251
|
Dessalew N, Bharatam PV. 3D-QSAR and molecular docking study on bisarylmaleimide series as glycogen synthase kinase 3, cyclin dependent kinase 2 and cyclin dependent kinase 4 inhibitors: An insight into the criteria for selectivity. Eur J Med Chem 2007; 42:1014-27. [PMID: 17335939 DOI: 10.1016/j.ejmech.2007.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/28/2006] [Accepted: 01/09/2007] [Indexed: 11/16/2022]
Abstract
Selective glycogen synthase kinase 3 (GSK3) inhibition over cyclin dependent kinases such as cyclin dependent kinase 2 (CDK2) and cyclin dependent kinase 4 (CDK4) is an important requirement for improved therapeutic profile of GSK3 inhibitors. The concepts of selectivity and additivity fields have been employed in developing selective CoMFA models for these related kinases. Initially, sets of three individual CoMFA models were developed, using 36 compounds of bisarylmaleimide series to correlate with the GSK3, CDK2 and CDK4 inhibitory potencies. These models showed a satisfactory statistical significance: CoMFA-GSK3 (r(2)(con), r(2)(cv): 0.931, 0.519), CoMFA-CDK2 (0.937, 0.563), and CoMFA-CDK4 (0.892, 0.725). Three different selective CoMFA models were then developed using differences in pIC(50) values. These three models showed a superior statistical significance: (i) CoMFA-Selective1 (r(2)(con), r(2)(cv): 0.969, 0.768), (ii) CoMFA-Selective 2 (0.974, 0.835) and (iii) CoMFA-Selective3 (0.963, 0.776). The selective models were found to outperform the individual models in terms of the quality of correlation and were found to be more informative in pinpointing the structural basis for the observed quantitative differences of kinase inhibition. An in-depth comparative investigation was carried out between the individual and selective models to gain an insight into the selectivity criterion. To further validate this approach, a set of new compounds were designed which show selectivity and were docked into the active site of GSK3, using FlexX based incremental construction algorithm.
Collapse
Affiliation(s)
- Nigus Dessalew
- Department of Pharmaceutical Chemistry, School of Pharmacy, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | | |
Collapse
|
252
|
Zhen Y, Sørensen V, Jin Y, Suo Z, Wiedłocha A. Indirubin-3'-monoxime inhibits autophosphorylation of FGFR1 and stimulates ERK1/2 activity via p38 MAPK. Oncogene 2007; 26:6372-85. [PMID: 17533378 DOI: 10.1038/sj.onc.1210473] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Indirubin-3'-monoxime is a derivative of the bis-indole alkaloid indirubin, an active ingredient of a traditional Chinese medical preparation that exhibits anti-inflammatory and anti-leukemic activities. Indirubin-3'-monoxime is mainly recognized as an inhibitor of cyclin-dependent kinases (CDKs) and glycogen synthase kinase-3. It inhibits proliferation of cultured cells, mainly through arresting the cells in the G1/S or G2/M phase of the cell cycle. Here, we report that indirubin-3'-monoxime is able to inhibit proliferation of NIH/3T3 cells by specifically inhibiting autophosphorylation of fibroblast growth factor receptor 1 (FGFR1), blocking in this way the receptor-mediated cell signaling. Indirubin-3'-monoxime inhibits the activity of FGFR1 at a concentration lower than that required for inhibition of phosphorylation of CDK2 and retinoblastoma protein and cell proliferation stimulated by fetal calf serum. The ability of indirubin-3'-monoxime to inhibit FGFR1 signaling was similar to that of the FGFR1 inhibitor SU5402. In addition, we found that indirubin-3'-monoxime activates long-term p38 mitogen-activated protein kinase activity, which stimulates extracellular signal-regulated kinase 1/2 in a way unrelated to the activity of FGFR1. Furthermore, we show that indirubin-3'-monoxime can inhibit proliferation of the myeloid leukemia cell line KG-1a through inhibition of the activity of the FGFR1 tyrosine kinase. The data presented here demonstrate previously unknown activities of indirubin-3'-monoxime that may have clinical implications.
Collapse
Affiliation(s)
- Y Zhen
- Department of Biochemistry, Institute for Cancer Research at The National Hospital - The Norwegian Radium Hospital, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
253
|
Karapanagiotis I, de Villemereuil V, Magiatis P, Polychronopoulos P, Vougogiannopoulou K, Skaltsounis A. Identification of the Coloring Constituents of Four Natural Indigoid Dyes. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070600674935] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ioannis Karapanagiotis
- a Ormylia Art Diagnosis Centre , Sacred Convent of Annunciation , Ormylia, Chalkidiki, Greece
| | | | - Prokopios Magiatis
- b Department of Pharmacognosy and Natural Products Chemistry , Faculty of Pharmacy, University of Athens , Athens, Greece
| | - Panagiotis Polychronopoulos
- b Department of Pharmacognosy and Natural Products Chemistry , Faculty of Pharmacy, University of Athens , Athens, Greece
| | - Konstantina Vougogiannopoulou
- b Department of Pharmacognosy and Natural Products Chemistry , Faculty of Pharmacy, University of Athens , Athens, Greece
| | - Alexios‐Leandros Skaltsounis
- b Department of Pharmacognosy and Natural Products Chemistry , Faculty of Pharmacy, University of Athens , Athens, Greece
| |
Collapse
|
254
|
Kim SA, Kim YC, Kim SW, Lee SH, Min JJ, Ahn SG, Yoon JH. Antitumor Activity of Novel Indirubin Derivatives in Rat Tumor Model. Clin Cancer Res 2007; 13:253-9. [PMID: 17200363 DOI: 10.1158/1078-0432.ccr-06-1154] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The novel indirubin derivatives 5'-nitro-indirubinoxime, 5'-fluoro-indirubinoxime, and 5'-trimethylacetamino-indirubinoxime were designed and tested for antitumor activity both in vitro and in vivo using rat tumor model. EXPERIMENTAL DESIGN Three-week-old male Sprague-Dawley rats were inoculated s.c. on the left flank with 10(7) RK3E-ras rat kidney epithelial cells harboring k-ras gene. Alternatively, 5 x 10(6) RK3E-ras cells were injected into the oral mucosa. Indirubin derivative treatment began on the 3rd or 6th day after oral or s.c. cell injection, respectively. Indirubin derivatives were directly injected into the tumor every other day for a total of five times. Animals were monitored daily and tumor volume was measured by caliper. RESULTS Indirubin derivatives showed potent antiproliferative activity on various human cancer cells and oncogenic RK3E-ras rat kidney cells, with IC(50) ranging from 1 to 12 mumol/L. Treatment with indirubin derivatives induced the activation of caspase-7 followed by apoptosis in RK3E-ras cells. Indirubin derivatives showed strong antitumor activity in rat solid and oral tumor models. Direct injection of indirubin derivatives every other day for 10 days induced significant inhibition of tumor growth in Sprague-Dawley rats bearing RK3E-ras-induced tumors. Histologically, treatment with indirubin derivatives caused significant inhibition of tumor formation with increased apoptosis and decreased tumor cell proliferation. CONCLUSIONS Our data showed that novel indirubin derivatives 5'-nitro-indirubinoxime, 5'-fluoro-indirubinoxime, and 5'-trimethylacetamino-indirubinoxime effectively arrested the tumor growth by inhibiting cell proliferation and inducing apoptosis. These findings provide the potential value of indirubin derivatives as novel candidates for antitumor agents.
Collapse
Affiliation(s)
- Soo-A Kim
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Kyungju, South Korea
| | | | | | | | | | | | | |
Collapse
|
255
|
Duensing A, Ghanem L, Steinman RA, Liu Y, Duensing S. p21(Waf1/Cip1) deficiency stimulates centriole overduplication. Cell Cycle 2006; 5:2899-902. [PMID: 17172866 PMCID: PMC2275058 DOI: 10.4161/cc.5.24.3567] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inactivation of the cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1) (CDKN1; hereafter p21) has previously been implicated in the induction of numerical centrosome alterations. It is unclear, however, whether p21 deficiency deregulates the centrosome duplication cycle itself or causes an accumulation of centrosomes due to cell division failure and/or polyploidization. Using a novel marker for maternal centrioles, Cep170, we show here that knock-down of p21 protein expression in murine myeloblasts can stimulate excessive centriole numbers in the presence of only one mature centriole. These results indicate that p21 deficiency can trigger a bona fide overduplication of centrioles and that aberrant centrosome numbers cannot solely be explained by polyploidization as suggested by previous studies. Our findings underscore that impaired p21 expression may function as a driving force for chromosomal instability and highlight the importance of markers for maternal centrioles such as Cep170 to elucidate the pathogenesis of numerical centriole aberrations in tumor cells.
Collapse
Affiliation(s)
- Anette Duensing
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Molecular Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Louis Ghanem
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Richard A. Steinman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ying Liu
- Molecular Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Stefan Duensing
- Molecular Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Address correspondence to: Stefan Duensing, Molecular Virology Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion Suite 1.8, 5117 Centre Avenue, Pittsburgh, PA 15213, USA, Phone: (412) 623-7719, Fax: (412) 623-7715, E-mail:
| |
Collapse
|
256
|
Vine KL, Locke JM, Ranson M, Benkendorff K, Pyne SG, Bremner JB. In vitro cytotoxicity evaluation of some substituted isatin derivatives. Bioorg Med Chem 2006; 15:931-8. [PMID: 17088067 DOI: 10.1016/j.bmc.2006.10.035] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 10/15/2006] [Accepted: 10/18/2006] [Indexed: 10/24/2022]
Abstract
A range of substituted 1H-indole-2,3-diones (isatins) were synthesized using standard procedures and their cytotoxicity evaluated against the human monocyte-like histiocytic lymphoma (U937) cell line in vitro. SAR studies identified C(5), C(6), and C(7) substitution greatly enhanced activity with some di- and tri-halogenated isatins giving IC(50) values <10 microM. Of the 23 compounds tested, four were selected for further screening against a panel of five human cancer cell lines. These compounds, in general, showed greater selectivity toward leukemia and lymphoma cells over breast, prostate, and colorectal carcinoma cell lines. The most active compound, 5,6,7-tribromoisatin (2p), was found to be antiproliferative at low micromolar concentrations and also activated the effector caspases 3 and 7 in a dose-dependent manner. These results indicate that di- and tri-substituted isatins may be useful leads for anticancer drug development in the future.
Collapse
Affiliation(s)
- Kara L Vine
- School of Biological Sciences, University of Wollongong, NSW 2522, Australia.
| | | | | | | | | | | |
Collapse
|
257
|
Marchioni F, Yang J, Walker W, Wudl F. A Low Band Gap Conjugated Polymer for Supercapacitor Devices. J Phys Chem B 2006; 110:22202-6. [PMID: 17078659 DOI: 10.1021/jp063849w] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the electrochemical polymerization and characterization of a stable and dopable polyindophenine derivative starting from monomer 5. The fabrication of supercapacitor devices was carried out by direct electrochemical polymerization on an ITO-coated slide. Furthermore, the galvanostatic and potentiostatic experiments conducted on these supercapacitors have shown that the polyindophenine-derivative material has very good cyclability, over a potential range of 1.4 V, and a maximum capacitance of 140 F g(-1).
Collapse
Affiliation(s)
- Filippo Marchioni
- Department of Chemistry and Biochemistry and Exotic Materials Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
258
|
Libnow S, Hein M, Michalik D, Langer P. First synthesis of indirubin N-glycosides (red sugars). Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
259
|
Ferandin Y, Bettayeb K, Kritsanida M, Lozach O, Polychronopoulos P, Magiatis P, Skaltsounis AL, Meijer L. 3'-Substituted 7-halogenoindirubins, a new class of cell death inducing agents. J Med Chem 2006; 49:4638-49. [PMID: 16854069 DOI: 10.1021/jm060314i] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Indirubins are kinase inhibitory bis-indoles that can be generated from various plant, mollusk, mammalian, and bacterial sources or chemically synthesized. We here report on the synthesis and biological evaluation of 3'-substituted 7-halogenoindirubins. Molecular modeling and kinase assays suggest that steric hindrance prevents 3'-substituted 7-halogenoindirubins from interacting with classical kinase targets of other indirubins such as cyclin-dependent kinases and glycogen synthase kinase-3. Surprisingly 3'-substituted 7-halogenoindirubins induce cell death in a diversity of human tumor cell lines. Although some 3'-substituted 7-halogenoindirubins appear to induce effector caspase-independent, nonapoptotic cell death, others trigger the landmarks of classical apoptosis. A structure-activity relationship study was performed to optimize 3'-substituted 7-halogenoindirubins with respect to solubility and cell death induction. Despite their unidentified targets, 3'-substituted 7-halogenoindirubins constitute a new promising family of antitumor agents.
Collapse
Affiliation(s)
- Yoan Ferandin
- Cell Cycle Group & UPS2682, C.N.R.S., Station Biologique, B.P. 74, 29682 Roscoff Cedex, Bretagne, France
| | | | | | | | | | | | | | | |
Collapse
|
260
|
Frame S, Zheleva D. Targeting glycogen synthase kinase-3 in insulin signalling. Expert Opin Ther Targets 2006; 10:429-44. [PMID: 16706683 DOI: 10.1517/14728222.10.3.429] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The renewed interest in an enzyme first discovered over 25 years ago stems from the potential of inhibitors of this enzyme to treat conditions as diverse as diabetes, Alzheimer's disease, stroke and bipolar disorder, and even to enhance the repopulating capacity of transplanted haematopoietic stem cells. The emergence of the first few potent and specific glycogen synthase kinase-3 (GSK-3) inhibitors will end years of speculation on their potential and finally allow the impact of GSK-3 inhibitors to be evaluated clinically. The next few years are likely to be particularly exciting ones for fans of this old enzyme. This review focuses on the role of GSK-3 in the insulin signalling pathway and highlights the evidence implicating the enzyme in insulin resistance. Pharmacological in vitro and in vivo proof-of-concept studies are also discussed, which establish the therapeutic potential of GSK-3 inhibitors as agents for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Sheelagh Frame
- Cyclacel Ltd., James Lindsay Place, Dundee, DD1 5JJ, UK.
| | | |
Collapse
|
261
|
Sethi G, Ahn KS, Sandur SK, Lin X, Chaturvedi MM, Aggarwal BB. Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kappa B signaling pathway. J Biol Chem 2006; 281:23425-35. [PMID: 16785236 DOI: 10.1074/jbc.m602627200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although indirubin is known to exhibit anti-cancer and anti-inflammatory activities, very little is known about its mechanism of action. In this study, we investigated whether indirubin mediates its effects through interference with the NF-kappaB pathway. As examined by the DNA binding of NF-kappaB, we found that indirubin suppressed tumor necrosis factor (TNF)-induced NF-kappaB activation in a dose- and time-dependent manner. Indirubin also suppressed the NF-kappaB activation induced by various inflammatory agents and carcinogens. Further studies showed that indirubin blocked the phosphorylation and degradation of IkappaB alpha through the inhibition of activation of IkappaB alpha kinase and phosphorylation and nuclear translocation of p65. NF-kappaB reporter activity induced by TNFR1, TNF receptor-associated death domain, TRAF2, TAK1, NF-kappaB-inducing kinase, and IKKbeta was inhibited by indirubin but not that induced by p65 transfection. We also found that indirubin inhibited the expression of NF-kappaB-regulated gene products involved in antiapoptosis (IAP1, IAP2, Bcl-2, Bcl-xL, and TRAF1), proliferation (cyclin D1 and c-Myc), and invasion (COX-2 and MMP-9). This correlated with enhancement of the apoptosis induced by TNF and the chemotherapeutic agent taxol in human leukemic KBM-5 cells. Indirubin also suppressed cytokine-induced cellular invasion. Overall, our results indicate that anti-cancer and anti-inflammatory activities previously assigned to indirubin may be mediated in part through the suppression of the NF-kappaB activation pathway.
Collapse
Affiliation(s)
- Gautam Sethi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
262
|
Ribas J, Bettayeb K, Ferandin Y, Knockaert M, Garrofé-Ochoa X, Totzke F, Schächtele C, Mester J, Polychronopoulos P, Magiatis P, Skaltsounis AL, Boix J, Meijer L. 7-Bromoindirubin-3'-oxime induces caspase-independent cell death. Oncogene 2006; 25:6304-18. [PMID: 16702956 DOI: 10.1038/sj.onc.1209648] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Indirubin, an isomer of indigo, is a reported inhibitor of cyclin-dependent kinases (CDKs) and glycogen synthase kinase-3 (GSK-3) as well as an agonist of the aryl hydrocarbon receptor (AhR). Indirubin is the active ingredient of a traditional Chinese medicinal recipe used against chronic myelocytic leukemia. Numerous indirubin analogs have been synthesized to optimize this promising kinase inhibitor scaffold. We report here on the cellular effects of 7-bromoindirubin-3'-oxime (7BIO). In contrast to its 5-bromo- and 6-bromo- isomers, and to indirubin-3'-oxime, 7BIO has only a marginal inhibitory activity towards CDKs and GSK-3. Unexpectedly, 7BIO triggers a rapid cell death process distinct from apoptosis. 7-Bromoindirubin-3'-oxime induces the appearance of large pycnotic nuclei, without classical features of apoptosis such as chromatin condensation and nuclear fragmentation. 7-Bromoindirubin-3'-oxime-induced cell death is not accompanied by cytochrome c release neither by any measurable effector caspase activation. Furthermore, the death process is not altered either by the presence of Q-VD-OPh, a broad-spectrum caspase inhibitor, or the overexpression of Bcl-2 and Bcl-XL proteins. Neither AhR nor p53 is required during 7BIO-induced cell death. Thus, in contrast to previously described indirubins, 7BIO triggers the activation of non-apoptotic cell death, possibly through necroptosis or autophagy. Although their molecular targets remain to be identified, 7-substituted indirubins may constitute a new class of potential antitumor compounds that would retain their activity in cells refractory to apoptosis.
Collapse
Affiliation(s)
- J Ribas
- CNRS, Cell Cycle Group and UPS2682, Station Biologique, Bretagne, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Zhang N, Jiang Y, Zou J, Zhang B, Jin H, Wang Y, Yu Q. 3D QSAR for GSK-3β inhibition by indirubin analogues. Eur J Med Chem 2006; 41:373-8. [PMID: 16442187 DOI: 10.1016/j.ejmech.2005.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 10/20/2005] [Accepted: 10/26/2005] [Indexed: 11/26/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) plays an important role in a diverse number of regulatory pathways by phosphorylation of several different cellular targets and its inhibitors have been evaluated as promising drug candidates. Indirubin analogues show favorable inhibitory activity targeting GSK-3beta, which is closely related to the property and position of substituents. Two methods were used to build 3D-QSAR models for indirubin derivatives. The conventional 3D-QSAR (ligand-based) studies were performed based on the lower energy conformations employing atom fit alignment rule. The receptor-based 3D-QSAR models were also derived using bioactive conformations obtained by docking the compounds to the active site of GSK-3. Conclusions of models based on two methods are similar and reliable. The results indicate that both ligand-based and receptor-based are feasible tools to build 3D-QSAR models. Contour maps of the receptor-based CoMSIA model (q(2) = 0.766, r(2) = 0.908, N (number of components) = 5) including the steric, electronic and hydrophobic fields were taken as representative to explain factors affecting activities of inhibitors.
Collapse
Affiliation(s)
- Na Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
264
|
Abadi AH, Abou-Seri SM, Abdel-Rahman DE, Klein C, Lozach O, Meijer L. Synthesis of 3-substituted-2-oxoindole analogues and their evaluation as kinase inhibitors, anticancer and antiangiogenic agents. Eur J Med Chem 2006; 41:296-305. [PMID: 16494969 DOI: 10.1016/j.ejmech.2005.12.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/17/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Several analogues of the 3-substituted-2-oxoindole chemotype were synthesized by condensing isatin or the appropriate haloisatin with some amino acids or histamine under neutral conditions. All the imino derivatives produced were tested for kinase inhibitory properties against three serine/threonine kinases, namely CDK1/cyclin B, CDK5/p25 and GSK3alpha/beta. Most of the histidine derivatives showed inhibitory properties to the three kinases in the low micromolar range. The histamine derivatives were less potent against CDK1/cyclin B and CDK5/p25 and totally inactive against GSK3alpha/beta. So, the management of the carboxyl function may be a tool to impart selectivity in such family of kinases. Docking of 2-[[-5-bromo-2-oxoindolin-3-ylidene]amino]-3-(1H-imidazol2-yl)propanoic acid 14 to CDK5/p25 indicates that this compound can interact with the enzyme through four hydrogen bonds; for GSK/3beta, the ligand poses itself in another orientation, also four hydrogen bonds can be formed between the ligand and the receptor, otherwise hydrophobic interactions seem to predominate. Also, all the final compounds were tested for their in vitro antitumor properties against MCF7 (breast), NCI-H460 (lung) and SF268 (CNS) cancer cell lines. None of the synthesized compounds was cytotoxic at 10(-4) molar concentration. Moreover, compounds 13 and 14 were tested for potential antiangiogenic properties by testing their ability to inhibit the proliferation of human umbilical vein endothelial cells (HUVECs), cord formation and migration in response to chemoattractant. Only compound 14 showed moderate inhibitory properties to HUVECs proliferation and cord formation while its non-brominated derivative 13 did not. Thus, the antiangiogenesis properties are not apparently caused by inhibition of any of the tested kinases.
Collapse
Affiliation(s)
- Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Egypt.
| | | | | | | | | | | |
Collapse
|
265
|
Polgár T, Baki A, Szendrei GI, Keseru GM. Comparative virtual and experimental high-throughput screening for glycogen synthase kinase-3beta inhibitors. J Med Chem 2006; 48:7946-59. [PMID: 16335919 DOI: 10.1021/jm050504d] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycogen synthase kinase-3beta (GSK-3beta) is a serine/threonine kinase that has recently emerged as a key target for neurodegenerative diseases and diabetes. As an initial step of our lead discovery program, we developed a virtual screen to discriminate known GSK-3beta inhibitors and inactive compounds using FlexX, FlexX-Pharm, and FlexE. The maximal enrichment factor (EF = 28) suggests that our protocol identifies potential GSK-3beta inhibitors effectively from large compound collections. The effectiveness of our screening protocol was further investigated by comparative experimental and virtual high-throughput screens (HTSs) performed for the same subset of our corporate library. Enrichment factors, the significantly higher hit rate of virtual screening (12.9%) than that of the HTS (0.55%), and also the comparison of active clusters suggest that our virtual screening protocol is an effective tool in GSK-3beta-based library focusing. Head-to-head comparison of true/false positives and negatives revealed the two approaches to be complementary rather than competitive.
Collapse
Affiliation(s)
- Tímea Polgár
- CADD&HTS, Gedeon Richter Ltd., P.O. Box 27, H-1475 Budapest, Hungary
| | | | | | | |
Collapse
|
266
|
Martinez A, Alonso M, Castro A, Dorronsoro I, Gelpí JL, Luque FJ, Pérez C, Moreno FJ. SAR and 3D-QSAR studies on thiadiazolidinone derivatives: exploration of structural requirements for glycogen synthase kinase 3 inhibitors. J Med Chem 2006; 48:7103-12. [PMID: 16279768 DOI: 10.1021/jm040895g] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 2,4-disubstituted thiadiazolidinones (TDZD) are described as the first ATP-noncompetitive GSK-3 inhibitors. Following an SAR study about TDZD, different structural modifications in the heterocyclic ring aimed to test the influence of each heteroatom on the biological study are here reported here. Various compounds such as hydantoins, dithiazolidindiones, rhodanines, maleimides, and triazoles were synthesized and screened as GSK-3 inhibitors. After an extensive SAR study among these different heterocyclic families, TDZDs have been revealed as a privileged scaffold for the selective inhibition of GSK-3. A CoMFA analysis was also performed highlighting the molecular electrostatic field interaction in the interaction of TDZDs with GSK-3. Moreover, first mapping studies indicate two binding modes which in turn might imply relevant differences in the mechanism that underly the inhibitory activity of TDZDs.
Collapse
Affiliation(s)
- Ana Martinez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Vulpetti A, Crivori P, Cameron A, Bertrand J, Brasca MG, D'Alessio R, Pevarello P. Structure-based approaches to improve selectivity: CDK2-GSK3beta binding site analysis. J Chem Inf Model 2005; 45:1282-90. [PMID: 16180905 DOI: 10.1021/ci0500280] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An evaluation and comparison of two different approaches, GRID/CPCA and GRIND/CPCA (CPCA = consensus principal component analysis; GRIND = GRid-INdependent Descriptors), suitable for visualizing the structural differences between related proteins is presented. Ten crystal structures of CDK2/cyclin A and GSK3beta solved in-house with different inhibitors were compared with the aim of highlighting regions that could be potential sites for gaining selectivity for CDK2 versus GSK3beta. The analyses pointed out remarkable differences in the backs of the CDK2-GSK3beta ATP binding pockets that guided the optimization toward a selective benzodipyrazole CDK2 inhibitor. The gain in selectivity can be associated with the two main differences in the ATP pocket between the enzymes. Phe80 of CDK2, the so-called gatekeeper residue often exploited for the design of kinase selective ligands, is replaced by a leucine in GSK3beta, and Ala144 is replaced by a cysteine. As a consequence of these mutations, CDK2 has a less elongated and less flat buried region at the back of the ATP pocket.
Collapse
Affiliation(s)
- Anna Vulpetti
- Nerviano Medical Sciences, Viale Pasteur 10, 20014 Nerviano (MI), Italy.
| | | | | | | | | | | | | |
Collapse
|
268
|
Heredia A, Davis C, Bamba D, Le N, Gwarzo MY, Sadowska M, Gallo RC, Redfield RR. Indirubin-3'-monoxime, a derivative of a Chinese antileukemia medicine, inhibits P-TEFb function and HIV-1 replication. AIDS 2005; 19:2087-95. [PMID: 16284457 DOI: 10.1097/01.aids.0000194805.74293.11] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the effects of the cyclin dependent kinase (CDK) inhibitor Indirubin-3'-monoxime (IM) on Tat-mediated transactivation function, a step of the HIV-1 cycle that is not currently targeted in antiviral therapy. METHODS The effects of IM on CDK implicated in HIV-1 Tat transactivation function were evaluated by kinase assays, transfection experiments, RNase protection assay and RT-PCR analysis of viral transcripts. The antiviral effect of IM was investigated in cells from HIV-1 infected individuals as well as in cell lines, primary lymphocytes and monocyte-derived macrophages. The antiviral activity of IM was also tested against drug-resistant HIV-1. RESULTS IM inhibits the kinase activity of CDK9 [50% inhibitory concentration (IC50) of 0.05 microM], the catalytic subunit of Positive transcription elongation factor b (P-TEFb). Inhibition of CDK9 activity by IM results in abrogation of Tat-induced expression of HIV-1 RNA in cell lines. In addition, IM inhibits the replication of HIV-1 in both peripheral blood mononuclear cells (IC50 of 1 microM) and macrophages (IC50 of 0.5 microM). IM is effective against primary and drug-resistant strains of HIV-1. Importantly, the antiviral effects of the drug were seen at concentrations that did not affect cell proliferation. CONCLUSIONS Non-toxic concentrations of IM inhibit HIV-1 by blocking viral gene expression mediated by the cellular factor P-TEFb. The drug is effective against wild-type and drug-resistant strains of HIV-1. IM may help control replication of HIV-1 in patients by disrupting a step of the HIV-1 cycle that is not being targeted in current antiretroviral treatments.
Collapse
Affiliation(s)
- Alonso Heredia
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Wu ZL, Podust LM, Guengerich FP. Expansion of Substrate Specificity of Cytochrome P450 2A6 by Random and Site-directed Mutagenesis*. J Biol Chem 2005; 280:41090-100. [PMID: 16215230 DOI: 10.1074/jbc.m508182200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The natural product indole is a substrate for cytochrome P450 2A6. Mutagenesis of P450 2A6 was done to expand its capability in the oxidization of bulky substituted indole compounds, which are not substrates for the wild-type enzyme or the double mutant L240C/N297Q, as determined in our previous work (Wu, Z.-L., Aryal, P., Lozach, O., Meijer, L., and Guengerich, F. P. (2005) Chem. Biodivers. 2, 51-65). Error-prone PCR and site-directed mutagenesis led to the identification of two critical amino acid residue changes (N297Q and I300V) that achieve the purpose. The new mutant (N297Q/I300V) was able to oxidize both 4- and 5-benzyloxy(OBzl)indoles to form colored products. Both changes were required for oxidation of these bulky substrates. The colored product derived from 5-OBzl-indole was mainly 5,5'-di-OBzl-indirubin, whereas the dominant blue dye isolated upon incubations with 4-OBzl-indole was neither an indigo nor an indirubin. Two-dimensional NMR experiments led to assignment of the structure as 4-OBzl-2-(4'-OBzl-1',7'-dihydro-7'-oxo-6'H-indol-6'-ylidene)indolin-3-one, in which a pyrrole ring and a benzene ring are connected with a double bond instead of the pyrrole-pyrrole connection of other indigoids. Monomeric oxidation products were also isolated and characterized; three phenols (4-OBzl-1H-indol-5-ol, 4-OBzl-1H-indol-6-ol, and 4-OBzl-1H-indol-7-ol) and one quinone (4-OBzl-1H-indole-6,7-dione, the postulated immediate precursor of the final blue dye) were identified. The results are interpreted in the context of a crystal structure of a P450 2A6-coumarin complex. The I300V change opens an additional pocket to accommodate the OBzl bulk. The N2297Q change is postulated to generate a hydrogen bond between Gln and the substrate oxygen. Thus, the substrate specificity of P450 2A6 was expanded, and new products were obtained in this study.
Collapse
Affiliation(s)
- Zhong-Liu Wu
- Department of Biochemistry and the Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
270
|
McClay K, Boss C, Keresztes I, Steffan RJ. Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Appl Environ Microbiol 2005; 71:5476-83. [PMID: 16151140 PMCID: PMC1214665 DOI: 10.1128/aem.71.9.5476-5483.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broad-substrate-range monooygenase enzymes, including toluene-4-monooxygenase (T4MO), can catalyze the oxidation of indole. The indole oxidation products can then condense to form the industrially important dye indigo. Site-directed mutagenesis of T4MO resulted in the creation of T4MO isoforms with altered pigment production phenotypes. High-pressure liquid chromatography, thin-layer chromatography, and nuclear magnetic resonance analysis of the indole oxidation products generated by the mutant T4MO isoforms revealed that the phenotypic differences were primarily due to changes in the regiospecificity of indole oxidation. Most of the mutations described in this study changed the ratio of the primary indole oxidation products formed (indoxyl, 2-oxindole, and isatin), but some mutations, particularly those involving amino acid G103 of tmoA, allowed for the formation of additional products, including 7-hydroxyindole and novel indigoid pigments. For example, mutant G103L converted 17% of added indole to 7-hydroxyindole and 29% to indigoid pigments including indigo and indirubin and two other structurally related pigments. The double mutant G103L:A107G converted 47% of indole to 7-hydroxyindole, but no detectable indigoid pigments were formed, similar to the product distribution observed with the toluene-2-monooxygenase (T2MO) of Burkholderia cepacia G4. These results demonstrate that modification of the tmoA active site can change the products produced by the enzyme and lead to the production of novel pigments and other indole oxidation products with potential commercial and medicinal utility.
Collapse
Affiliation(s)
- Kevin McClay
- Shaw Environmental Inc., 17 Princess Road, Lawrenceville, NJ 08648, USA
| | | | | | | |
Collapse
|
271
|
Kypta RM. GSK-3 inhibitors and their potential in the treatment of Alzheimer’s disease. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.10.1315] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
272
|
Lee JW, Moon MJ, Min HY, Chung HJ, Park EJ, Park HJ, Hong JY, Kim YC, Lee SK. Induction of apoptosis by a novel indirubin-5-nitro-3′-monoxime, a CDK inhibitor, in human lung cancer cells. Bioorg Med Chem Lett 2005; 15:3948-52. [PMID: 15993584 DOI: 10.1016/j.bmcl.2005.05.105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 05/23/2005] [Indexed: 12/21/2022]
Abstract
A novel indirubin analog, indirubin-5-nitro-3'-monoxime, inhibited cell proliferation against various human cancer cells. Additional studies indicate that the mechanism of action of this analog against human lung cancer cells might be to arrest cell cycle progression at the G2/M phase and induce apoptosis via p53- and mitochondria-dependent pathways. These data suggest that indirubin-5-nitro-3'-monoxime might be a novel candidate for development of anticancer agents.
Collapse
Affiliation(s)
- Jong-Won Lee
- College of Pharmacy, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-ku, Seoul 120-750, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Rockey WM, Elcock AH. Rapid computational identification of the targets of protein kinase inhibitors. J Med Chem 2005; 48:4138-52. [PMID: 15943486 DOI: 10.1021/jm049461b] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a method for rapidly computing the relative affinities of an inhibitor for all individual members of a family of homologous receptors. The approach, implemented in a new program, SCR, models inhibitor-receptor interactions in full atomic detail with an empirical energy function and includes an explicit account of flexibility in homology-modeled receptors through sampling of libraries of side chain rotamers. SCR's general utility was demonstrated by application to seven different protein kinase inhibitors: for each inhibitor, relative binding affinities with panels of approximately 20 protein kinases were computed and compared with experimental data. For five of the inhibitors (SB203580, purvalanol B, imatinib, H89, and hymenialdisine), SCR provided excellent reproduction of the experimental trends and, importantly, was capable of identifying the targets of inhibitors even when they belonged to different kinase families. The method's performance in a predictive setting was demonstrated by performing separate training and testing applications, and its key assumptions were tested by comparison with a number of alternative approaches employing the ligand-docking program AutoDock (Morris et al. J. Comput. Chem. 1998, 19, 1639-1662). These comparison tests included using AutoDock in nondocking and docking modes and performing energy minimizations of inhibitor-kinase complexes with the molecular mechanics code GROMACS (Berendsen et al. Comput. Phys. Commun. 1995, 91, 43-56). It was found that a surprisingly important aspect of SCR's approach is its assumption that the inhibitor be modeled in the same orientation for each kinase: although this assumption is in some respects unrealistic, calculations that used apparently more realistic approaches produced clearly inferior results. Finally, as a large-scale application of the method, SB203580, purvalanol B, and imatinib were screened against an almost full complement of 493 human protein kinases using SCR in order to identify potential new targets; the predicted targets of SB203580 were compared with those identified in recent proteomics-based experiments. These kinome-wide screens, performed within a day on a small cluster of PCs, indicate that explicit computation of inhibitor-receptor binding affinities has the potential to promote rapid discovery of new therapeutic targets for existing inhibitors.
Collapse
Affiliation(s)
- William M Rockey
- Department of Biochemistry, University of Iowa, Iowa City, 52242-1109, USA
| | | |
Collapse
|
274
|
Jautelat R, Brumby T, Schäfer M, Briem H, Eisenbrand G, Schwahn S, Krüger M, Lücking U, Prien O, Siemeister G. From the insoluble dye indirubin towards highly active, soluble CDK2-inhibitors. Chembiochem 2005; 6:531-40. [PMID: 15742375 DOI: 10.1002/cbic.200400108] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rolf Jautelat
- Medicinal Chemistry, Research Center Europe, Schering AG, 13342 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Kunick C, Zeng Z, Gussio R, Zaharevitz D, Leost M, Totzke F, Schächtele C, Kubbutat MHG, Meijer L, Lemcke T. Structure-aided optimization of kinase inhibitors derived from alsterpaullone. Chembiochem 2005; 6:541-9. [PMID: 15696597 DOI: 10.1002/cbic.200400099] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In order to perform computer-aided design of novel alsterpaullone derivatives, the vicinity of the entrance to the ATP-binding site was scanned for areas that could be useful as anchoring points for additional protein-ligand interactions. Based on the alignment of alsterpaullone in a CDK1/cyclin B homology model, substituents were attached to the 2-position of the parent scaffold to enable contacts within the identified areas. Synthesis of the designed structures revealed three derivatives (3-5) with kinase-inhibitory activity similar to alsterpaullone. The novel 2-cyanoethylalsterpaullone (7) proved to be the most potent paullone described so far, exhibiting inhibitory concentrations for CDK1/ cyclin B and GSK-3beta in the picomolar range.
Collapse
Affiliation(s)
- Conrad Kunick
- Institut für Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Engler TA, Malhotra S, Burkholder TP, Henry JR, Mendel D, Porter WJ, Furness K, Diefenbacher C, Marquart A, Reel JK, Li Y, Clayton J, Cunningham B, McLean J, O'toole JC, Brozinick J, Hawkins E, Misener E, Briere D, Brier RA, Wagner JR, Campbell RM, Anderson BD, Vaughn R, Bennett DB, Meier TI, Cook JA. The development of potent and selective bisarylmaleimide GSK3 inhibitors. Bioorg Med Chem Lett 2005; 15:899-903. [PMID: 15686883 DOI: 10.1016/j.bmcl.2004.12.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 12/18/2004] [Accepted: 12/21/2004] [Indexed: 01/13/2023]
Abstract
Many 3-aryl-4-(1,2,3,4-tetrahydro[1,4]diazepino[6,7,1-hi]indol-7-yl)maleimides exhibit potent GSK3 inhibitory activity (<100 nM IC(50)), although few show significant selectivity (>100x) versus CDK2, CDK4, or PKCbetaII. However, combining 3-(imidazo[1,2-a]pyridin-3-yl), 3-(pyrazolo[1,5-a]pyridin-3-yl) or aza-analogs with a 4-(2-acyl-(1,2,3,4-tetrahydro[1,4]diazepino[6,7,1-hi]indol-7-yl)) group on the maleimide resulted in very potent inhibitors of GSK3 (</=5 nM) with >160 to >10,000-fold selectivity versus CDK2/4 and PKCbetaII. These compounds also inhibited tau phosphorylation in cells and were effective in lowering plasma glucose in a rat model of type 2 diabetes (ZDF rat).
Collapse
Affiliation(s)
- Thomas A Engler
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Mapelli M, Massimiliano L, Crovace C, Seeliger MA, Tsai LH, Meijer L, Musacchio A. Mechanism of CDK5/p25 binding by CDK inhibitors. J Med Chem 2005; 48:671-9. [PMID: 15689152 DOI: 10.1021/jm049323m] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclin-dependent kinases (CDK) CDK1, CDK2, CDK4, and CDK6 are serine/threonine protein kinases targeted in cancer therapy due to their role in cell cycle progression. The postmitotic CDK5 is involved in biological pathways important for neuronal migration and differentiation. CDK5 represents an attractive pharmacological target as its deregulation is implicated in various neurodegenerative diseases such as Alzheimer's, Parkinson's, and Niemann-Pick type C diseases, ischemia, and amyotrophic lateral sclerosis. We have generated an improved crystal form of CDK5 in complex with p25, a segment of the p35 neuronal activator. The crystals were used to solve the structure of CDK5/p25 with (R)-roscovitine and aloisine at a resolution of 2.2 and 2.3 A, respectively. The structure of CDK5/p25/roscovitine provides a rationale for the preference of CDK5 for the R over the S stereoisomer. Furthermore, roscovitine stabilized an unusual collapsed conformation of the glycine-rich loop, an important site of CDK regulation, and we report an investigation of the effects of glycine-rich loop phosphorylation on roscovitine binding. The CDK5/p25 crystals represent a valuable new tool for the identification and optimization of selective CDK inhibitors.
Collapse
Affiliation(s)
- Marina Mapelli
- Structural Biology Unit, Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
278
|
Wu ZL, Aryal P, Lozach O, Meijer L, Guengerich FP. Biosynthesis of New Indigoid Inhibitors of Protein Kinases Using Recombinant Cytochrome P450 2A6. Chem Biodivers 2005; 2:51-65. [PMID: 17191919 DOI: 10.1002/cbdv.200490166] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a potential drug target for a number of human diseases. Some indigoids have been found to be potent inhibitors of GSK-3, and individual compounds with better activity, specificity, and solubility are desired. In this work, a new disubstituted indigoid generation system was developed with a tryptophanase-deficient Escherichia coli strain as a host to express the human cytochrome P450 2A6 mutant L240C/N297Q, which catalyzes the oxidation of indole to isatin and indoxyl, which in turn react to generate indigoids. Forty-five substituted 1H-indoles from commercial sources were used as substrates in the system, and indigoid mixtures were tested as potential inhibitors of GSK-3. After preliminary screening, cell extracts with high inhibitory activity towards GSK-3alpha/beta were fractionated, and the IC50 values of twelve individual indigoids were measured for GSK-3alpha/beta as well as the protein kinases CDK1/cyclinB and CDK5/p25. Several indigoids, including an indigo, showed stronger inhibition than found in previous work. The most potent towards GSK-3alpha/beta, dimethyl indirubin 5,5'-dicarboxylate (IC50 of 51 nM), was modified by chemical reactions. One product, indirubin 5,5'-dicarboxylic acid 5-methyl ester, inhibited GSK-3alpha/beta with an IC50 of 14 nM and selectivity nearly 40-fold over CDK1 and CDK5. Indirubin-5-5'-dicarbonitrile was also modified to the corresponding 3'-oxime, which had low specificity but showed very high inhibition of all three kinases with IC50 values of 5, 13, and 10 nM towards GSK-3alpha/beta, CDK1, and CDK5, respectively. Thus, this system has the potential to generate new indigoids with therapeutic potential.
Collapse
Affiliation(s)
- Zhongliu-Liu Wu
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 23rd and Pierce Avenues, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | |
Collapse
|
279
|
Lamb ML. Chapter 13 Targeting the Kinome with Computational Chemistry. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1574-1400(05)01013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
280
|
Schnitzer SE, Schmid T, Zhou J, Eisenbrand G, Brüne B. Inhibition of GSK3β by indirubins restores HIF-1α accumulation under prolonged periods of hypoxia/anoxia. FEBS Lett 2004; 579:529-33. [PMID: 15642371 DOI: 10.1016/j.febslet.2004.12.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 12/04/2004] [Indexed: 10/26/2022]
Abstract
Hypoxia inducible factor 1 is regulated by the appearance of the HIF-1alpha subunit. HIF-1alpha is subjected to proteasomal destruction or enhanced protein translation, which requires the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. We investigated how PI3K/Akt and glycogen synthase kinase 3beta (GSK3beta) affect HIF-1alpha in human RKO cells under prolonged periods of severe hypoxia/anoxia. 16- to 32-h lasting incubations attenuated Akt activity and decreased HIF-1alpha protein. This was reproduced by blocking PI3K with LY294002. GSK3beta inhibition by indirubins circumvented the effect of hypoxia/anoxia or LY294002 on HIF-1alpha. Ruling stability regulation of HIF-1alpha protein and/or enhanced transcription of HIF-1alpha mRNA via GSK3beta inhibition out is suggestive for translational modulation of HIF-1alpha under the influence of GSK3beta.
Collapse
Affiliation(s)
- Steffen E Schnitzer
- Department of Cell Biology, Faculty of Biology, University of Kaiserslautern, Erwin Schroedinger Strasse, 67663 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
281
|
Park H, Yeom MS, Lee S. Loop Flexibility and Solvent Dynamics as Determinants for the Selective Inhibition of Cyclin-Dependent Kinase 4: Comparative Molecular Dynamics Simulation Studies of CDK2 and CDK4. Chembiochem 2004; 5:1662-72. [PMID: 15505811 DOI: 10.1002/cbic.200400214] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The design and discovery of selective cyclin-dependent kinase 4 (CDK4) inhibitors have been actively pursued in order to develop therapeutic cancer treatments. By means of a consecutive computational protocol involving homology modeling, docking experiments, and molecular dynamics simulations, we examine the characteristic structural and dynamic properties that distinguish CDK4 from CDK2 in its complexation with selective inhibitors. The results for all three CDK4-selective inhibitors under investigation show that the large-amplitude motion of a disordered loop of CDK4 is damped out in the presence of the inhibitors whereas their binding in the CDK2 active site has little effect on the loop flexibility. It is also found that the binding preference of CDK4- selective inhibitors for CDK4 over CDK2 stems from the reduced solvent accessibility in the active site of the former due to the formation of a stable hydrogen-bond triad by the Asp99, Arg101, and Thr102 side chains at the top of the active-site gorge. Besides the differences in loop flexibility and solvent accessibility, the dynamic stabilities of the hydrogen bonds between the inhibitors and the side chain of the lysine residue at the bottom of the active site also correlate well with the relative binding affinities of the inhibitors for the two CDKs. These results highlight the usefulness of this computational approach in evaluating the selectivity of a CDK inhibitor, and demonstrate the necessity of considering protein flexibility and solvent effects in designing new selective CDK4-selective inhibitors.
Collapse
Affiliation(s)
- Hwangseo Park
- School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-747, Korea.
| | | | | |
Collapse
|
282
|
Duensing S, Duensing A, Lee DC, Edwards KM, Piboonniyom SO, Manuel E, Skaltsounis L, Meijer L, Münger K. Cyclin-dependent kinase inhibitor indirubin-3′-oxime selectively inhibits human papillomavirus type 16 E7-induced numerical centrosome anomalies. Oncogene 2004; 23:8206-15. [PMID: 15378001 DOI: 10.1038/sj.onc.1208012] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of the centrosome duplication cycle has been implicated in tumorigenesis. Our previous work has shown that the human papillomavirus type 16 (HPV-16) E7 oncoprotein rapidly induces aberrant centrosome and centriole duplication in normal human cells. We report here that HPV E7-induced abnormal centriole duplication is specifically abrogated by a small molecule CDK inhibitor, indirubin-3'-oxime (IO), but not a kinase-inactive derivative. Importantly, normal centriole duplication was not markedly affected by IO, and the inhibitory effects were observed at concentrations that did not affect the G1/S transition of the cell division cycle. Depletion of CDK2 by siRNA similarly abrogated HPV E7-induced abnormal centrosome duplication and ectopic expression of CDK2 in combination with cyclin E or cyclin A could rescue the inhibitory effect of IO. IO treatment also reduced the steady-state level of aneuploid cells in HPV-16 E7-expressing cell populations. Our results suggest that cyclin/CDK2 activity is critically involved in abnormal centrosome duplication induced by HPV-16 E7 oncoprotein expression, but may be dispensable for normal centrosome duplication and cell cycle progression.
Collapse
Affiliation(s)
- Stefan Duensing
- Molecular Virology Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Tavares FX, Boucheron JA, Dickerson SH, Griffin RJ, Preugschat F, Thomson SA, Wang TY, Zhou HQ. N-Phenyl-4-pyrazolo[1,5-b]pyridazin-3-ylpyrimidin-2-amines as Potent and Selective Inhibitors of Glycogen Synthase Kinase 3 with Good Cellular Efficacy. J Med Chem 2004; 47:4716-30. [PMID: 15341487 DOI: 10.1021/jm040063i] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycogen synthase kinase 3 regulates glycogen synthase, the rate-determining enzyme for glycogen synthesis. Liver and muscle glycogen synthesis is defective in type 2 diabetics, resulting in elevated plasma glucose levels. Inhibition of GSK-3 could potentially be an effective method to control plasma glucose levels in type 2 diabetics. Structure-activity studies on a N-phenyl-4-pyrazolo[1,5-b]pyridazin-3-ylpyrimidin-2-amine series have led to the identification of potent and selective compounds with good cellular efficacy. Molecular modeling studies have given insights into the mode of binding of these inhibitors. Since the initial leads were also potent inhibitors of CDK-2/CDK-4, an extensive SAR was performed at various positions of the pyrazolo[1,5-b]pyridazin core to afford potent GSK-3 inhibitors that were highly selective over CDK-2. In addition, these inhibitors also exhibited very good cell efficacy and functional response. A representative example was shown to have good oral exposure levels, extending their utility in an in vivo setting. These inhibitors provide a viable lead series in the discovery of new therapies for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Francis X Tavares
- Department of Medicinal Chemistry, GlaxoSmithKline, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | | |
Collapse
|
285
|
Knockaert M, Blondel M, Bach S, Leost M, Elbi C, Hager GL, Nagy SR, Han D, Denison M, Ffrench M, Ryan XP, Magiatis P, Polychronopoulos P, Greengard P, Skaltsounis L, Meijer L. Independent actions on cyclin-dependent kinases and aryl hydrocarbon receptor mediate the antiproliferative effects of indirubins. Oncogene 2004; 23:4400-12. [PMID: 15077192 DOI: 10.1038/sj.onc.1207535] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Indirubin, a bis-indole obtained from various natural sources, is responsible for the reported antileukemia activity of a Chinese Medicinal recipe, Danggui Longhui Wan. However, its molecular mechanism of action is still not well understood. In addition to inhibition of cyclin-dependent kinases and glycogen synthase kinase-3, indirubins have been reported to activate the aryl hydrocarbon receptor (AhR), a cotranscriptional factor. Here, we confirm the interaction of AhR and indirubin using a series of indirubin derivatives and show that their binding modes to AhR and to protein kinases are unrelated. As reported for other AhR ligands, binding of indirubins to AhR leads to its nuclear translocation. Furthermore, the apparent survival of AhR-/- and +/+ cells, as measured by the MTT assay, is equally sensitive to the kinase-inhibiting indirubins. Thus, the cytotoxic effects of indirubins are AhR-independent and more likely to be linked to protein kinase inhibition. In contrast, a dramatic cytostatic effect, as measured by actual cell counts and associated with a sharp G1 phase arrest, is induced by 1-methyl-indirubins, a subfamily of AhR-active but kinase-inactive indirubins. As shown for TCDD (dioxin), this effect appears to be mediated through the AhR-dependent expression of p27(KIP1). Altogether these results suggest that AhR activation, rather than kinase inhibition, is responsible for the cytostatic effects of some indirubins. In contrast, kinase inhibition, rather than AhR activation, represents the main mechanism underlying the cytotoxic properties of this class of promising antitumor molecules.
Collapse
Affiliation(s)
- Marie Knockaert
- C.N.R.S., Cell Cycle Group and UPS-2682, Station Biologique, BP 74, 29682 ROSCOFF cedex, Bretagne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Zhang HC, Ye H, Conway BR, Derian CK, Addo MF, Kuo GH, Hecker LR, Croll DR, Li J, Westover L, Xu JZ, Look R, Demarest KT, Andrade-Gordon P, Damiano BP, Maryanoff BE. 3-(7-Azaindolyl)-4-arylmaleimides as potent, selective inhibitors of glycogen synthase kinase-3. Bioorg Med Chem Lett 2004; 14:3245-50. [PMID: 15149684 DOI: 10.1016/j.bmcl.2004.03.090] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 03/26/2004] [Accepted: 03/29/2004] [Indexed: 11/23/2022]
Abstract
A novel series of acyclic 3-(7-azaindolyl)-4-(aryl/heteroaryl)maleimides was synthesized and evaluated for activity against GSK-3beta and selectivity versus PKC-betaII, as well as a broad panel of protein kinases. Compounds 14 and 17c potently inhibited GSK-3beta (IC(50)=7 and 26 nM, respectively) and exhibited excellent selectivity over PKC-betaII (325 and >385-fold, respectively). Compound 17c was also highly selective against 68 other protein kinases. In a cell-based functional assay, both 14 and 17c effectively increased glycogen synthase activity by inhibiting GSK-3beta.
Collapse
Affiliation(s)
- Han-Cheng Zhang
- Drug Discovery, Johnson & Johnson Pharmaceutical Research & Development, Spring House, PA 19477-0776, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Kosmopoulou MN, Leonidas DD, Chrysina ED, Bischler N, Eisenbrand G, Sakarellos CE, Pauptit R, Oikonomakos NG. Binding of the potential antitumour agent indirubin-5-sulphonate at the inhibitor site of rabbit muscle glycogen phosphorylase b. ACTA ACUST UNITED AC 2004; 271:2280-90. [PMID: 15153119 DOI: 10.1111/j.1432-1033.2004.04173.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The binding of indirubin-5-sulphonate (E226), a potential anti-tumour agent and a potent inhibitor (IC(50) = 35 nm) of cyclin-dependent kinase 2 (CDK2) and glycogen phosphorylase (GP) has been studied by kinetic and crystallographic methods. Kinetic analysis revealed that E226 is a moderate inhibitor of GPb (K(i) = 13.8 +/- 0.2 micro m) and GPa (K(i) = 57.8 +/- 7.1 micro m) and acts synergistically with glucose. To explore the molecular basis of E226 binding we have determined the crystal structure of the GPb/E226 complex at 2.3 A resolution. Structure analysis shows clearly that E226 binds at the purine inhibitor site, where caffeine and flavopiridol also bind [Oikonomakos, N.G., Schnier, J.B., Zographos, S.E., Skamnaki, V.T., Tsitsanou, K.E. & Johnson, L.N. (2000) J. Biol. Chem.275, 34566-34573], by intercalating between the two aromatic rings of Phe285 and Tyr613. The mode of binding of E226 to GPb is similar, but not identical, to that of caffeine and flavopiridol. Comparative structural analyses of the GPb-E226, GPb-caffeine and GPb-flavopiridol complex structures reveal the structural basis of the differences in the potencies of the three inhibitors and indicate binding residues in the inhibitor site that can be exploited to obtain more potent inhibitors. Structural comparison of the GPb-E226 complex structure with the active pCDK2-cyclin A-E226 complex structure clearly shows the different binding modes of the ligand to GPb and CDK2; the more extensive interactions of E226 with the active site of CDK2 may explain its higher affinity towards the latter enzyme.
Collapse
Affiliation(s)
- Magda N Kosmopoulou
- Institute of Organic and Pharmaceutical Chemistry, The National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
288
|
|