251
|
Habu T, Kim SH, Weinstein J, Matsumoto T. Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J 2002; 21:6419-28. [PMID: 12456649 PMCID: PMC136962 DOI: 10.1093/emboj/cdf659] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MAD2 is a key component of the spindle checkpoint that delays the onset of anaphase until all the kinetochores are attached to the spindle. It binds to human p55CDC and prevents it from promoting destruction of an anaphase inhibitor, securin. Here we report the characterization of a novel MAD2-binding protein, CMT2. Upon the completion of spindle attachment, formation of the CMT2-MAD2 complex coincides with dissociation of the p55CDC-MAD2 complex. Overexpression of CMT2 in cells arrested by the spindle checkpoint causes premature destruction of securin and allows exit from mitosis without chromosome segregation. Depletion of CMT2 induces cell death following a transient delay in the onset of anaphase. These results indicate that CMT2 interacts with the spindle checkpoint and coordinates cell cycle events in late mitosis.
Collapse
Affiliation(s)
- Toshiyuki Habu
- Departments of Radiation Oncology and Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, Amgen Inc., 5-2-A, One Amgen Center Drive, Thousand Oaks, CA 91320, USA and Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, Japan Present address: Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, Japan Present address: Department of Biology, Kyung Hee University, Seoul, 130-701, Republic of Korea Corresponding author e-mail:
| | - Sang Hoon Kim
- Departments of Radiation Oncology and Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, Amgen Inc., 5-2-A, One Amgen Center Drive, Thousand Oaks, CA 91320, USA and Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, Japan Present address: Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, Japan Present address: Department of Biology, Kyung Hee University, Seoul, 130-701, Republic of Korea Corresponding author e-mail:
| | - Jasminder Weinstein
- Departments of Radiation Oncology and Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, Amgen Inc., 5-2-A, One Amgen Center Drive, Thousand Oaks, CA 91320, USA and Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, Japan Present address: Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, Japan Present address: Department of Biology, Kyung Hee University, Seoul, 130-701, Republic of Korea Corresponding author e-mail:
| | - Tomohiro Matsumoto
- Departments of Radiation Oncology and Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, Amgen Inc., 5-2-A, One Amgen Center Drive, Thousand Oaks, CA 91320, USA and Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, Japan Present address: Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, Japan Present address: Department of Biology, Kyung Hee University, Seoul, 130-701, Republic of Korea Corresponding author e-mail:
| |
Collapse
|
252
|
Seike M, Gemma A, Hosoya Y, Hosomi Y, Okano T, Kurimoto F, Uematsu K, Takenaka K, Yoshimura A, Shibuya M, Ui-Tei K, Kudoh S. The promoter region of the human BUBR1 gene and its expression analysis in lung cancer. Lung Cancer 2002; 38:229-34. [PMID: 12445743 DOI: 10.1016/s0169-5002(02)00218-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitotic checkpoint impairment is present in human lung cancers with chromosomal instability (CIN). Spindle-checkpoint genes have been reported to be mutated in several human cancers, but these mutations are infrequent. Recent reports suggest that the hBUBR1 gene may play an important role in mitotic checkpoint control and in mitotic checkpoint impairment in human cancers. We analyzed the expression of hBUBR1 in lung cancer cell lines using real time quantitative RT-PCR. The expression of BUBR1 was found to be up-regulated in all of these cell lines. In addition, we cloned and characterized the promotor region of hBUBR1 and determined its genomic structure, which includes 23 exons. The open reading frame (ORF) of the hBUBR1 gene comprises exons 1 through 23. There are GC-rich regions located at the flanking region and about 150 bp upstream from exon 1. The promoter region (424 bp upstream from exon 1) showed promoter activity and includes multiple transcription factor consensus binding motifs, including those for Sp1, Nkx-2, CdxA, SRY, MyoD, Ik-2, HNF-3b, Staf, Oct-1, Nkx-2, v-Myb, and AML 1a. Multiple pathways leading to activation of those binding factors may contribute to hBUBR1 gene transcription. Knowledge of the genomic structure and the promoter region of the hBUBR1 gene will facilitate investigation of its role in mitotic checkpoint control and tumor progression in human cancers.
Collapse
Affiliation(s)
- Masahiro Seike
- Fourth Department of Internal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
DeLuca JG, Moree B, Hickey JM, Kilmartin JV, Salmon ED. hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J Cell Biol 2002; 159:549-55. [PMID: 12438418 PMCID: PMC2173110 DOI: 10.1083/jcb.200208159] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Identification of proteins that couple kinetochores to spindle microtubules is critical for understanding how accurate chromosome segregation is achieved in mitosis. Here we show that the protein hNuf2 specifically functions at kinetochores for stable microtubule attachment in HeLa cells. When hNuf2 is depleted by RNA interference, spindle formation occurs normally as cells enter mitosis, but kinetochores fail to form their attachments to spindle microtubules and cells block in prometaphase with an active spindle checkpoint. Kinetochores depleted of hNuf2 retain the microtubule motors CENP-E and cytoplasmic dynein, proteins previously implicated in recruiting kinetochore microtubules. Kinetochores also retain detectable levels of the spindle checkpoint proteins Mad2 and BubR1, as expected for activation of the spindle checkpoint by unattached kinetochores. In addition, the cell cycle block produced by hNuf2 depletion induces mitotic cells to undergo cell death. These data highlight a specific role for hNuf2 in kinetochore-microtubule attachment and suggest that hNuf2 is part of a molecular linker between the kinetochore attachment site and tubulin subunits within the lattice of attached plus ends.
Collapse
Affiliation(s)
- Jennifer G DeLuca
- University of North Carolina at Chapel Hill, Department of Biology, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
254
|
Gruber J, Harborth J, Schnabel J, Weber K, Hatzfeld M. The mitotic-spindle-associated protein astrin is essential for progression through mitosis. J Cell Sci 2002; 115:4053-9. [PMID: 12356910 DOI: 10.1242/jcs.00088] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Astrin is a mitotic-spindle-associated protein expressed in most human cell lines and tissues. However, its functions in spindle organization and mitosis have not yet been determined. Sequence analysis revealed that astrin has an N-terminal globular domain and an extended coiled-coil domain. Recombinant astrin was purified and characterized by CD spectroscopy and electron microscopy. Astrin showed parallel dimers with head-stalk structures reminiscent of motor proteins, although no sequence similarities to known motor proteins were found. In physiological buffers, astrin dimers oligomerized via their globular head domains and formed aster-like structures. Silencing of astrin in HeLa cells by RNA interference resulted in growth arrest, with formation of multipolar and highly disordered spindles. Chromosomes did not congress to the spindle equator and remained dispersed. Cells depleted of astrin were normal during interphase but were unable to progress through mitosis and finally ended in apoptotic cell death. Possible functions of astrin in mitotic spindle organization are discussed.
Collapse
Affiliation(s)
- Jens Gruber
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Am Fassberg 11 37070 Göttingen, Germany
| | | | | | | | | |
Collapse
|
255
|
Musacchio A, Hardwick KG. The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol 2002; 3:731-41. [PMID: 12360190 DOI: 10.1038/nrm929] [Citation(s) in RCA: 409] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome segregation is a complex and astonishingly accurate process whose inner working is beginning to be understood at the molecular level. The spindle checkpoint plays a key role in ensuring the fidelity of this process. It monitors the interactions between chromosomes and microtubules, and delays mitotic progression to allow extra time to correct defects. Here, we review and integrate findings on the dynamics of checkpoint proteins at kinetochores with structural information about signalling complexes.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy.
| | | |
Collapse
|
256
|
Martin-Lluesma S, Stucke VM, Nigg EA. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 2002; 297:2267-70. [PMID: 12351790 DOI: 10.1126/science.1075596] [Citation(s) in RCA: 353] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The spindle checkpoint delays sister chromatid separation until all chromosomes have undergone bipolar spindle attachment. Checkpoint failure may result in chromosome mis-segregation and may contribute to tumorigenesis. We showed that the human protein Hec1 was required for the recruitment of Mps1 kinase and Mad1/Mad2 complexes to kinetochores. Depletion of Hec1 impaired chromosome congression and caused persistent activation of the spindle checkpoint, indicating that high steady-state levels of Mad1/Mad2 complexes at kinetochores were not essential for checkpoint signaling. Simultaneous depletion of Hec1 and Mad2 caused catastrophic mitotic exit, making Hec1 an attractive target for the selective elimination of spindle checkpoint-deficient cells.
Collapse
Affiliation(s)
- Silvia Martin-Lluesma
- Department of Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
257
|
Hussein D, Taylor SS. Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis. J Cell Sci 2002; 115:3403-14. [PMID: 12154071 DOI: 10.1242/jcs.115.17.3403] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Farnesyl transferase inhibitors induce G2/M cell cycle delays that cannot be explained by inhibition of the Ras GTPase. Recently, the kinetochore protein Cenp-F has been shown to be farnesylated. Here, we show that ectopic expression of the kinetochore targeting domain of Cenp-F delays progression through G2/M. Significantly, this is dependent on the CAAX farnesylation motif. We also show that localisation of Cenp-F to the nuclear envelope at G2/M and kinetochores in prometaphase is dependent both on its CAAX motif and farnesyl transferase activity. Strikingly, farnesyl transferase activity is also required for Cenp-F degradation after mitosis. Thus, these observations suggest that farnesylation of Cenp-F is required not only for its localisation to the nuclear envelope and kinetochores but also for timely progression through G2/M and its degradation after mitosis. In addition, these observations raise the possibility that the anti-proliferative effects induced by farnesyl transferase inhibitors may be due to inhibition of Cenp-F function and/or turnover.
Collapse
Affiliation(s)
- Deema Hussein
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
258
|
Harper JW, Burton JL, Solomon MJ. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 2002; 16:2179-206. [PMID: 12208841 DOI: 10.1101/gad.1013102] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J Wade Harper
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
259
|
Putkey FR, Cramer T, Morphew MK, Silk AD, Johnson RS, McIntosh JR, Cleveland DW. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell 2002; 3:351-65. [PMID: 12361599 DOI: 10.1016/s1534-5807(02)00255-1] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A selective disruption of the mouse CENP-E gene was generated to test how this kinetochore-associated, kinesin-like protein contributes to chromosome segregation. The removal of CENP-E in primary cells produced spindles in which some metaphase chromosomes lay juxtaposed to a spindle pole, despite the absence of microtubules stably bound to their kinetochores. Most CENP-E-free chromosomes moved to the spindle equator, but their kinetochores bound only half the normal number of microtubules. Deletion of CENP-E in embryos led to early developmental arrest. Selective deletion of CENP-E in liver revealed that tissue regeneration after chemical damage was accompanied by aberrant mitoses marked by chromosome missegregation. CENP-E is thus essential for the maintenance of chromosomal stability through efficient stabilization of microtubule capture at kinetochores.
Collapse
Affiliation(s)
- Frances R Putkey
- Ludwig Institute for Cancer Research, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
260
|
Iwanaga Y, Kasai T, Kibler K, Jeang KT. Characterization of regions in hsMAD1 needed for binding hsMAD2. A polymorphic change in an hsMAD1 leucine zipper affects MAD1-MAD2 interaction and spindle checkpoint function. J Biol Chem 2002; 277:31005-13. [PMID: 12042300 DOI: 10.1074/jbc.m110666200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, the mitotic spindle assembly checkpoint provides a monitor for the fidelity of chromosomal segregation. In this context, the mitotic arrest deficiency protein 2 (MAD2) censors chromosomal mis-segregation by monitoring microtubule attachment/tension, a role that requires its attachment to kinetochores. Studies in yeast have shown that binding of MAD1 to MAD2 is important for the checkpoint function of the latter. The interactions between human MAD1 (hsMAD1) and human MAD2 (hsMAD2) have, however, remained poorly characterized. Here we report that two leucine zipper domains (amino acids 501-522 and 557-571) in hsMAD1 are required for its contact with hsMAD2. Interestingly, in several cancer cell lines, we noted the frequent presence of a coding single nucleotide Arg to His polymorphism at codon 558 located within the second leucine zipper of hsMAD1. We found that hsMAD1H558 is less proficient than hsMAD1R558 in binding hsMAD2 and in enforcing mitotic arrest. We also document a first example of loss-of-heterozygosity for a spindle checkpoint gene (at the hsMAD1 558 locus) in a human breast cancer. Based on our findings, it is possible that hsMAD1H558 could be an at-risk polymorphism that contributes to attenuated spindle checkpoint function in human cells.
Collapse
Affiliation(s)
- Yoichi Iwanaga
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID/National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-0460, USA
| | | | | | | |
Collapse
|
261
|
Saxena A, Saffery R, Wong LH, Kalitsis P, Choo KHA. Centromere proteins Cenpa, Cenpb, and Bub3 interact with poly(ADP-ribose) polymerase-1 protein and are poly(ADP-ribosyl)ated. J Biol Chem 2002; 277:26921-6. [PMID: 12011073 DOI: 10.1074/jbc.m200620200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is activated by DNA strand breaks during cellular genotoxic stress response and catalyzes poly(ADP-ribosyl)ation of acceptor proteins. These acceptor proteins include those involved in modulation of chromatin structure, DNA synthesis, DNA repair, transcription, and cell cycle control. Thus, PARP-1 is believed to play a pivotal role in maintaining genome integrity through modulation of protein-protein and protein-DNA interactions. We previously described the association of PARP-1 with normal mammalian centromeres and human neocentromeres by affinity purification and immunofluorescence. Here we investigated the interaction of this protein with, and poly(ADP-ribosyl)ation of, three constitutive centromere proteins, Cenpa, Cenpb, and Cenpc, and a spindle checkpoint protein, Bub3. Immunoprecipitation and Western blot analyses demonstrate that Cenpa, Cenpb, and Bub3, but not Cenpc, interacted with PARP-1, and are poly(ADP-ribosyl)ated following induction of DNA damage. The results suggest a role of PARP-1 in centromere assembly/disassembly and checkpoint control. Demonstration of PARP-1-binding and poly(ADP-ribosyl)ation in three of the four proteins tested further suggests that many more centromere proteins may behave similarly and implicates PARP-1 as an important regulator of diverse centromere function.
Collapse
Affiliation(s)
- Alka Saxena
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Rd., Parkville 3052, Australia
| | | | | | | | | |
Collapse
|
262
|
Murata-Hori M, Wang YL. The kinase activity of aurora B is required for kinetochore-microtubule interactions during mitosis. Curr Biol 2002; 12:894-9. [PMID: 12062052 DOI: 10.1016/s0960-9822(02)00848-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As a component of the "chromosomal passenger protein complex," the aurora B kinase is associated with centromeres during prometaphase and with midzone microtubules during anaphase and is required for both mitosis and cytokinesis. Ablation of aurora B causes defects in both prometaphase chromosomal congression and the spindle checkpoint; however, the mechanisms underlying these defects are unclear. To address this question, we have examined chromosomal movement, spindle organization, and microtubule motor distribution in NRK cells transfected with a kinase-inactive, dominant-negative mutant of aurora B, aurora B(K-R). In cells overexpressing aurora B(K-R) fused with GFP, centromeres moved in a synchronized and predominantly unidirectional manner, as opposed to the independent, bidirectional movement in control cells expressing a similar level of wild-type aurora B-GFP. In addition, most kinetochores became physically separated from spindle microtubules, which appeared as a striking bundle between the spindle poles. These defects were associated with a microtubule-dependent depletion of motor proteins dynein and CENP-E from kinetochores. Our observations suggest that aurora B regulates the association of motor proteins with kinetochores during prometaphase. Interactions of kinetochore motors with microtubules may in turn regulate the organization of microtubules, the movement of prometaphase chromosomes, and the release of the spindle checkpoint.
Collapse
Affiliation(s)
- Maki Murata-Hori
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
263
|
Maiato H, Sampaio P, Lemos CL, Findlay J, Carmena M, Earnshaw WC, Sunkel CE. MAST/Orbit has a role in microtubule-kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. J Cell Biol 2002; 157:749-60. [PMID: 12034769 PMCID: PMC2173411 DOI: 10.1083/jcb.200201101] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant embryos undergoing early mitotic divisions revealed that chromosomes are unable to reach a stable metaphase alignment and that bipolar spindles collapse as centrosomes move progressively closer toward the cell center and eventually organize into a monopolar configuration. Similarly, soon after depletion of MAST/Orbit in Drosophila S2 cells by double-stranded RNA interference, cells are unable to form a metaphase plate and instead assemble monopolar spindles with chromosomes localized close to the center of the aster. In these cells, kinetochores either fail to achieve end-on attachment or are associated with short microtubules. Remarkably, when microtubule dynamics is suppressed in MAST-depleted cells, chromosomes localize at the periphery of the monopolar aster associated with the plus ends of well-defined microtubule bundles. Furthermore, in these cells, dynein and ZW10 accumulate at kinetochores and fail to transfer to microtubules. However, loss of MAST/Orbit does not affect the kinetochore localization of D-CLIP-190. Together, these results strongly support the conclusion that MAST/Orbit is required for microtubules to form functional attachments to kinetochores and to maintain spindle bipolarity.
Collapse
Affiliation(s)
- Helder Maiato
- Instituto de Ciências Biomédicas de Abel Salazar, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180, Portugal
| | | | | | | | | | | | | |
Collapse
|
264
|
Zhou J, Panda D, Landen JW, Wilson L, Joshi HC. Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates the spindle checkpoint. J Biol Chem 2002; 277:17200-8. [PMID: 11864974 DOI: 10.1074/jbc.m110369200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously identified the opium alkaloid noscapine as a microtubule interacting agent that binds stoichiometrically to tubulin and alters its conformation. Here we show that, unlike many other microtubule inhibitors, noscapine does not significantly promote or inhibit microtubule polymerization. Instead, it alters the steady-state dynamics of microtubule assembly, primarily by increasing the amount of time that the microtubules spend in an attenuated (pause) state. Further studies reveal that even at high concentrations, noscapine does not alter the tubulin polymer/monomer ratio in HeLa cells. Cells treated with noscapine arrest at mitosis with nearly normal bipolar spindles. Strikingly, although most of the chromosomes in these cells are aligned at the metaphase plate, the rest remain near the spindle poles, both of which exhibit loss of tension across kinetochore pairs. Furthermore, levels of the spindle checkpoint proteins Mad2, Bub1, and BubR1 decrease by 138-, 3.7-, and 3.9-fold, respectively, at the kinetochore region upon chromosome alignment. Our results thus suggest that an exquisite control of microtubule dynamics is required for kinetochore tension generation and chromosome alignment during mitosis. Our data also support the idea that Mad2 and Bub1/BubR1 respond to kinetochore-microtubule attachment and/or tension to different degrees.
Collapse
Affiliation(s)
- Jun Zhou
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
265
|
Gindullis F, Rose A, Patel S, Meier I. Four signature motifs define the first class of structurally related large coiled-coil proteins in plants. BMC Genomics 2002; 3:9. [PMID: 11972898 PMCID: PMC102765 DOI: 10.1186/1471-2164-3-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Accepted: 04/09/2002] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants. RESULTS We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms. CONCLUSION Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.
Collapse
Affiliation(s)
- Frank Gindullis
- CellTec Biotechnologie GmbH, Frohmestrasse 110, D-22459 Hamburg, Germany
| | - Annkatrin Rose
- Plant Biotechnology Center and Department of Plant Biology, Ohio State University, 210 Rightmire Hall, 1060 Carmack Road, Columbus, Ohio 43210, USA
| | - Shalaka Patel
- Plant Biotechnology Center and Department of Plant Biology, Ohio State University, 210 Rightmire Hall, 1060 Carmack Road, Columbus, Ohio 43210, USA
| | - Iris Meier
- Plant Biotechnology Center and Department of Plant Biology, Ohio State University, 210 Rightmire Hall, 1060 Carmack Road, Columbus, Ohio 43210, USA
| |
Collapse
|
266
|
Millband DN, Hardwick KG. Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mph1p-dependent manner. Mol Cell Biol 2002; 22:2728-42. [PMID: 11909965 PMCID: PMC133725 DOI: 10.1128/mcb.22.8.2728-2742.2002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle checkpoint delays the metaphase-to-anaphase transition in response to spindle and kinetochore defects. Genetic screens in budding yeast identified the Mad and Bub proteins as key components of this conserved regulatory pathway. Here we present the fission yeast homologue of Mad3p. Cells devoid of mad3(+) are unable to arrest their cell cycle in the presence of microtubule defects. Mad3p coimmunoprecipitates Bub3p, Mad2p, and the spindle checkpoint effector Slp1/Cdc20p. We demonstrate that Mad3p function is required for the overexpression of Mad2p to result in a metaphase arrest. Mad1p, Bub1p, and Bub3p are not required for this arrest. Thus, Mad3p appears to have a crucial role in transducing the inhibitory "wait anaphase" signal to the anaphase-promoting complex (APC). Mad3-green fluorescent protein (GFP) is recruited to unattached kinetochores early in mitosis and accumulates there upon prolonged checkpoint activation. For the first time, we have systematically studied the dependency of Mad3/BubR1 protein recruitment to kinetochores. We find Mad3-GFP kinetochore localization to be dependent upon Bub1p, Bub3p, and the Mph1p kinase, but not upon Mad1p or Mad2p. We discuss the implications of these findings in the context of our current understanding of spindle checkpoint function.
Collapse
Affiliation(s)
- David N Millband
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, Scotland EH9 3JR, United Kingdom
| | | |
Collapse
|
267
|
Fang G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 2002; 13:755-66. [PMID: 11907259 PMCID: PMC99596 DOI: 10.1091/mbc.01-09-0437] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle assembly checkpoint monitors the attachment of kinetochores to the mitotic spindle and the tension exerted on kinetochores by microtubules and delays the onset of anaphase until all the chromosomes are aligned at the metaphase plate. The target of the checkpoint control is the anaphase-promoting complex (APC)/cyclosome, a ubiquitin ligase whose activation by Cdc20 is required for separation of sister chromatids. In response to activation of the checkpoint, Mad2 binds to and inhibits Cdc20-APC. I show herein that in checkpoint-arrested cells, human Cdc20 forms two separate, inactive complexes, a lower affinity complex with Mad2 and a higher affinity complex with BubR1. Purified BubR1 binds to recombinant Cdc20 and this interaction is direct. Binding of BubR1 to Cdc20 inhibits activation of APC and this inhibition is independent of its kinase activity. Quantitative analysis indicates that BubR1 is 12-fold more potent than Mad2 as an inhibitor of Cdc20. Although at high protein concentrations BubR1 and Mad2 each is sufficient to inhibit Cdc20, BubR1 and Mad2 mutually promote each other's binding to Cdc20 and function synergistically at physiological concentrations to quantitatively inhibit Cdc20-APC. Thus, BubR1 and Mad2 act cooperatively to prevent premature separation of sister chromatids by directly inhibiting APC.
Collapse
Affiliation(s)
- Guowei Fang
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| |
Collapse
|
268
|
West RR, Malmstrom T, McIntosh JR. Kinesinsklp5+ andklp6+ are required for normal chromosome movement in mitosis. J Cell Sci 2002; 115:931-40. [PMID: 11870212 DOI: 10.1242/jcs.115.5.931] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper mitotic chromosome segregation requires dynamic interactions between spindle microtubules and kinetochores. Here we demonstrate that two related fission yeast kinesins, klp5+ and klp6+, are required for normal chromosome segregation in mitosis. Null mutants frequently lack a normal metaphase chromosome alignment. Chromosome pairs move back and forth along the spindle for an extended period prior to sister chromatid separation, a phenotype reminiscent of the loss of CENP-E in metazoans. Ultimately, sister chromatids segregate, regardless of chromosome position along the spindle, and viable daughter cells are usually produced. The initiation of anaphase B is sometimes delayed, but the rate of spindle elongation is similar to wildtype. Despite a delay, anaphase B often begins before anaphase A is completed. The klp5Δ and klp6Δ null mutants are synthetically lethal with a deletion of the spindle assembly checkpoint gene, bub1+, several mutants in components of the anaphase promoting complex, and a cold sensitive allele of the kinetochore and microtubule-binding protein, Dis1p. Klp5p-GFP and Klp6p-GFP localize to kinetochores from prophase to the onset of anaphase A, but relocalize to the spindle midzone during anaphase B. These data indicate that Klp5p and Klp6p are kinetochore kinesins required for normal chromosome movement in prometaphase.
Collapse
Affiliation(s)
- Robert R West
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | | | |
Collapse
|
269
|
Howell BJ, McEwen BF, Canman JC, Hoffman DB, Farrar EM, Rieder CL, Salmon ED. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol 2001; 155:1159-72. [PMID: 11756470 PMCID: PMC2199338 DOI: 10.1083/jcb.200105093] [Citation(s) in RCA: 410] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We discovered that many proteins located in the kinetochore outer domain, but not the inner core, are depleted from kinetochores and accumulate at spindle poles when ATP production is suppressed in PtK1 cells, and that microtubule depolymerization inhibits this process. These proteins include the microtubule motors CENP-E and cytoplasmic dynein, and proteins involved with the mitotic spindle checkpoint, Mad2, Bub1R, and the 3F3/2 phosphoantigen. Depletion of these components did not disrupt kinetochore outer domain structure or alter metaphase kinetochore microtubule number. Inhibition of dynein/dynactin activity by microinjection in prometaphase with purified p50 "dynamitin" protein or concentrated 70.1 anti-dynein antibody blocked outer domain protein transport to the spindle poles, prevented Mad2 depletion from kinetochores despite normal kinetochore microtubule numbers, reduced metaphase kinetochore tension by 40%, and induced a mitotic block at metaphase. Dynein/dynactin inhibition did not block chromosome congression to the spindle equator in prometaphase, or segregation to the poles in anaphase when the spindle checkpoint was inactivated by microinjection with Mad2 antibodies. Thus, a major function of dynein/dynactin in mitosis is in a kinetochore disassembly pathway that contributes to inactivation of the spindle checkpoint.
Collapse
Affiliation(s)
- B J Howell
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | |
Collapse
|
270
|
Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 2001; 114:4557-65. [PMID: 11792820 DOI: 10.1242/jcs.114.24.4557] [Citation(s) in RCA: 594] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the first RNAi-induced phenotypes in mammalian cultured cells using RNA interference mediated by duplexes of 21-nt RNAs. The 21 gene products studied have different functions and subcellular localizations. Knockdown experiments monitored by immunofluorescence and immunoblotting show that even major cellular proteins such as actin and vimentin can be silenced efficiently. Genes were classified as essential or nonessential depending on impaired cell growth after RNA silencing. Phenotypes also involved altered cell morphology and aberrant mitotic arrest. Among the essential genes identified by RNAi for which such information was previously not available are lamin B1, lamin B2, NUP153, GAS41, ARC21, cytoplasmic dynein, the protein kinase cdk1 and both β- and γ-actin. Newly defined nonessential genes are emerin and zyxin. Several genes previously characterized by other methods such as knockout of murine genes are included as internal controls and gave identical results when RNAi was used. In the case of two nonessential genes (lamin A/C and zyxin) RNAi provides a recognizable phenotype.
Our results complete the characterization of the mammalian nuclear lamins. While lamins A/C appear as nonessential proteins in the mouse embryo and in RNAi treated cultured cells, the two other lamins, B1 and B2, are now identified as essential proteins. Interestingly the inner nuclear membrane protein emerin, thought to be a ligand of lamin A/C, is also a nonessential protein in tissue culture cells.
Collapse
Affiliation(s)
- J Harborth
- Department of Biochemistry and Cell Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
271
|
Taylor SS, Hussein D, Wang Y, Elderkin S, Morrow CJ. Kinetochore localisation and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are differentially regulated by spindle events in human cells. J Cell Sci 2001; 114:4385-95. [PMID: 11792804 DOI: 10.1242/jcs.114.24.4385] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BUB1 is a budding yeast gene required to ensure that progression through mitosis is coupled to correct spindle assembly. Two related human protein kinases, Bub1 and BubR1, both localise to kinetochores during mitosis, suggesting that they play a role in delaying anaphase until all chromosomes achieve correct, bipolar attachment to the spindle. However, how the activities of Bub1 and BubR1 are regulated by spindle events and how their activities regulate downstream cell cycle events is not known.To investigate how spindle events regulate Bub1 and BubR1, we characterised their relative localisations during mitosis in the presence and absence of microtubule toxins. In prometaphase cells, both kinases colocalise to the same domain of the kinetochore. However, whereas the localisation of BubR1 at sister kinetochores is symmetrical, localisation of Bub1 is often asymmetrical. This asymmetry is dependent on microtubule attachment, and the kinetochore exhibiting weaker Bub1 staining is typically closer to the nearest spindle pole. In addition, a 30 minute nocodazole treatment dramatically increases the amount of Bub1 localising to kinetochores but has little effect on BubR1. Furthermore, Bub1 levels increase at metaphase kinetochores following loss of tension caused by taxol treatment. Thus, these observations suggest that Bub1 localisation is sensitive to changes in both tension and microtubule attachment.Consistent with this, we also show that Bub1 is rapidly phosphorylated following brief treatments with nocodazole or taxol. In contrast, BubR1 is phosphorylated in the absence of microtubule toxins, and spindle damage has little additional effect. Although these observations indicate that Bub1 and BubR1 respond differently to spindle dynamics, they are part of a common complex during mitosis. We suggest therefore that Bub1 and BubR1 may integrate different ‘spindle assembly signals’ into a single signal which can then be interpreted by downstream cell cycle regulators.
Collapse
Affiliation(s)
- S S Taylor
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | |
Collapse
|
272
|
Abstract
Previous studies of the spindle checkpoint suggested that its ability to prevent entry into anaphase was mediated by the inhibition of the anaphase-promoting complex (APC) ubiquitin ligase by Mad2. Two new studies challenge that view by demonstrating that another checkpoint protein, BubR1, is a far more potent inhibitor of APC function.
Collapse
Affiliation(s)
- M A Hoyt
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
273
|
Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 2001; 154:925-36. [PMID: 11535616 PMCID: PMC2196190 DOI: 10.1083/jcb.200102093] [Citation(s) in RCA: 668] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The mitotic checkpoint prevents cells with unaligned chromosomes from prematurely exiting mitosis by inhibiting the anaphase-promoting complex/cyclosome (APC/C) from targeting key proteins for ubiquitin-mediated proteolysis. We have examined the mechanism by which the checkpoint inhibits the APC/C by purifying an APC/C inhibitory factor from HeLa cells. We call this factor the mitotic checkpoint complex (MCC) as it consists of hBUBR1, hBUB3, CDC20, and MAD2 checkpoint proteins in near equal stoichiometry. MCC inhibitory activity is 3,000-fold greater than that of recombinant MAD2, which has also been shown to inhibit APC/C in vitro. Surprisingly, MCC is not generated from kinetochores, as it is also present and active in interphase cells. However, only APC/C isolated from mitotic cells was sensitive to inhibition by MCC. We found that the majority of the APC/C in mitotic lysates is associated with the MCC, and this likely contributes to the lag in ubiquitin ligase activity. Importantly, chromosomes can suppress the reactivation of APC/C. Chromosomes did not affect the inhibitory activity of MCC or the stimulatory activity of CDC20. We propose that the preformed interphase pool of MCC allows for rapid inhibition of APC/C when cells enter mitosis. Unattached kinetochores then target the APC/C for sustained inhibition by the MCC.
Collapse
Affiliation(s)
- V Sudakin
- Institute for Cancer Research, The Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
274
|
McEwen BF, Chan GK, Zubrowski B, Savoian MS, Sauer MT, Yen TJ. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol Biol Cell 2001; 12:2776-89. [PMID: 11553716 PMCID: PMC59712 DOI: 10.1091/mbc.12.9.2776] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CENP-E is a kinesin-like protein that when depleted from mammalian kinetochores leads to mitotic arrest with a mixture of aligned and unaligned chromosomes. In the present study, we used immunofluorescence, video, and electron microscopy to demonstrate that depletion of CENP-E from kinetochores via antibody microinjection reduces kinetochore microtubule binding by 23% at aligned chromosomes, and severely reduces microtubule binding at unaligned chromosomes. Disruption of CENP-E function also reduces tension across the centromere, increases the incidence of spindle pole fragmentation, and results in monooriented chromosomes approaching abnormally close to the spindle pole. Nevertheless, chromosomes show typical patterns of congression, fast poleward motion, and oscillatory motions. Furthermore, kinetochores of aligned and unaligned chromosomes exhibit normal patterns of checkpoint protein localization. These data are explained by a model in which redundant mechanisms enable kinetochore microtubule binding and checkpoint monitoring in the absence of CENP-E at kinetochores, but where reduced microtubule-binding efficiency, exacerbated by poor positioning at the spindle poles, results in chronically monooriented chromosomes and mitotic arrest. Chromosome position within the spindle appears to be a critical determinant of CENP-E function at kinetochores.
Collapse
Affiliation(s)
- B F McEwen
- Division Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| | | | | | | | | | | |
Collapse
|
275
|
Morishita J, Matsusaka T, Goshima G, Nakamura T, Tatebe H, Yanagida M. Bir1/Cut17 moving from chromosome to spindle upon the loss of cohesion is required for condensation, spindle elongation and repair. Genes Cells 2001; 6:743-63. [PMID: 11554922 DOI: 10.1046/j.1365-2443.2001.00459.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In mammals, proteins containing BIR domains (IAPs and survivin) are implicated in inhibiting apoptosis and sister chromatid separation. In the nematode, Bir1 is required for a proper localization of aurora kinase, which moves from the mitotic chromosome in metaphase to the spindle midzone in anaphase as a passenger. Fission yeast Bir1/Pbh1 is essential for normal mitosis. RESULTS A temperature sensitive mutant cut17-275 exhibits the defect in condensation and spindle elongation at 36 degrees C, while securin is degraded. Gene cloning shows that the cut17+ gene is identical to bir1+/pbh1+. At 26 degrees C, cut17-275 is UV sensitive as the repair of DNA damage is severely compromised. Bir1/Cut17 is a nuclear protein in interphase, which is then required for recruiting condensin to the mitotic nucleus, and concentrates to form a discrete number of dots from prometaphase to metaphase. Once the chromatids are separated, Bir1/Cut17 no longer binds to kinetochores and instead moves to the middle of spindle. Chromatin immunoprecipitation suggested that Bir1/Cut17 associates with the outer repetitious centromere region in metaphase. Following the initiation of anaphase the protein switches from being a chromosomal protein to a spindle protein. This transit is stringently regulated by the state of sister chromatid cohesion proteins Mis4 and Rad21. Ark1, is an aurora kinase homologue whose mitotic distribution is identical to, and under the control of Bir1/Cut17. CONCLUSIONS Bir1/Cut17 and Ark1 act as "passengers" but they may play a main role as a recruitment factor, essential for condensation, spindle elongation and DNA repair. Bir1/Cut17 should have roles both in mitotic and in interphase chromosome. The proper location of Ark1 requires Bir1/Cut17, and the mitotic localization of Bir1/Cut17 requires sister cohesion.
Collapse
Affiliation(s)
- J Morishita
- CREST Research Project, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
276
|
Topper LM, Bastians H, Ruderman JV, Gorbsky GJ. Elevating the level of Cdc34/Ubc3 ubiquitin-conjugating enzyme in mitosis inhibits association of CENP-E with kinetochores and blocks the metaphase alignment of chromosomes. J Cell Biol 2001; 154:707-17. [PMID: 11514588 PMCID: PMC2196447 DOI: 10.1083/jcb.200104130] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cdc34/Ubc3 is a ubiquitin-conjugating enzyme that functions in targeting proteins for proteasome-mediated degradation at the G1 to S cell cycle transition. Elevation of Cdc34 protein levels by microinjection of bacterially expressed Cdc34 into mammalian cells at prophase inhibited chromosome congression to the metaphase plate with many chromosomes remaining near the spindle poles. Chromosome condensation and nuclear envelope breakdown occurred normally, and chromosomes showed oscillatory movements along mitotic spindle microtubules. Most injected cells arrested in a prometaphase-like state. Kinetochores, even those of chromosomes that failed to congress, possessed the normal trilaminar plate ultrastructure. The elevation of Cdc34 protein levels in early mitosis selectively blocked centromere protein E (CENP-E), a mitotic kinesin, from associating with kinetochores. Other proteins, including two CENP-E-associated proteins, BubR1 and phospho-p42/p44 mitogen-activated protein kinase, and mitotic centromere-associated kinesin, cytoplasmic dynein, Cdc20, and Mad2, all exhibited normal localization to kinetochores. Proteasome inhibitors did not affect the prometaphase arrest induced by Cdc34 injection. These studies suggest that CENP-E targeting to kinetochores is regulated by ubiquitylation not involving proteasome-mediated degradation.
Collapse
Affiliation(s)
- L M Topper
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
277
|
Brunet S, Vernos I. Chromosome motors on the move. From motion to spindle checkpoint activity. EMBO Rep 2001; 2:669-73. [PMID: 11493594 PMCID: PMC1083995 DOI: 10.1093/embo-reports/kve158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Spindle assembly and chromosome segregation require the concerted activities of a variety of microtubule-dependent motors. This review focuses on our current knowledge of the roles played by the chromosome-associated motors during mitosis. While some appear to function conventionally in moving chromosomes along microtubules others seem to act in different ways. For example, by docking microtubules to chromosome arms, chromatin-associated motors prevent chromosome loss and participate in spindle formation and stability. Kinetochore motors participate in the formation of stable kinetochore fibers or in the control of microtubule dynamics and are involved in spindle checkpoint activity. Chromosome-associated motors thus appear to be key molecules that function in complementary ways to ensure the accuracy of chromosome segregation.
Collapse
Affiliation(s)
- S Brunet
- Cell Biology and Biophysics Program, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | | |
Collapse
|
278
|
Affiliation(s)
- Stéphane Brunet
- Cell Biology and Biophysics Program, EMBL, Meyerhofstrasse 1 Heidelberg 69117 Germany
| | - Isabelle Vernos
- Cell Biology and Biophysics Program, EMBL, Meyerhofstrasse 1 Heidelberg 69117 Germany
| |
Collapse
|
279
|
Tang Z, Bharadwaj R, Li B, Yu H. Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell 2001; 1:227-37. [PMID: 11702782 DOI: 10.1016/s1534-5807(01)00019-3] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mitotic checkpoint blocks the activation of the anaphase-promoting complex (APC) until all sister chromatids have achieved bipolar attachment to the spindle. A checkpoint complex containing BubR1 and Bub3 has been purified from mitotic human cells. Upon checkpoint activation, the BubR1-Bub3 complex interacts with Cdc20. In the absence of Mad2, BubR1 inhibits the activity of APC by blocking the binding of Cdc20 to APC. Surprisingly, the kinase activity of BubR1 is not required for the inhibition of APCCdc20. BubR1 also prevents the activation of APCCdc20 in Xenopus egg extracts, and restores the mitotic arrest in Cdc20-overexpressing cells treated with nocodazole. Because BubR1 also interacts with the mitotic motor CENP-E, the ability of BubR1 to inhibit APC may be regulated by kinetochore tension or occupancy.
Collapse
Affiliation(s)
- Z Tang
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 75390, USA
| | | | | | | |
Collapse
|
280
|
DeLuca JG, Newton CN, Himes RH, Jordan MA, Wilson L. Purification and characterization of native conventional kinesin, HSET, and CENP-E from mitotic hela cells. J Biol Chem 2001; 276:28014-21. [PMID: 11382767 DOI: 10.1074/jbc.m102801200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have developed a strategy for the purification of native microtubule motor proteins from mitotic HeLa cells and describe here the purification and characterization of human conventional kinesin and two human kinesin-related proteins, HSET and CENP-E. We found that the 120-kDa HeLa cell conventional kinesin is an active motor that induces microtubule gliding at approximately 30 microm/min at room temperature. This active form of HeLa cell kinesin does not contain light chains, although light chains were detected in other fractions. HSET, a member of the C-terminal kinesin subfamily, was also purified in native form for the first time, and the protein migrates as a single band at approximately 75 kDa. The purified HSET is an active motor that induces microtubule gliding at a rate of approximately 5 microm/min, and microtubules glide for an average of 3 microm before ceasing movement. Finally, we purified native CENP-E, a kinesin-related protein that has been implicated in chromosome congression during mitosis, and we found that this form of CENP-E does not induce microtubule gliding but is able to bind to microtubules.
Collapse
Affiliation(s)
- J G DeLuca
- Department of Molecular, Cellular, and Developmental Biology and the Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
281
|
Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbé JC. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 2001; 106:83-93. [PMID: 11461704 DOI: 10.1016/s0092-8674(01)00410-x] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitotic checkpoint acts to inhibit entry into anaphase until all chromosomes have successfully attached to spindle microtubules. Unattached kinetochores are believed to release an activated form of Mad2 that inhibits APC/C-dependent ubiquitination and subsequent proteolysis of components needed for anaphase onset. Using Xenopus egg extracts, a vertebrate homolog of yeast Mps1p is shown here to be a kinetochore-associated kinase, whose activity is necessary to establish and maintain the checkpoint. Since high levels of Mad2 overcome checkpoint loss in Mps1-depleted extracts, Mps1 acts upstream of Mad2-mediated inhibition of APC/C. Mps1 is essential for the checkpoint because it is required for recruitment and retention of active CENP-E at kinetochores, which in turn is necessary for kinetochore association of Mad1 and Mad2.
Collapse
Affiliation(s)
- A Abrieu
- Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Garcia MA, Vardy L, Koonrugsa N, Toda T. Fission yeast ch-TOG/XMAP215 homologue Alp14 connects mitotic spindles with the kinetochore and is a component of the Mad2-dependent spindle checkpoint. EMBO J 2001; 20:3389-401. [PMID: 11432827 PMCID: PMC125509 DOI: 10.1093/emboj/20.13.3389] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The TOG/XMAP215-related proteins play a role in microtubule dynamics at its plus end. Fission yeast Alp14, a newly identified TOG/XMAP215 family protein, is essential for proper chromosome segregation in concert with a second homologue Dis1. We show that the alp14 mutant fails to progress towards normal bipolar spindle formation. Intriguingly, Alp14 itself is a component of the Mad2-dependent spindle checkpoint cascade, as upon addition of microtubule-destabilizing drugs the alp14 mutant is incapable of maintaining high H1 kinase activity, which results in securin destruction and premature chromosome separation. Live imaging of Alp14-green fluorescent protein shows that during mitosis, Alp14 is associated with the peripheral region of the kinetochores as well as with the spindle poles. This is supported by ChIP (chromatin immunoprecipitation) and overlapping localization with the kinetochore marker Mis6. An intact spindle is required for Alp14 localization to the kinetochore periphery, but not to the poles. These results indicate that the TOG/XMAP215 family may play a central role as a bridge between the kinetochores and the plus end of pole to chromosome microtubules.
Collapse
Affiliation(s)
| | | | | | - Takashi Toda
- Laboratory of Cell Regulation, Imperial Cancer Research Fund, PO Box 123, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
Corresponding author e-mail:
| |
Collapse
|
283
|
Hoffman DB, Pearson CG, Yen TJ, Howell BJ, Salmon ED. Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol Biol Cell 2001; 12:1995-2009. [PMID: 11451998 PMCID: PMC55648 DOI: 10.1091/mbc.12.7.1995] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ability of kinetochores to recruit microtubules, generate force, and activate the mitotic spindle checkpoint may all depend on microtubule- and/or tension-dependent changes in kinetochore assembly. With the use of quantitative digital imaging and immunofluorescence microscopy of PtK1 tissue cells, we find that the outer domain of the kinetochore, but not the CREST-stained inner core, exhibits three microtubule-dependent assembly states, not directly dependent on tension. First, prometaphase kinetochores with few or no kinetochore microtubules have abundant punctate or oblate fluorescence morphology when stained for outer domain motor proteins CENP-E and cytoplasmic dynein and checkpoint proteins BubR1 and Mad2. Second, microtubule depolymerization induces expansion of the kinetochore outer domain into crescent and ring morphologies around the centromere. This expansion may enhance recruitment of kinetochore microtubules, and occurs with more than a 20- to 100-fold increase in dynein and relatively little change in CENP-E, BubR1, and Mad2 in comparison to prometaphase kinetochores. Crescents disappear and dynein decreases substantially upon microtubule reassembly. Third, when kinetochores acquire their full metaphase complement of kinetochore microtubules, levels of CENP-E, dynein, and BubR1 decrease by three- to sixfold in comparison to unattached prometaphase kinetochores, but remain detectable. In contrast, Mad2 decreases by 100-fold and becomes undetectable, consistent with Mad2 being a key factor for the "wait-anaphase" signal produced by unattached kinetochores. Like previously found for Mad2, the average amounts of CENP-E, dynein, or BubR1 at metaphase kinetochores did not change with the loss of tension induced by taxol stabilization of microtubules.
Collapse
Affiliation(s)
- D B Hoffman
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | | | |
Collapse
|
284
|
Howe M, McDonald KL, Albertson DG, Meyer BJ. HIM-10 is required for kinetochore structure and function on Caenorhabditis elegans holocentric chromosomes. J Cell Biol 2001; 153:1227-38. [PMID: 11402066 PMCID: PMC2192032 DOI: 10.1083/jcb.153.6.1227] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Macromolecular structures called kinetochores attach and move chromosomes within the spindle during chromosome segregation. Using electron microscopy, we identified a structure on the holocentric mitotic and meiotic chromosomes of Caenorhabditis elegans that resembles the mammalian kinetochore. This structure faces the poles on mitotic chromosomes but encircles meiotic chromosomes. Worm kinetochores require the evolutionarily conserved HIM-10 protein for their structure and function. HIM-10 localizes to the kinetochores and mediates attachment of chromosomes to the spindle. Depletion of HIM-10 disrupts kinetochore structure, causes a failure of bipolar spindle attachment, and results in chromosome nondisjunction. HIM-10 is related to the Nuf2 kinetochore proteins conserved from yeast to humans. Thus, the extended kinetochores characteristic of C. elegans holocentric chromosomes provide a guide to the structure, molecular architecture, and function of conventional kinetochores.
Collapse
Affiliation(s)
- Mary Howe
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology
| | - Kent L. McDonald
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, California 94720
| | - Donna G. Albertson
- Cancer Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Barbara J. Meyer
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology
| |
Collapse
|
285
|
Sharp-Baker H, Chen RH. Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J Cell Biol 2001; 153:1239-50. [PMID: 11402067 PMCID: PMC2192030 DOI: 10.1083/jcb.153.6.1239] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2000] [Accepted: 05/04/2001] [Indexed: 12/16/2022] Open
Abstract
The spindle checkpoint inhibits the metaphase to anaphase transition until all the chromosomes are properly attached to the mitotic spindle. We have isolated a Xenopus homologue of the spindle checkpoint component Bub1, and investigated its role in the spindle checkpoint in Xenopus egg extracts. Antibodies raised against Bub1 recognize a 150-kD phosphoprotein at both interphase and mitosis, but the molecular mass is reduced to 140 upon dephosphorylation in vitro. Bub1 is essential for the establishment and maintenance of the checkpoint and is localized to kinetochores, similar to the spindle checkpoint complex Mad1-Mad2. However, Bub1 differs from Mad1-Mad2 in that Bub1 remains on kinetochores that have attached to microtubules; the protein eventually dissociates from the kinetochore during anaphase. Immunodepletion of Bub1 abolishes the spindle checkpoint and the kinetochore binding of the checkpoint proteins Mad1, Mad2, Bub3, and CENP-E. Interestingly, reintroducing either wild-type or kinase-deficient Bub1 protein restores the checkpoint and the kinetochore localization of these proteins. Our studies demonstrate that Bub1 plays a central role in triggering the spindle checkpoint signal from the kinetochore, and that its kinase activity is not necessary for the spindle checkpoint in Xenopus egg extracts.
Collapse
Affiliation(s)
- Hilary Sharp-Baker
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Rey-Huei Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
286
|
Wang X, Babu JR, Harden JM, Jablonski SA, Gazi MH, Lingle WL, de Groen PC, Yen TJ, van Deursen JM. The mitotic checkpoint protein hBUB3 and the mRNA export factor hRAE1 interact with GLE2p-binding sequence (GLEBS)-containing proteins. J Biol Chem 2001; 276:26559-67. [PMID: 11352911 DOI: 10.1074/jbc.m101083200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mRNA export factor RAE1 (also called GLE2) and the mitotic checkpoint protein BUB3 share extensive sequence homology in yeast as well as higher eukaryotes, although the biological relevance of their similarity is unclear. Previous work in HeLa cells has shown that human (h)RAE1 binds the nuclear pore complex protein hNUP98 via a short NUP98 motif called GLEBS (for GLE2p-binding sequence). Here we report that the two known binding partners of hBUB3, the mitotic checkpoint proteins hBUB1 and hBUBR1, both carry a region with remarkable similarity to the GLEBS motif of hNUP98. We show that the GLEBS-like motifs of mouse (m)BUB1 and mBUBR1 are sufficient for mBUB3 binding. mBUB3 lacks affinity for the hNUP98 GLEBS, demonstrating its binding specificity for GLEBS motifs of mitotic checkpoint proteins. Interestingly, mRAE1 does not exclusively bind to the GLEBS motif of hNUP98 and can cross-interact with the mBUB1 GLEBS. We show that full-length RAE1 and BUB1 proteins interact in mammalian cells and accumulate both at the kinetochores of prometaphase chromosomes. Our findings demonstrate that GLEBS motifs reside in mammalian nucleoporins and mitotic checkpoint proteins and apparently serve as specific binding sites for either BUB3, RAE1, or both.
Collapse
Affiliation(s)
- X Wang
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Crespo NC, Ohkanda J, Yen TJ, Hamilton AD, Sebti SM. The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J Biol Chem 2001; 276:16161-7. [PMID: 11154688 DOI: 10.1074/jbc.m006213200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Even though farnesyltransferase inhibitors (FTIs), a novel class of therapeutic agents presently in clinical trials, have preclinically outstanding anticancer activity and impressive lack of toxicity, their mechanism of action is not well understood. To enhance our understanding of how FTIs inhibit the growth of tumors, we have investigated their effects on cell cycle progression of two human lung cancer cell lines, A-549 and Calu-1. In this report, we show in synchronized A-549 and Calu-1 cells that FTI-2153 treatment resulted in a large accumulation of cells in the mitosis phase of the cell division cycle, with some cells in the G(0)/G(1) phase. Furthermore, microtubule immunostaining and 4,6-diamidino-2-phenylindole DNA staining demonstrated that the FTI-2153-induced accumulation in mitosis is due to the inability of these cells to progress from prophase to metaphase. FTI-2153 inhibited the ability of A-549 and Calu-1 cells to form bipolar spindles and caused formation of monoasteral spindles. Furthermore, FTI-2153 induced a ring-shaped chromosome morphology and inhibited chromosome alignment. Time-lapse videomicroscopy confirmed this result by showing that FTI-2153-treated cells are unable to align their chromosomes at the metaphase plate. FTI-2153 did not affect the localization to the kinetochores of two farnesylated centromeric proteins, CENP-E and CENP-F. Thus, a mechanism by which FTIs inhibit progression through mitosis and tumor growth is by blocking bipolar spindle formation and chromosome alignment.
Collapse
Affiliation(s)
- N C Crespo
- Department of Oncology, Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
288
|
Skoufias DA, Andreassen PR, Lacroix FB, Wilson L, Margolis RL. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci U S A 2001; 98:4492-7. [PMID: 11274370 PMCID: PMC31862 DOI: 10.1073/pnas.081076898] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metaphase checkpoint controls sense abnormalities of chromosome alignment during mitosis and prevent progression to anaphase until proper alignment has been attained. A number of proteins, including mad2, bub1, and bubR1, have been implicated in the metaphase checkpoint control in mammalian cells. Metaphase checkpoints have been shown, in various systems, to read loss of either spindle tension or microtubule attachment at the kinetochore. Characteristically, HeLa cells arrest in metaphase in response to low levels of microtubule inhibitors that leave an intact spindle and a metaphase plate. Here we show that the arrest induced by nanomolar vinblastine correlates with loss of tension at the kinetochore, and that in response the checkpoint proteins bub1 and bubR1 are recruited to the kinetochore but mad2 is not. mad2 remains competent to respond and is recruited at higher drug doses that disrupt spindle association with the kinetochores. Further, although mad2 forms a complex with cdc20, it does not associate with bub1 or bubR1. We conclude that mammalian bub1/bubR1 and mad2 operate as elements of distinct pathways sensing tension and attachment, respectively.
Collapse
Affiliation(s)
- D A Skoufias
- Institut de Biologie Structurale J.-P. Ebel (Commissariat à l'Energie Atomique-Centre National de la Recherche Scientifique), 41 Rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | | | | | |
Collapse
|
289
|
Abstract
Separation of chromosomes during mitosis is monitored by a checkpoint that leads to cell-cycle arrest if the chromosomes are not properly attached to the mitotic spindle. Molecular mechanisms controlling this checkpoint have been identified. In addition, loss of this checkpoint has been shown to result in chromosome missegregation in higher eukaryotes and may contribute to the genomic instability observed in human cancers.
Collapse
Affiliation(s)
- K Wassmann
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center and the Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, Box 241, 1275 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
290
|
Abstract
Mitosis and cytokinesis are undoubtedly the most spectacular parts of the cell cycle. Errors in the choreography of these processes can lead to aneuploidy or genetic instability, fostering cell death or disease. Here, I give an overview of the many mitotic kinases that regulate cell division and the fidelity of chromosome transmission.
Collapse
Affiliation(s)
- E A Nigg
- Max-Planck-Institute for Biochemistry, Department of Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| |
Collapse
|
291
|
Abstract
In all eukaryotes, a microtubule-based structure known as the spindle is responsible for accurate chromosome segregation during cell division. Spindle assembly and function require localized regulation of microtubule dynamics and the activity of a variety of microtubule-based motor proteins. Recent work has begun to uncover the molecular mechanisms that underpin this process. Here we describe the structural and dynamic properties of the spindle, and introduce the current concepts regarding how a bipolar spindle is assembled and how it functions to segregate chromosomes.
Collapse
Affiliation(s)
- T Wittmann
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
292
|
Affiliation(s)
- J V Shah
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
293
|
Abrieu A, Kahana JA, Wood KW, Cleveland DW. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 2000; 102:817-26. [PMID: 11030625 DOI: 10.1016/s0092-8674(00)00070-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Accurate chromatid separation is monitored by a checkpoint mechanism that delays anaphase onset until all centromeres are correctly attached to the mitotic spindle. Using Xenopus egg extracts, the kinetochore-associated microtubule motor protein CENP-E is now found to be required for establishing and maintaining this checkpoint. When CENP-E function is disrupted by immunodepletion or antibody addition, extracts fail to arrest in response to spindle damage. Mitotic arrest can be restored by addition of high levels of soluble MAD2, demonstrating that the absence of CENP-E eliminates kinetochore-dependent signaling but not the downstream steps in checkpoint signal transduction. Because it directly binds both to spindle microtubules and to the kinetochore-associated checkpoint kinase BUBR1, CENP-E is a central component in the vertebrate checkpoint that modulates signaling activity in a microtubule-dependent manner.
Collapse
Affiliation(s)
- A Abrieu
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla 92093-0660, USA
| | | | | | | |
Collapse
|