251
|
Asmus E, Barber DM, Bojack G, Bollenbach-Wahl B, Brown RW, Döller U, Freigang J, Gatzweiler E, Getachew R, Heinemann I, Hohmann S, Ko KY, Laber B, Lange G, Mattison RL, Minn K, Müller T, Petry T, Reingruber AM, Schmutzler D, Svejda A, Frackenpohl J. Discovery and optimization of spirocyclic lactams that inhibit acyl-ACP thioesterase. PEST MANAGEMENT SCIENCE 2024. [PMID: 38334233 DOI: 10.1002/ps.8015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND There are various methods to control weeds, that represent considerable challenges for farmers around the globe, although applying small molecular compounds is still the most effective and versatile technology to date. In the search for novel chemical entities with new modes-of-action that can control weeds displaying resistance, we have investigated two spirocyclic classes of acyl-ACP thioesterase inhibitors based on X-ray co-crystal structures and subsequent modelling studies. RESULTS By exploiting scaffold-hopping and isostere concepts, we were able to identify new spirolactam-based lead structures showing promising activity in vivo against commercially important grass weeds in line with strong target affinity. CONCLUSION The present work covers a series of novel herbicidal lead structures that contain a spirocyclic lactam as a structural key feature carrying ortho-substituted benzyl or heteroarylmethylene side chains. These new compounds show good acyl-ACP thioesterase inhibition in line with strong herbicidal activity. Glasshouse trials showed that the spirolactams outlined herein display promising control of grass-weed species in pre-emergence application combined with dose-response windows that enable partial selectivity in wheat and corn. Remarkably, some of the novel acyl-ACP thioesterase-inhibitors showed efficacy against resistant grass weeds such as Alopecurus myosuroides and Lolium spp. on competitive levels compared with commercial standards. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elisabeth Asmus
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - David M Barber
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Guido Bojack
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Birgit Bollenbach-Wahl
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Ronald W Brown
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Uwe Döller
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Jörg Freigang
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Elmar Gatzweiler
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Rahel Getachew
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Ines Heinemann
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Sabine Hohmann
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Kwang-Yoon Ko
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Bernd Laber
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Gudrun Lange
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Rebecca L Mattison
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Klemens Minn
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Thomas Müller
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Thomas Petry
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Anna M Reingruber
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Dirk Schmutzler
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Andrea Svejda
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| | - Jens Frackenpohl
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt, Germany
| |
Collapse
|
252
|
Li D, Liu C, Guo T, Zhu J, Guo J, Luo T, Liu Y, Shen W, Jiang B, Wang W, Yin Q, Zhang Y. Structural Modification of Noscapine via Photoredox/Nickel Dual Catalysis for the Discovery of S-Phase Arresting Agents. ACS Med Chem Lett 2024; 15:230-238. [PMID: 38352836 PMCID: PMC10860181 DOI: 10.1021/acsmedchemlett.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Herein, we disclose a powerful strategy for the functionalization of the antitumor natural alkaloid noscapine by utilizing photoredox/nickel dual-catalytic coupling technology. A small collection of 37 new noscapinoids with diverse (hetero)alkyl and (hetero)cycloalkyl groups and enhanced sp3 character was thus synthesized. Further in vitro antiproliferative activity screening and SAR study enabled the identification of 6o as a novel, potent, and less-toxic anticancer agent. Furthermore, 6o exerts superior cellular activity via an unexpected S-phase arrest mechanism and could significantly induce cell apoptosis in a dose-dependent manner, thereby further highlighting its potential in drug discovery as a promising lead compound.
Collapse
Affiliation(s)
- Defeng Li
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chuanxu Liu
- Department
of Lymphoma, Fudan University Shanghai Cancer
Center, Shanghai 200032, P. R.
China
| | - Tingyu Guo
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiajie Zhu
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiaqi Guo
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ting Luo
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuhuan Liu
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wenhao Shen
- Shanghai
Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Biao Jiang
- Shanghai
Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Wei Wang
- Department
of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Qianqian Yin
- Shanghai
Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yongqiang Zhang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
253
|
Li Z, Liu B, Yao CY, Gao GW, Zhang JY, Tong YZ, Zhou JX, Sun HK, Liu Q, Lu X, Fu Y. Ligand-Controlled Cobalt-Catalyzed Regio-, Enantio-, and Diastereoselective Oxyheterocyclic Alkene Hydroalkylation. J Am Chem Soc 2024; 146:3405-3415. [PMID: 38282378 DOI: 10.1021/jacs.3c12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Metal-hydride-catalyzed alkene hydroalkylation has been developed as an efficient method for C(sp3)-C(sp3) coupling with broad substrate availability and high functional group compatibility. However, auxiliary groups, a conjugated group or a chelation-directing group, are commonly required to attain high regio- and enantioselectivities. Herein, we reported a ligand-controlled cobalt-hydride-catalyzed regio-, enantio-, and diastereoselective oxyheterocyclic alkene hydroalkylation without chelation-directing groups. This reaction enables the hydroalkylation of conjugated and unconjugated oxyheterocyclic alkenes to deliver C2- or C3-alkylated tetrahydrofuran or tetrahydropyran in uniformly good yields and with high regio- and enantioselectivities. In addition, hydroalkylation of C2-substituted 2,5-dihydrofuran resulted in the simultaneous construction of 1,3-distereocenters, providing convenient access to polysubstituted tetrahydrofuran with multiple enantioenriched C(sp3) centers.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Bingxue Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng-Yu Yao
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Gen-Wei Gao
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Jun-Yang Zhang
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Zhou Tong
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Xiang Zhou
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Hao-Kai Sun
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Lu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
254
|
Akana ME, Tcyrulnikov S, Akana-Schneider BD, Reyes GP, Monfette S, Sigman MS, Hansen EC, Weix DJ. Computational Methods Enable the Prediction of Improved Catalysts for Nickel-Catalyzed Cross-Electrophile Coupling. J Am Chem Soc 2024; 146:3043-3051. [PMID: 38276910 DOI: 10.1021/jacs.3c09554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Cross-electrophile coupling has emerged as an attractive and efficient method for the synthesis of C(sp2)-C(sp3) bonds. These reactions are most often catalyzed by nickel complexes of nitrogenous ligands, especially 2,2'-bipyridines. Precise prediction, selection, and design of optimal ligands remains challenging, despite significant increases in reaction scope and mechanistic understanding. Molecular parameterization and statistical modeling provide a path to the development of improved bipyridine ligands that will enhance the selectivity of existing reactions and broaden the scope of electrophiles that can be coupled. Herein, we describe the generation of a computational ligand library, correlation of observed reaction outcomes with features of the ligands, and the in silico design of improved bipyridine ligands for Ni-catalyzed cross-electrophile coupling. The new nitrogen-substituted ligands display a 5-fold increase in selectivity for product formation versus homodimerization when compared to the current state of the art. This increase in selectivity and yield was general for several cross-electrophile couplings, including the challenging coupling of an aryl chloride with an N-alkylpyridinium salt.
Collapse
Affiliation(s)
- Michelle E Akana
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sergei Tcyrulnikov
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Brett D Akana-Schneider
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Giselle P Reyes
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric C Hansen
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel J Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
255
|
Majhi J, Matsuo B, Oh H, Kim S, Sharique M, Molander GA. Photochemical Deoxygenative Hydroalkylation of Unactivated Alkenes Promoted by a Nucleophilic Organocatalyst. Angew Chem Int Ed Engl 2024; 63:e202317190. [PMID: 38109703 DOI: 10.1002/anie.202317190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/20/2023]
Abstract
The direct utilization of simple and abundant feedstocks in carbon-carbon bond-forming reactions to embellish sp3 -enriched chemical space is highly desirable. Herein, we report a novel photochemical deoxygenative hydroalkylation of unactivated alkenes with readily available carboxylic acid derivatives. The reaction displays broad functional group tolerance, accommodating carboxylic acid-, alcohol-, ester-, ketone-, amide-, silane-, and boronic ester groups, as well as nitrile-containing substrates. The reaction is operationally simple, mild, and water-tolerant, and can be carried out on multigram-scale, which highlights the utility of the method to prepare value-added compounds in a practical and scalable manner. The synthetic application of the developed method is further exemplified through the synthesis of suberanilic acid, a precursor of vorinostat, a drug used for the treatment of cutaneous T-cell lymphoma. A novel mechanistic approach was identified using thiol as a nucleophilic catalyst, which forms a key intermediate for this transformation. Furthermore, electrochemical studies, quantum yield, and mechanistic experiments were conducted to support a proposed catalytic cycle for the transformation.
Collapse
Affiliation(s)
- Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Hyunjung Oh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Saegun Kim
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| |
Collapse
|
256
|
Dutta S, Erchinger JE, Strieth-Kalthoff F, Kleinmans R, Glorius F. Energy transfer photocatalysis: exciting modes of reactivity. Chem Soc Rev 2024; 53:1068-1089. [PMID: 38168974 DOI: 10.1039/d3cs00190c] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Excited (triplet) states offer a myriad of attractive synthetic pathways, including cycloadditions, selective homolytic bond cleavages and strain-release chemistry, isomerizations, deracemizations, or the fusion with metal catalysis. Recent years have seen enormous advantages in enabling these reactivity modes through visible-light-mediated triplet-triplet energy transfer catalysis (TTEnT). This tutorial review provides an overview of this emerging strategy for synthesizing sought-after organic motifs in a mild, selective, and sustainable manner. Building on the photophysical foundations of energy transfer, this review also discusses catalyst design, as well as the challenges and opportunities of energy transfer catalysis.
Collapse
Affiliation(s)
- Subhabrata Dutta
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Johannes E Erchinger
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Felix Strieth-Kalthoff
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Roman Kleinmans
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Frank Glorius
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
257
|
Bjørnstad F, Havik S, Aarhus TI, Mahdi I, Unger A, Habenberger P, Degenhart C, Eickhoff J, Klebl BM, Sundby E, Hoff BH. Pyrrolopyrimidine based CSF1R inhibitors: Attempted departure from Flatland. Eur J Med Chem 2024; 265:116053. [PMID: 38141285 DOI: 10.1016/j.ejmech.2023.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
The colony-stimulating factor 1 receptor (CSF1R) is an attractive target for inflammation disorders and cancers. Based on a series of pyrrolo[2,3-d]pyrimidine containing two carbo-aromatic rings, we have searched for new CSF1R inhibitors having a higher fraction of sp3-atoms. The phenyl unit in the 4-amino group could efficiently be replaced by tetrahydropyran (THP) retaining inhibitor potency. Exchanging the 6-aryl group with cyclohex-2-ene units also resulted in highly potent compounds, while fully saturated ring systems at C-6 led to a loss of activity. The structure-activity relationship study evaluating THP containing pyrrolo[2,3-d]pyrimidine derivates identified several highly active inhibitors by enzymatic studies. A comparison of 11 pairs of THP and aromatic compounds showed that inhibitors containing THP had clear benefits in terms of enzymatic potency, solubility, and cell toxicity. Guided by cellular experiments in Ba/F3 cells, five CSF1R inhibitors were further profiled in ADME assays, indicating the para-aniline derivative 16t as the most attractive compound for further development.
Collapse
Affiliation(s)
- Frithjof Bjørnstad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway; Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Simen Havik
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Thomas Ihle Aarhus
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway; Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Iktedar Mahdi
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Anke Unger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Carsten Degenhart
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Bert M Klebl
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Eirik Sundby
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
258
|
Bhatt T, Natte K. Transfer Hydrogenation of N- and O-Containing Heterocycles Including Pyridines with H 3N-BH 3 Under the Catalysis of the Homogeneous Ruthenium Precatalyst. Org Lett 2024; 26:866-871. [PMID: 38270139 DOI: 10.1021/acs.orglett.3c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
In this study, we report a transfer hydrogenation protocol that utilizes borane-ammonia (H3N-BH3) as the hydrogen source and a commercially available RuCl3·xH2O precatalyst for the selective aromatic reduction of quinolines, quinoxalines, pyridines, pyrazines, indoles, benzofurans, and furan derivatives to form the corresponding alicyclic heterocycles in good to excellent isolated yields. Applications of this straightforward protocol include the efficient preparation of useful key pharmaceutical intermediates, such as donepezil and flumequine, including a biologically active compound.
Collapse
Affiliation(s)
- Tarun Bhatt
- Laboratory for Sustainable Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Kishore Natte
- Laboratory for Sustainable Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| |
Collapse
|
259
|
Lyons TW, Leibler INM, He CQ, Gadamsetty S, Estrada GJ, Doyle AG. Broad Survey of Selectivity in the Heterogeneous Hydrogenation of Heterocycles. J Org Chem 2024; 89:1438-1445. [PMID: 38241605 DOI: 10.1021/acs.joc.3c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
A broad survey of heterogeneous hydrogenation catalysts has been conducted for the reduction of heterocycles commonly found in pharmaceuticals. The comparative reactivity of these substrates is reported as a function of catalyst, temperature, and hydrogen pressure. This analysis provided several catalysts with complementary reactivity between substrates. We then explored a series of bisheterocyclic substrates that provided an intramolecular competition of heterocycle hydrogenation reactivity. In several cases, complete selectivity could be achieved for reduction of one heterocycle and isolated yields are reported. A general trend in reactivity is inferred in which quinoline is the most reactive, followed by pyrazine, then pyrrole and with pyridine being the least reactive.
Collapse
Affiliation(s)
- Thomas W Lyons
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Cyndi Qixin He
- Modeling & Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Surendra Gadamsetty
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Gregorio J Estrada
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
260
|
Li F, Zhu WF, Empel C, Datsenko O, Kumar A, Xu Y, Ehrler JHM, Atodiresei I, Knapp S, Mykhailiuk PK, Proschak E, Koenigs RM. Photosensitization enables Pauson-Khand-type reactions with nitrenes. Science 2024; 383:498-503. [PMID: 38301027 DOI: 10.1126/science.adm8095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
The Pauson-Khand reaction has in the past 50 years become one of the most common cycloaddition reactions in chemistry. Coupling two unsaturated bonds with carbon monoxide, the transformation remains limited to CO as a C1 building block. Herein we report analogous cycloaddition reactions with nitrenes as an N1 unit. The reaction of a nonconjugated diene with a nitrene precursor produces bicyclic bioisosteres of common saturated heterocycles such as piperidine, morpholine, and piperazine. Experimental and computational mechanistic studies support relaying of the diradical nature of triplet nitrene into the π-system. We showcase the reaction's utility in late-stage functionalization of drug compounds and discovery of soluble epoxide hydrolase inhibitors.
Collapse
Affiliation(s)
- Fang Li
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - W Felix Zhu
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
- Goethe University, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | | | - Adarsh Kumar
- Goethe University, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Yameng Xu
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Johanna H M Ehrler
- Goethe University, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Iuliana Atodiresei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Stefan Knapp
- Goethe University, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University, Max-von-Laue-Str. 15, D-60438 Frankfurt, Germany
| | - Pavel K Mykhailiuk
- Enamine Ltd, Winston Churchill Str. 78, 02094 Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine
| | - Ewgenij Proschak
- Goethe University, Institute of Pharmaceutical Chemistry, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
261
|
Kovachka S, Panosetti M, Grimaldi B, Azoulay S, Di Giorgio A, Duca M. Small molecule approaches to targeting RNA. Nat Rev Chem 2024; 8:120-135. [PMID: 38278932 DOI: 10.1038/s41570-023-00569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/28/2024]
Abstract
The development of innovative methodologies to identify RNA binders has attracted enormous attention in chemical biology and drug discovery. Although antibiotics targeting bacterial ribosomal RNA have been on the market for decades, the renewed interest in RNA targeting reflects the need to better understand complex intracellular processes involving RNA. In this context, small molecules are privileged tools used to explore the biological functions of RNA and to validate RNAs as therapeutic targets, and they eventually are to become new drugs. Despite recent progress, the rational design of specific RNA binders requires a better understanding of the interactions which occur with the RNA target to reach the desired biological response. In this Review, we discuss the challenges to approaching this underexplored chemical space, together with recent strategies to bind, interact and affect biologically relevant RNAs.
Collapse
Affiliation(s)
- Sandra Kovachka
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Marc Panosetti
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
- Molecular Medicine Research Line, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Benedetto Grimaldi
- Molecular Medicine Research Line, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France.
| |
Collapse
|
262
|
Ryabukhin SV, Bondarenko DV, Trofymchuk SA, Lega DA, Volochnyuk DM. Aza-Heterocyclic Building Blocks with In-Ring CF 2 -Fragment. CHEM REC 2024; 24:e202300283. [PMID: 37873869 DOI: 10.1002/tcr.202300283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Modern organic chemistry is a titan supporting and reinforcing pharmaceutical, agricultural, food and material science products. Over the past decades, the organic compounds market has been evolving to meet all the research demands. In this regard, medicinal chemistry is especially dependent on available chemical space as subtle tuning of the molecule structure is required to create a drug with relevant physicochemical properties and a remarkable activity profile. The recent rapid evolution of synthetic methodology to deploy fluorine has brought fluorinated compounds to the spotlight of MedChem community. And now unique properties of fluorine still keep fascinating more and more as its justified installation into a molecular framework has a beneficial impact on membrane permeability, lipophilicity, metabolic stability, pharmacokinetic properties, conformation, pKa , etc. The backward influence of medicinal chemistry on organic synthesis has also changed the landscape of the latter towards new fluorinated topologies as well. Such complex relationships create a flexible and ever-changing ecosystem. Given that MedChem investigations strongly lean on the ability to reach suitable building blocks and the existence of reliable synthetic methods in this review we collected advances in the chemistry of respectful, but still enigmatic gem-difluorinated aza-heterocyclic building blocks.
Collapse
Affiliation(s)
- S V Ryabukhin
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| | - D V Bondarenko
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
| | - S A Trofymchuk
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| | - D A Lega
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- National University of Pharmacy of the Ministry of Health of Ukraine, 53 Pushkinska str., 61002, Kharkiv, Ukraine
| | - D M Volochnyuk
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| |
Collapse
|
263
|
Yang Y, Tsien J, Dykstra R, Chen SJ, Wang JB, Merchant RR, Hughes JME, Peters BK, Gutierrez O, Qin T. Programmable late-stage functionalization of bridge-substituted bicyclo[1.1.1]pentane bis-boronates. Nat Chem 2024; 16:285-293. [PMID: 37884667 PMCID: PMC10922318 DOI: 10.1038/s41557-023-01342-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Modular functionalization enables versatile exploration of chemical space and has been broadly applied in structure-activity relationship (SAR) studies of aromatic scaffolds during drug discovery. Recently, the bicyclo[1.1.1]pentane (BCP) motif has increasingly received attention as a bioisosteric replacement of benzene rings due to its ability to improve the physicochemical properties of prospective drug candidates, but studying the SARs of C2-substituted BCPs has been heavily restricted by the need for multistep de novo synthesis of each analogue of interest. Here we report a programmable bis-functionalization strategy to enable late-stage sequential derivatization of BCP bis-boronates, opening up opportunities to explore the SARs of drug candidates possessing multisubstituted BCP motifs. Our approach capitalizes on the inherent chemoselectivity exhibited by BCP bis-boronates, enabling highly selective activation and functionalization of bridgehead (C3)-boronic pinacol esters (Bpin), leaving the C2-Bpin intact and primed for subsequent derivatization. These selective transformations of both BCP bridgehead (C3) and bridge (C2) positions enable access to C1,C2-disubstituted and C1,C2,C3-trisubstituted BCPs that encompass previously unexplored chemical space.
Collapse
Affiliation(s)
- Yangyang Yang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan Dykstra
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - James B Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Jonathan M E Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Byron K Peters
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
264
|
de Menezes JFS, Sá Pires Silva AM, Aparecida Faria de Almeida E, da Silva AF, Morais Bomfim De Lima J, da Silva AW, Ferreira MKA, de Menezes JESA, Dos Santos HS, Marinho ES, Marinho GS, Marques da Fonseca A. Synthesis and anxiolytic effect of europium metallic complex containing lapachol [Eu(DBM) 3. LAP] in adult zebrafish through serotonergic neurotransmission: in vivo and in silico approach. J Biomol Struct Dyn 2024; 42:1280-1292. [PMID: 37029769 DOI: 10.1080/07391102.2023.2199087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Anxiety-related mental health problems are estimated at 3.6% globally, benzodiazepines (BZDs) are the class of drugs indicated for the treatment of anxiety, including lorazepam and diazepam. However, concerns have been raised about the short- and long-term risks associated with BZDs. Therefore, despite anxiolytic and antidepressant drugs, there is a need to develop more effective pharmacotherapies with fewer side effects than existing drugs. The present work reported the synthesis, anxiolytic activity, mechanism of action in Adult Zebrafish (Danio rerio) and in silico study of a europium metallic complex with Lapachol, [Eu(DBM)3. LAP]. Each animal (n = 6/group) was treated intraperitoneally (i.p.; 20 µL) with the synthesized complex (4, 20 and 40 mg/Kg) and with the vehicle (DMSO 3%; 20 µL), being submitted to the tests of locomotor activity and 96h acute toxicity. The light/dark test was also performed, and the serotonergic mechanism (5-HT) was evaluated through the antagonists of the 5-HTR1, 5-HTR2A/2C and 5-HTR3A/3B receptors. The complex was characterized using spectrometric techniques, and the anxiolytic effect of complex may be involved the neuromodulation of receptors 5-HT3A/3B, since the pre-treatment with pizotifen and cyproheptadine did not block the anxiolytic effect of [Eu(DBM)3. LAP], unlike fluoxetine had its anxiolytic effect reversed. In addition, molecular docking showed interaction between the [Eu(DBM)3. LAP] and 5HT3A receptor with binding energy -7.8 kcal/mol and the ADMET study showed that complex has low toxic risk. It is expected that the beginning of this study will allow the application of the new anxiolytic drugs, given the pharmacological potential of the lapachol complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jorge Fernando Silva de Menezes
- Center for Teacher Training, Federal University of Recôncavo da Bahia, Amargosa, Bahia, Brazil
- INCT - Energia e Meio Ambiente, UFBA, Rua Barão de Jeremoabo, Salvador, Bahia, Brazil
| | | | | | - Ananias Freire da Silva
- Postgraduate Program in Energy and Environment - PGEA, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Acarape, Ceará, Brazil
| | | | | | | | | | - Hélcio Silva Dos Santos
- State University of Ceará, Graduate Program in Natural Sciences, Fortaleza, Ceará, Brazil
- State University of Vale do Acaraú, Chemistry Course, Sobral, Ceará, Brazil
| | - Emmanuel Silva Marinho
- State University of Ceará, Graduate Program in Natural Sciences, Fortaleza, Ceará, Brazil
- Degree Course in Computer Science, Ceará State University, Fortaleza, Ceará, Brazil
| | | | - Aluísio Marques da Fonseca
- Postgraduate Program in Energy and Environment - PGEA, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Acarape, Ceará, Brazil
| |
Collapse
|
265
|
Wu SY, Li Y, Shen P, Yang XH, Ran GY. Palladium-catalysed fragmentary esterification-induced allylic alkylation of allyl carbonates and cyclic vinylogous anhydrides. Chem Commun (Camb) 2024; 60:1416-1419. [PMID: 38204402 DOI: 10.1039/d3cc05758e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
An unprecedented palladium-catalysed fragmentary esterification-induced allylic alkylation (FEAA) of cyclic vinylogous anhydrides (CVAs) and allyl carbonates has been disclosed. The protocol features broad sp3-rich scaffold tolerance, rendering highly functionalized 1,6 and 1,7-dicarbonyls in up to high yields and diastereoselectivities. Three-component FEAA is also well tolerant to generate 1,6-dicarbonyls through the addition of extra O/N-nucleophiles. Furthermore, cyclic allyl carbonate-involved FEAA provides an efficient approach for the synthesis of structurally complex medium-sized rings.
Collapse
Affiliation(s)
- Shu-Yi Wu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Yang Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Shen
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Xin-Han Yang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Guang-Yao Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
266
|
Tandi M, Tripathi N, Gaur A, Gopal B, Sundriyal S. Curation and cheminformatics analysis of a Ugi-reaction derived library (URDL) of synthetically tractable small molecules for virtual screening application. Mol Divers 2024; 28:37-50. [PMID: 36574164 DOI: 10.1007/s11030-022-10588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022]
Abstract
Virtual screening (VS) is an important approach in drug discovery and relies on the availability of a virtual library of synthetically tractable molecules. Ugi reaction (UR) represents an important multi-component reaction (MCR) that reliably produces a peptidomimetic scaffold. Recent literature shows that a tactically assembled Ugi adduct can be subjected to further chemical modifications to yield a variety of rings and scaffolds, thus, renewing the interest in this old reaction. Given the reliability and efficiency of UR, we collated an UR derived library (URDL) of small molecules (total = 5773) for VS. The synthesis of the majority of URDL molecules may be carried out in 1-2 pots in a time and cost-effective manner. The detailed analysis of the average property and chemical space of URDL was also carried out using the open-source Datawarrior program. The comparison with FDA-approved oral drugs and inhibitors of protein-protein interactions (iPPIs) suggests URDL molecules are 'clean', drug-like, and conform to a structurally distinct space from the other two categories. The average physicochemical properties of compounds in the URDL library lie closer to iPPI molecules than oral drugs thus suggesting that the URDL resource can be applied to discover novel iPPI molecules. The URDL molecules consist of diverse ring systems, many of which have not been exploited yet for drug design. Thus, URDL represents a small virtual library of drug-like molecules with unexplored chemical space designed for VS. The structures of all molecules of URDL, oral drugs, and iPPI compounds are being made freely accessible as supplementary information for broader application.
Collapse
Affiliation(s)
- Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Nancy Tripathi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Animesh Gaur
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | | | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
267
|
Desenko SM, Gorobets MY, Lipson VV, Sakhno YI, Chebanov VA. Dihydroazolopyrimidines: Past, Present and Perspectives in Synthesis, Green Chemistry and Drug Discovery. CHEM REC 2024; 24:e202300244. [PMID: 37668291 DOI: 10.1002/tcr.202300244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Dihydroazolopyrimidines are an important class of heterocycles that are isosteric to natural purines and are therefore of great interest primarily as drug-like molecules. In contrast to the heteroaromatic analogs, synthetic approaches to these compounds were developed much later, and their chemical properties and biological activity have not been studied in detail until recently. In the review, different ways to build dihydroazolopyrimidine systems from different building blocks are described - via the initial formation of a partially hydrogenated pyrimidine ring or an azole ring, as well as a one-pot assembly of azole and azine fragments. Special attention is given to modern approaches: multicomponent reactions, green chemistry, and the use of non-classical activation methods. Information on the chemical properties of dihydroazolopyrimidines and the prospects for their use in the design of drugs of various profiles are also summarized in this review.
Collapse
Affiliation(s)
- Serhiy M Desenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Mykola Yu Gorobets
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Victoria V Lipson
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
- Department of Medicinal Chemistry, State Institution "V. Ya. Danilevsky Institute for Endocrine Pathology Problems" NAMS of Ukraine, Alchevskikh St. 10, Kharkiv, Ukraine, 61002
| | - Yana I Sakhno
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Valentyn A Chebanov
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
| |
Collapse
|
268
|
Chen QC, Kress S, Molinelli R, Wuttig A. Interfacial Tuning of Electrocatalytic Ag Surfaces for Fragment-Based Electrophile Coupling. Nat Catal 2024; 7:120-131. [PMID: 38434422 PMCID: PMC10906991 DOI: 10.1038/s41929-023-01073-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/02/2023] [Indexed: 03/05/2024]
Abstract
Construction of C‒C bonds in medicinal chemistry frequently draws on the reductive coupling of organic halides with ketones or aldehydes. Catalytic C(sp3)‒C(sp3) bond formation, however, is constrained by the competitive side reactivity of radical intermediates following sp3 organic halide activation. Here, an alternative paradigm deploys catalytic Ag surfaces for reductive fragment-based electrophile coupling compatible with sp3 organic halides. We use in-situ spectroscopy, electrochemical analyses, and simulation to uncover the catalytic interfacial structure and guide reaction development. Specifically, Mg(OAc)2 outcompetes the interaction between Ag and the aldehyde, thereby tuning the Ag surface for selective product formation. Data are consistent with an increased population of Mg-bound aldehyde facilitating the addition of a carbon-centered radical (product of Ag-electrocatalyzed organic halide reduction) to the carbonyl. Electron transfer from Ag to the resultant alkoxy radical yields the desired alcohol. Molecular interfacial tuning at reusable catalytic electrodes will accelerate development of sustainable organic synthetic methods.
Collapse
Affiliation(s)
- Qiu-Cheng Chen
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - Sarah Kress
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - Rocco Molinelli
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, United States
| |
Collapse
|
269
|
Boudry E, Bourdreux F, Marrot J, Moreau X, Ghiazza C. Dearomatization of Pyridines: Photochemical Skeletal Enlargement for the Synthesis of 1,2-Diazepines. J Am Chem Soc 2024; 146:2845-2854. [PMID: 38235671 DOI: 10.1021/jacs.3c14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In this report, we developed a unified and standardized one-pot sequence that converts pyridine derivatives into 1,2-diazepines by inserting a nitrogen atom. This skeletal transformation capitalizes on the in situ generation of 1-aminopyridinium ylides, which rearrange under UV light irradiation. A thorough evaluation of the key parameters (wavelength, reaction conditions, activating agent) allowed us to elaborate on a simple, mild, and user-friendly protocol. The model reaction was extrapolated to more than 40 examples, including drug derivatives, affording unique 7-membered structures. Mechanistic evidence supports the transient presence of a diazanorcaradiene species. Finally, pertinent transformations of the products, including ring contraction reactions to form pyrazoles, were conducted and paved the way to a broad application of the developed protocol.
Collapse
Affiliation(s)
- Elise Boudry
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Flavien Bourdreux
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Jérôme Marrot
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Xavier Moreau
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Clément Ghiazza
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| |
Collapse
|
270
|
Angelini E, Martinelli M, Roà E, Ungarean CN, Salome C, Lefebvre Q, Bournez C, Fessard TC, Sarlah D. Diversification of Simple Arenes into Complex (Amino)cyclitols. Chemistry 2024; 30:e202303262. [PMID: 37856371 DOI: 10.1002/chem.202303262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Highly oxygenated cyclohexanes, including (amino)cyclitols, are featured in natural products possessing a notable range of biological activities. As such, these building blocks are valuable tools for medicinal chemistry. While de novo synthetic strategies have provided access to select compounds, challenges including stereochemical density and complexity have hindered the development of a general approach to (amino)cyclitol structures. This work reports the use of arenophile chemistry to access dearomatized intermediates which are amenable to diverse downstream transformations. Practical guidelines were developed for the synthesis of natural and non-natural (amino)cyclitols from simple arenes through a series of strategic functionalization events.
Collapse
Affiliation(s)
- Elisa Angelini
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Matteo Martinelli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Eugenio Roà
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Chad N Ungarean
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | | | | | - Colin Bournez
- SpiroChem AG, Mattenstrasse 22, 4058, Basel, Switzerland
| | | | - David Sarlah
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, 61801, Urbana, Illinois, USA
| |
Collapse
|
271
|
Maeba T, Hirata K, Kotoku M, Seki N, Maeda K, Hirashima S, Yamanaka H, Sakai T, Obika S, Hori A, Hara Y, Noji S, Suwa Y, Yokota M, Fujioka S, Yamaguchi T, Katsuda Y, Hata T, Miyagawa N, Arita K, Nomura Y, Taniguchi T, Asahina K, Aratsu Y, Naka Y, Adachi T, Nomura A, Akai S, Oshida SI, Pai S, Crowe P, Bradley E, Steensma R, Tao H, Fenn M, Babine R, Li X, Thacher S, Soeta T, Ukaji Y, Shiozaki M. Discovery and SAR of JTE-151: A Novel RORγ Inhibitor for Clinical Development. J Med Chem 2024; 67:952-970. [PMID: 38170624 DOI: 10.1021/acs.jmedchem.3c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A number of RORγ inhibitors have been reported over the past decade. There were also several examples advancing to human clinical trials, however, none of them has reached the market yet, suggesting that there could be common obstacles for their future development. As was expected from the general homology of nuclear receptor ligands, insufficient selectivity as well as poor physicochemical properties were identified as potential risks for a RORγ program. Based on such considerations, we conducted a SAR investigation by prioritizing drug-like properties to mitigate such potential drawbacks. After an intensive SAR exploration with strong emphasis on "drug-likeness" indices, an orally available RORγ inhibitor, JTE-151, was finally generated and was advanced to a human clinical trial. The compound was confirmed to possess highly selective profiles along with good metabolic stability, and most beneficially, no serious adverse events (SAE) and good PK profiles were observed in the human clinical trial.
Collapse
Affiliation(s)
- Takaki Maeba
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuyuki Hirata
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masayuki Kotoku
- Akros Pharma Inc., Boston Office, One Broadway, 14th Floor, Cambridge, Massachusetts 02142, United States
| | - Noriyoshi Seki
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Katsuya Maeda
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shintaro Hirashima
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Hiroshi Yamanaka
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takayuki Sakai
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shingo Obika
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Akimi Hori
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshinori Hara
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Satoru Noji
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshihiro Suwa
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masahiro Yokota
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shingo Fujioka
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takayuki Yamaguchi
- Pharmaceutical Division, Japan Tobacco Inc., 3-4-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-0023, Japan
| | - Yoshiaki Katsuda
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takahiro Hata
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Naoki Miyagawa
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kojo Arita
- Pharmaceutical Division, Japan Tobacco Inc., 3-4-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-0023, Japan
| | - Yukihiro Nomura
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Toshio Taniguchi
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kota Asahina
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yusuke Aratsu
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yuichi Naka
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tsuyoshi Adachi
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Akihiro Nomura
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shota Akai
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shin-Ichi Oshida
- Central Pharmaceutical Research Institute, Yokohama Research Center, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Sudhakar Pai
- Akros Pharma Inc., 302 Carnegie Center, Suite 300, Princeton, New Jersey 08540, United States
| | - Paul Crowe
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Erin Bradley
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Ruo Steensma
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Haiyan Tao
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Morgan Fenn
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Robert Babine
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Xiaolin Li
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Scott Thacher
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, California 92121, United States
| | - Takahiro Soeta
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Yutaka Ukaji
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Makoto Shiozaki
- Central Pharmaceutical Research Institute, Takatsuki Research Center, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
272
|
Velcicky J, Janser P, Gommermann N, Brenneisen S, Ilic S, Vangrevelinghe E, Stiefl N, Boettcher A, Arnold C, Malinverni C, Dawson J, Murgasova R, Desrayaud S, Beltz K, Hinniger A, Dekker C, Farady CJ, Mackay A. Discovery of Potent, Orally Bioavailable, Tricyclic NLRP3 Inhibitors. J Med Chem 2024; 67:1544-1562. [PMID: 38175811 DOI: 10.1021/acs.jmedchem.3c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
NLRP3 is a molecular sensor recognizing a wide range of danger signals. Its activation leads to the assembly of an inflammasome that allows for activation of caspase-1 and subsequent maturation of IL-1β and IL-18, as well as cleavage of Gasdermin-d and pyroptotic cell death. The NLRP3 inflammasome has been implicated in a plethora of diseases including gout, type 2 diabetes, atherosclerosis, Alzheimer's disease, and cancer. In this publication, we describe the discovery of a novel, tricyclic, NLRP3-binding scaffold by high-throughput screening. The hit (1) could be optimized into an advanced compound NP3-562 demonstrating excellent potency in human whole blood and full inhibition of IL-1β release in a mouse acute peritonitis model at 30 mg/kg po dose. An X-ray structure of NP3-562 bound to the NLRP3 NACHT domain revealed a unique binding mode as compared to the known sulfonylurea-based inhibitors. In addition, NP3-562 shows also a good overall development profile.
Collapse
Affiliation(s)
- Juraj Velcicky
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | - Philipp Janser
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | - Slavica Ilic
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | | | | | | | - Janet Dawson
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | | | - Karen Beltz
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | - Carien Dekker
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| | | | - Angela Mackay
- Novartis Biomedical Research, CH-4002 Basel, Switzerland
| |
Collapse
|
273
|
Chiminelli M, Scarica G, Serafino A, Marchiò L, Viscardi R, Maestri G. Visible-Light-Promoted Tandem Skeletal Rearrangement/Dearomatization of Heteroaryl Enallenes. Molecules 2024; 29:595. [PMID: 38338340 PMCID: PMC10856172 DOI: 10.3390/molecules29030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Access to complex three-dimensional molecular architectures via dearomatization of ubiquitous aryl rings is a powerful synthetic tool, which faces, however, an inherent challenge to overcome energetic costs due to the loss of aromatic stabilization energy. Photochemical methods that allow one to populate high-energy states can thus be an ideal strategy to accomplish otherwise prohibitive reaction pathways. We present an original dearomative rearrangement of heteroaryl acryloylallenamides that leads to complex fused tricycles. The visible-light-promoted method occurs under mild conditions and tolerates a variety of functional groups. According to DFT modeling used to rationalize the outcome of the cascade, the reaction involves a sequential [2+2] allene-alkene photocycloaddition, which is followed by a selective retro- [2+2] step that paves the way for the dearomatization of the heteroaryl partner. This scenario is original with respect to the reported photochemical reactivity of similar substrates and thus holds promise for ample future developments.
Collapse
Affiliation(s)
- Maurizio Chiminelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| | - Gabriele Scarica
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| | - Andrea Serafino
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| | - Luciano Marchiò
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| | - Rosanna Viscardi
- ENEA, Casaccia Research Center, Santa Maria di Galeria, 00123 Roma, Italy;
| | - Giovanni Maestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| |
Collapse
|
274
|
Zhidkov ME, Sidorova MA, Smirnova PA, Tryapkin OA, Kachanov AV, Kantemirov AV, Dezhenkova LG, Grammatikova NE, Isakova EB, Shchekotikhin AE, Pak MA, Styshova ON, Klimovich AA, Popov AM. Comparative Evaluation of the Antibacterial and Antitumor Activities of 9-Phenylfascaplysin and Its Analogs. Mar Drugs 2024; 22:53. [PMID: 38393024 PMCID: PMC10890213 DOI: 10.3390/md22020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Based on the results of our own preliminary studies, the derivative of the marine alkaloid fascaplysin containing a phenyl substituent at C-9 was selected to evaluate the therapeutic potential in vivo and in vitro. It was shown that this compound has outstandingly high antimicrobial activity against Gram-positive bacteria, including antibiotic-resistant strains in vitro. The presence of a substituent at C-9 of the framework is of fundamental importance, since its replacement to neighboring positions leads to a sharp decrease in the selectivity of the antibacterial action, which indicates the presence of a specific therapeutic target in bacterial cells. On a model of the acute bacterial sepsis in mice, it was shown that the lead compound was more effective than the reference antibiotic vancomycin seven out of nine times. However, ED50 value for 9-phenylfascaplysin (7) was similar for the unsubstituted fascaplysin (1) in vivo, despite the former being significantly more active than the latter in vitro. Similarly, assessments of the anticancer activity of compound 7 against various variants of Ehrlich carcinoma in mice demonstrated its substantial efficacy. To conduct a structure-activity relationship (SAR) analysis and searches of new candidate compounds, we synthesized a series of analogs of 9-phenylfascaplysin with varying aryl substituents. However, these modifications led to the reduced aqueous solubility of fascaplysin derivatives or caused a loss of their antibacterial activity. As a result, further research is required to explore new avenues for enhancing its pharmacokinetic characteristics, the modification of the heterocyclic framework, and optimizing of treatment regimens to harness the remarkable antimicrobial potential of fascaplysin for practical usage.
Collapse
Affiliation(s)
- Maxim E. Zhidkov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Maria A. Sidorova
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Polina A. Smirnova
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Oleg A. Tryapkin
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Andrey V. Kachanov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Alexey V. Kantemirov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Lyubov G. Dezhenkova
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Natalia E. Grammatikova
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Elena B. Isakova
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Andrey E. Shchekotikhin
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Marina A. Pak
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Olga N. Styshova
- Departments of Biotechnology and Marine Natural Compounds Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of The Russian Academy of Sciences, 690922 Vladivostok, Russia (A.A.K.)
| | - Anna A. Klimovich
- Departments of Biotechnology and Marine Natural Compounds Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of The Russian Academy of Sciences, 690922 Vladivostok, Russia (A.A.K.)
| | - Aleksandr M. Popov
- Departments of Biotechnology and Marine Natural Compounds Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of The Russian Academy of Sciences, 690922 Vladivostok, Russia (A.A.K.)
| |
Collapse
|
275
|
Battisti V, Moesslacher J, Abdelnabi R, Leyssen P, Rosales Rosas AL, Langendries L, Aufy M, Studenik C, Kratz JM, Rollinger JM, Puerstinger G, Neyts J, Delang L, Urban E, Langer T. Design, synthesis, and lead optimization of piperazinyl-pyrimidine analogues as potent small molecules targeting the viral capping machinery of Chikungunya virus. Eur J Med Chem 2024; 264:116010. [PMID: 38104375 DOI: 10.1016/j.ejmech.2023.116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023]
Abstract
The worldwide re-emerge of the Chikungunya virus (CHIKV), the high morbidity associated with it, and the lack of an available vaccine or antiviral treatment make the development of a potent CHIKV-inhibitor highly desirable. Therefore, an extensive lead optimization was performed based on the previously reported CHVB compound 1b and the reported synthesis route was optimized - improving the overall yield in remarkably shorter synthesis and work-up time. Hundred analogues were designed, synthesized, and investigated for their antiviral activity, physiochemistry, and toxicological profile. An extensive structure-activity relationship study (SAR) was performed, which focused mainly on the combination of scaffold changes and revealed the key chemical features for potent anti-CHIKV inhibition. Further, a thorough ADMET investigation of the compounds was carried out: the compounds were screened for their aqueous solubility, lipophilicity, their toxicity in CaCo-2 cells, and possible hERG channel interactions. Additionally, 55 analogues were assessed for their metabolic stability in human liver microsomes (HLMs), leading to a structure-metabolism relationship study (SMR). The compounds showed an excellent safety profile, favourable physicochemical characteristics, and the required metabolic stability. A cross-resistance study confirmed the viral capping machinery (nsP1) to be the viral target of these compounds. This study identified 31b and 34 as potent, safe, and stable lead compounds for further development as selective CHIKV inhibitors. Finally, the collected insight led to a successful scaffold hop (64b) for future antiviral research studies.
Collapse
Affiliation(s)
- Verena Battisti
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria.
| | - Julia Moesslacher
- Department of Pharmacy, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Rana Abdelnabi
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, B-3000, Leuven, Belgium
| | - Pieter Leyssen
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, B-3000, Leuven, Belgium
| | - Ana Lucia Rosales Rosas
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, B-3000, Leuven, Belgium
| | - Lana Langendries
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, B-3000, Leuven, Belgium
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Christian Studenik
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Jadel M Kratz
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Judith M Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Gerhard Puerstinger
- Department of Pharmacy, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, B-3000, Leuven, Belgium
| | - Leen Delang
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, B-3000, Leuven, Belgium
| | - Ernst Urban
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria.
| |
Collapse
|
276
|
Peng PK, Isho A, May JA. Regio- and enantioselective synthesis of acyclic quaternary carbons via organocatalytic addition of organoborates to (Z)-Enediketones. Nat Commun 2024; 15:504. [PMID: 38218961 PMCID: PMC10787796 DOI: 10.1038/s41467-024-44744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
The chemical synthesis of molecules with closely packed atoms having their bond coordination saturated is a challenge to synthetic chemists, especially when three-dimensional control is required. The organocatalyzed asymmetric synthesis of acyclic alkenylated, alkynylated and heteroarylated quaternary carbon stereocenters via 1,4-conjugate addition is here catalyzed by 3,3´-bisperfluorotoluyl-BINOL. The highly useful products (31 examples) are produced in up to 99% yield and 97:3 er using enediketone substrates and potassium trifluoroorganoborate nucleophiles. In addition, mechanistic experiments show that the (Z)-isomer is the reactive form, ketone rotation at the site of bond formation is needed for enantioselectivity, and quaternary carbon formation is favored over tertiary. Density functional theory-based calculations show that reactivity and selectivity depend on a key n→π* donation by the unbound ketone's oxygen lone pair to the boronate-coordinated ketone in a 5-exo-trig cyclic ouroboros transition state. Transformations of the conjugate addition products to key quaternary carbon-bearing synthetic building blocks proceed in good yield.
Collapse
Affiliation(s)
- Po-Kai Peng
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA
| | - Andrew Isho
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA
| | - Jeremy A May
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
277
|
Spieß P, Matheu SA, Bauer A, Coussanes G, Shaaban S, Maulide N. Ni-Catalyzed Stereoconvergent Reductive Dimerization of Bromocyclobutenes. Org Lett 2024; 26:355-359. [PMID: 38147458 PMCID: PMC10789092 DOI: 10.1021/acs.orglett.3c03909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
A nickel-catalyzed reductive dimerization of bromocyclobutenes to produce unusual and unprecedented cyclobutene dimers was developed. In a stereoconvergent procedure, various bromocyclobutenes were readily dimerized in good yields, with good diastereoselectivities and broad functional group tolerance. Notably, the presence of a carbonyl group in the starting material appears to dictate diastereoselectivity.
Collapse
Affiliation(s)
| | | | - Adriano Bauer
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Guilhem Coussanes
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Saad Shaaban
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
278
|
Wang Y, Deng J, Ressler AJ, Lin S. Electroreductive Radical Addition-Polar Cyclization Cascade to Access Cycloalkanes. Org Lett 2024; 26:116-121. [PMID: 38157449 PMCID: PMC11192528 DOI: 10.1021/acs.orglett.3c03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Compared with flat aromatic scaffolds, three-dimensional aliphatic ring systems feature high structural complexity and topological diversity and, thus, have received increasing attention in drug discovery. Herein, we describe a mild and general electrochemical method for the modular synthesis of structurally distinct cyclic compounds, including monocyclic alkanes, benzo-fused ring systems, and spirocycles, from readily available alkenes and alkyl halides via a radical-polar crossover mechanism.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, New York 14853, United States
| | - Jiachen Deng
- Department of Chemistry and Chemical Biology, Cornell University, New York 14853, United States
| | - Andrew J. Ressler
- Department of Chemistry and Chemical Biology, Cornell University, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, New York 14853, United States
| |
Collapse
|
279
|
Choukairi Afailal N, Borrell M, Cianfanelli M, Costas M. Dearomative syn-Dihydroxylation of Naphthalenes with a Biomimetic Iron Catalyst. J Am Chem Soc 2024; 146:240-249. [PMID: 38123164 PMCID: PMC10785824 DOI: 10.1021/jacs.3c08565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Arenes are interesting feedstocks for organic synthesis because of their natural abundance. However, the stability conferred by aromaticity severely limits their reactivity, mostly to reactions where aromaticity is retained. Methods for oxidative dearomatization of unactivated arenes are exceedingly rare but particularly valuable because the introduction of Csp3-O bonds transforms the flat aromatic ring in 3D skeletons and confers the oxygenated molecules with a very rich chemistry suitable for diversification. Mimicking the activity of naphthalene dioxygenase (NDO), a non-heme iron-dependent bacterial enzyme, herein we describe the catalytic syn-dihydroxylation of naphthalenes with hydrogen peroxide, employing a sterically encumbered and exceedingly reactive yet chemoselective iron catalyst. The high electrophilicity of hypervalent iron oxo species is devised as a key to enabling overcoming the aromatically promoted kinetic stability. Interestingly, the first dihydroxylation of the arene renders a reactive olefinic site ready for further dihydroxylation. Sequential bis-dihydroxylation of a broad range of naphthalenes provides valuable tetrahydroxylated products in preparative yields, amenable for rapid diversification.
Collapse
Affiliation(s)
- Najoua Choukairi Afailal
- Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Margarida Borrell
- Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Marco Cianfanelli
- Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Miquel Costas
- Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| |
Collapse
|
280
|
Chen M, Cui Y, Chen X, Shang R, Zhang X. C-F bond activation enables synthesis of aryl difluoromethyl bicyclopentanes as benzophenone-type bioisosteres. Nat Commun 2024; 15:419. [PMID: 38199996 PMCID: PMC10781780 DOI: 10.1038/s41467-023-44653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Bioisosteric design has become an essential approach in the development of drug molecules. Recent advancements in synthetic methodologies have enabled the rapid adoption of this strategy into drug discovery programs. Consequently, conceptionally innovative practices would be appreciated by the medicinal chemistry community. Here we report an expeditous synthetic method for synthesizing aryl difluoromethyl bicyclopentane (ADB) as a bioisostere of the benzophenone core. This approach involves the merger of light-driven C-F bond activation and strain-release chemistry under the catalysis of a newly designed N-anionic-based organic photocatalyst. This defluorinative coupling methodology enables the direct conversion of a wide variety of commercially available trifluoromethylaromatic C-F bonds (more than 70 examples) into the corresponding difluoromethyl bicyclo[1.1.1]pentanes (BCP) arenes/difluoromethyl BCP boronates in a single step. The strategy can also be applied to [3.1.1]and [4.1.1]propellane systems, providing access to analogues with different geometries. Moreover, we have successfully used this protocol to rapidly prepare ADB-substituted analogues of the bioactive molecule Adiporon. Biological testing has shown that the ADB scaffold has the potential to enhance the pharmacological properties of benzophenone-type drug candidates.
Collapse
Affiliation(s)
- Mingshuo Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, People's Republic of China
| | - Yuang Cui
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, People's Republic of China
| | - Xiaoping Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, People's Republic of China
| | - Rui Shang
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, People's Republic of China.
| |
Collapse
|
281
|
Yavari I, Shaabanzadeh S, Ghafouri K. Scalable Diastereoselective Electrosynthesis of Spiro[benzofuran-2,2'-furan]-3-ones. J Org Chem 2024; 89:425-432. [PMID: 38085534 DOI: 10.1021/acs.joc.3c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Spirobenzofuran scaffolds, because of their three-dimensional structure, are incorporated into several valuable natural products and drug candidate molecules. Herein, with the assistance of electrosynthesis, we introduce a novel electrochemical approach for achieving spirobenzofurans in a user-friendly and operationally simple undivided cell setup under constant current. This metal-catalyst-free electrochemical procedure afforded spiro[benzofuran-2,2'-furan]-3-ones with high diastereoselectivity. Compatibility with gram-scale synthesis along with the convenient accessibility of reaction instruments and starting materials collectively raised the importance of this protocol compared to previous challenging methods. Furthermore, mechanistic cognizance of this reaction is obtained by the investigation of the cyclic voltammetry spectra of reactants.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| | - Sina Shaabanzadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| | - Kiyana Ghafouri
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| |
Collapse
|
282
|
Zhao Y, Li X, Deng WH, Wu B, Liao RZ, Zhou YG. Dearomatization of [2.2]Paracyclophane-Derived N-Sulfonylimines through Cyclopropanation with Sulfur Ylides. J Org Chem 2024; 89:321-329. [PMID: 38086000 DOI: 10.1021/acs.joc.3c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
An unprecedented dearomatization of [2.2]paracyclophane-derived cyclic N-sulfonylimines was conducted through cyclopropanation with sulfur ylides, giving a series of dearomative cyclopropanes with good yields. DFT calculations suggested that the dearomatization was attributed to the relatively weak aromaticity of [2.2]paracyclophane derivatives that resulted from the effect of the unique [2.2]paracyclophane skeleton and the electron-withdrawing N-sulfonyl group. Some downstream elaborations of the products were demonstrated.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Xiang Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Wen-Hao Deng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 116024, P. R. China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 116024, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
283
|
Fu C, He L, Xu H, Zhang Z, Chang X, Dang Y, Dong XQ, Wang CJ. Modular access to chiral bridged piperidine-γ-butyrolactones via catalytic asymmetric allylation/aza-Prins cyclization/lactonization sequences. Nat Commun 2024; 15:127. [PMID: 38167331 PMCID: PMC10762176 DOI: 10.1038/s41467-023-44336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Chiral functionalized piperidine and lactone heterocycles are widely spread in natural products and drug candidates with promising pharmacological properties. However, there remains no general asymmetric methodologies that enable rapid assemble both critical biologically important units into one three-dimensional chiral molecule. Herein, we describe a straightforward relay strategy for the construction of enantioenriched bridged piperidine-γ-butyrolactone skeletons incorporating three skipped stereocenters via asymmetric allylic alkylation and aza-Prins cyclization/lactonization sequences. The excellent enantioselectivity control in asymmetric allylation with the simplest allylic precursor is enabled by the synergistic Cu/Ir-catalyzed protocol; the success of aza-Prins cyclization/lactonization can be attributed to the pivotal role of the ester substituent, which acts as a preferential intramolecular nucleophile to terminate the aza-Prins intermediacy of piperid-4-yl cation species. The resulting chiral piperidine-γ-butyrolactone bridged-heterocyclic products show impressive preliminary biological activities against a panel of cancer cell lines.
Collapse
Affiliation(s)
- Cong Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Ling He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Zongpeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China.
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
284
|
Tian K, Chang X, Xiao L, Dong XQ, Wang CJ. Stereodivergent synthesis of α-fluoro α-azaaryl γ-butyrolactones via cooperative copper and iridium catalysis. FUNDAMENTAL RESEARCH 2024; 4:77-85. [PMID: 38933830 PMCID: PMC11197661 DOI: 10.1016/j.fmre.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022] Open
Abstract
The development of stereodivergent synthetic methods to access all four stereoisomers of biologically important α-fluoro γ-butyrolactones containing vicinal stereocenters is of great importance and poses a formidable challenge owing to ring strain and steric hindrance. Herein, a novel asymmetric [3+2] annulation of α-fluoro α-azaaryl acetates with vinylethylene carbonate was successfully developed through Cu/Ir-catalyzed cascade allylic alkylation/lactonization, affording a variety of enantioenriched α-fluoro γ-butyrolactones bearing vicinal stereogenic centers with high reaction efficiency and excellent levels of both stereoselectivity and regioselectivity (up to 98% yield, generally >20:1 dr and >99% ee). Notably, all four stereoisomers of these pharmaceutically valuable molecules could be accessed individually via simple permutations of two enantiomeric catalysts. In addition, other azaaryl acetates bearing α-methyl, α-chlorine or α-phenyl group were tolerated well in this transformation. Reaction mechanistic investigations were conducted to explore the process of this bimetallic catalysis based on the results of reaction intermediates, isotopic labelling experiments, and kinetic studies.
Collapse
Affiliation(s)
- Kui Tian
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- Suzhou Institute of Wuhan University, Suzhou 215123, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| |
Collapse
|
285
|
Liu D, Guo X, Zhou S, Guo L, Zhang X. Mechanistic Insight into Lewis Acid-Catalyzed Cycloaddition of Bicyclo[1.1.0]butanes with Ketene: Bicyclo[1.1.0]butanes Serving as an Electrophile. J Org Chem 2024. [PMID: 38163764 DOI: 10.1021/acs.joc.3c02452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Lewis acid-catalyzed cycloaddition between bicyclo[1.1.0]butanes (BCBs) and unsaturated substrates has recently been demonstrated to be a powerful strategy for synthesizing bicyclo[2.1.1]hexanes. However, their reaction mechanisms remain elusive. This computational work explored the recently developed TMSOTf-catalyzed cycloaddition of BCB ketone to ketene and determined the rate-determining step as the activation of BCB ketone. Contrary to the previous proposal of BCB enolate as the active species, this work instead identified the catalytically active species to be a partially Lewis acid-activated BCB cation, which shows a greater electrophilicity and larger orbital interactions with ketene compared to those of the pristine BCB. The most favorable reaction pathway uniquely utilizes this activated BCB species as an electrophile to react with ketene as a nucleophile, while the previously proposed enolate is relatively inactive. Moreover, the in situ-generated TfO anion is revealed to be non-innocent, and its coordination mode and orientation could affect the reaction kinetics.
Collapse
Affiliation(s)
- Dan Liu
- School of Sciences, Great Bay University, Dongguan 523000, China
- Great Bay Institute for Advanced Study, Dongguan 523000, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, 710000 Shaanxi, China
| | - Xuefeng Guo
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, 710000 Shaanxi, China
| | - Shaoyuan Zhou
- School of Light Industry and Materials, Guangdong Polytechnic, Gaoming, Foshan 528000, China
| | - Luxuan Guo
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xiaoyong Zhang
- School of Sciences, Great Bay University, Dongguan 523000, China
- Great Bay Institute for Advanced Study, Dongguan 523000, China
| |
Collapse
|
286
|
Masand VH, Al-Hussain S, Alzahrani AY, El-Sayed NNE, Yeo CI, Tan YS, Zaki MEA. Leveraging nitrogen occurrence in approved drugs to identify structural patterns. Expert Opin Drug Discov 2024; 19:111-124. [PMID: 37811790 DOI: 10.1080/17460441.2023.2266990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The process of drug development and discovery is costly and slow. Although an understanding of molecular design principles and biochemical processes has progressed, it is essential to minimize synthesis-testing cycles. An effective approach is to analyze key heteroatoms, including oxygen and nitrogen. Herein, we present an analysis focusing on the utilization of nitrogen atoms in approved drugs. RESEARCH DESIGN AND METHODS The present work examines the frequency, distribution, prevalence, and diversity of nitrogen atoms in a dataset comprising 2,049 small molecules approved by different regulatory agencies (FDA and others). Various types of nitrogen atoms, such as sp3-, sp2-, sp-hybridized, planar, ring, and non-ring are included in this investigation. RESULTS The results unveil both previously reported and newly discovered patterns of nitrogen atom distribution around the center of mass in the majority of drug molecules. CONCLUSIONS This study has highlighted intriguing trends in the role of nitrogen atoms in drug design and development. The majority of drugs contain 1-3 nitrogen atoms within 5Å from the center of mass (COM) of a molecule, with a higher preference for the ring and planar nitrogen atoms. The results offer invaluable guidance for the multiparameter optimization process, thus significantly contributing toward the conversion of lead compounds into potential drug candidates.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, India
| | - Sami Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia
| | - Nahed N E El-Sayed
- National Organization for Drug Control and Research, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Chien Ing Yeo
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Yee Seng Tan
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
287
|
Rodrigalvarez J, Haut FL, Martin R. Regiodivergent sp3 C-H Functionalization via Ni-Catalyzed Chain-Walking Reactions. JACS AU 2023; 3:3270-3282. [PMID: 38155646 PMCID: PMC10751781 DOI: 10.1021/jacsau.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/30/2023]
Abstract
The catalytic translocation of a metal catalyst along a saturated hydrocarbon side chain constitutes a powerful strategy for enabling bond-forming reactions at remote, yet previously unfunctionalized, sp3 C-H sites. In recent years, Ni-catalyzed chain-walking reactions have offered counterintuitive strategies for forging sp3 architectures that would be difficult to accomplish otherwise. Although these strategies have evolved into mature tools for advanced organic synthesis, it was only recently that chemists showed the ability to control the motion at which the catalyst "walks" throughout the alkyl chain. Specialized ligand backbones, additives and a judicious choice of noninnocent functional groups on the side chain have allowed the design of "a la carte" protocols that enable regiodivergent bond-forming scenarios at different sp3 C-H sites with distinct topological surface areas. Given the inherent interest in increasing the fraction of sp3 hybridized carbons in medicinal chemistry, Ni-catalyzed regiodivergent chain-walking reactions might expedite the access to target leads in drug discovery campaigns.
Collapse
Affiliation(s)
- Jesus Rodrigalvarez
- The
Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Franz-Lucas Haut
- The
Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Ruben Martin
- The
Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
288
|
Matador E, Tilby MJ, Saridakis I, Pedrón M, Tomczak D, Llaveria J, Atodiresei I, Merino P, Ruffoni A, Leonori D. A Photochemical Strategy for the Conversion of Nitroarenes into Rigidified Pyrrolidine Analogues. J Am Chem Soc 2023; 145:27810-27820. [PMID: 38059920 DOI: 10.1021/jacs.3c10863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Bicyclic amines are important motifs for the preparation of bioactive materials. These species have well-defined exit vectors that enable accurate disposition of substituents toward specific areas of chemical space. Of all possible skeletons, the 2-azabicyclo[3.2.0]heptane framework is virtually absent from MedChem libraries due to a paucity of synthetic methods for its preparation. Here, we report a modular synthetic strategy that utilizes nitroarenes as flat and easy-to-functionalize feedstocks for the assembly of these sp3-rich materials. Mechanistically, this approach exploits two concomitant photochemical processes that sequentially ring-expand the nitroarene into an azepine and then fold it into a rigid bicycle pyrroline by means of singlet nitrene-mediated nitrogen insertion and excited-state-4π electrocyclization. A following hydrogenolysis provides, with full diastereocontrol, the desired bicyclic amine derivatives whereby the aromatic substitution pattern has been translated into the one of the three-dimensional heterocycle. These molecules can be considered rigid pyrrolidine analogues with a well-defined orientation of their substituents. Furthermore, unsupervised clustering of an expansive virtual database of saturated N-heterocycles revealed these derivatives as effective isosteres of rigidified piperidines. Overall, this platform enables the conversion of nitroarene feedstocks into complex sp3-rich heterocycles of potential interest to drug development.
Collapse
Affiliation(s)
- Esteban Matador
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012 Sevilla, Spain
| | - Michael J Tilby
- Department of Chemistry, University of Manchester, M13 9PL Manchester, U.K
| | - Iakovos Saridakis
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Manuel Pedrón
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50009 Zaragoza, Spain
| | - Dawid Tomczak
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Josep Llaveria
- Global Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, Janssen Research & Development, Janssen-Cilag S.A., Jarama 75A, 45007 Toledo, Spain
| | - Iuliana Atodiresei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Pedro Merino
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50009 Zaragoza, Spain
| | - Alessandro Ruffoni
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| |
Collapse
|
289
|
Zeng W, Chen AW, Yan MJ, Wang J. Sterically demanding Csp 2( ortho-substitution)-Csp 3(tertiary) bond formation via carboxylate-directed Mizoroki-Heck reaction under extra-ligand-free conditions. Org Biomol Chem 2023; 22:80-84. [PMID: 38051230 DOI: 10.1039/d3ob01784b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Construction of the sterically demanding Csp2(oS)-Csp3(T) bond was achieved by carrying out the Pd-catalyzed carboxylate-directed Mizoroki-Heck reaction under extra-ligand-free aqueous conditions. The cooperative role of the presence of water with the absence of phosphine ligand was proposed to accelerate the migratory insertion process considerably, delivering a broad substrate scope.
Collapse
Affiliation(s)
- Wei Zeng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ai-Wen Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Jie Yan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
290
|
Wang P, Zhu L, Wang J, Tao Z. Catalytic Asymmetric α-Alkylation of Ketones with Unactivated Alkyl Halides. J Am Chem Soc 2023; 145:27211-27217. [PMID: 38061195 DOI: 10.1021/jacs.3c09614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A catalytic, enantioselective method for direct α-alkylation of ketones with unactivated alkyl halides is realized by employing an α-enolizable ketone in a nickel-catalyzed C(sp3)-C(sp3) cross-coupling reaction. The key to the success is attributed to a unique bimetallic ligand. A variety of acyclic ketones and unactivated alkyl iodides can serve as suitable substrates under mild conditions to generate chiral ketones with α-quaternary carbon stereocenters in high yields with good enantioselectivities. A range of transformations based on the ketone moiety are also demonstrated to show the potential application of this method. Preliminary mechanistic studies support a dinickel-catalyzed cross-coupling mechanism.
Collapse
Affiliation(s)
- Peigen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Liangwei Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jingwen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhonglin Tao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
291
|
Harwood LA, Xiong Z, Christensen KE, Wang R, Wong LL, Robertson J. Selective P450 BM3 Hydroxylation of Cyclobutylamine and Bicyclo[1.1.1]pentylamine Derivatives: Underpinning Synthetic Chemistry for Drug Discovery. J Am Chem Soc 2023; 145:27767-27773. [PMID: 38051939 PMCID: PMC10740007 DOI: 10.1021/jacs.3c10542] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Achieving single-step syntheses of a set of related compounds divergently and selectively from a common starting material affords substantial efficiency gains when compared with preparing those same compounds by multiple individual syntheses. In order for this approach to be realized, complementary reagent systems must be available; here, a panel of engineered P450BM3 enzymes is shown to fulfill this remit in the selective C-H hydroxylation of cyclobutylamine derivatives at chemically unactivated sites. The oxidations can proceed with high regioselectivity and stereoselectivity, producing valuable bifunctional intermediates for synthesis and applications in fragment-based drug discovery. The process also applies to bicyclo[1.1.1]pentyl (BCP) amine derivatives to achieve the first direct enantioselective functionalization of the bridging methylenes and open a short and efficient route to chiral BCP bioisosteres for medicinal chemistry. The combination of substrate, enzyme, and reaction engineering provides a powerful general platform for small-molecule elaboration and diversification.
Collapse
Affiliation(s)
- Lucy A. Harwood
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ziyue Xiong
- Oxford
Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Kirsten E. Christensen
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ruiyao Wang
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou Industrial
Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Luet L. Wong
- Oxford
Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Jeremy Robertson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Oxford
Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
292
|
Chen SJ, Krska SW, Stahl SS. Copper-Catalyzed Benzylic C-H Cross-Coupling Enabled by Redox Buffers: Expanding Synthetic Access to Three-Dimensional Chemical Space. Acc Chem Res 2023; 56:3604-3615. [PMID: 38051914 PMCID: PMC10902864 DOI: 10.1021/acs.accounts.3c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
ConspectusCross-coupling methods are the most widely used synthetic methods in medicinal chemistry. Existing reactions are dominated by methods such as amide coupling and arylation reactions that form bonds to sp2-hybridized carbon atoms and contribute to the formation of "flat" molecules. Evidence that three-dimensional structures often have improved physicochemical properties for pharmaceutical applications has contributed to growing demand for cross-coupling methods with sp3-hybridized reaction partners. Substituents attached to sp3 carbon atoms are intrinsically displayed in three dimensions. These considerations have led to efforts to establish reactions with sp3 cross-coupling partners, including alkyl halides, amines, alcohols, and carboxylic acids. As C(sp3)-H bonds are much more abundant that these more conventional coupling partners, we have been pursuing C(sp3)-H cross-coupling reactions that achieve site-selectivity, synthetic utility, and scope competitive with conventional coupling reactions.In this Account, we outline Cu-catalyzed oxidative cross-coupling reactions of benzylic C(sp3)-H bonds with diverse nucleophilic partners. These reactions commonly use N-fluorobenzenesulfonimide (NFSI) as the oxidant. The scope of reactivity is greatly improved by using a "redox buffer" that ensures that the Cu catalyst is available in the proper redox state to promote the reaction. Early precedents of catalytic Cu/NFSI oxidative coupling reactions, including C-H cyanation and arylation, did not require a redox buffer, but reactions with other nucleophiles, such as alcohols and azoles, were much less effective under similar conditions. Mechanistic studies show that some nucleophiles, such as cyanide and arylboronic acids, promote in situ reduction of CuII to CuI, contributing to successful catalytic turnover. Poor reactivity was observed with nucleophiles, such as alcohols, that do not promote CuII reduction in the same manner. This insight led to the identification of sacrificial reductants, termed "redox buffers", that support controlled generation of CuI during the reactions and enable successful benzylic C(sp3)-H cross-coupling with diverse nucleophiles. Successful reactions include those that feature direct coupling of (hetero)benzylic C-H substrates with coupling partners (alcohols, azoles) and sequential C(sp3)-H functionalization/coupling reactions. The latter methods feature generation of a synthetic linchpin that can undergo subsequent reaction with a broad array of nucleophiles. For example, halogenation/substitution cascades afford benzylic amines, (thio)ethers, and heterodiarylmethane derivatives, and an isocyanation/amine-addition sequence generates diverse benzylic ureas.Collectively, these Cu-catalyzed (hetero)benzylic C(sp3)-H cross-coupling reactions rapidly access diverse molecules. Analysis of their physicochemical and topological properties highlights the "drug-likeness" and enhanced three-dimensionality of these products relative to existing bioactive molecules. This consideration, together with the high benzylic C-H site-selectivity and the broad scope of reactivity enabled by the redox buffering strategy, makes these C(sp3)-H cross-coupling methods ideally suited for implementation in high-throughput experimentation platforms to explore novel chemical space for drug discovery and related applications.
Collapse
Affiliation(s)
- Si-Jie Chen
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, Wisconsin, 53706, United States
- Department of Discovery Chemistry, Merck & Co., Inc., 213 E Grand Avenue, South San Francisco, California, 94030, United States
| | - Shane W. Krska
- Department of Discovery Chemistry, Merck & Co., Inc., 126 East Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, Wisconsin, 53706, United States
| |
Collapse
|
293
|
Chang YC, Salome C, Fessard T, Brown MK. Synthesis of 2-Azanorbornanes via Strain-Release Formal Cycloadditions Initiated by Energy Transfer. Angew Chem Int Ed Engl 2023; 62:e202314700. [PMID: 37963812 PMCID: PMC10760907 DOI: 10.1002/anie.202314700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Indexed: 11/16/2023]
Abstract
Rigid bicycles are becoming more popular in the pharmaceutical industry because they allow for expansion to new and unique chemical spaces. This work describes a new strategy to construct 2-azanorbornanes, which can act as rigid piperidine/pyrrolidine scaffolds with well-defined exit vectors. To achieve the synthesis of 2-azanorbornanes, new strain-release reagent, azahousane, is introduced along with its photosensitized strain-release formal cycloaddition with alkenes. Furthermore, new reactivity between a housane and an imine is disclosed. Both strategies lead to various substituted 2-azanorbornanes with good selectivities.
Collapse
Affiliation(s)
- Yu-Che Chang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN, 47401, USA
| | - Christophe Salome
- SpiroChem AG, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058, Basel, Switzerland
| | - Thomas Fessard
- SpiroChem AG, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058, Basel, Switzerland
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN, 47401, USA
| |
Collapse
|
294
|
Lim EQ, Ahemad N, Yap MKK. High-throughput virtual screening, pharmacophore modelling and antagonist effects of small molecule inhibitors against cytotoxin-induced cytotoxicity. J Biomol Struct Dyn 2023:1-15. [PMID: 38100546 DOI: 10.1080/07391102.2023.2293275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Cobra venom cytotoxins (CTX) cause dermonecrosis in envenomed patients who suffered from limb amputations due to the limitation of serotherapy-based antivenoms. This study aimed to identify small molecule inhibitors against CTX. A structure-based high-throughput virtual screening (HTVS) was conducted based on a conserved CTX, using the Natural Product Activity and Species Source (NPASS) screening library. The hits were valerenic acid, 1-oxo-2H-isoquinoline-4-carboxylic acid, acenaphthene, and 5-bromopyrrole-2-carboxamide, which interacted with contemporary antivenom binding site A and functional loops I-III of CTX, respectively, in molecular docking studies. Furthermore, molecular dynamic simulations were performed along with analysis of ligand fitness through their pharmacophore and pharmacokinetics properties. The antagonist effects of these hits on CTX-induced cytotoxicity were examined in human keratinocytes (HaCaT). Despite having a low binding affinity (KD = 14.45 × 10-4 M), acenaphthene demonstrated a significant increase of cell viability at 6 h and 24 h in experimental envenomed HaCaT. It also demonstrated the highest neutralization potency against CTX with a median effective concentration (EC50) of 0.05 mL/mg. Acenaphthene interacted with the functional loop II, which is the crucial cytotoxic site of CTX. It has an aromatic ring as its primary pharmacophoric feature, commonly used for rational drug design. In conclusion, acenaphthene could be a promising lead compound as a small molecule inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- En Qi Lim
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
295
|
Zhang Y, Sui X, Pan F, Yu K, Li K, Tian S, Erdengasileng A, Han Q, Wang W, Wang J, Wang J, Sun D, Chung H, Zhou J, Zhou E, Lee B, Zhang P, Qiu X, Zhao T, Zhang J. BioKG: a comprehensive, large-scale biomedical knowledge graph for AI-powered, data-driven biomedical research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562216. [PMID: 38168218 PMCID: PMC10760044 DOI: 10.1101/2023.10.13.562216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
To cope with the rapid growth of scientific publications and data in biomedical research, knowledge graphs (KGs) have emerged as a powerful data structure for integrating large volumes of heterogeneous data to facilitate accurate and efficient information retrieval and automated knowledge discovery (AKD). However, transforming unstructured content from scientific literature into KGs has remained a significant challenge, with previous methods unable to achieve human-level accuracy. In this study, we utilized an information extraction pipeline that won first place in the LitCoin NLP Challenge to construct a largescale KG using all PubMed abstracts. The quality of the large-scale information extraction rivals that of human expert annotations, signaling a new era of automatic, high-quality database construction from literature. Our extracted information markedly surpasses the amount of content in manually curated public databases. To enhance the KG's comprehensiveness, we integrated relation data from 40 public databases and relation information inferred from high-throughput genomics data. The comprehensive KG enabled rigorous performance evaluation of AKD, which was infeasible in previous studies. We designed an interpretable, probabilistic-based inference method to identify indirect causal relations and achieved unprecedented results for drug target identification and drug repurposing. Taking lung cancer as an example, we found that 40% of drug targets reported in literature could have been predicted by our algorithm about 15 years ago in a retrospective study, demonstrating that substantial acceleration in scientific discovery could be achieved through automated hypotheses generation and timely dissemination. A cloud-based platform (https://www.biokde.com) was developed for academic users to freely access this rich structured data and associated tools.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306
| | - Xin Sui
- Insilicom LLC, Tallahassee, FL 32303
| | - Feng Pan
- Insilicom LLC, Tallahassee, FL 32303
| | | | - Keqiao Li
- Department of Statistics, Florida State University, Tallahassee, FL 32306
| | - Shubo Tian
- Department of Statistics, Florida State University, Tallahassee, FL 32306
| | | | - Qing Han
- Department of Statistics, Florida State University, Tallahassee, FL 32306
| | - Wanjing Wang
- Department of Statistics, Florida State University, Tallahassee, FL 32306
| | | | - Jian Wang
- 977 Wisteria Ter., Sunnyvale, CA 94086
| | | | | | - Jun Zhou
- Insilicom LLC, Tallahassee, FL 32303
| | - Eric Zhou
- Insilicom LLC, Tallahassee, FL 32303
| | - Ben Lee
- Insilicom LLC, Tallahassee, FL 32303
| | - Peili Zhang
- Forward Informatics, Winchester, Massachusetts, 01890
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642
| | - Tingting Zhao
- Department of Geography, Florida State University, Tallahassee, FL 32306
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306
- Insilicom LLC, Tallahassee, FL 32303
| |
Collapse
|
296
|
Kiprova N, Desnoyers M, Narobe R, Klufts-Edel A, Chaud J, König B, Compain P, Kern N. Towards a General Access to 1-Azaspirocyclic Systems via Photoinduced, Reductive Decarboxylative Radical Cyclizations. Chemistry 2023:e202303841. [PMID: 38084823 DOI: 10.1002/chem.202303841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Indexed: 01/13/2024]
Abstract
A convenient and versatile approach to important 1-azaspirocyclic systems relevant to medicinal chemistry and natural products is reported herein. The main strategy relies on a reductive decarboxylative cyclization of redox-active esters which can be rapidly assembled from abundant cyclic azaacids and tailored acceptor sidechains, with a focus on alkyne acceptors enabling the generation of useful exo-alkene moieties. Diastereoconvergent variants were studied and could be achieved either through remote stereocontrol or conformational restriction in bicyclic carbamate substrates. Two sets of metal-free photocatalytic conditions employing inexpensive eosin Y were disclosed and studied experimentally to highlight key mechanistic divergences.
Collapse
Affiliation(s)
- Natalia Kiprova
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Marine Desnoyers
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Rok Narobe
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Germany
| | - Arthur Klufts-Edel
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Juliane Chaud
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Germany
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
297
|
Zehra M, Usmani Y, Shafiq J, Khan A, Zafar M, Raza Mirza M, Shah SR, Al-Harrasi A, Hasan SM, Farooqui A, Ahmed A. In vitro and in vivo antimicrobial potential of lithium complex against multi-drug resistant Acinetobacter baumannii. Microbiol Spectr 2023; 11:e0193023. [PMID: 37861330 PMCID: PMC10715101 DOI: 10.1128/spectrum.01930-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Multi-drug resistance (MDR) by virtue of evolving resistance and virulence mechanisms among A. baumannii is a global concern which is responsible for lethal hospital-acquired infections. Therefore, it is crucial to develop new therapeutics against it. Metal complexes are compact structures with diverse mechanisms that the pathogens cannot evade easily which make them a strong drug candidate. In this study, we assessed the in vitro and in vivo efficacy of lithium complex {[Li(phen)2 sal]} against biofilm-forming MDR A. baumannii. The lithium complex displayed strong antimicrobial activity and reduced the pre-formed mature biofilm which is key barrier for antimicrobial action. Moreover, it employs oxidative stress as one of its mode of actions and causes cellular rupturing. Lithium complex was non-toxic and was significantly effective to overcome pneumonia in mice model. These results highlight the untapped potential of metal complexes that can be explored and utilized for combating notorious A. baumannii infections.
Collapse
Affiliation(s)
- Moatter Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Yamina Usmani
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Jazib Shafiq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ajmal Khan
- Natural and Medical Science Research Center, University of Nizwa, Birkat Almouz, Oman
| | - Muneeza Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Raza Shah
- Natural and Medical Science Research Center, University of Nizwa, Birkat Almouz, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Birkat Almouz, Oman
| | - Syed Mehmood Hasan
- Department of Pathology, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Amber Farooqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Translational Medicine Program, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
298
|
Weng C, Tan YLK, Koh WG, Ang WH. Harnessing Transition Metal Scaffolds for Targeted Antibacterial Therapy. Angew Chem Int Ed Engl 2023; 62:e202310040. [PMID: 37621226 DOI: 10.1002/anie.202310040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Antimicrobial resistance, caused by persistent adaptation and growing resistance of pathogenic bacteria to overprescribed antibiotics, poses one of the most serious and urgent threats to global public health. The limited pipeline of experimental antibiotics in development further exacerbates this looming crisis and new drugs with alternative modes of action are needed to tackle evolving pathogenic adaptation. Transition metal complexes can replenish this diminishing stockpile of drug candidates by providing compounds with unique properties that are not easily accessible using pure organic scaffolds. We spotlight four emerging strategies to harness these unique properties to develop new targeted antibacterial agents.
Collapse
Affiliation(s)
- Cheng Weng
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | | | - Wayne Gareth Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
299
|
Großkopf J, Bach T. Catalytic Photochemical Deracemization via Short-Lived Intermediates. Angew Chem Int Ed Engl 2023; 62:e202308241. [PMID: 37428113 DOI: 10.1002/anie.202308241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Upon irradiation in the presence of a suitable chiral catalyst, racemic compound mixtures can be converted into enantiomerically pure compounds with the same constitution. The process is called photochemical deracemization and involves the formation of short-lived intermediates. By opening different reaction channels for the forward reaction to the intermediate and for the re-constitution of the chiral molecule, the entropically disfavored process becomes feasible. Since the discovery of the first photochemical deracemization in 2018, the field has been growing rapidly. This review comprehensively covers the research performed in the area and discusses current developments. It is subdivided according to the mode of action and the respective substrate classes. The focus of this review is on the scope of the individual reactions and on a discussion of the mechanistic details underlying the presented reaction.
Collapse
Affiliation(s)
- Johannes Großkopf
- School of Natural Sciences, Technische Universität München, Department Chemie and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Thorsten Bach
- School of Natural Sciences, Technische Universität München, Department Chemie and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
300
|
Maujean T, Kannaboina P, Green AI, Burslem GM. Lead-oriented synthesis of epigenetic relevant scaffolds. Chem Commun (Camb) 2023; 59:14555-14558. [PMID: 37991354 PMCID: PMC10842704 DOI: 10.1039/d3cc04317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A simple and rational method to rank lead-likeness of molecules using continuous evaluation functions was hereby developed. This strategy proved to be competitive against known methods and finally helped in driving synthetic efforts towards candidates of interest for epigenetic applications against HDAC6, BRD4 and EZH2.
Collapse
Affiliation(s)
- Timothé Maujean
- Department of Biochemistry and Biophysics, Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| | - Prakash Kannaboina
- Department of Biochemistry and Biophysics, Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| | - Adam I Green
- Department of Biochemistry and Biophysics, Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| | - George M Burslem
- Department of Biochemistry and Biophysics, Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|