (phosphatase and tensin homolog deleted on chromosome 10), a recently discovered tumor suppressor gene, is frequently mutated, deleted, or epigenetically silenced in various human cancers. PTEN negatively regulates the oncogenic phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways. PTEN is clearly a critical tumor suppressor for skin cancer in humans and in mice. This review summarizes the recent progress in the function of PTEN in the development of skin cancer, including basal-cell carcinoma, squamous-cell carcinoma, and melanoma. The regulation of PTEN by UV radiation is also discussed in association with skin carcinogenesis. Understanding the fundamental mechanisms that lead to the reduction of PTEN function in skin carcinogenesis and the essential association with UV radiation opens up new opportunities for molecular chemoprevention and therapy of skin cancer by targeting PTEN pathways.
Collapse
Affiliation(s)
- Mei Ming
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Yu-Ying He
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
300
|
Altering PI3K-Akt signalling in zebrafish embryos affects PTEN phosphorylation and gastrulation. Biol Cell 2009; 101:661-78, 4 p following 678. [PMID: 19515017 DOI: 10.1042/bc20090034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND INFORMATION PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a negative regulator of the PI3K (phosphoinositide 3-kinase)-Akt (also called protein kinase B) signalling pathway and is essential for embryogenesis, but its function in early vertebrate embryos is unclear. RESULTS To address how PTEN functions in early embryos, we overexpressed one of the four zebrafish PTEN isoforms at the 1-2-cell stage. Overexpression of Ptena454 alters phospho-Akt levels and impairs cell movements associated with gastrulation. Heat shocking embryos increases phospho-Akt levels and lowers phospho-Ptena454 levels. Inhibiting CK2 (protein kinase CK2) activity reduces phospho-Pten levels and augments the effects due to Ptena454 overexpression. Low phospho-Akt and corresponding low phospho-GSK-3 (glycogen synthase kinase-3) and high phospho-Pten levels accompany wortmannin or LY294002 treatment, which inhibit PI3K activity. CONCLUSIONS These results suggest that Ptena454 regulation is correlated to changes in phospho-Akt levels. We propose a model in which homoeostasis in rapidly dividing and migrating embryonic cells depends on a counterbalance between pro-survival signalling employing CK2 and GSK-3 and the pro-apoptotic activity of Ptena454.
Collapse
|