251
|
Abstract
Long-term potentiation and long-term depression are thought to be cellular mechanisms contributing to learning and memory. Although the physiological phenomena have been well characterized, little consensus of their underlying molecular mechanisms has emerged. One reason for this may be the under-appreciated complexity of the signaling pathways that can arise if key signaling molecules are discretely localized within the synapse. Recent findings suggest an unanticipated degree of structural organization at the synapse, and improved methods in cellular imaging of living tissue have provided much-needed information about the intracellular dynamics of Ca(2+), thought to be critical for both LTP and LTD. In this review, we briefly summarize some of these developments, and show that a more complete understanding of cellular signaling depends on the successful integration of traditional biochemistry and molecular biology with the spatial and temporal details of synaptic ultrastructure. Biophysically realistic computer simulations can have an important role in bridging these disciplines.
Collapse
Affiliation(s)
| | - Terrence J. Sejnowski
- Correspondence to: Terrence J. Sejnowski, Computational Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037.
| |
Collapse
|
252
|
Abstract
Chemical transmission at central synapses is known to be highly plastic; the strength of synaptic connections can be modified bi-directionally as a result of activity at individual synapses. Long-term changes in synaptic efficacy, both increases and decreases, are thought to be involved in the development of the nervous system, and in ongoing changes in response to external cues such as during learning and addiction. Other, shorter lasting changes in synaptic transmission are also likely to be important in normal functioning of the CNS. Calcium mobilisation is an important step in multiple forms of plasticity and, although entry into neurones from the extracellular space is often the initial trigger for plasticity changes, release of calcium from intracellular stores also has an important part to play in a variety of forms of synaptic plasticity.
Collapse
Affiliation(s)
- Stephen M Fitzjohn
- School of Biological Sciences, University of Manchester, Manchester, UK.
| | | |
Collapse
|
253
|
Stewart CA, Reid IC. Antidepressant mechanisms: functional and molecular correlates of excitatory amino acid neurotransmission. Mol Psychiatry 2002; 7 Suppl 1:S15-22. [PMID: 11986991 DOI: 10.1038/sj.mp.4001014] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Specific targeting of the serotonergic and noradrenergic systems for the development of antidepressant compounds has resulted in drugs with more favourable side-effect profiles but essentially no greater efficacy than those compounds discovered more than 40 years ago. Alternative targets are now being considered in the hope that they will have a faster onset of action and be useful for those patients currently unresponsive to conventional treatments. Excitatory amino acid neurotransmission has been attributed various roles in both normal and abnormal brain function. The N-methyl-D-aspartate receptor in particular has long been postulated to play a role in the formation of memories. Major depressive disorder is characterised by alterations in cognitive function, as well as affect. Although there is evidence that early adverse events and stress can have a causal influence on depression, the underlying neurobiology of the disorder is poorly understood. This review will document current evidence for the involvement of excitatory amino acid neurotransmission in the pathophysiology of the affective disorders. The preclinical literature suggests that both electroconvulsive stimulation and antidepressant drugs can affect hippocampal long-term potentiation and the expression of excitatory amino acid receptor subtypes. Exposing animals to stress, including the kind that produces learned helplessness, can also affect synaptic plasticity in the hippocampus. There is clinical evidence that patients with chronic depression have structural brain abnormalities, including hippocampal atrophy, and a preliminary study has shown that an N-methyl-D-aspartate receptor antagonist may have antidepressant efficacy.
Collapse
Affiliation(s)
- C A Stewart
- University of Dundee, Department of Psychiatry, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.
| | | |
Collapse
|
254
|
Bon C, Böhme GA, Doble A, Stutzmann JM, Blanchard JC. A Role for Nitric Oxide in Long-term Potentiation. Eur J Neurosci 2002; 4:420-424. [PMID: 12106350 DOI: 10.1111/j.1460-9568.1992.tb00891.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide production in the cerebellum and induction of long-term potentiation (LTP) in the hippocampus have some characteristics in common: both phenomena are induced by activation of N-methyl-d-aspartate receptors and both are highly dependent on calcium-mediated processes. Here we provide evidence that endogenous nitric oxide production is necessary for synaptic plasticity in the CA1 hippocampus of the rat. LTP recorded in slices was blocked in a concentration-dependent manner by the nitric oxide synthase inhibitors l-NG-nitroarginine and l-NG-nitroarginine methyl ester, but l-NG-monomethylarginine was only marginally active. Bathing the slices with haemoglobin, a protein that scavenges nitric oxide, also resulted in a concentration-dependent blockade of LTP. Nitric oxide released locally from hydroxylamine produced a stable potentiation of synaptic transmission that was not additive with LTP induced by high-frequency stimulation. These results are fully consistent with the presumed retrograde messenger role of nitric oxide in LTP.
Collapse
Affiliation(s)
- Christelle Bon
- Rhône - Poulenc Rorer Central Research, Centre de Recherches de Vitry-Alfortville, 94403 Vitry-sur-Seine, France
| | | | | | | | | |
Collapse
|
255
|
Reymann KG, Davies SN, Matthies H, Kase H, Collingridge GL. Activation of a K-252b-Sensitive Protein Kinase is Necessary for a Post-Synaptic Phase of Long-Term Potentiation in Area CA1 of Rat Hippocampus. Eur J Neurosci 2002; 2:481-6. [PMID: 12106018 DOI: 10.1111/j.1460-9568.1990.tb00439.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
K-252b, a potent inhibitor of protein kinases blocked a late phase of long-term potentiation (LTP) in area CA1 of rat hippocampal slices, resulting in decremental LTP. It also prevented the slowly developing increase in sensitivity of CA1 neurons to iontophoretically administered alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) which was seen in control slices that exhibit nondecremental LTP. However, K-252b applied 60 - 180 min after the induction of LTP had no effect on the potentiated synaptic and AMPA-induced responses. A K-252b-sensitive protein kinase may therefore be involved in a slowly developing postsynaptic component of LTP.
Collapse
Affiliation(s)
- K G Reymann
- Department of Pharmacology, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | | | |
Collapse
|
256
|
Arai A, Lynch G. Antagonists of the Platelet-activating Factor Receptor Block Long-term Potentiation in Hippocampal Slices. Eur J Neurosci 2002; 4:411-419. [PMID: 12106349 DOI: 10.1111/j.1460-9568.1992.tb00890.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effects of antagonists and agonists of the platelet-activating factor (PAF) receptor on the formation of long-term potentiation (LTP) were examined in slices of rat hippocampus. The antagonist rans-BTD (rans-2,5-bis-(3,4,5-trimethoxyphenyl)-1,3-dioxolane) at concentrations of 8 - 16 microM blocked LTP in field CA1 while the same concentration of a stereo isomer (cis-BTD) with low affinity for PAF receptors was without effect. CV3988, an antagonist structurally related to PAF, also attenuated LTP. The blockade of LTP by trans-BTD was partially reversed by simultaneous application of the non-metabolizable receptor agonist carbamyl-PAF. Trans-BTD did not change the following physiological measures: (i) paired-pulse facilitation, (ii) responses occurring during the short bursts given to induce LTP, (iii) N-methyl-d-aspartate receptor-mediated responses, and (iv) potentiation measured during the first minute after high-frequency stimulation. It thus appears that trans-BTD interferes with LTP at some step after induction and initial expression. These results suggest that activation of PAF receptors contributes to the stabilization of LTP, possibly via an effect on intracellular calcium levels.
Collapse
Affiliation(s)
- Amy Arai
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA 92717, USA
| | | |
Collapse
|
257
|
Bramham CR, Milgram NW, Srebro B. Activation of AP5-sensitive NMDA Receptors is Not Required to Induce LTP of Synaptic Transmission in the Lateral Perforant Path. Eur J Neurosci 2002; 3:1300-1308. [PMID: 12106227 DOI: 10.1111/j.1460-9568.1991.tb00062.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of the N-methyl-d-aspartate (NMDA) type of glutamate receptor in long-term potentiation (LTP) of the medial (MPP) and lateral (LPP) divisions of the perforant path - granule cell system was investigated in urethane-anaesthetized rats. A stimulating electrode was positioned in the dorsomedial or ventrolateral aspect of the angular bundle for selective activation of either the MPP or LPP, respectively. A push - pull cannula served to focally perfuse artificial cerebrospinal fluid (ACSF) across the perforant path synaptic zone, while evoked potentials were monitored in the dentate hilus. Identification of LPP and MPP responses was based on (1) differences in population excitatory postsynaptic potential (EPSP) waveform obtained during stimulus depth profiles, and (2) differential sensitivity of evoked EPSPs to the glutamate receptor agonist l-aminophosphonobutyrate (AP4), and the antagonist gamma-d-glutamylglycine (DGG). High-frequency stimulation (400 Hz, 8 bursts of 8 pulses) applied to the lateral and medial perforant path elicited LTP of the EPSP and population spike in rats perfused with standard medium. In the MPP, LTP was almost completely blocked when d-aminophosphonopentanoate (AP5; 100 microM), a selective NMDA receptor antagonist, was perfused during the tetanus. Surprisingly, in the LPP experiments, AP5 did not impair induction of the 'synaptic' EPSP component of LTP. This occurred despite the ability of AP5 to block LTP of the LPP evoked population spike. The results suggest the existence of a novel, NMDA receptor-independent form of synaptic LTP in the lateral perforant path.
Collapse
Affiliation(s)
- Clive R. Bramham
- Department of Physiology, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway
| | | | | |
Collapse
|
258
|
Affiliation(s)
- Alexej Verkhratsky
- School of Biological Sciences, University of Manchester, Oxford Road 1.124 Stopford Building, M13 9PT, Manchester, UK.
| | | | | |
Collapse
|
259
|
Zink WE, Boyle J, Persidsky Y, Xiong H, Gendelman HE. Model systems for assessing cognitive function: implications for HIV-1 infection and drugs of abuse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 493:7-27. [PMID: 11727783 DOI: 10.1007/0-306-47611-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Memory deficits are common among drug abusers and in those with chronic neurodegenerative disorders. Currently, the mechanisms through which diverse neurophysiologic processes alter memory are not known. This review describes the current systems and rationale for studying memory formation, consolidation, and recall. Special attention is given to physiologic (hippocampal long-term potentiation) and behavioral animal models. The principles and methods described can be applied to studies of diverse clinical disorders.
Collapse
Affiliation(s)
- W E Zink
- The Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha 68198-5215, USA
| | | | | | | | | |
Collapse
|
260
|
Calabresi P, Saulle E, Centonze D, Pisani A, Marfia GA, Bernardi G. Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability. Brain 2002; 125:844-60. [PMID: 11912117 DOI: 10.1093/brain/awf073] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the present in vitro study of rat brain, we report that transient oxygen and glucose deprivation (in vitro ischaemia) induced a post-ischaemic long-term synaptic potentiation (i-LTP) at corticostriatal synapses. We compared the physiological and pharmacological characteristics of this pathological form of synaptic plasticity with those of LTP induced by tetanic stimulation of corticostriatal fibres (t-LTP), which is thought to represent a cellular substrate of learning and memory. Activation of N-methyl-D-aspartate (NMDA) receptors was required for the induction of both forms of synaptic plasticity. The intraneuronal injection of the calcium chelator BAPTA [bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate] and inhibitors of the mitogen-activated protein kinase pathway blocked both forms of synaptic plasticity. However, while t-LTP showed input specificity, i-LTP occurred also at synaptic pathways inactive during the ischaemic period. In addition, scopolamine, a muscarinic receptor antagonist, prevented the induction of t-LTP but not of i-LTP, indicating that endogenous acetylcholine is required for physiological but not for pathological synaptic potentiation. Finally, we found that striatal cholinergic interneurones, which are resistant to in vivo ischaemia, do not express i-LTP while they express t-LTP. We suggest that i-LTP represents a pathological form of synaptic plasticity that may account for the cell type-specific vulnerability observed in striatal spiny neurones following ischaemia and energy deprivation.
Collapse
Affiliation(s)
- Paolo Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Tor Vergata and IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
261
|
Zhou S, Ross WN. Threshold conditions for synaptically evoking Ca(2+) waves in hippocampal pyramidal neurons. J Neurophysiol 2002; 87:1799-804. [PMID: 11929901 DOI: 10.1152/jn.00601.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regenerative Ca(2+) release from inositol 1,4,5-trisphosphate (IP(3))-sensitive intracellular stores in the form of Ca(2+) waves leads to large-amplitude [Ca(2+)](i) increases in the apical dendrites of hippocampal CA1 pyramidal neurons. Release is generated following synaptic activation of group I metabotropic glutamate (mGlu) receptors. We systematically examined the conditions for evoking these waves in transverse slices from 2- to 3-wk-old rats. Using a sharpened asymmetrical bipolar tungsten stimulating electrode placed in the stratum radiatum, we varied the lateral position of the electrode, the number of stimulating pulses, the train frequency, and stimulus current. Several trends were clear. Increasing the frequency of stimulation from 20 to 100 Hz, keeping the total number of pulses constant, lowered the required stimulus current. Stimulation at frequencies below 20 Hz made it difficult to evoke release. Increasing the number of stimulation pulses, keeping the frequency constant, lowered the threshold current. A minimum of five pulses at 100 Hz was required to evoke release reliably, but several examples of success with three pulses were recorded. Theta-burst stimulation was as effective as tetanic stimulation. Placing the point of the stimulation electrode closer to the pyramidal neuron made it easier to evoke release, although stimulation at a lateral distance of 500 microm with unsharpened electrodes was sometimes successful. The simplest explanation for these results is that a bolus of IP(3) must be produced quickly in a restricted region of the dendrites to generate Ca(2+) waves. The conditions necessary for evoking regenerative Ca(2+) release have many parallels (and some differences) with the conditions required to evoke long-term potentiation in these cells following tetanic stimulation.
Collapse
Affiliation(s)
- Suya Zhou
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | |
Collapse
|
262
|
Jouvenceau A, Potier B, Poindessous-Jazat F, Dutar P, Slama A, Epelbaum J, Billard JM. Decrease in calbindin content significantly alters LTP but not NMDA receptor and calcium channel properties. Neuropharmacology 2002; 42:444-58. [PMID: 11955516 DOI: 10.1016/s0028-3908(01)00202-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The contribution of the cytosolic calcium binding protein calbindin D(28K) (CaBP) to the synaptic plasticity was investigated in hippocampal CA1 area of wild-type and antisense transgenic CaBP-deficient mice. We showed that long-term potentiation (LTP) induced by tetanic stimulation in CaBP-deficient mice was impaired. The fundamental biophysical properties of NMDA receptors and their number were not modified in CaBP-deficient mice. We also demonstrated that the physiological properties of calcium channels were identical between genotypes. An insufficient Ca(2+) entry through NMDA receptors or calcium channels, or a decrease in NMDA receptor density are unlikely to explain this impairment of LTP. Interestingly, we showed that the loss of LTP was not prevented by glycine but was restored in the presence of a low concentration of the NMDA receptor antagonist D-APV (5 microM) and of the calcium chelator BAPTA-AM (5 microM). Moreover, we observed a loss of LTP in the wild-type mice when the postsynaptic tetanic-induced [Ca(2+)](i) rise is excessively increased. Conversely, a weaker tetanus stimulation allowed LTP induction and maintenance in CaBP-deficient mice. These results suggest that a higher cytosol [Ca(2+)](i), due to the decrease of CaBP expression may impair LTP induction and maintenance mechanisms without affecting the mechanisms of calcium entry. Thus, CaBP plays a critical role in long term synaptic plasticity by limiting the elevation of calcium rise in the cytosol to some appropriate spatio-temporal pattern.
Collapse
Affiliation(s)
- A Jouvenceau
- Neurobiologie de la Croissance et de la Sénescence, INSERM U 549, IFR Broca-Sainte Anne, 2ter rue d'Alésia, 75014, Paris, France
| | | | | | | | | | | | | |
Collapse
|
263
|
Abstract
Advances in molecular, genetic, and cell biological techniques have allowed neuroscientists to delve into the cellular machinery of learning and memory. The calcium and calmodulin-dependent kinase type II (CaMKII) is one of the best candidates for being a molecular component of the learning and memory machinery in the mammalian brain. It is present in abundance at synapses and its enzymatic properties and responsiveness to intracellular Ca(2+) fit a model whereby Ca(2+) currents activate the kinase and lead to changes in synaptic efficacy. Indeed, such plastic properties of synapses are thought to be important for memory formation. Genetic analysis of the alpha isoform of CaMKII in mice support the hypothesis that CaMKII signaling is required to initiate the formation of new spatial memories in the hippocampus. CaMKII is also required for the correct induction of long-term potentiation (LTP) in the hippocampus, consistent with the widely held belief that LTP is a mechanism for learning and memory. Recent cell biological, genetic, and physiological analyses suggest that one of the cellular explanations for LTP and CaMKII function might be the trafficking of AMPA-type receptors to synapses in response to neural activity.
Collapse
Affiliation(s)
- Christopher Rongo
- Waksman Institute/Rutgers University, 190 Frelinghuysen Rd, Piscataway, NJ, USA.
| |
Collapse
|
264
|
Potentiation of hippocampal synaptic transmission by superoxide requires the oxidative activation of protein kinase C. J Neurosci 2002. [PMID: 11826097 DOI: 10.1523/jneurosci.22-03-00674.2002] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent evidence suggests that reactive oxygen species (ROS), including superoxide, are not only neurotoxic but function as small messenger molecules in normal neuronal processes such as synaptic plasticity. Consistent with this idea, we show that brief incubation of hippocampal slices with the superoxide-generating system xanthine/xanthine oxidase (X/XO) produces a long-lasting potentiation of synaptic transmission in area CA1. We found that X/XO-induced potentiation was associated with a persistent superoxide-dependent increase in autonomous PKC activity that could be isolated via DEAE column chromatography. The X/XO-induced potentiation was blocked by the inhibition of PKC, indicating that the superoxide-dependent increase in autonomous PKC activity was necessary for the potentiation. We also found that X/XO-induced potentiation and long-term potentiation (LTP) occluded one another, suggesting that these forms of plasticity share similar cellular mechanisms. In further support of this idea, we found that a persistent, superoxide-dependent increase in autonomous PKC activity isolated via DEAE column chromatography also was associated with LTP. Taken together, our findings indicate that X/XO-induced potentiation and LTP share similar cellular mechanisms, including superoxide-dependent increases in autonomous PKC activity. Finally, our findings suggest that superoxide, in addition to its well known role as a neurotoxin, also can be considered a small messenger molecule critical for normal neuronal signaling.
Collapse
|
265
|
Abstract
Spine Ca(2+) is critical for the induction of synaptic plasticity, but the factors that control Ca(2+) handling in dendritic spines under physiological conditions are largely unknown. We studied [Ca(2+)] signaling in dendritic spines of CA1 pyramidal neurons and find that spines are specialized structures with low endogenous Ca(2+) buffer capacity that allows large and extremely rapid [Ca(2+)] changes. Under physiological conditions, Ca(2+) diffusion across the spine neck is negligible, and the spine head functions as a separate compartment on long time scales, allowing localized Ca(2+) buildup during trains of synaptic stimuli. Furthermore, the kinetics of Ca(2+) sources governs the time course of [Ca(2+)] signals and may explain the selective activation of long-term synaptic potentiation (LTP) and long-term depression (LTD) by NMDA-R-mediated synaptic Ca(2+).
Collapse
Affiliation(s)
- Bernardo L Sabatini
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
266
|
Abstract
Dendritic spines are morphologically and functionally heterogeneous. To understand this diversity, we use two-photon imaging of layer 5 neocortical pyramidal cells and measure action potential-evoked [Ca(2+)]i transients in spines. Spine calcium kinetics are controlled by (i) the diameter of the parent dendrite, (ii) the length of the spine neck, and (iii) the strength of spine calcium pumps. These factors produce different calcium dynamics in spines from basal, proximal apical, and distal apical dendrites, differences that are more pronounced without exogenous buffers. In proximal and distal apical dendrites, different calcium dynamics correlate with different susceptibility to synaptic depression, and modifying calcium kinetics in spines changes the expression of long-term depression. Thus, the spine location apparently determines its calcium dynamics and synaptic plasticity. Our results highlight the precision in design of neocortical neurons.
Collapse
Affiliation(s)
- Knut Holthoff
- Department Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | | | |
Collapse
|
267
|
Alle H, Jonas P, Geiger JR. PTP and LTP at a hippocampal mossy fiber-interneuron synapse. Proc Natl Acad Sci U S A 2001; 98:14708-13. [PMID: 11734656 PMCID: PMC64746 DOI: 10.1073/pnas.251610898] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mossy fiber-CA3 pyramidal neuron synapse is a main component of the hippocampal trisynaptic circuitry. Recent studies, however, suggested that inhibitory interneurons are the major targets of the mossy fiber system. To study the regulation of mossy fiber-interneuron excitation, we examined unitary and compound excitatory postsynaptic currents in dentate gyrus basket cells, evoked by paired recording between granule and basket cells or extracellular stimulation of mossy fiber collaterals. The application of an associative high-frequency stimulation paradigm induced posttetanic potentiation (PTP) followed by homosynaptic long-term potentiation (LTP). Analysis of numbers of failures, coefficient of variation, and paired-pulse modulation indicated that both PTP and LTP were expressed presynaptically. The Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) did not affect PTP or LTP at a concentration of 10 mM but attenuated LTP at a concentration of 30 mM. Both forskolin, an adenylyl cyclase activator, and phorbolester diacetate, a protein kinase C stimulator, lead to a long-lasting increase in excitatory postsynaptic current amplitude. H-89, a protein kinase A inhibitor, and bisindolylmaleimide, a protein kinase C antagonist, reduced PTP, whereas only bisindolylmaleimide reduced LTP. These results may suggest a differential contribution of protein kinase A and C pathways to mossy fiber-interneuron plasticity. Interneuron PTP and LTP may provide mechanisms to maintain the balance between synaptic excitation of interneurons and that of principal neurons in the dentate gyrus-CA3 network.
Collapse
Affiliation(s)
- H Alle
- Physiologisches Institut der Universität Freiburg, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
268
|
Abstract
Neuroscientists, in the last half of the 20th century, provided major insights into the cellular and molecular mechanisms associated with seeing and remembering. We first identify some of the most important of these discoveries. This is done along lines familiar to neuroscientists who have read many of the recent books and reviews that provide an overview of neuroscientific discoveries. In general, these emphasize the scientific contributions this discipline has made to our understanding of the mechanisms that give rise to the psychological attributes of humans and other animals. In the next sections, we examine the claims made in these overviews; in particular, those by the standard-bearers of neuroscience, in an attempt to clarify what can and what cannot be justified in these claims. This requires a conceptual analysis of a kind that is unfamiliar to most neuroscientists. Our analysis begins with consideration of the conceptual confusions that ensue when neuroscientists attribute seeing, remembering and other psychological attributes to the brain rather than to the creature whose brain it is. Subsequently, we outline what we take to be the appropriate conceptual scheme for neuroscientists to adopt.
Collapse
Affiliation(s)
- M R Bennett
- The Neurobiology Laboratory, Department of Physiology, Institute for Biomedical Research, University of Sydney, NSW 2006, Sydney, Australia.
| | | |
Collapse
|
269
|
Pickard L, Noël J, Duckworth JK, Fitzjohn SM, Henley JM, Collingridge GL, Molnar E. Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. Neuropharmacology 2001; 41:700-13. [PMID: 11640924 DOI: 10.1016/s0028-3908(01)00127-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The molecular mechanisms underlying long-term potentiation (LTP) of excitatory synaptic transmission in the hippocampus are not well understood. Transient depolarisation of cultured postnatal hippocampal neurones (3x1 s exposure to 90 mM K+) induces a form of LTP that is manifest primarily as an increase in mEPSC frequency. Site-directed antibodies that recognise an extracellular region of all AMPA receptor (AMPAR) subunits (GluR1-4) were used for the immunolabelling of living neurones. These antibodies were raised in two species to enable sequential immunofluorescent labelling of individual living neurones before and after the induction of LTP. High K+ treatment resulted in the appearance of new AMPAR clusters at sites on the neuronal surface that previously lacked detectable AMPARs. The appearance of new AMPAR clusters was NMDA receptor (NMDAR)-dependent since it was antagonised by the application of NMDAR antagonists. Our data indicate that the transient synaptic activation of NMDARs can lead to the insertion of native AMPARs at sites on the neuronal membrane that initially lacks AMPARs.
Collapse
Affiliation(s)
- L Pickard
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, School of Medical Sciences, University Walk, BS8 1TD, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
270
|
Abstract
The aims of this paper are to provide a comprehensive and up to date review of the mechanisms of induction and expression of long-term depression (LTD) of synaptic transmission. The review will focus largely on homosynaptic LTD and other forms of LTD will be considered only where appropriate for a fuller understanding of LTD mechanisms. We shall concentrate on what are felt to be some of the most interesting recent findings concerning LTD in the central nervous system. Wherever possible we shall try to consider some of the disparities in results and possible reasons for these. Finally, we shall briefly consider some of the possible functional consequences of LTD for normal physiological function.
Collapse
Affiliation(s)
- N Kemp
- Department of Anatomy, University of Bristol, MRC Centre for Synaptic Plasticity, University Walk, BS8 1TD, Bristol, UK
| | | |
Collapse
|
271
|
Song D, Xie X, Wang Z, Berger TW. Differential effect of TEA on long-term synaptic modification in hippocampal CA1 and dentate gyrus in vitro. Neurobiol Learn Mem 2001; 76:375-87. [PMID: 11726243 DOI: 10.1006/nlme.2001.4032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effectiveness of tetraethylammonium (TEA) and high-frequency stimulation (HFS) in inducing long-term synaptic modification is compared in CA1 and dentate gyrus (DG) in vitro. High-frequency stimulation induces long-term potentiation (LTP) at synapses of both perforant path-DG granule cell and Schaffer collateral-CA1 pyramidal cell pathways. By contrast, TEA (25 mM) induces long-term depression in DG while inducing LTP in CA1. The mechanisms underlying the differential effect of TEA in CA1 and DG were investigated. It was observed that T-type voltage-dependent calcium channel (VDCC) blocker, Ni2+ (50 microM), partially blocked TEA-induced LTP in CA1. A complete blockade of the TEA-induced LTP occurred when Ni2+ was applied together with the NMDA receptor antagonist, D-APV. The L-type VDCC blocker, nifidipine (20 microM), had no effect on CA1 TEA-induced LTP. In DG of the same slice, TEA actually induced long-term depression (LTD) instead of LTP, an effect that was blocked by D-APV. Neither T-type nor L-type VDCC blockade could prevent this LTD. When the calcium concentration in the perfusion medium was increased, TEA induced a weak LTP in DG that was blocked by Ni2+. During exposure to TEA, the magnitude of field EPSPs was increased in both CA1 and DG, but the increase was substantially greater in CA1. Tetraethylammonium application also was associated with a large, late EPSP component in CA1 that persisted even after severing the connections between CA3 and CA1. All of the TEA effects in CA1, however, were dramatically reduced by Ni2+. The results of this study indicate that TEA indirectly acts via both T-type VDCCs and NMDA receptors in CA1 and, as a consequence, induces LTP. By contrast, TEA indirectly acts via only NMDA receptors in DG and results in LTD. The results raise the possibility of a major synaptic difference in the density and/or distribution of T-type VDCCs and NMDA receptors in CA1 and DG of the rat hippocampus.
Collapse
Affiliation(s)
- D Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles 90089, USA.
| | | | | | | |
Collapse
|
272
|
Li BS, Sun MK, Zhang L, Takahashi S, Ma W, Vinade L, Kulkarni AB, Brady RO, Pant HC. Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci U S A 2001; 98:12742-7. [PMID: 11675505 PMCID: PMC60124 DOI: 10.1073/pnas.211428098] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2001] [Indexed: 11/18/2022] Open
Abstract
Members of the N-methyl-d-aspartate (NMDA) class of glutamate receptors (NMDARs) are critical for development, synaptic transmission, learning and memory; they are targets of pathological disorders in the central nervous system. NMDARs are phosphorylated by both serine/threonine and tyrosine kinases. Here, we demonstrate that cyclin dependent kinase-5 (Cdk5) associates with and phosphorylates NR2A subunits at Ser-1232 in vitro and in intact cells. Moreover, we show that roscovitine, a selective Cdk5 inhibitor, blocks both long-term potentiation induction and NMDA-evoked currents in rat CA1 hippocampal neurons. These results suggest that Cdk5 plays a key role in synaptic transmission and plasticity through its up-regulation of NMDARs.
Collapse
Affiliation(s)
- B S Li
- Laboratory of Neurochemistry, Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
273
|
West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, Shaywitz AJ, Takasu MA, Tao X, Greenberg ME. Calcium regulation of neuronal gene expression. Proc Natl Acad Sci U S A 2001; 98:11024-31. [PMID: 11572963 PMCID: PMC58677 DOI: 10.1073/pnas.191352298] [Citation(s) in RCA: 812] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Plasticity is a remarkable feature of the brain, allowing neuronal structure and function to accommodate to patterns of electrical activity. One component of these long-term changes is the activity-driven induction of new gene expression, which is required for both the long-lasting long-term potentiation of synaptic transmission associated with learning and memory, and the activity dependent survival events that help to shape and wire the brain during development. We have characterized molecular mechanisms by which neuronal membrane depolarization and subsequent calcium influx into the cytoplasm lead to the induction of new gene transcription. We have identified three points within this cascade of events where the specificity of genes induced by different types of stimuli can be regulated. By using the induction of the gene that encodes brain-derived neurotrophic factor (BDNF) as a model, we have found that the ability of a calcium influx to induce transcription of this gene is regulated by the route of calcium entry into the cell, by the pattern of phosphorylation induced on the transcription factor cAMP-response element (CRE) binding protein (CREB), and by the complement of active transcription factors recruited to the BDNF promoter. These results refine and expand the working model of activity-induced gene induction in the brain, and help to explain how different types of neuronal stimuli can activate distinct transcriptional responses.
Collapse
Affiliation(s)
- A E West
- Division of Neuroscience, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J Neurosci 2001. [PMID: 11466419 DOI: 10.1523/jneurosci.21-15-05484.2001] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) is a cellular model for persistent synaptic plasticity in the mammalian brain. Like several forms of memory, long-lasting LTP requires cAMP-mediated activation of protein kinase A (PKA) and is dependent on gene transcription. Consequently, activity-dependent genes such as c-fos that contain cAMP response elements (CREs) in their 5' regulatory region have been studied intensely. More recently, arg3.1/arc became of interest, because after synaptic stimulation, arg3.1/arc mRNA is rapidly induced and distributed to dendritic processes and may be locally translated there to facilitate synapse-specific modifications. However, to date nothing is known about the signaling mechanisms involved in the induction of this gene. Here we report that arg3.1/arc is robustly induced with LTP stimulation even at intensities that are not sufficient to activate c-fos expression. Unlike c-fos, the 5' regulatory region of arg3.1/arc does not contain a CRE consensus sequence and arg3.1/arc is unresponsive to cAMP in NIH3T3 and Neuro2a cells. However, in PC12 cells and primary cultures of hippocampal neurons, arg3.1/arc can be induced by cAMP and calcium. This induction requires the activity of PKA and mitogen-activated protein kinase, suggesting a neuron-specific pathway for the activation of arg3.1/arc expression.
Collapse
|
275
|
Mizuno T, Kanazawa I, Sakurai M. Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor. Eur J Neurosci 2001; 14:701-8. [PMID: 11556894 DOI: 10.1046/j.0953-816x.2001.01679.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two opposite types of synaptic plasticity in the CA1 hippocampus, long-term potentiation (LTP) and long-term depression (LTD), require postsynaptic Ca2+ elevation. To explain these apparently contradictory phenomena, the current view assumes that a moderate postsynaptic increase in Ca2+ leads to LTD, whereas a large increase leads to LTP. No detailed study has so far been attempted to investigate whether the instantaneous Ca2+ elevation level differentially induces LTP or LTD. We therefore used low-frequency (1 Hz) stimulation of Schaffer collateral/commissural fibers in rat hippocampal slices, during a Mg2+-free period, as the conditioning stimulus to investigate this. This allowed low-frequency afferent stimulation to cause a postsynaptic Ca2+ influx because the voltage-dependent block of N-methyl-D-aspartate (NMDA) receptor-channels by Mg2+ was removed. When delivered during the Mg2+-free period, a single pulse, as well as 2-600 pulses, induced LTP that was occluded with tetanus-induced LTP. To decrease the Ca2+ influx, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors were completely blocked by the addition of 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) to the conditioning medium, in which 1 Hz afferent stimuli (1-600 pulses) induced less LTP and never induced LTD. To further reduce the Ca2+ influx, NMDA receptors were partially blocked with D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5). A small number of 1 Hz stimuli, however, never induced LTD. Only when the conditioning stimuli exceeded 200 pulses was LTD induced. The present findings provide definitive evidence that protracted conditioning is a prerequisite for the induction of LTD. Thus, not only the amplitude but also the duration of postsynaptic Ca2+ elevation could be essential factors for differentially inducing LTP or LTD.
Collapse
Affiliation(s)
- T Mizuno
- Department of Neurology, University of Tokyo, Graduate School of Medicine, Tokyo, 113-8605, Japan
| | | | | |
Collapse
|
276
|
Jo JH, Park EJ, Lee JK, Jung MW, Lee CJ. Lipopolysaccharide inhibits induction of long-term potentiation and depression in the rat hippocampal CA1 area. Eur J Pharmacol 2001; 422:69-76. [PMID: 11430915 DOI: 10.1016/s0014-2999(01)01075-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the effects of lipopolysaccharide, a bacterial endotoxin, on synaptic plasticity in the rat hippocampal CA1 area in vitro. Lipopolysaccharide suppressed the induction of long-term potentiation elicited by tetanic stimulation and long-term depression, elicited by low-frequency stimulation of Schaffer collateral-commissural fibres at 10 and 50 microg/ml, respectively. Lipid A (1 microg/ml), the biologically active component of lipopolysaccharide, mimicked the effects of 10 microg/ml lipopolysaccharide on long-term potentiation and depression. Nifedipine, an L-type voltage-sensitive Ca(2+) channel antagonist, did not influence the induction of long-term potentiation and depression, whereas a high concentration of extracellular calcium enabled long-term potentiation induction in the presence of 10 microg/ml lipopolysaccharide. The NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid (APV, 50 microM), nifedipine (10 microM) or lipopolysaccharide (10 or 50 microg/ml) partially reduced the magnitude of tetraethylammonium-induced long-term potentiation. Nifedipine combined with lipopolysaccharide completely blocked tetraethylammonium-induced long-term potentiation. Whole-cell voltage clamp recordings showed that lipopolysaccharide suppressed NMDA receptor-mediated excitatory postsynaptic currents (EPSCs). Our results indicate that lipopolysaccharide acutely modifies synaptic plasticity by blocking Ca(2+) entry through NMDA receptors, suggesting a possible mechanism for the amnesic action of bacterial infection.
Collapse
Affiliation(s)
- J H Jo
- Department of Biology, Inha University, Inchon 402-751, South Korea
| | | | | | | | | |
Collapse
|
277
|
Wu J, Rush A, Rowan MJ, Anwyl R. NMDA receptor- and metabotropic glutamate receptor-dependent synaptic plasticity induced by high frequency stimulation in the rat dentate gyrus in vitro. J Physiol 2001; 533:745-55. [PMID: 11410631 PMCID: PMC2278668 DOI: 10.1111/j.1469-7793.2001.t01-1-00745.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The mechanisms of long-term potentiation (LTP) and long-term depression (LTD) induced by brief high frequency stimulation (HFS), paired with a particular pattern and amplitude of depolarisation has been investigated in the medial perforant pathway of the dentate gyrus of the 2- to 3-week-old rat hippocampus in vitro. 2. N-Methyl-D-aspartate (NMDA) receptor (NMDAR) activation was measured quantitatively during HFS-induced NMDAR-dependent LTP, LTD and at the LTD--LTP crossover point in order to test the hypothesis that the induction of the particular form of plasticity depends on the intensity of NMDAR activation. 3. The induction of LTD, the LTD--LTP crossover point and LTP was associated with an increasing NMDAR charge transfer. 4. In addition to the NMDAR-dependent LTD, a group I metabotropic glutamate receptor (mGluR)-dependent LTD could be induced by high intensity HFS paired with depolarisation under conditions of NMDAR inhibition. 5. The induction of mGluR-dependent LTD requires membrane depolarisation, Ca(2+) influx via L-type Ca(2+) channels and a rise in intracellular Ca(2+). 6. Quantal analysis involving minimal stimulation demonstrated that the mGluR-dependent LTD induction was associated with a decrease in potency and an increase in failure rate.
Collapse
Affiliation(s)
- J Wu
- Department of Physiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
278
|
Impairment of long-term potentiation and associative memory in mice that overexpress extracellular superoxide dismutase. J Neurosci 2001. [PMID: 11027223 DOI: 10.1523/jneurosci.20-20-07631.2000] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reactive oxygen species, including superoxide, generally are considered neurotoxic molecules whose effects can be alleviated by antioxidants. Different from this view, we show that scavenging of superoxide with an antioxidant enzyme is associated with deficits in hippocampal long-term potentiation (LTP), a putative neural substrate of memory, and hippocampal-mediated memory function. Using transgenic mice that overexpress extracellular superoxide dismutase (EC-SOD), a superoxide scavenger, we found that LTP was impaired in hippocampal area CA1 despite normal LTP in area CA3. The LTP impairment in area CA1 could be reversed by inhibition of EC-SOD. In addition, we found that EC-SOD transgenic mice exhibited impaired long-term memory of fear conditioning to contextual cues despite exhibiting normal short-term memory of the conditioning experience. These findings strongly suggest that superoxide, rather than being considered exclusively a neurotoxic molecule, should also be considered a signaling molecule necessary for normal neuronal function.
Collapse
|
279
|
Abstract
Neural activity producing a transient increase in intracellular Ca(2+) concentration can induce long-term potentiation (LTP) at visual cortical inhibitory synapses similar to those seen at various excitatory synapses. Here we report that low-frequency neural activity is required to maintain LTP at these inhibitory synapses. Inhibitory responses of layer 5 cells evoked by layer 4 stimulation were studied in developing rat visual cortical slices under a pharmacological blockade of excitatory synaptic transmission using intracellular and whole-cell recording methods. Although LTP induced by high-frequency stimulation (HFS) persisted while test stimulation was applied at 0.1 Hz, it was not maintained in approximately two-thirds of cells after test stimulation was stopped for 30 min. In the rest of the cells, LTP seemed to be maintained by spontaneous presynaptic spikes, because presynaptic inhibitory cells discharged spontaneously in our experimental condition and because LTP was totally abolished by a temporary application of Na(+) channel blockers. Experiments applying various Ca(2+) channel blockers and Ca(2+) chelators after HFS demonstrated that LTP maintenance was mediated by presynaptic Ca(2+) entries through multiple types of high-threshold Ca(2+) channels, which activated Ca(2+)-dependent reactions different from those triggering transmitter release. The Ca(2+) entries associated with action potentials seemed to be regulated by presynaptic K(+) channels, presumably large-conductance Ca(2+)-activated K(+) channels, because the application of blockers for these channels facilitated LTP maintenance. In addition, noradrenaline facilitated the maintenance of LTP. These findings demonstrate a new mechanism by which neural activity regulates the continuation and termination of LTP at visual cortical inhibitory synapses.
Collapse
|
280
|
Lisman JE. Three Ca2+ levels affect plasticity differently: the LTP zone, the LTD zone and no man's land. J Physiol 2001; 532:285. [PMID: 11306649 PMCID: PMC2278561 DOI: 10.1111/j.1469-7793.2001.0285f.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- J E Lisman
- Volen Center, Brandeis University, 415 South Street,Waltham, MA 02454, USA
| |
Collapse
|
281
|
Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor epsilon1 subunit. J Neurosci 2001. [PMID: 11160454 DOI: 10.1523/jneurosci.21-02-00750.2001] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptors, an ionotropic subtype of glutamate receptors (GluRs) forming high Ca(2+)-permeable cation channels, are composed by assembly of the GluRzeta subunit (NR1) with any one of four GluRepsilon subunits (GluRepsilon1-4; NR2A-D). In the present study, we investigated neuronal functions in mice lacking the GluRepsilon1 subunit. GluRepsilon1 mutant mice exhibited a malfunction of NMDA receptors, as evidenced by alterations of [(3)H]MK-801 binding as well as (45)Ca(2+) uptake through the NMDA receptors. A postmortem brain analysis revealed that both dopamine and serotonin metabolism were increased in the frontal cortex and striatum of GluRepsilon1 mutant mice. The NMDA-stimulated [(3)H]dopamine release from the striatum was increased, whereas [(3)H]GABA release was markedly diminished in GluRepsilon1 mutant mice. When (+)bicuculline, a GABA(A) receptor antagonist, was added to the superfusion buffer, NMDA-stimulated [(3)H]dopamine release was significantly increased in wild-type, but not in the mutant mice. GluRepsilon1 mutant mice exhibited an increased spontaneous locomotor activity in a novel environment and an impairment of latent learning in a water-finding task. Hyperlocomotion in GluRepsilon1 mutant mice was attenuated by treatment with haloperidol and risperidone, both of which are clinically used antipsychotic drugs, at doses that had no effect in wild-type mice. These findings provide evidence that NMDA receptors are involved in the regulation of behavior through the modulation of dopaminergic and serotonergic neuronal systems. In addition, our findings suggest that GluRepsilon1 mutant mice are useful as an animal model of psychosis that is associated with NMDA receptor malfunction and hyperfunction of dopaminergic and serotonergic neuronal systems.
Collapse
|
282
|
Contribution of postsynaptic Ca2+ to the induction of post-tetanic potentiation in the neural circuit for siphon withdrawal in Aplysia. J Neurosci 2001. [PMID: 11222663 DOI: 10.1523/jneurosci.21-05-01739.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies in Aplysia have revealed a novel postsynaptic Ca(2+) component to posttetanic potentiation (PTP) at the siphon sensory to motor neuron (SN-MN) synapse. Here we asked whether the postsynaptic Ca(2+) component of PTP was a special feature of the SN-MN synapse, and if so, whether it reflected a unique property of the SN or the MN. We examined whether postsynaptic injection of BAPTA reduced PTP at SN synapses onto different postsynaptic targets by comparing PTP at SN-MN and SN-interneuron (L29) synapses. We also examined PTP at L29-MN synapses. Postsynaptic BAPTA reduced PTP only at the SN-MN synapse; it did not affect PTP at either the SN-L29 or the L29-MN synapse, indicating that the SN and the MN do not require postsynaptic Ca(2+) for PTP with all other synaptic partners. The postsynaptic Ca(2+) component of PTP is present at other Aplysia SN-MN synapses; tail SN-MN synapses also showed reduced PTP when the MN was injected with BAPTA. Surprisingly, in both tail and siphon SN-MN synapses, there was an inverse relationship between the initial size of the EPSP and the postsynaptic component to PTP; only the initially weak SN-MN synapses showed a BAPTA-sensitive component. Homosynaptic depression of initially strong SN-MN synapses into the size range of initially weak synapses did not confer postsynaptic Ca(2+) sensitivity to PTP. Finally, the postsynaptic Ca(2+) component of PTP could be induced in the presence of APV, indicating that it is not mediated by NMDA receptors. These results suggest a dual model for PTP at the SN-MN synapse, in which a postsynaptic Ca(2+) contribution summates with the conventional presynaptic mechanisms to yield an enhanced form of PTP.
Collapse
|
283
|
Christie BR, Franks KM, Seamans JK, Saga K, Sejnowski TJ. Synaptic plasticity in morphologically identified CA1 stratum radiatum interneurons and giant projection cells. Hippocampus 2001; 10:673-83. [PMID: 11153713 DOI: 10.1002/1098-1063(2000)10:6<673::aid-hipo1005>3.0.co;2-o] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Long-term potentiation (LTP) of synaptic efficacy was examined in interneurons and giant cells in the stratum radiatum region of the hippocampal CA1 subfield. Cells were visually selected using differential interference contrast (DIC) optics and filled with biocytin while being recorded using whole-cell patch-clamp techniques. Electrophysiological criteria, including spike height, width, and degree of spike adaptation shown to sustained depolarization, proved inadequate for differentiating interneurons from giant cells. We found that cells in the stratum radiatum, however, could be reliably differentiated using DIC optics or following intracellular staining. The response of the two cell types to tetanic stimulation further dissociated them. Long-term potentiation, dependent on the activation of NMDAr (N-methyl-D-aspartate receptors), could reliably be induced in interneurons with stimuli administered at 200 Hz, but not 100 Hz. Giant cells, in contrast, exhibited NMDA receptor-dependent LTP in response to 100-Hz stimuli, but not the 200-Hz stimuli. LTP induction in interneurons also appeared temperature-dependent, being much more robust at 34 degrees C than at room temperature. The LTP in both cell types required postsynaptic calcium influx, and was not due to the passive propagation of LTP induction in neighboring pyramidal cells. These results suggest that different cell types within the hippocampal formation may preferentially alter synaptic connectivity in a frequency-specific manner.
Collapse
Affiliation(s)
- B R Christie
- University of South Dakota School of Medicine, Vermillion 57069, USA.
| | | | | | | | | |
Collapse
|
284
|
Lapierre L, Valastro B, Miceli D, Massicotte G. AMPA receptor modulation in previously frozen mouse brain sections: opposite effects of calcium in the cortex and hippocampus. Hippocampus 2001; 10:645-53. [PMID: 11153710 DOI: 10.1002/1098-1063(2000)10:6<645::aid-hipo1002>3.0.co;2-u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Various forms of synaptic plasticity in the brain have been proposed to result from modifications in the properties of glutamate receptors by calcium-dependent mechanisms. In the present study, changes in glutamate receptors elicited by calcium treatment of previously frozen mouse brain sections were evaluated by qualitative as well as quantitative analysis of tritiated ligand binding to both alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and N-methyl-D-aspartate (NMDA) glutamate receptor subtypes. Quantitative analysis revealed that 3H-AMPA binding was reduced in a dose-dependent manner by calcium in the cerebral cortex and striatum formations. However, an opposite change in AMPA receptor properties was observed in the hippocampus, as calcium generated an increase of AMPA binding in all hippocampal fields. Analysis of the saturation kinetics of 3H-AMPA binding showed that the calcium-induced augmentation of AMPA binding in the stratum radiatum of the CA1 region was due to an alteration in the maximal number of sites, while the reduction of binding elicited by calcium in the cortex appeared to be due to modified AMPA receptor affinity. Calcium-induced downregulation of AMPA receptor affinity in the cortex and striatum was affected by baicalein, a selective inhibitor of the lipoxygenase pathways of arachidonic acid metabolism, whereas the same inhibitor did not modify calcium-mediated upregulation of receptor number in the CA1 region of the hippocampus. On the other hand, the effect of calcium appeared to be specific for the AMPA receptor, as the same treatment did not affect glutamate binding to the NMDA glutamate receptor subtype. Our results suggest the possibility that, depending on the brain regions, calcium ions may generate opposite modulation of AMPA receptor properties. Because the regulation of AMPA receptors by calcium-dependent enzymes has been implicated in synaptic plasticity, our results suggest that regional variations in the effect of calcium on AMPA binding account for differential plasticity at glutamatergic synapses.
Collapse
Affiliation(s)
- L Lapierre
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Canada
| | | | | | | |
Collapse
|
285
|
Jones MW, Errington ML, French PJ, Fine A, Bliss TV, Garel S, Charnay P, Bozon B, Laroche S, Davis S. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat Neurosci 2001; 4:289-96. [PMID: 11224546 DOI: 10.1038/85138] [Citation(s) in RCA: 688] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The induction of long-term potentiation (LTP) in the dentate gyrus of the hippocampus is associated with a rapid and robust transcription of the immediate early gene Zif268. We used a mutant mouse with a targeted disruption of Zif268 to ask whether this gene, which encodes a zinc finger transcription factor, is required for the maintenance of late LTP and for the expression of long-term memory. We show that whereas mutant mice exhibit early LTP in the dentate gyrus, late LTP is absent when measured 24 and 48 hours after tetanus in the freely moving animal. In both spatial and non-spatial learning tasks, short-term memory remained intact, whereas performance was impaired in tests requiring long-term memory. Thus, Zif268 is essential for the transition from short- to long-term synaptic plasticity and for the expression of long-term memories.
Collapse
Affiliation(s)
- M W Jones
- Division of Neurophysiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Abstract
Dendritic spines receive most excitatory inputs in the CNS and compartmentalize calcium. Spines also undergo rapid morphological changes, although the function of this motility is still unclear. We have investigated the effect of spine movement on spine calcium dynamics with two-photon photobleaching of enhanced green fluorescent protein and calcium imaging of action potential-elicited transients in spines from layer 2/3 pyramidal neurons in mouse visual cortex slices. The elongation or retraction of the spine neck during spine motility alters the diffusional coupling between spine and dendrite and significantly changes calcium decay kinetics in spines. Our results demonstrate that the spine's ability to compartmentalize calcium is constantly changing.
Collapse
|
287
|
Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release evoked by metabotropic agonists and backpropagating action potentials in hippocampal CA1 pyramidal neurons. J Neurosci 2001. [PMID: 11069943 DOI: 10.1523/jneurosci.20-22-08365.2000] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the properties of [Ca(2+)](i) changes that were evoked by backpropagating action potentials in pyramidal neurons in hippocampal slices from the rat. In the presence of the metabotropic glutamate receptor (mGluR) agonists t-ACPD, DHPG, or CHPG, spikes caused Ca(2+) waves that initiated in the proximal apical dendrites and spread over this region and in the soma. Consistent with previously described synaptic responses (Nakamura et al., 1999a), pharmacological experiments established that the waves were attributable to Ca(2+) release from internal stores mediated by the synergistic effect of receptor-mobilized inositol 1,4, 5-trisphosphate (IP(3)) and spike-evoked Ca(2+). The amplitude of the changes reached several micromoles per liter when detected with the low-affinity indicators fura-6F, fura-2-FF, or furaptra. Repetitive brief spike trains at 30-60 sec intervals generated increases of constant amplitude. However, trains at intervals of 10-20 sec evoked smaller increases, suggesting that the stores take 20-30 sec to refill. Release evoked by mGluR agonists was blocked by MCPG, AIDA, 4-CPG, MPEP, and LY367385, a profile consistent with the primacy of group I receptors. At threshold agonist concentrations the release was evoked only in the dendrites; threshold antagonist concentrations were effective only in the soma. Carbachol and 5-HT evoked release with the same spatial distribution as t-ACPD, suggesting that the distribution of neurotransmitter receptors was not responsible for the restricted range of regenerative release. Intracellular BAPTA and EGTA were approximately equally effective in blocking release. Extracellular Cd(2+) blocked release, but no single selective Ca(2+) channel blocker prevented release. These results suggest that IP(3) receptors are not associated closely with specific Ca(2+) channels and are not close to each other.
Collapse
|
288
|
Rush AM, Rowan MJ, Anwyl R. Application of N-methyl-D-aspartate induces long-term potentiation in the medial perforant path and long-term depression in the lateral perforant path of the rat dentate gyrus in vitro. Neurosci Lett 2001; 298:175-8. [PMID: 11165435 DOI: 10.1016/s0304-3940(00)01742-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of application of N-methyl-D-aspartate (NMDA) on synaptic plasticity was studied in the medial and lateral perforant path-granule cell synapse in the outer blade of the dentate gyrus in vitro. Field excitatory post-synaptic potentials were recorded from the middle or outer molecular layer in response to stimulation of the medial or lateral perforant path. Bath perfusion of NMDA (10 microM, 5 min) resulted in induction of long-term potentiation in the medial perforant path, and induction of long-term depression in the lateral perforant path.
Collapse
Affiliation(s)
- A M Rush
- Department of Physiology, Trinity College, 2, Dublin, Ireland
| | | | | |
Collapse
|
289
|
Cormier RJ, Greenwood AC, Connor JA. Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J Neurophysiol 2001; 85:399-406. [PMID: 11152740 DOI: 10.1152/jn.2001.85.1.399] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The magnitude of postsynaptic Ca(2+) transients is thought to affect activity-dependent synaptic plasticity associated with learning and memory. Large Ca(2+) transients have been implicated in the induction of long-term potentiation (LTP), while smaller Ca(2+) transients have been associated with long-term depression (LTD). However, a direct relationship has not been demonstrated between Ca(2+) measurements and direction of synaptic plasticity in the same cells, using one induction protocol. Here, we used glutamate iontophoresis to induce Ca(2+) transients in hippocampal CA1 neurons injected with the Ca(2+)-indicator fura-2. Test stimulation of one or two synaptic pathways before and after iontophoresis showed that the direction of synaptic plasticity correlated with glutamate-induced Ca(2+) levels above a threshold, below which no plasticity occurred (approximately 180 nM). Relatively low Ca(2+) levels (180-500 nM) typically led to LTD of synaptic transmission and higher levels (>500 nM) often led to LTP. Failure to show plasticity correlated with Ca(2+) levels in two distinct ranges: <180 nM and approximately 450-600 nM, while only LTD occurred between these ranges. Our data support a class of models in which failure of Ca(2+) transients to affect transmission may arise either from insufficient Ca(2+) to affect Ca(2+)-sensitive proteins regulating synaptic strength through opposing activities or from higher Ca(2+) levels that reset activities of such proteins without affecting the net balance of activities. Our estimates of the threshold Ca(2+) level for LTD (approximately 180 nM) and for the transition from LTD to LTP (approximately 540 nM) may assist in constraining the molecular details of such models.
Collapse
Affiliation(s)
- R J Cormier
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, New Mexico 87131, USA.
| | | | | |
Collapse
|
290
|
Adams JP, Anderson AE, Varga AW, Dineley KT, Cook RG, Pfaffinger PJ, Sweatt JD. The A-type potassium channel Kv4.2 is a substrate for the mitogen-activated protein kinase ERK. J Neurochem 2000; 75:2277-87. [PMID: 11080179 DOI: 10.1046/j.1471-4159.2000.0752277.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mitogen-activated protein kinase ERK has recently become a focus of studies of synaptic plasticity and learning and memory. Due to the prominent role of potassium channels in regulating the electrical properties of membranes, modulation of these channels by ERK could play an important role in mediating learning-related synaptic plasticity in the CNS. Kv4.2 is a Shal-type potassium channel that passes an A-type current and is localized to dendrites and cell bodies in the hippocampus. The sequence of Kv4.2 contains several consensus sites for ERK phosphorylation. In the present studies, we tested the hypothesis that Kv4.2 is an ERK substrate. We determined that the Kv4.2 C-terminal cytoplasmic domain is an effective ERK2 substrate, and that it is phosphorylated at three sites: Thr(602), Thr(607), and Ser(616). We used this information to develop antibodies that recognize Kv4.2 phosphorylated by ERK2. One of our phospho-site-selective antibodies was generated using a triply phosphorylated peptide as the antigen. We determined that this antibody recognizes ERK-phosphorylated Kv4.2 in COS-7 cells transfected with Kv4.2 and native ERK-phosphorylated Kv4.2 in the rat hippocampus. These observations indicate that Kv4.2 is a substrate for ERK in vitro and in vivo, and suggest that ERK may regulate potassium-channel function by direct phosphorylation of the pore-forming alpha subunit.
Collapse
Affiliation(s)
- J P Adams
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
291
|
Zamani MR, Desmond NL, Levy WB. Estradiol modulates long-term synaptic depression in female rat hippocampus. J Neurophysiol 2000; 84:1800-8. [PMID: 11024072 DOI: 10.1152/jn.2000.84.4.1800] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluctuating estradiol levels in the adult, female rat modify the anatomical and functional organization of the hippocampal CA1 region. When systemic levels of estradiol are low, e.g., on estrus or in ovariectomized (OVX) rats, long-term synaptic potentiation is difficult to induce in vivo. However, little is known about the role of this ovarian hormone in long-term synaptic depression. Using multiple conditioning paradigms, we assess the magnitude of long-term depression (LTD) at CA3-CA1 synapses in vitro from adult, ovariectomized rats as a function of systemic estradiol replacement. In hippocampal slices from control OVX rats with low levels of estradiol, a low-frequency (2 Hz), asynchronous conditioning stimulation protocol does not produce LTD at 1 h postconditioning. However, this same protocol induces robust LTD in slices from estradiol-treated OVX rats. When the conditioning frequency is increased to 4 Hz, slices from both groups of rats show robust LTD in vitro. At an even higher conditioning frequency (10 Hz), the 2-Hz-based observations are reversed; no consistent changes in synaptic transmission are observed in slices from estradiol-treated OVX rats, but those from control rats (OVX + oil) show robust LTD. Thus estradiol reduces the frequency threshold for LTD induction at the CA3-CA1 synapses. Further, regardless of the conditioning frequency employed, where robust LTD is seen, its induction depends on normally functioning N-methyl-D-aspartate (NMDA) receptors during conditioning. The shift in conditioning frequency needed to elicit LTD is consistent with a decrease in NMDA receptor activation with decreasing estradiol levels.
Collapse
Affiliation(s)
- M R Zamani
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
292
|
Aizenman CD, Huang EJ, Manis PB, Linden DJ. Use-dependent changes in synaptic strength at the Purkinje cell to deep nuclear synapse. PROGRESS IN BRAIN RESEARCH 2000; 124:257-73. [PMID: 10943131 DOI: 10.1016/s0079-6123(00)24022-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- C D Aizenman
- Department of Neuroscience, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
293
|
Ruan DY, Yan KF, Ge SY, Xu YZ, Chen JT, Wang M. Effects of chronic lead exposure on short-term and long-term depression in area CA1 of the rat hippocampus in vivo. CHEMOSPHERE 2000; 41:165-171. [PMID: 10819196 DOI: 10.1016/s0045-6535(99)00406-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chronic developmental lead (Pb) exposure to the rat has been reported to impair the long-term potentiation (LTP) in area CA1 and DG of the hippocampus. The present study was performed to investigate the effects of chronic Pb exposure on homosynaptic short-term depression (STD) and long-term depression (LTD) of population spikes (PS) in area CA1 of the rat hippocampus in vivo. Neonatal Wistar rats were exposed to Pb from parturition to weaning via the milk of dams fed with 0.2% lead acetate solution. The input/output (I/O) function, paired-pulse reaction (PPR), the PS were measured in the area CA1 in response to low frequency stimulation (LFS). The results showed that the homo-STD amplitude of PS depotentiation in Pb-exposed rats (87.48 +/- 7.44%, n = 14) was less significant than that in control rats (72.34 +/- 6.05%, n = 18, P<0.05), and the homo-LTD amplitude of PS depotentiation in Pb-exposed rats (72.80 +/- 5.86%, n = 14) was even less significant than that in control rats (47.80 +/- 5.03%, n = 18, P<0.01). The results suggest that chronic Pb exposure in neonatal rats caused impairments in the STD and LTD of area CA1 of hippocampus.
Collapse
Affiliation(s)
- D Y Ruan
- School of Life Science, University of Science and Technology of China, Anhui, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
294
|
Yuste R, Majewska A, Holthoff K. From form to function: calcium compartmentalization in dendritic spines. Nat Neurosci 2000; 3:653-9. [PMID: 10862697 DOI: 10.1038/76609] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic spines compartmentalize calcium, and this could be their main function. We review experimental work on spine calcium dynamics. Calcium influx into spines is mediated by calcium channels and by NMDA and AMPA receptors and is followed by fast diffusional equilibration within the spine head. Calcium decay kinetics are controlled by slower diffusion through the spine neck and by spine calcium pumps. Calcium release occurs in spines, although its role is controversial. Finally, the endogenous calcium buffers in spines remain unknown. Thus, spines are calcium compartments because of their morphologies and local influx and extrusion mechanisms. These studies highlight the richness and heterogeneity of pathways that regulate calcium accumulations in spines and the close relationship between the morphology and function of the spine.
Collapse
Affiliation(s)
- R Yuste
- Dept. of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, Box 2435, New York, New York 10027, USA.
| | | | | |
Collapse
|
295
|
Presynaptic protein kinase activity supports long-term potentiation at synapses between individual hippocampal neurons. J Neurosci 2000. [PMID: 10844019 DOI: 10.1523/jneurosci.20-12-04497.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Simultaneous microelectrode recording from two individual synaptically connected neurons enables the direct analysis of synaptic transmission and plasticity at a minimal synaptic connection. We have recorded from pairs of CA3 pyramidal neurons in organotypic hippocampal slices to examine the properties of long-term potentiation (LTP) at such minimal connections. LTP in minimal connections was found to be identical to the NMDA-dependent LTP expressed by CA3-CA1 synapses, demonstrating this system provides a good model for the study of the mechanisms of LTP expression. The LTP at minimal synaptic connections does not behave as a simple increase in transmitter release probability, because the amplitude of unitary EPSCs can increase several-fold, unlike what is observed when release probability is increased by raising extracellular calcium. Taking advantage of the relatively short axon connecting neighboring CA3 neurons, we found it feasible to introduce pharmacological agents to the interior of presynaptic terminals by injection into the presynaptic soma and have used this technique to investigate presynaptic effects on basal transmission and LTP. Presynaptic injection of nicotinamide reduced basal transmission, but LTP in these pairs was essentially normal. In contrast, presynaptic injection of H-7 significantly depressed LTP but not basal transmission, indicating a specific role of presynaptic protein kinases in LTP. These results demonstrate that pharmacological agents can be directly introduced into the presynaptic cell and that a purely presynaptic perturbation can alter this plasticity.
Collapse
|
296
|
The extracellular signal-regulated kinase cascade is required for NMDA receptor-independent LTP in area CA1 but not area CA3 of the hippocampus. J Neurosci 2000. [PMID: 10777769 DOI: 10.1523/jneurosci.20-09-03057.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of extracellular signal-regulated kinase (ERK) has been shown to be necessary for NMDA receptor-dependent long-term potentiation (LTP). We studied the role of ERK in three forms of NMDA receptor-independent LTP: LTP induced by very high-frequency stimulation (200 Hz-LTP), LTP induced by the K(+) channel blocker tetraethylammonium (TEA) (TEA-LTP), and mossy fiber (MF) LTP (MF-LTP). We found that ERK was activated in area CA1 after the induction of both 200 Hz-LTP and TEA-LTP and that this activation required the influx of Ca(2+) through voltage-gated Ca(2+) channels. Inhibition of the ERK signaling cascade with either PD 098059 or U0126 prevented the induction of both 200 Hz-LTP and TEA-LTP in area CA1. In contrast, neither PD 098059 nor U0126 prevented MF-LTP in area CA3 induced by either brief or long trains of high-frequency stimulation. U0126 also did not prevent forskolin-induced potentiation in area CA3. However, incubation of slices with forskolin, an activator of the cAMP-dependent protein kinase (PKA) cascade, did result in increases in active ERK and cAMP response element-binding protein (CREB) phosphorylation in area CA3. The forskolin-induced increase in active ERK was inhibited by U0126, whereas the increase in CREB phosphorylation was not, which suggests that in area CA3 the PKA cascade is not coupled to CREB phosphorylation via ERK. Overall, our observations indicate that activation of the ERK signaling cascade is necessary for NMDA receptor-independent LTP in area CA1 but not in area CA3 and suggest a divergence in the signaling cascades underlying NMDA receptor-independent LTP in these hippocampal subregions.
Collapse
|
297
|
Shew T, Yip S, Sastry BR. Mechanisms involved in tetanus-induced potentiation of fast IPSCs in rat hippocampal CA1 neurons. J Neurophysiol 2000; 83:3388-401. [PMID: 10848557 DOI: 10.1152/jn.2000.83.6.3388] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, possible mechanisms involved in the tetanus-induced potentiation of gamma-aminobutyric acid-A (GABA-A) receptor-mediated inhibitory postsynaptic currents (IPSCs) were investigated using the whole cell voltage-clamp technique on CA1 neurons in rat hippocampal slices. Stimulations (100 Hz) of the stratum radiatum, while voltage-clamping the membrane potential of neurons, induces a long-term potentiation (LTP) of evoked fast IPSCs while increasing the number but not the amplitude of spontaneous IPSCs (sIPSCs). The potentiation of fast IPSCs was input specific. During the period of IPSC potentiation, postsynaptic responses produced by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride and baclofen, GABA-A and GABA-B agonists respectively, were not significantly different from control. CGP 36742, a GABA-B antagonist, blocked the induction of tetanus-induced potentiation of evoked and spontaneous IPSCs, while GTPgammaS, an activator of G proteins, substitution for GTP in the postsynaptic recording electrode did not occlude potentiation. Since GABA-B receptors work through G proteins, our results suggest that pre- but not postsynaptic GABA-B receptors are involved in the potentiation of fast IPSCs. A tetanus delivered when GABA-A responses were completely blocked by bicuculline suggests that GABA-A receptor activation during tetanus is not essential for the induction of potentiation. Rp-cAMPs, an antagonist of protein kinase A (PKA) activation, blocks the induction of potentiation of fast IPSCs. Forskolin, an activator of PKA, increases baseline evoked IPSCs as well as the number of sIPSCs, and a tetanic stimulation during this enhancement uncovers a long-term depression of the evoked IPSC. Sulfhydryl alkylating agents, N-ethylmaleimide and p-chloromercuribenzoic acid, which have been found to presynaptically increase GABA release and have been suggested to have effects on proteins involved in transmitter release processes occurring in nerve terminals, occlude tetanus-induced potentiation of evoked and spontaneous IPSCs. Taken together our results suggest that LTP of IPSCs originates from a presynaptic site and that GABA-B receptor activation, cyclic AMP/PKA activation and sulfhydryl-alkylation are involved. Plasticity of IPSCs as observed in this study would have significant implications for network behavior in the hippocampus.
Collapse
Affiliation(s)
- T Shew
- Neuroscience Research Laboratory, Department of Pharmacology and Therapeutics, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
298
|
Abstract
The proto-oncogene ras plays a critical role in cell proliferation and differentiation. However, ras genes are abundantly expressed in the adult CNS, although neuronal cells normally do not proliferate. Recently, several lines of evidence implicated the involvement of Ras signaling pathway in synaptic plasticity. To explore the role of the Ras proteins in the CNS, we generated knock-out mice lacking the H-ras gene and then used them to study the roles of Ras in synaptic transmission and plasticity. An investigation of protein phosphorylation and synaptic transmission in H-ras null mutant mice has shown that the NMDA receptor is a final target molecule of the Ras protein pathway in the CNS. In the H-ras null mutant hippocampus, the tyrosine phosphorylation of NR2A (epsilon1) and NR2B (epsilon2) subunits of NMDA receptors is increased, and, correspondingly, NMDA synaptic responses are selectively enhanced. In addition, long-term potentiation is markedly enhanced in mutant mice, most likely because of a selective enhancement of NMDA synaptic responses. Therefore, although Ras proteins have been implicated in cell proliferation and differentiation, the regulation of activity-dependent synaptic plasticity in the adult animals by downregulation of the phosphorylation of the NMDA receptor may be another major and pivotal role for H-Ras protein.
Collapse
|
299
|
Abstract
Crocus sativus L., commonly known as saffron, is used in folk medicine for various purposes. Modern pharmacological studies have demonstrated that saffron extracts have antitumour effects, radical scavenger properties or hypolipaemic effects. Among the constituents of saffron extract, crocetin is mainly responsible for these pharmacological activities. In addition, recent behavioural and electrophysiological studies have demonstrated that saffron extract affects learning and memory in experimental animals. Saffron extract improved ethanol-induced impairments of learning behaviours in mice, and prevented ethanol-induced inhibition of hippocampal long-term potentiation, a form of activity-dependent synaptic plasticity that may underly learning and memory. This effect of saffron extract is attributed to crocin (crocetin di-gentiobiose ester), but not crocetin. Saffron extract or its active constituents, crocetin and crocin, could be useful as a treatment for neurodegenerative disorders accompanying memory impairment.
Collapse
Affiliation(s)
- K Abe
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
300
|
Yang SN. Sustained enhancement of AMPA receptor- and NMDA receptor-mediated currents induced by dopamine D1/D5 receptor activation in the hippocampus: an essential role of postsynaptic Ca2+. Hippocampus 2000; 10:57-63. [PMID: 10706217 DOI: 10.1002/(sici)1098-1063(2000)10:1<57::aid-hipo6>3.0.co;2-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The dopaminergic system in the limbic system, particularly the D1/D5 receptor (D1/D5r), is important for certain forms of learning and memory, such as reinforcement learning, as well as the acute development of behavioral sensitization to psychostimulants such as cocaine and methamphetamine. Here, whole-cell patch-clamp recordings of evoked excitatory postsynaptic currents (EPSCs) mediated by ionotropic glutamate receptors were made from pyramidal neurons in the CA1 area of rat hippocampal slices. Activation of the D1/D5r by a selective D1/D5r agonist (+/-)-6-chloro-PB hydrobromide (SKF 81297; 3-100 microM) concentration-dependently induced a delayed-onset, sustained enhancement of EPSCs. The D1/D5r-induced effect was blocked by a selective D1/D5r antagonist (+)SCH 23390 hydrochloride (5 microM). Furthermore, the D1/D5r-induced effect involved a sustained enhancement of both the pharmacologically isolated alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate receptor-(AMPAr-) and N-methyl-D-asparate receptor- (NMDAr-) mediated EPSCs, respectively. Such persistently enhanced AMPAr- and NMDAr-mediated EPSCs were also associated with significant increases in the normalized amplitudes of the decay times of the isolated EPSCs. Blockade of NMDAr activation failed to prevent the induction of D1/D5r-induced sustained enhancement, suggesting the independence of the D1/D5r-induced effect on NMDAr activation. A rise of postsynaptic calcium was required for the induction of D1/D5r-induced sustained enhancement, being abolished by loading cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N '-tetracetic acid (BAPTA; 10 mM). Studies indicated that the D1/D5r activation induced a sustained enhancement of both the AMPAr-and NMDAr-mediated EPSCs in the hippocampus. Moreover, a rise in postsynaptic Ca2+ was necessary for triggering the D1/D5r-induced effect in the hippocampus, although the NMDAr-dependent mechanisms, such as the calcium entry via the NMDA channels, were not.
Collapse
Affiliation(s)
- S N Yang
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|