251
|
Abstract
The development of inhibitors against Abl has changed the landscape for the treatment of chronic myelogenous leukemia (CML) and cancer in general. Beginning with the monumental discovery and approval of imatinib for CML, a second generation of inhibitors, nilotinib and dasatinib, has now gained approval for the treatment of CML. Notably, these second-generation inhibitors are active against many of the mutations in the Abl kinase that confer resistance to imatinib. However, resistance remains a major problem, and new inhibitors such as ponatinib and GNF2/GNF5 have been developed, with activity towards the common gatekeeper T315I mutation. We review here the mechanisms of Abl inhibition with an emphasis on structural elements that are important for the selectivity and design of new molecules. In particular, we focus on how changes in the conformation of the P-loop, the activation loop, the DFG motif, and other structural elements of Abl have been instrumental in developing an understanding of inhibitor binding.
Collapse
Affiliation(s)
- E Premkumar Reddy
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
252
|
Abstract
The integrin β3-mediated c-Src priming and activation, via the SH3 domain, is consistently associated with diseases, such as the formation of thrombosis and the migration of tumor cells. Conventionally, activation of c-Src is often induced by the binding of proline-rich sequences to its SH3 domain. Instead, integrin β3 uses R(760)GT(762) for priming and activation. Because of the lack of structural information, it is not clear where RGT will bind to SH3, and under what mechanism this interaction can prime/activate c-Src. In this study, we present a 2.0-Å x-ray crystal structure in which SH3 is complexed with the RGT peptide. The binding site lies in the "N"-Src loop of the SH3 domain. Structure-based site-directed mutagenesis showed that perturbation on the "N"-Src loop disrupts the interaction between the SH3 domain and the RGT peptide. Furthermore, the simulated c-Src:β3 complex based on the crystal structure of SH3:RGT suggests that the binding of the RGT peptide might disrupt the intramolecular interaction between the SH3 and linker domains, leading to the disengagement of Trp260:"C"-helix and further activation of c-Src.
Collapse
|
253
|
Krishnamurty R, Brigham JL, Leonard SE, Ranjitkar P, Larson ET, Dale EJ, Merritt EA, Maly DJ. Active site profiling reveals coupling between domains in SRC-family kinases. Nat Chem Biol 2012; 9:43-50. [PMID: 23143416 PMCID: PMC3522794 DOI: 10.1038/nchembio.1118] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/01/2012] [Indexed: 12/14/2022]
Abstract
Protein kinases, key regulators of intracellular signal transduction, have emerged as an important class of drug targets. Chemical proteomic tools that facilitate the functional interrogation of protein kinase active sites are powerful reagents for studying the regulation of this large enzyme family and for performing inhibitor selectivity screens. Here we describe a new crosslinking strategy that enables rapid and quantitative profiling of protein kinase active sites in lysates and live cells. Applying this methodology to the SRC-family kinases (SFKs) SRC and HCK led to the identification of a series of conformation-specific, ATP-competitive inhibitors that display a distinct preference for autoinhibited forms of these kinases. Furthermore, we show that ligands that demonstrate this selectivity are able to modulate the ability of the regulatory domains of SRC and HCK to engage in intermolecular binding interactions. These studies provide insight into the regulation of this important family of tyrosine kinases.
Collapse
|
254
|
The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012; 2012:512926. [PMID: 23209344 PMCID: PMC3504478 DOI: 10.1155/2012/512926] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/28/2012] [Indexed: 12/28/2022] Open
Abstract
Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses. Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.
Collapse
|
255
|
Okada M. Regulation of the SRC family kinases by Csk. Int J Biol Sci 2012; 8:1385-97. [PMID: 23139636 PMCID: PMC3492796 DOI: 10.7150/ijbs.5141] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/01/2012] [Indexed: 11/22/2022] Open
Abstract
The non-receptor tyrosine kinase Csk serves as an indispensable negative regulator of the Src family tyrosine kinases (SFKs) by specifically phosphorylating the negative regulatory site of SFKs, thereby suppressing their oncogenic potential. Csk is primarily regulated through its SH2 domain, which is required for membrane translocation of Csk via binding to scaffold proteins such as Cbp/PAG1. The binding of scaffolds to the SH2 domain can also upregulate Csk kinase activity. These regulatory features have been elucidated by analyses of Csk structure at the atomic levels. Although Csk itself may not be mutated in human cancers, perturbation of the regulatory system consisting of Csk, Cbp/PAG1, or other scaffolds, and certain tyrosine phosphatases may explain the upregulation of SFKs frequently observed in human cancers. This review focuses on the molecular bases for the function, structure, and regulation of Csk as a unique regulatory tyrosine kinase for SFKs.
Collapse
Affiliation(s)
- Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Yamada-oka, Suita, Osaka, JAPAN.
| |
Collapse
|
256
|
Evans JV, Ammer AG, Jett JE, Bolcato CA, Breaux JC, Martin KH, Culp MV, Gannett PM, Weed SA. Src binds cortactin through an SH2 domain cystine-mediated linkage. J Cell Sci 2012; 125:6185-97. [PMID: 23097045 DOI: 10.1242/jcs.121046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions.
Collapse
Affiliation(s)
- Jason V Evans
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
257
|
The N-terminal region of IFITM3 modulates its antiviral activity by regulating IFITM3 cellular localization. J Virol 2012; 86:13697-707. [PMID: 23055554 DOI: 10.1128/jvi.01828-12] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Interferon-inducible transmembrane (IFITM) protein family members IFITM1, -2, and -3 restrict the infection of multiple enveloped viruses. Significant enrichment of a minor IFITM3 allele was recently reported for patients who were hospitalized for seasonal and 2009 H1N1 pandemic flu. This IFITM3 allele lacks the region corresponding to the first amino-terminal 21 amino acids and is unable to inhibit influenza A virus. In this study, we found that deleting this 21-amino-acid region relocates IFITM3 from the endosomal compartments to the cell periphery. This finding likely underlies the lost inhibition of influenza A virus that completes its entry exclusively within endosomes at low pH. Yet, wild-type IFITM3 and the mutant with the 21-amino-acid deletion inhibit HIV-1 replication equally well. Given the pH-independent nature of HIV-1 entry, our results suggest that IFITM3 can inhibit viruses that enter cells via different routes and that its N-terminal region is specifically required for controlling pH-dependent viruses.
Collapse
|
258
|
Yoo SK, Freisinger CM, LeBert DC, Huttenlocher A. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. ACTA ACUST UNITED AC 2012; 199:225-34. [PMID: 23045550 PMCID: PMC3471241 DOI: 10.1083/jcb.201203154] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Redox, SFK, and calcium signaling are immediate “wound signals” that integrate early wound responses and late epimorphic regeneration. Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H2O2 at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H2O2. A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate “wound signals” that integrate early wound responses and late epimorphic regeneration.
Collapse
Affiliation(s)
- Sa Kan Yoo
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
259
|
Abstract
The Src family of protooncoproteins is required for prc through at least two phases of the cell cycle and for sc cell-type-specific functions. Recent crystal structures of fragments of two representatives reveal a compact am their Src-homology 3 (SH3), SH2 and catalytic domai embodies an unexpected mechanism of regulation. Th. the enzymatic activity of Src is controlled by intramol associations between the SH2 domain and C-tail and SH3 domain and a surprising internal target. The stn highlight a mechanism by which substrates can comp internal sequences for binding to the SH3 and SH2 do thereby stimulating kinase activity. This implies that distinction between upstream activators and downstre will sometimes be ambiguous.
Collapse
|
260
|
Hagelueken G, Huang H, Clarke BR, Lebl T, Whitfield C, Naismith JH. Structure of WbdD: a bifunctional kinase and methyltransferase that regulates the chain length of the O antigen in Escherichia coli O9a. Mol Microbiol 2012; 86:730-42. [PMID: 22970759 PMCID: PMC3482155 DOI: 10.1111/mmi.12014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2012] [Indexed: 02/05/2023]
Abstract
The Escherichia coli serotype O9a O-antigen polysaccharide (O-PS) is a model for glycan biosynthesis and export by the ATP-binding cassette transporter-dependent pathway. The polymannose O9a O-PS is synthesized as a polyprenol-linked glycan by mannosyltransferase enzymes located at the cytoplasmic membrane. The chain length of the O9a O-PS is tightly regulated by the WbdD enzyme. WbdD first phosphorylates the terminal non-reducing mannose of the O-PS and then methylates the phosphate, stopping polymerization. The 2.2 Å resolution structure of WbdD reveals a bacterial methyltransferase domain joined to a eukaryotic kinase domain. The kinase domain is again fused to an extended C-terminal coiled-coil domain reminiscent of eukaryotic DMPK (Myotonic Dystrophy Protein Kinase) family kinases such as Rho-associated protein kinase (ROCK). WbdD phosphorylates 2-α-d-mannosyl-d-mannose (2α-MB), a short mimic of the O9a polymer. Mutagenesis identifies those residues important in catalysis and substrate recognition and the in vivo phenotypes of these mutants are used to dissect the termination reaction. We have determined the structures of co-complexes of WbdD with two known eukaryotic protein kinase inhibitors. Although these are potent inhibitors in vitro, they do not show any in vivo activity. The structures reveal new insight into O-PS chain-length regulation in this important model system.
Collapse
Affiliation(s)
- Gregor Hagelueken
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | | | | | | | | | | |
Collapse
|
261
|
Kaneko T, Huang H, Cao X, Li X, Li C, Voss C, Sidhu SS, Li SSC. Superbinder SH2 Domains Act as Antagonists of Cell Signaling. Sci Signal 2012; 5:ra68. [DOI: 10.1126/scisignal.2003021] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
262
|
Spatiotemporal regulation of Src and its substrates at invadosomes. Eur J Cell Biol 2012; 91:878-88. [PMID: 22823952 DOI: 10.1016/j.ejcb.2012.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 01/07/2023] Open
Abstract
In the past decade, substantial progress has been made in understanding how Src family kinases regulate the formation and function of invadosomes. Invadosomes are organized actin-rich structures that contain an F-actin core surrounded by an adhesive ring and mediate invasive migration. Src kinases orchestrate, either directly or indirectly, each phase of the invadosome life cycle including invadosome assembly, maturation and matrix degradation and disassembly. Complex arrays of Src effector proteins are involved at different stages of invadosome maturation and their spatiotemporal activity must be tightly regulated to achieve effective invasive migration. In this review, we highlight some recent progress and the challenges of understanding how Src is regulated temporally and spatially to orchestrate the dynamics of invadosomes and mediate cell invasion.
Collapse
|
263
|
ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood 2012; 120:1942-52. [PMID: 22806890 DOI: 10.1182/blood-2011-12-397430] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Polymorphonuclear neutrophil (PMN) extravasation requires selectin-mediated tethering, intercellular adhesion molecule-1 (ICAM-1)-dependent firm adhesion, and platelet/endothelial cell adhesion molecule 1 (PECAM-1)-mediated transendothelial migration. An important unanswered question is whether ICAM-1-activated signaling contributes to PMN transmigration mediated by PECAM-1. We tested this concept and the roles of endothelial nitric oxide synthase (eNOS) and Src activated by PMN ligation of ICAM-1 in mediating PECAM-1-dependent PMN transmigration. We observed that lung PMN infiltration in vivo induced in carrageenan-injected WT mice was significantly reduced in ICAM-1(-/-) and eNOS(-/-) mice. Crosslinking WT mouse ICAM-1 expressed in human endothelial cells (ECs), but not the phospho-defective Tyr(518)Phe ICAM-1 mutant, induced SHP-2-dependent Src Tyr530 dephosphorylation that resulted in Src activation. ICAM-1 activation also stimulated phosphorylation of Akt (p-Ser473) and eNOS (p-Ser1177), thereby increasing NO production. PMN migration across EC monolayers was abolished in cells expressing the Tyr(518)Phe ICAM-1 mutant or by pretreatment with either the Src inhibitor PP2 or eNOS inhibitor L-NAME. Importantly, phospho-ICAM-1 induction of Src signaling induced PECAM-1 Tyr686 phosphorylation and increased EC surface anti-PECAM-1 mAb-binding activity. These results collectively show that ICAM-1-activated Src and eNOS signaling sequentially induce PECAM-1-mediated PMN transendothelial migration. Both Src and eNOS inhibition may be important therapeutic targets to prevent or limit vascular inflammation.
Collapse
|
264
|
SH3 domains: modules of protein-protein interactions. Biophys Rev 2012; 5:29-39. [PMID: 28510178 DOI: 10.1007/s12551-012-0081-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023] Open
Abstract
Src homology 3 (SH3) domains are involved in the regulation of important cellular pathways, such as cell proliferation, migration and cytoskeletal modifications. Recognition of polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied by crystallography, nuclear magnetic resonance and other methods. High-affinity peptides that bind SH3 domains are used in drug development as candidates for anticancer treatment. This review summarizes the latest achievements in deciphering structural determinants of SH3 function.
Collapse
|
265
|
Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol 2012; 3:155. [PMID: 22701458 PMCID: PMC3372939 DOI: 10.3389/fimmu.2012.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR Prague, Czech Republic
| | | | | |
Collapse
|
266
|
Zhang J, Xiao Z, Lai D, Sun J, He C, Chu Z, Ye H, Chen S, Wang J. miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Br J Cancer 2012; 107:352-9. [PMID: 22677902 PMCID: PMC3394980 DOI: 10.1038/bjc.2012.251] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Phosphatase of regenerating liver-3 (PRL-3) is an oncogene known to promote tumour metastasis, especially in colorectal cancer (CRC). Here, we demonstrate that the miR-21, miR-17 and miR-19a expressions induced by PRL-3 are involved in the proliferation and metastasis of colon cancer. Methods: Microarray analysis and quantitative reverse-transcription polymerase chain reactions (qRT–PCR) were used to investigate the changes in miRNA expression due to the overexpression of PRL-3. Transwell chamber invasion assays, CCK-8 proliferation assays and RNA interference assays were used to explore the effects of PRL-3 on miR-21, miR-17 and miR-19a expression in colon cancer cells. Immunohistochemistry and qRT–PCR were performed in colon cancer tissues to evaluate the expression of PRL-3, signal transducer and activator of transcription 3 (STAT3), miR-21, miR-17 and miR-19a. Results: Our study demonstrated that the overexpression of PRL-3 in colon cancer cells induced the expression of miR-21, miR-17 and miR-19a by activating STAT3. Subsequently, these microRNAs contributed to the increased proliferation and invasiveness of the colon cancer cells. Positive correlations between PRL-3 and these microRNAs were also observed in matched primary colon cancer tissues and metastatic lesions. Conclusion: miR-21, miR-17 and miR-19a induced by PRL-3 contribute to the proliferation and invasion of colon cancer.
Collapse
Affiliation(s)
- J Zhang
- Department of Hepatobiliary Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Brading RL, Abbott WM, Green I, Davies A, McCall EJ. Co-expression of protein phosphatases in insect cells affects phosphorylation status and expression levels of proteins. Protein Expr Purif 2012; 83:217-25. [DOI: 10.1016/j.pep.2012.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 04/03/2012] [Accepted: 04/06/2012] [Indexed: 11/15/2022]
|
268
|
Tatárová Z, Brábek J, Rösel D, Novotný M. SH3 domain tyrosine phosphorylation--sites, role and evolution. PLoS One 2012; 7:e36310. [PMID: 22615764 PMCID: PMC3352900 DOI: 10.1371/journal.pone.0036310] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/01/2012] [Indexed: 11/30/2022] Open
Abstract
Background SH3 domains are eukaryotic protein domains that participate in a plethora of cellular processes including signal transduction, proliferation, and cellular movement. Several studies indicate that tyrosine phosphorylation could play a significant role in the regulation of SH3 domains. Results To explore the incidence of the tyrosine phosphorylation within SH3 domains we queried the PhosphoSite Plus database of phosphorylation sites. Over 100 tyrosine phosphorylations occurring on 20 different SH3 domain positions were identified. The tyrosine corresponding to c–Src Tyr-90 was by far the most frequently identified SH3 domain phosphorylation site. A comparison of sequences around this tyrosine led to delineation of a preferred sequence motif ALYD(Y/F). This motif is present in about 15% of human SH3 domains and is structurally well conserved. We further observed that tyrosine phosphorylation is more abundant than serine or threonine phosphorylation within SH3 domains and other adaptor domains, such as SH2 or WW domains. Tyrosine phosphorylation could represent an important regulatory mechanism of adaptor domains. Conclusions While tyrosine phosphorylation typically promotes signaling protein interactions via SH2 or PTB domains, its role in SH3 domains is the opposite - it blocks or prevents interactions. The regulatory function of tyrosine phosphorylation is most likely achieved by the phosphate moiety and its charge interfering with binding of polyproline helices of SH3 domain interacting partners.
Collapse
Affiliation(s)
- Zuzana Tatárová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
269
|
BTG2 suppresses cancer cell migration through inhibition of Src-FAK signaling by downregulation of reactive oxygen species generation in mitochondria. Clin Exp Metastasis 2012; 29:901-13. [PMID: 22562501 DOI: 10.1007/s10585-012-9479-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
BTG2 is a tumor suppressor gene. It is frequently downregulated in human cancer tissues, and its loss is associated with cancer cell metastasis, suggesting that the suppression of BTG2 plays a critical role in cancer cell migration and invasion. Here, we report that re-expression of BTG2 decreased cell migration and invasion in A549 and PC3 cancer cells. Furthermore, BTG2 expression was correlated with downregulation of focal adhesion kinase (FAK) Tyr576 and Tyr925 residues phosphorylation, while Tyr397 which is the autophosphorylation site was not influenced by BTG2 expression. c-Src phosphorylation which is the upstream of FAK was not influenced, whereas c-Src kinase activity was significantly decreased by BTG2 expression. BTG2 overexpression increased Src reduction state and inhibited reactive oxygen species (ROS) generation by being localized in mitochondria. Mitochondria-target BTG2 also inhibited cell migration via downregulation of Src-FAK signaling. In conclusion, our study reveals that BTG2 negatively regulated cancer cell migration by inhibiting Src activity through downregulation of ROS generation in mitochondria.
Collapse
|
270
|
Lindfors HE, Drijfhout JW, Ubbink M. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy. IUBMB Life 2012; 64:538-44. [PMID: 22550026 DOI: 10.1002/iub.1038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/02/2012] [Indexed: 11/10/2022]
Abstract
The interaction between the tyrosine kinases Src and focal adhesion kinase (FAK) is a key step in signaling processes from focal adhesions. The phosphorylated tyrosine residue 397 in FAK is able to bind the Src SH2 domain. To establish the extent of the FAK binding motif, the binding affinity of the SH2 domain for phosphorylated and unphosphorylated FAK-derived peptides of increasing length was determined and compared with that of the internal Src SH2 binding site. It is shown that the FAK peptides have higher affinity than the internal binding site and that seven negative residues adjacent to the core SH2 binding motif increase the binding constant 30-fold. A rigid spin-label incorporated in the FAK peptides was used to establish on the basis of paramagnetic relaxation enhancement whether the peptide-protein complex is well defined. A large spread of the paramagnetic effects on the surface of the SH2 domain suggests that the peptide-protein complex exhibits dynamics, despite the high affinity of the peptide. The strong electrostatic interaction between the positive side of the SH2 domain and the negative peptide results in a high affinity but may also favor a dynamic interaction.
Collapse
Affiliation(s)
- Hanna E Lindfors
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
271
|
Abstract
Anchorage-independent growth is the most significant hallmark of cell transformation, which has an intimate relevance to cancer. Anchorage or adhesion physically links cells to the extracellular matrix and allows the transmission of external mechanical cues to intracellular signaling machineries. Transformation involves acquiring the ability to proliferate without requiring mechanically initiated signal transduction, known as mechanotransduction. A number of signaling and cytoskeletal molecules are located at focal adhesions. Src and its related proteins, including p130Cas, localize to adhesion sites, where their functions can be mechanically regulated. In addition, the aberrant activation and expression of Src and p130Cas are linked to transformation and malignancy both in vitro and in vivo. These findings shed light on the importance of mechanotransduction in tumorigenesis and the regulation of cancer progression and also provide insights into the mechanical aspects of cancer signaling.
Collapse
Affiliation(s)
- Hiroyuki Matsui
- Laboratory for Mechanical Medicine, Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa, Japan
| | - Ichiro Harada
- Laboratory for Mechanical Medicine, Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa, Japan
| | - Yasuhiro Sawada
- Laboratory for Mechanical Medicine, Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa, Japan
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
272
|
Abstract
Abl kinases are prototypic cytoplasmic tyrosine kinases and are involved in a variety of chromosomal aberrations in different cancers. This causes the expression of Abl fusion proteins, such as Bcr-Abl, that are constitutively activated and drivers of tumorigenesis. Over the past decades, biochemical and functional studies on the molecular mechanisms of Abl regulation have gone hand in hand with progression of our structural understanding of autoinhibited and active Abl conformations. In parallel, Abl oncoproteins have become prime molecular targets for cancer therapy, using adenosine triphosphate (ATP)-competitive kinase inhibitors, such as imatinib. Abl-targeting drugs serve as a paradigm for our understanding of kinase inhibitor action, specificity, and resistance development. In this review article, I will review the molecular mechanisms that are responsible for the regulation of Abl kinase activity and how oncogenic Abl fusions signal. Furthermore, past and ongoing efforts to target Abl oncoproteins using ATP-competitive and allosteric inhibitors, as well as future possibilities using combination therapy, will be discussed.
Collapse
Affiliation(s)
- Oliver Hantschel
- École polytechnique fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| |
Collapse
|
273
|
Rotty JD, Coulombe PA. A wound-induced keratin inhibits Src activity during keratinocyte migration and tissue repair. ACTA ACUST UNITED AC 2012; 197:381-9. [PMID: 22529101 PMCID: PMC3341159 DOI: 10.1083/jcb.201107078] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Keratin 6 negatively regulates Src kinase activity and the migratory potential of skin keratinocytes during wound repair. Injury to the epidermis triggers an elaborate homeostatic response resulting in tissue repair and recovery of the vital barrier function. The type II keratins 6a and 6b (K6a and K6b) are among the genes induced early on in wound-proximal keratinocytes and maintained during reepithelialization. Paradoxically, genetic ablation of K6a and K6b results in enhanced keratinocyte migration. In this paper, we show that this trait results from activation of Src kinase and key Src substrates that promote cell migration. Endogenous Src physically associated with keratin proteins in keratinocytes in a K6-dependent fashion. Purified Src bound K6-containing filaments via its SH2 domain in a novel phosphorylation-independent manner, resulting in kinase inhibition. K6 protein was enriched in the detergent-resistant membrane (DRM), a key site of Src inhibition, and DRMs from K6-null keratinocytes were depleted of both keratin and Src. We conclude that K6 negatively regulates Src kinase activity and the migratory potential of skin keratinocytes during wound repair. Our findings may also be important in related contexts such as cancer.
Collapse
Affiliation(s)
- Jeremy D Rotty
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21202, USA
| | | |
Collapse
|
274
|
Using metadynamics and path collective variables to study ligand binding and induced conformational transitions. Methods Mol Biol 2012; 819:501-13. [PMID: 22183554 DOI: 10.1007/978-1-61779-465-0_29] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Large-scale conformational transitions represent both a challenge and an opportunity for computational drug design. Exploring the conformational space of a druggable target with sufficient detail is computationally demanding. However, if it were possible to fully account for target flexibility, one could exploit this knowledge to rationally design more potent and more selective drug candidates. Here, we discuss how molecular dynamics together with free energy algorithms based on Metadynamics and Path Collective Variables can be used to study both large-scale conformational transitions and ligand binding to flexible targets. We show real-life examples of how these methods have been applied in the case of cyclin-dependent kinases, a family of flexible targets that shows promise in cancer therapy.
Collapse
|
275
|
Endicott JA, Noble MEM, Johnson LN. The structural basis for control of eukaryotic protein kinases. Annu Rev Biochem 2012; 81:587-613. [PMID: 22482904 DOI: 10.1146/annurev-biochem-052410-090317] [Citation(s) in RCA: 322] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic protein kinases are key regulators of cell processes. Comparison of the structures of protein kinase domains, both alone and in complexes, allows generalizations to be made about the mechanisms that regulate protein kinase activation. Protein kinases in the active state adopt a catalytically competent conformation upon binding of both the ATP and peptide substrates that has led to an understanding of the catalytic mechanism. Docking sites remote from the catalytic site are a key feature of several substrate recognition complexes. Mechanisms for kinase activation through phosphorylation, additional domains or subunits, by scaffolding proteins and by kinase dimerization are discussed.
Collapse
Affiliation(s)
- Jane A Endicott
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|
276
|
Lau KHW, Stiffel V, Amoui M. An osteoclastic protein-tyrosine phosphatase regulates the β3-integrin, syk, and shp1 signaling through respective src-dependent phosphorylation in osteoclasts. Am J Physiol Cell Physiol 2012; 302:C1676-86. [PMID: 22460711 DOI: 10.1152/ajpcell.00042.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study utilized the glutathione transferase (GST) pull-down assay to identify novel substrates of an osteoclastic protein-tyrosine phosphatase, PTP-oc. Consistent with the previous findings that the phosphorylated tyr-527 (pY527) of Src is a substrate of PTP-oc, the major protein pulled down with the phosphatase-deficient (PD)-PTP-oc-GST trapping mutant in RAW264.7 cells was Src. The GST-PD-PTP-oc also pulled down pY-Syk and pY-β(3)-integrin, but not after PP2 pretreatment. However, PTP-oc transgenic osteoclasts or PTP-oc-overexpressing RAW264.7 cells had elevated, and not reduced, levels of pY525/526-Syk and pY759-β(3) integrin, and the PTP-oc siRNA treatment drastically reduced levels of pY525/526 Syk and pY759-β(3)-integrin in RAW264.7 cells. These findings are incompatible with the premise that they are substrates of PTP-oc. The PTP-oc-dependent increases in pY525/526-Syk and pY759-β(3)-integrin levels were completely blocked by PP2, indicating that these effects are secondary to PTP-oc-mediated activation of the Src protein-tyrosine kinase (PTK). Overexpression of PTP-oc increased, and siRNA-mediated suppression of PTP-oc reduced, pY160-Vav1, pY173-Vav3, and pY783-PLCγ levels, and Rac1 activation, which are downstream mediators of the ITAM/Syk signaling. Overexpression of PTP-oc also increased, and PTP-oc siRNA treatment decreased, the pY-Shp1 levels, which were blocked by PP2. Since Shp1 is a negative regulator of osteoclast activity and is a key mediator of the ITIM signaling, these findings suggest that PTP-oc is an upstream suppressor of the ITIM/Shp1 signaling through PTP-oc-induced Src-dependent Shp1 phosphorylation. In summary, PTP-oc plays a central regulatory role in the concerted regulation of the β(3)-integrin, the ITAM/Syk, and the ITIM/Shp1 signaling indirectly through activation of Src PTK.
Collapse
|
277
|
Chan PC, Chen HC. p120RasGAP-mediated activation of c-Src is critical for oncogenic Ras to induce tumor invasion. Cancer Res 2012; 72:2405-15. [PMID: 22411953 DOI: 10.1158/0008-5472.can-11-3078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ras genes are the most common targets for somatic gain-of-function mutations in human cancers. In this study, we found a high incidence of correlation between Ras oncogenic mutations and c-Src activation in human cancer cells. We showed that oncogenic Ras induces c-Src activation mainly on the Golgi complex and endoplasmic reticulum. Moreover, we identified p120RasGAP as an effector for oncogenic Ras to activate c-Src. The recruitment of p120RasGAP to the Golgi complex by oncogenic Ras facilitated its interaction with c-Src, thereby leading to c-Src activation, and this p120RasGAP-mediated activation of c-Src was important for tumor invasion induced by oncogenic Ras. Collectively, our findings unveil a relationship between oncogenic Ras, p120RasGAP, and c-Src, suggesting a critical role for c-Src in cancers evoked by oncogenic mutations in Ras genes.
Collapse
Affiliation(s)
- Po-Chao Chan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | | |
Collapse
|
278
|
Okamura T, Kikuchi T, Nodaira M, Odaka K, Fukushi K, Irie T. Effects of halogenation on tyrosine phosphorylation and peptide binding to the SRC homology 2 domain of lymphocyte-specific protein tyrosine kinase. Biol Pharm Bull 2012; 35:433-7. [PMID: 22382333 DOI: 10.1248/bpb.35.433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of tyrosine residues by protein tyrosine kinases (PTK) and phosphotyrosine/Src homology 2 (SH2) domain interactions are crucial not only for signal transduction but also for regulation of PTK activity. Tyrosine residues also receive nitration and halogenation under oxidative conditions. It has been reported that nitration of tyrosine residue caused peptides to be a poor substrate for PTK and that nitrotyrosine residues could bind to SH2 domains as a phosphotyrosine mimic to activate Src family kinase. However, the effect of halogenation on tyrosine phosphorylation or SH2 domain binding is not well understood. We examined the phosphorylation of model peptides containing 3-halotyrosine or 3-nitrotyrosine using typical receptor tyrosine kinase, epidermal growth factor receptor (EGFR), and nonreceptor tyrosine kinase, lymphocyte-specific protein tyrosine kinase (Lck). The EGFR- and Lck-mediated phosphorylation was markedly inhibited by tyrosine halogenation. Iodination showed the strongest inhibition of the phosphorylation among four types of halogenation, and its inhibitory effect was stronger than that of nitration. We also examined the effect of iodination and nitration of tyrosine residues on binding to the SH2 domain of Lck, using a model peptide containing the phosphoTyr-Glu-Glu-Ile motif, which has a high affinity for the SH2 domain. The relative affinities of the modified peptides whose phosphotyrosine was substituted with unphosphorylated tyrosine, 3-nitrotyrosine, and 3-iodotyrosine, and of the model peptide were 0.024, 0.26, 1, and 16, respectively. These results suggest that tyrosine iodination may have an effect on the phosphorylation or binding to the SH2 domain similar to nitration. Tyrosine iodination possibly modulates signal transduction, with the potential impairment of cell function.
Collapse
Affiliation(s)
- Toshimitsu Okamura
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
279
|
Valle-Casuso JC, González-Sánchez A, Medina JM, Tabernero A. HIF-1 and c-Src mediate increased glucose uptake induced by endothelin-1 and connexin43 in astrocytes. PLoS One 2012; 7:e32448. [PMID: 22384254 PMCID: PMC3285680 DOI: 10.1371/journal.pone.0032448] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/31/2012] [Indexed: 11/19/2022] Open
Abstract
In previous work we showed that endothelin-1 (ET-1) increases the rate of glucose uptake in astrocytes, an important aspect of brain function since glucose taken up by astrocytes is used to supply the neurons with metabolic substrates. In the present work we sought to identify the signalling pathway responsible for this process in primary culture of rat astrocytes. Our results show that ET-1 promoted an increase in the transcription factor hypoxia-inducible factor-1α (HIF-1α) in astrocytes, as shown in other cell types. Furthermore, HIF-1α-siRNA experiments revealed that HIF-1α participates in the effects of ET-1 on glucose uptake and on the expression of GLUT-1, GLUT-3, type I and type II hexokinase. We previously reported that these effects of ET-1 are mediated by connexin43 (Cx43), the major gap junction protein in astrocytes. Indeed, our results show that silencing Cx43 increased HIF-1α and reduced the effect of ET-1 on HIF-1α, indicating that the effect of ET-1 on HIF-1α is mediated by Cx43. The activity of oncogenes such as c-Src can up-regulate HIF-1α. Since Cx43 interacts with c-Src, we investigated the participation of c-Src in this pathway. Interestingly, both the treatment with ET-1 and with Cx43-siRNA increased c-Src activity. In addition, when c-Src activity was inhibited neither ET-1 nor silencing Cx43 were able to up-regulate HIF-1α. In conclusion, our results suggest that ET-1 by down-regulating Cx43 activates c-Src, which in turn increases HIF-1α leading to the up-regulation of the machinery required to take up glucose in astrocytes. Cx43 expression can be reduced in response not only to ET-1 but also to various physiological and pathological stimuli. This study contributes to the identification of the signalling pathway evoked after Cx43 down-regulation that results in increased glucose uptake in astrocytes. Interestingly, this is the first evidence linking Cx43 to HIF-1, which is a master regulator of glucose metabolism.
Collapse
Affiliation(s)
| | | | | | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
280
|
Georghiou G, Kleiner RE, Pulkoski-Gross M, Liu DR, Seeliger MA. Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles. Nat Chem Biol 2012; 8:366-74. [PMID: 22344177 PMCID: PMC3307835 DOI: 10.1038/nchembio.792] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/01/2011] [Indexed: 01/21/2023]
Abstract
Protein kinases are attractive therapeutic targets, but their high sequence and structural conservation complicates the development of specific inhibitors. We recently discovered from a DNA-templated macrocycle library inhibitors with unusually high selectivity among Src-family kinases. Starting from these compounds, we developed and characterized in molecular detail potent macrocyclic inhibitors of Src kinase and its cancer-associated gatekeeper mutant. We solved two co-crystal structures of macrocycles bound to Src kinase. These structures reveal the molecular basis of the combined ATP- and substrate peptide-competitive inhibitory mechanism and the remarkable kinase specificity of the compounds. The most potent compounds inhibit Src activity in cultured mammalian cells. Our work establishes that macrocycles can inhibit protein kinases through a bi-substrate competitive mechanism with high potency and exceptional specificity, reveals the precise molecular basis for their desirable properties, and provides new insights into the development of Src-specific inhibitors with potential therapeutic relevance.
Collapse
Affiliation(s)
- George Georghiou
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | | | | | | | | |
Collapse
|
281
|
Fabbro D, Cowan-Jacob SW, Möbitz H, Martiny-Baron G. Targeting cancer with small-molecular-weight kinase inhibitors. Methods Mol Biol 2012; 795:1-34. [PMID: 21960212 DOI: 10.1007/978-1-61779-337-0_1] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein and lipid kinases fulfill essential roles in many signaling pathways that regulate normal cell functions. Deregulation of these kinase activities lead to a variety of pathologies ranging from cancer to inflammatory diseases, diabetes, infectious diseases, cardiovascular disorders, cell growth and survival. 518 protein kinases and about 20 lipid-modifying kinases are encoded by the human genome, and a much larger proportion of additional kinases are present in parasite, bacterial, fungal, and viral genomes that are susceptible to exploitation as drug targets. Since many human diseases result from overactivation of protein and lipid kinases due to mutations and/or overexpression, this enzyme class represents an important target for the pharmaceutical industry. Approximately one third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases.The kinase inhibitors that have been launched, thus far, are mainly in oncology indications and are directed against a handful of protein and lipid kinases. With one exception, all of these registered kinase inhibitors are directed toward the ATP-site and display different selectivities, potencies, and pharmacokinetic properties. At present, about 150 kinase-targeted drugs are in clinical development and many more in various stages of preclinical development. Kinase inhibitor drugs that are in clinical trials target all stages of signal transduction from the receptor protein tyrosine kinases that initiate intracellular signaling, through second-messenger-dependent lipid and protein kinases, and protein kinases that regulate the cell cycle.This review provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.
Collapse
Affiliation(s)
- Doriano Fabbro
- Novartis Institutes for Biomedical Research, Expertise Platform Kinases, Basel, Switzerland.
| | | | | | | |
Collapse
|
282
|
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium into the basal and the apical (adluminal) compartments. Meiosis I and II, spermiogenesis, and spermiation all take place in a specialized microenvironment behind the BTB in the apical compartment, but spermatogonial renewal and differentiation and cell cycle progression up to the preleptotene spermatocyte stage take place outside of the BTB in the basal compartment of the epithelium. However, the BTB is not a static ultrastructure. Instead, it undergoes extensive restructuring during the seminiferous epithelial cycle of spermatogenesis at stage VIII to allow the transit of preleptotene spermatocytes at the BTB. Yet the immunological barrier conferred by the BTB cannot be compromised, even transiently, during the epithelial cycle to avoid the production of antibodies against meiotic and postmeiotic germ cells. Studies have demonstrated that some unlikely partners, namely adhesion protein complexes (e.g., occludin-ZO-1, N-cadherin-β-catenin, claudin-5-ZO-1), steroids (e.g., testosterone, estradiol-17β), nonreceptor protein kinases (e.g., focal adhesion kinase, c-Src, c-Yes), polarity proteins (e.g., PAR6, Cdc42, 14-3-3), endocytic vesicle proteins (e.g., clathrin, caveolin, dynamin 2), and actin regulatory proteins (e.g., Eps8, Arp2/3 complex), are working together, apparently under the overall influence of cytokines (e.g., transforming growth factor-β3, tumor necrosis factor-α, interleukin-1α). In short, a "new" BTB is created behind spermatocytes in transit while the "old" BTB above transiting cells undergoes timely degeneration, so that the immunological barrier can be maintained while spermatocytes are traversing the BTB. We also discuss recent findings regarding the molecular mechanisms by which environmental toxicants (e.g., cadmium, bisphenol A) induce testicular injury via their initial actions at the BTB to elicit subsequent damage to germ-cell adhesion, thereby leading to germ-cell loss, reduced sperm count, and male infertility or subfertility. Moreover, we also critically evaluate findings in the field regarding studies on drug transporters in the testis and discuss how these influx and efflux pumps regulate the entry of potential nonhormonal male contraceptives to the apical compartment to exert their effects. Collectively, these findings illustrate multiple potential targets are present at the BTB for innovative contraceptive development and for better delivery of drugs to alleviate toxicant-induced reproductive dysfunction in men.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
283
|
Cyclin-dependent kinases: bridging their structure and function through computations. Future Med Chem 2011; 3:1551-9. [PMID: 21882947 DOI: 10.4155/fmc.11.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are one of the most promising target families for drug discovery for several diseases, such as cancer and neurodegenerative disorders. Over the years, structural insights on CDKs have demonstrated high protein plasticity, with several cases where two or more structures of the same protein adopt different conformations. This has generated a great deal of interest in understanding the relationship between CDK structure and function. Here, we highlight how computer simulations have recently contributed in characterizing some key rare and transient events in CDKs, such as the reaction transition state and activation loop movement. Although not yet fully defined, we can now portray the enzymatic mechanism and plasticity of CDKs at high spatial and temporal resolution. These theoretical studies bridge with experiments and highlight structural determinants that could help in designing specific CDK inhibitors.
Collapse
|
284
|
Huang R, Fang P, Kay BK. Isolation of monobodies that bind specifically to the SH3 domain of the Fyn tyrosine protein kinase. N Biotechnol 2011; 29:526-33. [PMID: 22155429 DOI: 10.1016/j.nbt.2011.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/24/2011] [Accepted: 11/27/2011] [Indexed: 11/15/2022]
Abstract
Fyn is a nonreceptor protein tyrosine kinase that belongs to a highly conserved kinase family, Src family kinases. Fyn plays an important role in inflammatory processes and neuronal functions. To generate a synthetic affinity reagent that can be used to probe Fyn, a phage-display library of fibronectin type III monobodies was affinity selected with the Src Homology 3 (SH3) domain of Fyn and three binders were isolated. One of the three binders, G9, is specific in binding to the SH3 domain of Fyn, but not to the other members of the Src family (i.e. Blk, Fgr, Hck, Lck, Lyn, Src and Yes), even though they share 51-81% amino acid identity. The other two bind principally to the Fyn SH3 domain, with some cross-reactivity to the Yes SH3 domain. The G9 binder has a dissociation constant of 166±6nM, as measured by isothermal titration calorimetry, and binds only to the Fyn SH3 domain out of 150 human SH3 domains examined in an array. Interestingly, although the G9 monobody lacks proline in its randomized BC and FG loops, it binds at the same site on the SH3 domain as proline-rich ligands, as revealed by competition assays. The G9 monobody, identified in this study, may be used as a highly selective probe for detecting and purifying cellular Fyn kinase.
Collapse
Affiliation(s)
- Renhua Huang
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor St., 3240 SES - MC 066, Chicago, IL 60607-7060, USA
| | | | | |
Collapse
|
285
|
Groveman BR, Feng S, Fang XQ, Pflueger M, Lin SX, Bienkiewicz EA, Yu X. The regulation of N-methyl-D-aspartate receptors by Src kinase. FEBS J 2011; 279:20-8. [PMID: 22060915 DOI: 10.1111/j.1742-4658.2011.08413.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Src family kinases (SFKs) play critical roles in the regulation of many cellular functions by growth factors, G-protein-coupled receptors and ligand-gated ion channels. Recent data have shown that SFKs serve as a convergent point of multiple signaling pathways regulating N-methyl-d-aspartate (NMDA) receptors in the central nervous system. Multiple SFK molecules, such as Src and Fyn, closely associate with their substrate, NMDA receptors, via indirect and direct binding mechanisms. The NMDA receptor is associated with an SFK signaling complex consisting of SFKs; the SFK-activating phosphatase, protein tyrosine phosphatase α; and the SFK-inactivating kinase, C-terminal Src kinase. Early studies have demonstrated that intramolecular interactions with the SH2 or SH3 domain lock SFKs in a closed conformation. Disruption of the interdomain interactions can induce the activation of SFKs with multiple signaling pathways involved in regulation of this process. The enzyme activity of SFKs appears 'graded', exhibiting different levels coinciding with activation states. It has also been proposed that the SH2 and SH3 domains may stimulate catalytic activity of protein tyrosine kinases, such as Abl. Recently, it has been found that the enzyme activity of neuronal Src protein is associated with its stability, and that the SH2 and SH3 domain interactions may act not only to constrain the activation of neuronal Src, but also to regulate the enzyme activity of active neuronal Src. Collectively, these findings demonstrate novel mechanisms underlying the regulation of SFKs.
Collapse
Affiliation(s)
- Bradley R Groveman
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | | | | | | | | | | | | |
Collapse
|
286
|
Bhandary YP, Shetty SK, Marudamuthu AS, Gyetko MR, Idell S, Gharaee-Kermani M, Shetty RS, Starcher BC, Shetty S. Regulation of alveolar epithelial cell apoptosis and pulmonary fibrosis by coordinate expression of components of the fibrinolytic system. Am J Physiol Lung Cell Mol Physiol 2011; 302:L463-73. [PMID: 22140072 DOI: 10.1152/ajplung.00099.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar type II (ATII) cell apoptosis and depressed fibrinolysis that promotes alveolar fibrin deposition are associated with acute lung injury (ALI) and the development of pulmonary fibrosis (PF). We therefore sought to determine whether p53-mediated inhibition of urokinase-type plasminogen activator (uPA) and induction of plasminogen activator inhibitor-1 (PAI-1) contribute to ATII cell apoptosis that precedes the development of PF. We also sought to determine whether caveolin-1 scaffolding domain peptide (CSP) reverses these changes to protect against ALI and PF. Tissues as well as isolated ATII cells from the lungs of wild-type (WT) mice with BLM injury show increased apoptosis, p53, and PAI-1, and reciprocal suppression of uPA and uPA receptor (uPAR) protein expression. Treatment of WT mice with CSP reverses these effects and protects ATII cells against bleomycin (BLM)-induced apoptosis whereas CSP fails to attenuate ATII cell apoptosis or decrease p53 or PAI-1 in uPA-deficient mice. These mice demonstrate more severe PF. Thus p53 is increased and inhibits expression of uPA and uPAR while increasing PAI-1, changes that promote ATII cell apoptosis in mice with BLM-induced ALI. We show that CSP, an intervention targeting this pathway, protects the lung epithelium from apoptosis and prevents PF in BLM-induced lung injury via uPA-mediated inhibition of p53 and PAI-1.
Collapse
Affiliation(s)
- Yashodhar P Bhandary
- Texas Lung Injury Institute, Department of Medicine, The University of Texas Health Science Center, Tyler, Texas 75708, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Maa MC, Leu TH. Activation of Toll-like receptors induces macrophage migration via the iNOS/Src/FAK pathway. Biomedicine (Taipei) 2011. [DOI: 10.1016/j.biomed.2011.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
288
|
Strong TC, Kaur G, Thomas JH. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64. PLoS One 2011; 6:e28100. [PMID: 22132220 PMCID: PMC3223231 DOI: 10.1371/journal.pone.0028100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/01/2011] [Indexed: 11/18/2022] Open
Abstract
The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.
Collapse
Affiliation(s)
- Taylor C. Strong
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jeffrey H. Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
289
|
Yoo SK, Starnes TW, Deng Q, Huttenlocher A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 2011; 480:109-12. [PMID: 22101434 PMCID: PMC3228893 DOI: 10.1038/nature10632] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/14/2011] [Indexed: 12/22/2022]
Abstract
Tissue wounding induces the rapid recruitment of leukocytes. Wounds and tumours--a type of 'unhealed wound'--generate hydrogen peroxide (H(2)O(2)) through an NADPH oxidase (NOX). This extracellular H(2)O(2) mediates recruitment of leukocytes, particularly the first responders of innate immunity, neutrophils, to injured tissue. However, the sensor that neutrophils use to detect the redox state at wounds is unknown. Here we identify the Src family kinase (SFK) Lyn as a redox sensor that mediates initial neutrophil recruitment to wounds in zebrafish larvae. Lyn activation in neutrophils is dependent on wound-derived H(2)O(2) after tissue injury, and inhibition of Lyn attenuates neutrophil wound recruitment. Inhibition of SFKs also disrupted H(2)O(2)-mediated chemotaxis of primary human neutrophils. In vitro analysis identified a single cysteine residue, C466, as being responsible for direct oxidation-mediated activation of Lyn. Furthermore, transgenic-tissue-specific reconstitution with wild-type Lyn and a cysteine mutant revealed that Lyn C466 is important for the neutrophil wound response and downstream signalling in vivo. This is the first identification, to our knowledge, of a physiological redox sensor that mediates leukocyte wound attraction in multicellular organisms.
Collapse
Affiliation(s)
- Sa Kan Yoo
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
290
|
Kharas MG, Daley GQ. From Hen House to Bedside: Tracing Hanafusa's Legacy from Avian Leukemia Viruses to SRC to ABL and Beyond. Genes Cancer 2011; 1:1164-9. [PMID: 21779439 DOI: 10.1177/1947601911407327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The discovery of the Src oncogene was the first step on a long journey toward improved cancer chemotherapy. In this review, we explore Src and BCR-ABL, signal transduction, and recent advances in oncogene addiction and celebrate Hidesaboro Hanafusa and the many researchers who ushered in the age of target-directed therapy against tyrosine kinase oncoproteins.
Collapse
Affiliation(s)
- Michael G Kharas
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
291
|
Sutto L, Mereu I, Gervasio FL. A Hybrid All-Atom Structure-Based Model for Protein Folding and Large Scale Conformational Transitions. J Chem Theory Comput 2011; 7:4208-17. [DOI: 10.1021/ct200547m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ludovico Sutto
- Spanish National Cancer Research Center (CNIO), Structural Biology and Biocomputing Programme, Melchor Fernandez Almagro, 3, E-28029 Madrid, Spain
| | - Ilaria Mereu
- Spanish National Cancer Research Center (CNIO), Structural Biology and Biocomputing Programme, Melchor Fernandez Almagro, 3, E-28029 Madrid, Spain
| | - Francesco Luigi Gervasio
- Spanish National Cancer Research Center (CNIO), Structural Biology and Biocomputing Programme, Melchor Fernandez Almagro, 3, E-28029 Madrid, Spain
| |
Collapse
|
292
|
Wickstrom L, Gallicchio E, Levy RM. The linear interaction energy method for the prediction of protein stability changes upon mutation. Proteins 2011; 80:111-25. [PMID: 22038697 DOI: 10.1002/prot.23168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/28/2011] [Accepted: 08/06/2011] [Indexed: 12/25/2022]
Abstract
The coupling of protein energetics and sequence changes is a critical aspect of computational protein design, as well as for the understanding of protein evolution, human disease, and drug resistance. To study the molecular basis for this coupling, computational tools must be sufficiently accurate and computationally inexpensive enough to handle large amounts of sequence data. We have developed a computational approach based on the linear interaction energy (LIE) approximation to predict the changes in the free-energy of the native state induced by a single mutation. This approach was applied to a set of 822 mutations in 10 proteins which resulted in an average unsigned error of 0.82 kcal/mol and a correlation coefficient of 0.72 between the calculated and experimental ΔΔG values. The method is able to accurately identify destabilizing hot spot mutations; however, it has difficulty in distinguishing between stabilizing and destabilizing mutations because of the distribution of stability changes for the set of mutations used to parameterize the model. In addition, the model also performs quite well in initial tests on a small set of double mutations. On the basis of these promising results, we can begin to examine the relationship between protein stability and fitness, correlated mutations, and drug resistance.
Collapse
Affiliation(s)
- Lauren Wickstrom
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
293
|
Fujimoto S. Molecular mechanism of impaired metabolism-secretion coupling in diabetic pancreatic β cells. Diabetol Int 2011. [DOI: 10.1007/s13340-011-0040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
294
|
Place AT, Chen Z, Bakhshi FR, Liu G, O'Bryan JP, Minshall RD. Cooperative role of caveolin-1 and C-terminal Src kinase binding protein in C-terminal Src kinase-mediated negative regulation of c-Src. Mol Pharmacol 2011; 80:665-72. [PMID: 21778303 PMCID: PMC3187524 DOI: 10.1124/mol.111.073957] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/21/2011] [Indexed: 01/19/2023] Open
Abstract
In the present study, we assessed the cooperative roles of C-terminal Src kinase (Csk) binding protein (Cbp) and Caveolin-1 (Cav-1) in the mechanism of Src family tyrosine kinase (SFK) inhibition by Csk. SFKs are inactivated by phosphorylation of their C-terminal tyrosine by Csk. Whereas SFKs are membrane-associated, Csk is a cytoplasmic protein and therefore requires membrane adaptors such as Cbp or Cav-1 for recruitment to the plasma membrane to mediate SFK inhibition. To determine the specific role of Cav-1 and Cbp in SFK inhibition, we measured c-Src activity in the absence of each membrane adaptor. It is noteworthy that in lungs and fibroblasts from Cav-1(-/-) mice, we observed increased expression of Cbp compared with wild-type (WT) controls. However, both c-Src activity and Csk localization at the membrane were similar between Cav-1(-/-) fibroblasts and WT cells. Likewise, Cbp depletion by small interfering RNA (siRNA) treatment of WT cells had no effect on basal c-Src activity, but it increased the phosphorylation state of Cav-1. Immunoprecipitation then confirmed increased association of Csk with phosphomimicking Cav-1. Knockdown of Cbp by siRNA in Cav-1(-/-) cells revealed increased basal c-Src activity, and re-expression of WT Cav-1 in the same cells reduced basal c-Src activity. Taken together, these results indicate that Cav-1 and Cbp cooperatively regulate c-Src activity by recruiting Csk to the membrane where it phosphorylates c-Src inhibitory tyrosine 529. Furthermore, when either Cav-1 or Cbp expression is reduced or absent, there is a compensatory increase in the phosphorylation state or expression level of the other membrane-associated Csk adaptor to maintain SFK inhibition.
Collapse
Affiliation(s)
- Aaron T Place
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
295
|
Pan Q, Qiao F, Gao C, Norman B, Optican L, Zelenka PS. Cdk5 targets active Src for ubiquitin-dependent degradation by phosphorylating Src(S75). Cell Mol Life Sci 2011; 68:3425-36. [PMID: 21442427 PMCID: PMC3167940 DOI: 10.1007/s00018-011-0638-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/08/2011] [Accepted: 02/08/2011] [Indexed: 11/30/2022]
Abstract
The non-receptor tyrosine kinase Src is a critical regulator of cytoskeletal contraction, cell adhesion, and migration. In normal cells, Src activity is stringently controlled by Csk-dependent phosphorylation of Src(Y530), and by Cullin-5-dependent ubiquitinylation, which affects active Src(pY419) exclusively, leading to its degradation by the proteosome. Previous work has shown that Src activity is also limited by Cdk5, a proline-directed kinase, which has been shown to phosphorylate Src(S75). Here we show that this phosphorylation promotes the ubiquitin-dependent degradation of Src, thus restricting the availability of active Src. We demonstrate that Src(S75) phosphorylation occurs in vivo in epithelial cells, and like ubiquitinylation, is associated only with active Src. Preventing Cdk5-dependent phosphorylation of Src(S75), by site-specific mutation of S75 or by Cdk5 inhibition or suppression, increases Src(Y419) phosphorylation and kinase activity, resulting in Src-dependent cytoskeletal changes. In transfected cells, ubiquitinylation of Src(S75A) is about 35% that of wild-type Src-V5, and its half-life is approximately 2.5-fold greater. Cdk5 suppression leads to a comparable decrease in the ubiquitinylation of endogenous Src and a similar increase in Src stability. Together, these findings demonstrate that Cdk5-dependent phosphorylation of Src(S75) is a physiologically significant mechanism of regulating intracellular Src activity.
Collapse
Affiliation(s)
- Q. Pan
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, 5635 Fishers Lane, Room 1127, Bethesda, MD 20892 USA
| | - F. Qiao
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, 5635 Fishers Lane, Room 1127, Bethesda, MD 20892 USA
| | - C. Gao
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, 5635 Fishers Lane, Room 1127, Bethesda, MD 20892 USA
| | - B. Norman
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, 5635 Fishers Lane, Room 1127, Bethesda, MD 20892 USA
| | - L. Optican
- Laboratory of Sensorimotor Research, NEI, NIH, 49 Convent Drive, Room 2A50, Bethesda, MD 20892 USA
| | - Peggy S. Zelenka
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, 5635 Fishers Lane, Room 1127, Bethesda, MD 20892 USA
| |
Collapse
|
296
|
Fujimoto S, Mukai E, Inagaki N. Role of endogenous ROS production in impaired metabolism-secretion coupling of diabetic pancreatic β cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:304-10. [PMID: 21839765 DOI: 10.1016/j.pbiomolbio.2011.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/30/2011] [Accepted: 07/31/2011] [Indexed: 12/25/2022]
Abstract
One of the characteristics of type 2 diabetes is that the insulin secretory response of β cells is selectively impaired to glucose. In the Goto-Kakizaki (GK) rat, a genetic model of type 2 diabetes mellitus, glucose-induced insulin secretion is selectively impaired due to deficient ATP production derived from impaired glucose metabolism. In addition, islets in GK rat and human type 2 diabetes are oxidatively stressed. In this issue, role of endogenous reactive oxygen species (ROS) production in impaired metabolism-secretion coupling of diabetic pancreatic β cells is reviewed. In β cells, ROS is endogenously produced by activation of Src, a non-receptor tyrosine kinase. Src inhibitors restore the impaired insulin release and impaired ATP elevation by reduction in ROS production in diabetic islets. Src is endogenously activated in diabetic islets, since the level of Src pY416 in GK islets is higher than that in control islets. In addition, exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, decreases Src pY416 and glucose-induced ROS production and ameliorates impaired ATP production dependently on Epac in GK islets. These results indicate that GLP-1 signaling regulates endogenous ROS production due to Src activation and that incretin has unique therapeutic effects on impaired glucose metabolism in diabetic β cells.
Collapse
Affiliation(s)
- Shimpei Fujimoto
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
297
|
Xu M, Yu L, Wan B, Yu L, Huang Q. Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors. PLoS One 2011; 6:e22644. [PMID: 21818358 PMCID: PMC3144914 DOI: 10.1371/journal.pone.0022644] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 07/03/2011] [Indexed: 11/19/2022] Open
Abstract
Protein kinases have been found to possess two characteristic conformations in their activation-loops: the active DFG-in conformation and the inactive DFG-out conformation. Recently, it has been very interesting to develop type-II inhibitors which target the DFG-out conformation and are more specific than the type-I inhibitors binding to the active DFG-in conformation. However, solving crystal structures of kinases with the DFG-out conformation remains a challenge, and this seriously hampers the application of the structure-based approaches in development of novel type-II inhibitors. To overcome this limitation, here we present a computational approach for predicting the DFG-out inactive conformation using the DFG-in active structures, and develop related conformational selection protocols for the uses of the predicted DFG-out models in the binding pose prediction and virtual screening of type-II ligands. With the DFG-out models, we predicted the binding poses for known type-II inhibitors, and the results were found in good agreement with the X-ray crystal structures. We also tested the abilities of the DFG-out models to recognize their specific type-II inhibitors by screening a database of small molecules. The AUC (area under curve) results indicated that the predicted DFG-out models were selective toward their specific type-II inhibitors. Therefore, the computational approach and protocols presented in this study are very promising for the structure-based design and screening of novel type-II kinase inhibitors.
Collapse
Affiliation(s)
- Min Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Wan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
298
|
Nakashima I, Kawamoto Y, Takeda K, Kato M. Control of genetically prescribed protein tyrosine kinase activities by environment-linked redox reactions. Enzyme Res 2011; 2011:896567. [PMID: 21755044 PMCID: PMC3132499 DOI: 10.4061/2011/896567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/18/2011] [Accepted: 04/28/2011] [Indexed: 11/21/2022] Open
Abstract
Recent observations on environment-linked control of genetically prescribed signaling systems for either cell activation or cell death have been reviewed with a focus on the regulation of activities of protein tyrosine kinases (PTKs). The environment-linked redox reactions seem to primarily affect cell surface receptors and cell membrane lipid rafts, and they induce generation of reactive oxygen species (ROS) in cells. ROS thus generated might upregulate the catalytic activities of PTKs through inactivating protein tyrosine phosphatases that dephosphorylate and inactivate autophosphorylated PTKs. Recent evidence has, however, demonstrated that ROS could also directly oxidize SH groups of genetically conserved specific cysteines on PTKs, sometimes producing disulfide-bonded dimers of PTK proteins, either for upregulation or downregulation of their catalytic activities. The basic role of the redox reaction/covalent bond-mediated modification of protein tertiary structure-linked noncovalent bond-oriented signaling systems in living organisms is discussed.
Collapse
Affiliation(s)
- Izumi Nakashima
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| | | | | | | |
Collapse
|
299
|
Martić S, Labib M, Freeman D, Kraatz PHB. Probing the role of the linker in ferrocene-ATP conjugates: monitoring protein kinase catalyzed phosphorylations electrochemically. Chemistry 2011; 17:6744-52. [PMID: 21542035 DOI: 10.1002/chem.201003535] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Indexed: 11/08/2022]
Abstract
The synthesis and electrochemical properties of ferrocene conjugates are presented for the purpose of investigating adenosine 5'-[γ-ferrocenoylalkyl] triphosphate (1 a-4 a, ferrocene (Fc)-ATP) as co-substrates for phosphorylation reactions. Compounds 1 a-4 a were synthesized, purified by HPLC, and characterized by NMR spectroscopy and mass spectrometry. In solution, all Fc-ATP bioconjugates exhibit a reversible one-electron redox process with a half-wave potential (E(1/2)) in the 390-430 mV range, peak separations (ΔE(p)) in the 40-70 mV range, and the peak current ratio (i(pa)/i(pc)) near unity. The peptide-modified surface Glu-Gly-Ile-Tyr-Asp-Val-Pro was used to study the sarcoma-related protein (Src) kinase activity by employing the Fc-ATP bioconjugates as co-substrates. Subsequent kinase-catalyzed transfer of the γ-Fc-phosphate group to the tyrosine residues of the surface-bound peptides was characterized by a formal potential (E°) ≈390 mV (vs. Ag/AgCl). The Fc-coverage, estimated by time-of-flight secondary-ion mass spectrometry (TOF-SIMS) and cyclic voltammetry (CV), suggested validity of Fc-ATP conjugates as kinase co-substrates. Depending on the length of the alkyl spacer of the Fc-ATP conjugate, different current densities were obtained, pointing to a direct correlation between the two. Molecular modeling revealed that the structural constraint imposed by the short alkyl spacer (1 a) causes a steric congestion and negatively affects the outcome of phosphorylation reaction. An optimal analytical response was obtained with the Fc-ATP conjugates with linker lengths longer than six CH(2) groups.
Collapse
Affiliation(s)
- Sanela Martić
- Chemistry Department, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
300
|
Liang H, Liu T, Chen F, Liu Z, Liu S. A full-length 3D structure for MAPK/ERK kinase 2 (MEK2). SCIENCE CHINA-LIFE SCIENCES 2011; 54:336-41. [PMID: 21509657 DOI: 10.1007/s11427-011-4156-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/30/2010] [Indexed: 11/27/2022]
Abstract
As a pivotal signal pathway, the Ras/Raf/MEK/ERK cascade can be activated by multiple extracellular stimuli and can transmit signals to diverse substrates. It remains to be elucidated how so many different signals can be variously transferred by only two MEK molecules (MEK1 and MEK2). Because of technological limitations the complete structures of the MEKs are still unavailable. Here, we report the full-length structure of MEK2 obtained by homology modeling and molecular dynamics simulations. The simulations show that the N-terminal part of MEK2 is highly flexible and this flexibility may enable MEK2 to interact with ERKs and other ligands in diverse manners that correspond to various upstream signals and downstream consequences.
Collapse
Affiliation(s)
- Hao Liang
- State Key Laboratory of Proteomics, Department of Neurobiology, Institute of Basic Medical Sciences, Beijing 100850, China
| | | | | | | | | |
Collapse
|