251
|
Hatakeyama H, Takahashi N, Kishimoto T, Nemoto T, Kasai H. Two cAMP-dependent pathways differentially regulate exocytosis of large dense-core and small vesicles in mouse beta-cells. J Physiol 2007; 582:1087-98. [PMID: 17510178 PMCID: PMC2075257 DOI: 10.1113/jphysiol.2007.135228] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It has been reported that cAMP regulates Ca(2+)-dependent exocytosis via protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac) in neurons and secretory cells. It has, however, never been clarified how regulation of Ca(2+)-dependent exocytosis by cAMP differs depending on the involvement of PKA and Epac, and depending on two types of secretory vesicles, large dense-core vesicles (LVs) and small vesicles (SVs). In this study, we have directly visualized Ca(2+)-dependent exocytosis of both LVs and SVs with two-photon imaging in mouse pancreatic beta-cells. We found that marked exocytosis of SVs occurred with a time constant of 0.3 s, more than three times as fast as LV exocytosis, on stimulation by photolysis of a caged-Ca(2+) compound. The diameter of SVs was identified as approximately 80 nm with two-photon imaging, which was confirmed by electron-microscopic investigation with photoconversion of diaminobenzidine. Calcium-dependent exocytosis of SVs was potentiated by the cAMP-elevating agent forskolin, and the potentiating effect was unaffected by antagonists of PKA and was mimicked by the Epac-selective agonist 8-(4-chlorophenylthio)-2'-O-methyl cAMP, unlike that on LVs. Moreover, high-glucose stimulation induced massive exocytosis of SVs in addition to LVs, and photolysis of caged cAMP during glucose stimulation caused potentiation of exocytosis with little delay for SVs but with a latency of 5 s for LVs. Thus, Epac and PKA selectively regulate exocytosis of SVs and LVs, respectively, in beta-cells, and Epac can regulate exocytosis more rapidly than PKA.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | | | | | | | | |
Collapse
|
252
|
Kiyonaka S, Wakamori M, Miki T, Uriu Y, Nonaka M, Bito H, Beedle AM, Mori E, Hara Y, De Waard M, Kanagawa M, Itakura M, Takahashi M, Campbell KP, Mori Y. RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat Neurosci 2007; 10:691-701. [PMID: 17496890 PMCID: PMC2687938 DOI: 10.1038/nn1904] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 04/02/2007] [Indexed: 12/20/2022]
Abstract
The molecular organization of presynaptic active zones is important for the neurotransmitter release that is triggered by depolarization-induced Ca2+ influx. Here, we demonstrate a previously unknown interaction between two components of the presynaptic active zone, RIM1 and voltage-dependent Ca2+ channels (VDCCs), that controls neurotransmitter release in mammalian neurons. RIM1 associated with VDCC beta-subunits via its C terminus to markedly suppress voltage-dependent inactivation among different neuronal VDCCs. Consistently, in pheochromocytoma neuroendocrine PC12 cells, acetylcholine release was significantly potentiated by the full-length and C-terminal RIM1 constructs, but membrane docking of vesicles was enhanced only by the full-length RIM1. The beta construct beta-AID dominant negative, which disrupts the RIM1-beta association, accelerated the inactivation of native VDCC currents, suppressed vesicle docking and acetylcholine release in PC12 cells, and inhibited glutamate release in cultured cerebellar neurons. Thus, RIM1 association with beta in the presynaptic active zone supports release via two distinct mechanisms: sustaining Ca2+ influx through inhibition of channel inactivation, and anchoring neurotransmitter-containing vesicles in the vicinity of VDCCs.
Collapse
Affiliation(s)
- Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry
Kyoto UniversityGraduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510,JP
| | - Minoru Wakamori
- Department of Synthetic Chemistry and Biological Chemistry
Kyoto UniversityGraduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510,JP
| | - Takafumi Miki
- Department of Synthetic Chemistry and Biological Chemistry
Kyoto UniversityGraduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510,JP
| | - Yoshitsugu Uriu
- Department of Synthetic Chemistry and Biological Chemistry
Kyoto UniversityGraduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510,JP
| | - Mio Nonaka
- Department of Neurochemistry
University of TokyoUniversity of Tokyo Graduate School of Medicine, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033,JP
| | - Haruhiko Bito
- Department of Neurochemistry
University of TokyoUniversity of Tokyo Graduate School of Medicine, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033,JP
| | - Aaron M. Beedle
- Departments of Physiology and Biophysics, Internal Medicine, and Neurology
University of IowaUniversity of Iowa Roy J. and Lucille A. Carver College of Medicine, 285 Newton Road, Iowa City, Iowa 52242-1101,US
- HHMI, Howard Hughes Medical Institute
Howard Hugues Institute Howard Hughes Medical Institute,US
| | - Emiko Mori
- Department of Synthetic Chemistry and Biological Chemistry
Kyoto UniversityGraduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510,JP
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry
Kyoto UniversityGraduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510,JP
- Departments of Physiology and Biophysics, Internal Medicine, and Neurology
University of IowaUniversity of Iowa Roy J. and Lucille A. Carver College of Medicine, 285 Newton Road, Iowa City, Iowa 52242-1101,US
- HHMI, Howard Hughes Medical Institute
Howard Hugues Institute Howard Hughes Medical Institute,US
| | - Michel De Waard
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Motoi Kanagawa
- Departments of Physiology and Biophysics, Internal Medicine, and Neurology
University of IowaUniversity of Iowa Roy J. and Lucille A. Carver College of Medicine, 285 Newton Road, Iowa City, Iowa 52242-1101,US
- HHMI, Howard Hughes Medical Institute
Howard Hugues Institute Howard Hughes Medical Institute,US
| | - Makoto Itakura
- Department of Biochemistry
Kitasato University School of MedicineKitasato University School of Medicine, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555,JP
| | - Masami Takahashi
- Department of Biochemistry
Kitasato University School of MedicineKitasato University School of Medicine, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555,JP
| | - Kevin P. Campbell
- Departments of Physiology and Biophysics, Internal Medicine, and Neurology
University of IowaUniversity of Iowa Roy J. and Lucille A. Carver College of Medicine, 285 Newton Road, Iowa City, Iowa 52242-1101,US
- HHMI, Howard Hughes Medical Institute
Howard Hugues Institute Howard Hughes Medical Institute,US
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry
Kyoto UniversityGraduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510,JP
- * Correspondence should be adressed to: Yasuo Mori
| |
Collapse
|
253
|
Liebau S, Vaida B, Storch A, Boeckers TM. Maturation of synaptic contacts in differentiating neural stem cells. Stem Cells 2007; 25:1720-9. [PMID: 17379760 DOI: 10.1634/stemcells.2006-0823] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NSCs are found in the developing brain, as well as in the adult brain. They are self-renewing cells that maintain the capacity to differentiate into all major brain-specific cell types, such as glial cells and neurons. However, it is still unclear whether these cells are capable of gaining full functionality, which is one of the major prerequisites for NSC-based cell replacement strategies of neurological diseases. The ability to establish and maintain polarized excitatory synaptic contacts would be one of the basic requirements for intercellular communication and functional integration into existing neuronal networks. In primary cultures of hippocampal neurons, it has already been shown that synaptogenesis is characterized by a well-ordered, time-dependent targeting and recruitment of pre- and postsynaptic proteins. In this study, we investigated the expression and localization of important pre- and postsynaptic proteins, including Bassoon and synaptophysin, as well as proteins of the ProSAP/Shank family, in differentiating rat fetal mesencephalic NSCs. Moreover, we analyzed the ultrastructural features of neuronal cell-cell contacts during synaptogenesis. We show that NSCs express and localize cytoskeletal and scaffolding molecules of the pre- and postsynaptic specializations in a well-defined temporal order, leading to mature synaptic contacts after 14 days of differentiation. The temporal and spatial pattern of synaptic maturation is comparable to synaptogenesis of hippocampal neurons grown in primary culture. Therefore, with respect to the general ability to create mature synaptic contacts, NSCs seem to be well equipped to potentially compensate for lost or injured brain tissue. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Stefan Liebau
- Institute of Anatomy and Cell Biology, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany
| | | | | | | |
Collapse
|
254
|
Tokoro T, Higa S, Deguchi-Tawarada M, Inoue E, Kitajima I, Ohtsuka T. Localization of the active zone proteins CAST, ELKS, and Piccolo at neuromuscular junctions. Neuroreport 2007; 18:313-6. [PMID: 17435594 DOI: 10.1097/wnr.0b013e3280287abe] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CAST and ELKS are major components of the presynaptic active zones of neurons in the central nervous system, but it remains elusive whether CAST and ELKS are also components of synapses in the peripheral nervous system. Here, we have attempted to examine their expression and localization at the synapses of neuromuscular junctions. Immunoreactivity for ELKS is partly colocalized with that for the major neuromuscular junctions marker alpha-bungarotoxin, which binds to acetylcholine receptors. Moreover, another active zone protein, Piccolo, is also present at neuromuscular junctions, together with ELKS, whereas CAST is not found. These results suggest that at least ELKS and Piccolo, but not CAST, are components of neuromuscular junction synapses in the peripheral nervous system.
Collapse
Affiliation(s)
- Takashi Tokoro
- Department of Clinical and Molecular Pathology, Graduate School of Medicine/Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | | | | | | | | | | |
Collapse
|
255
|
Juranek J, Mukherjee K, Rickmann M, Martens H, Calka J, Südhof TC, Jahn R. Differential expression of active zone proteins in neuromuscular junctions suggests functional diversification. Eur J Neurosci 2007; 24:3043-52. [PMID: 17156365 DOI: 10.1111/j.1460-9568.2006.05183.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nerve terminals of the central nervous system (CNS) contain specialized release sites for synaptic vesicles, referred to as active zones. They are characterized by electron-dense structures that are tightly associated with the presynaptic plasma membrane and organize vesicle docking and priming sites. Recently, major protein constituents of active zones have been identified, including the proteins Piccolo, Bassoon, RIM, Munc13, ERCs/ELKs/CASTs and liprins. While it is becoming apparent that each of these proteins is essential for synaptic function in the CNS, it is not known to what extent these proteins are involved in synaptic function of the peripheral nervous system. Somatic neuromuscular junctions contain morphologically and functionally defined active zones with similarities to CNS synapses. In contrast, sympathetic neuromuscular varicosities lack active zone-like morphological specializations. Using immunocytochemistry at the light and electron microscopic level we have now performed a systematic investigation of all five major classes of active zone proteins in peripheral neuromuscular junctions. Our results show that somatic neuromuscular endplates contain a full complement of all active zone proteins. In contrast, varicosities of the vas deferens contain a subset of active zone proteins including Bassoon and ELKS2, with the other four components being absent. We conclude that Bassoon and ELKS2 perform independent and specialized functions in synaptic transmission of autonomic synapses.
Collapse
Affiliation(s)
- Judyta Juranek
- Department of Neurobiology, MPI for Biophysical Chemistry, 37077 Göttingen/Germany
| | | | | | | | | | | | | |
Collapse
|
256
|
Brunner Y, Couté Y, Iezzi M, Foti M, Fukuda M, Hochstrasser DF, Wollheim CB, Sanchez JC. Proteomics analysis of insulin secretory granules. Mol Cell Proteomics 2007; 6:1007-17. [PMID: 17317658 DOI: 10.1074/mcp.m600443-mcp200] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin secretory granules (ISGs) are cytoplasmic organelles of pancreatic beta-cells. They are responsible for the storage and secretion of insulin. To date, only about 30 different proteins have been clearly described to be associated with these organelles. However, data from two-dimensional gel electrophoresis analyses suggested that almost 150 different polypeptides might be present within ISGs. The elucidation of the identity and function of the ISG proteins by proteomics strategies would be of considerable help to further understand some of the underlying mechanisms implicated in ISG biogenesis and trafficking. Furthermore it should give the bases to the comprehension of impaired insulin secretion observed during diabetes. A proteomics analysis of an enriched insulin granule fraction from the rat insulin-secreting cell line INS-1E was performed. The efficacy of the fractionation procedure was assessed by Western blot and electron microscopy. Proteins of the ISG fraction were separated by SDS-PAGE, excised from consecutive gel slices, and tryptically digested. Peptides were analyzed by nano-LC-ESI-MS/MS. This strategy identified 130 different proteins that were classified into four structural groups including intravesicular proteins, membrane proteins, novel proteins, and other proteins. Confocal microscopy analysis demonstrated the association of Rab37 and VAMP8 with ISGs in INS-1E cells. In conclusion, the present study identified 130 proteins from which 110 are new proteins associated with ISGs. The elucidation of their role will further help in the understanding of the mechanisms governing impaired insulin secretion during diabetes.
Collapse
Affiliation(s)
- Yannick Brunner
- Biomedical Proteomics Research Group, University Medical Center, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Yang S, Farias M, Kapfhamer D, Tobias J, Grant G, Abel T, Bućan M. Biochemical, molecular and behavioral phenotypes of Rab3A mutations in the mouse. GENES, BRAIN, AND BEHAVIOR 2007; 6:77-96. [PMID: 16734774 PMCID: PMC2914309 DOI: 10.1111/j.1601-183x.2006.00235.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ras-associated binding (Rab) protein 3A is a neuronal guanosine triphosphate (GTP)-binding protein that binds synaptic vesicles and regulates synaptic transmission. A mouse mutant, earlybird (Ebd), with a point mutation in the GTP-binding domain of Rab3A (D77G), exhibits anomalies in circadian behavior and homeostatic response to sleep loss. Here, we show that the D77G substitution in the Ebd allele causes reduced GTP and GDP binding, whereas GTPase activity remains intact, leading to reduced protein levels of both Rab3A and rabphilin3A. Expression profiling of the cortex and hippocampus of Ebd and Rab3a-deficient mice revealed subtle differences between wild-type and mutant mice. Although mice were backcrossed for three generations to a C57BL/6J background, the most robust changes at the transcriptional level between Rab3a(-/-) and Rab3a(+/+) mice were represented by genes from the 129/Sv-derived chromosomal region surrounding the Rab3a gene. These results showed that differences in genetic background have a stronger effect on gene expression than the mutations in the Rab3a gene. In behavioral tests, the Ebd/Ebd mice showed a more pronounced mutant phenotype than the null mice; Ebd/Ebd have reduced anxiety-like behavior in the elevated zero-maze test, reduced response to stress in the forced swim test and a deficit in cued fear conditioning (FC), whereas Rab3a(-/-) showed only a deficit in cued FC. Our data implicate Rab3A in learning and memory as well as in the regulation of emotion. A combination of forward and reverse genetics has provided multiple alleles of the Rab3a gene; our studies illustrate the power and complexities of the parallel analysis of these alleles at the biochemical, molecular and behavioral levels.
Collapse
Affiliation(s)
- S. Yang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - M. Farias
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - D. Kapfhamer
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - J. Tobias
- Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA, USA
| | - G. Grant
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA, USA
| | - T. Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - M. Bućan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
258
|
Higa S, Tokoro T, Inoue E, Kitajima I, Ohtsuka T. The active zone protein CAST directly associates with Ligand-of-Numb protein X. Biochem Biophys Res Commun 2007; 354:686-92. [PMID: 17257582 DOI: 10.1016/j.bbrc.2007.01.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 01/05/2007] [Indexed: 11/22/2022]
Abstract
The presynaptic active zone (AZ) is a specialized site where neurotransmitter release occurs in a precisely regulated manner. The cytomatrix at the AZ (CAZ)-associated protein CAST and its family member ELKS form a large molecular complex at the AZ and regulate neurotransmitter release by binding other AZ proteins including Bassoon, Piccolo, Munc13-1, and RIM1. Here, yeast two-hybrid screening was used to identify Ligand-of-Numb Protein X (LNX) as a potential binding partner for CAST. LNX is an interactor of Numb and has four PDZ domains. CAST bound LNX both in vivo and in vitro. This binding required the COOH-terminus of CAST and the second PDZ domain of LNX. CAST and LNX were further colocalized with each other in a heterologous expression system, in which LNX was recruited to a Triton X-insoluble structure. Moreover, exogenously expressed LNX was partially colocalized with endogenous CAST in the axonal varicosities of cultured rat hippocampal neurons. These results suggest that CAST and LNX might form a protein complex in neurons.
Collapse
Affiliation(s)
- Susumu Higa
- Department of Clinical and Molecular Pathology, Graduate School of Medicine/Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
259
|
Abstract
Synapses are specialized adhesive contacts characteristic of many types of cell-cell interactions involving neurons, immune cells, epithelial cells, and even pathogens and host cells. Cell-cell adhesion is mediated by structurally diverse classes of cell-surface glycoproteins, which form homophilic or heterophilic interactions across the intercellular space. Adhesion proteins bind to a cytoplasmic network of scaffolding proteins, regulators of the actin cytoskeleton, and signal transduction pathways that control the structural and functional organization of synapses. The themes of this review are to compare the organization of synapses in different cell types and to understand how different classes of cell adhesion proteins and cytoplasmic protein networks specify the assembly of functionally distinct synapses in different cell contexts.
Collapse
Affiliation(s)
- Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, California 95616;
| | - W. James Nelson
- Departments of Biological Sciences, and Molecular and Cellular Physiology, Stanford University, Stanford, California 94305;
| |
Collapse
|
260
|
de Wit H, Cornelisse LN, Toonen RF, Verhage M. Docking of secretory vesicles is syntaxin dependent. PLoS One 2006; 1:e126. [PMID: 17205130 PMCID: PMC1762430 DOI: 10.1371/journal.pone.0000126] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 12/04/2006] [Indexed: 11/18/2022] Open
Abstract
Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones.
Collapse
Affiliation(s)
- Heidi de Wit
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - L. Niels Cornelisse
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Ruud F.G. Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
261
|
Lu J, Machius M, Dulubova I, Dai H, Südhof TC, Tomchick DR, Rizo J. Structural basis for a Munc13-1 homodimer to Munc13-1/RIM heterodimer switch. PLoS Biol 2006; 4:e192. [PMID: 16732694 PMCID: PMC1472246 DOI: 10.1371/journal.pbio.0040192] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 04/10/2006] [Indexed: 11/18/2022] Open
Abstract
C
2 domains are well characterized as Ca
2+/phospholipid-binding modules, but little is known about how they mediate protein–protein interactions. In neurons, a Munc13–1 C
2A-domain/RIM zinc-finger domain (ZF) heterodimer couples synaptic vesicle priming to presynaptic plasticity. We now show that the Munc13–1 C
2A domain homodimerizes, and that homodimerization competes with Munc13–1/RIM heterodimerization. X-ray diffraction studies guided by nuclear magnetic resonance (NMR) experiments reveal the crystal structures of the Munc13–1 C
2A-domain homodimer and the Munc13–1 C
2A-domain/RIM ZF heterodimer at 1.44 Å and 1.78 Å resolution, respectively. The C
2A domain adopts a β-sandwich structure with a four-stranded concave side that mediates homodimerization, leading to the formation of an eight-stranded β-barrel. In contrast, heterodimerization involves the bottom tip of the C
2A-domain β-sandwich and a C-terminal α-helical extension, which wrap around the RIM ZF domain. Our results describe the structural basis for a Munc13–1 homodimer–Munc13–1/RIM heterodimer switch that may be crucial for vesicle priming and presynaptic plasticity, uncovering at the same time an unexpected versatility of C
2 domains as protein–protein interaction modules, and illustrating the power of combining NMR spectroscopy and X-ray crystallography to study protein complexes.
In neurons, a heterodimer between Munc13-1 and RIM couples synaptic vesicle priming to presynaptic plasticity. Here, a Munc13-1 homodimer that may regulate this process is identified.
Collapse
Affiliation(s)
- Jun Lu
- 1Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- 2Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mischa Machius
- 1Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Irina Dulubova
- 1Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- 2Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Han Dai
- 1Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- 2Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thomas C Südhof
- 3Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- 4Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- 5Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Diana R Tomchick
- 1Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Josep Rizo
- 1Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- 2Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
262
|
Schoch S, Mittelstaedt T, Kaeser PS, Padgett D, Feldmann N, Chevaleyre V, Castillo PE, Hammer RE, Han W, Schmitz F, Lin W, Südhof TC. Redundant functions of RIM1alpha and RIM2alpha in Ca(2+)-triggered neurotransmitter release. EMBO J 2006; 25:5852-63. [PMID: 17124501 PMCID: PMC1698877 DOI: 10.1038/sj.emboj.7601425] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 10/13/2006] [Indexed: 11/08/2022] Open
Abstract
Alpha-RIMs (RIM1alpha and RIM2alpha) are multidomain active zone proteins of presynaptic terminals. Alpha-RIMs bind to Rab3 on synaptic vesicles and to Munc13 on the active zone via their N-terminal region, and interact with other synaptic proteins via their central and C-terminal regions. Although RIM1alpha has been well characterized, nothing is known about the function of RIM2alpha. We now show that RIM1alpha and RIM2alpha are expressed in overlapping but distinct patterns throughout the brain. To examine and compare their functions, we generated knockout mice lacking RIM2alpha, and crossed them with previously produced RIM1alpha knockout mice. We found that deletion of either RIM1alpha or RIM2alpha is not lethal, but ablation of both alpha-RIMs causes postnatal death. This lethality is not due to a loss of synapse structure or a developmental change, but to a defect in neurotransmitter release. Synapses without alpha-RIMs still contain active zones and release neurotransmitters, but are unable to mediate normal Ca(2+)-triggered release. Our data thus demonstrate that alpha-RIMs are not essential for synapse formation or synaptic exocytosis, but are required for normal Ca(2+)-triggering of exocytosis.
Collapse
Affiliation(s)
- Susanne Schoch
- Emmy Noether Research Group, Institute of Neuropathology, Department of Epileptology, University Bonn, Sigmund Freud Strasse 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Bonanomi D, Benfenati F, Valtorta F. Protein sorting in the synaptic vesicle life cycle. Prog Neurobiol 2006; 80:177-217. [PMID: 17074429 DOI: 10.1016/j.pneurobio.2006.09.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 01/06/2023]
Abstract
At early stages of differentiation neurons already contain many of the components necessary for synaptic transmission. However, in order to establish fully functional synapses, both the pre- and postsynaptic partners must undergo a process of maturation. At the presynaptic level, synaptic vesicles (SVs) must acquire the highly specialized complement of proteins, which make them competent for efficient neurotransmitter release. Although several of these proteins have been characterized and linked to precise functions in the regulation of the SV life cycle, a systematic and unifying view of the mechanisms underlying selective protein sorting during SV biogenesis remains elusive. Since SV components do not share common sorting motifs, their targeting to SVs likely relies on a complex network of protein-protein and protein-lipid interactions, as well as on post-translational modifications. Pleiomorphic carriers containing SV proteins travel and recycle along the axon in developing neurons. Nevertheless, SV components appear to eventually undertake separate trafficking routes including recycling through the neuronal endomembrane system and the plasmalemma. Importantly, SV biogenesis does not appear to be limited to a precise stage during neuronal differentiation, but it rather continues throughout the entire neuronal lifespan and within synapses. At nerve terminals, remodeling of the SV membrane results from the use of alternative exocytotic pathways and possible passage through as yet poorly characterized vacuolar/endosomal compartments. As a result of both processes, SVs with heterogeneous molecular make-up, and hence displaying variable competence for exocytosis, may be generated and coexist within the same nerve terminal.
Collapse
Affiliation(s)
- Dario Bonanomi
- Department of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | |
Collapse
|
264
|
Inoue E, Deguchi-Tawarada M, Takao-Rikitsu E, Inoue M, Kitajima I, Ohtsuka T, Takai Y. ELKS, a protein structurally related to the active zone protein CAST, is involved in Ca2+-dependent exocytosis from PC12 cells. Genes Cells 2006; 11:659-72. [PMID: 16716196 DOI: 10.1111/j.1365-2443.2006.00970.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The active zone protein CAST binds directly to the other active zone proteins RIM, Bassoon and Piccolo, and it has been suggested that these protein-protein interactions play an important role in neurotransmitter release. To further elucidate the molecular mechanism, we attempted to examine the function of CAST using PC12 cells as a model system. Although PC12 cells do not express CAST, they do express ELKS, a protein structurally related to CAST. Endogenous and exogenously expressed ELKS, RIM2 and Bassoon were colocalized in punctate signals in PC12 cells. Over-expression of full-length ELKS resulted in a significant increase in stimulated exocytosis of human growth hormone (hGH) from PC12 cells, similar to the effect of full-length RIM2. This increase was not observed following over-expression of deletion constructs of ELKS that lacked either the last three amino acids (IWA) required for binding to RIM2 or a central region necessary for binding to Bassoon. Moreover, over-expression of the NH(2)-terminal RIM2-binding domain of Munc13-1, which is known to inhibit the binding between RIM and Munc13-1, inhibited the stimulated increase in hGH secretion by full-length RIM2. Furthermore, this construct also inhibited the stimulated increase in hGH secretion induced by full-length ELKS. These results suggest that ELKS is involved in Ca(2+)-dependent exocytosis from PC12 cells at least partly via the RIM2-Munc13-1 pathway.
Collapse
Affiliation(s)
- Eiji Inoue
- KAN Research Institute, Kyoto 600-8815, Japan
| | | | | | | | | | | | | |
Collapse
|
265
|
Abstract
Neurons are among the largest and most complex cells in the body. Their immense size and intricate geometry pose many unique cell-biological problems. How is dendritic architecture established and maintained? How do neurons traffic newly synthesized integral membrane proteins over such long distances to synapses? Functionally, protein trafficking to and from the postsynaptic membrane has emerged as a key mechanism underlying various forms of synaptic plasticity. Which organelles are involved in postsynaptic trafficking, and how do they integrate and respond to activity at individual synapses? Here we review what is currently known about long-range trafficking of newly synthesized postsynaptic proteins as well as the local rules that govern postsynaptic trafficking at individual synapses.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
266
|
Weimer RM, Gracheva EO, Meyrignac O, Miller KG, Richmond JE, Bessereau JL. UNC-13 and UNC-10/rim localize synaptic vesicles to specific membrane domains. J Neurosci 2006; 26:8040-7. [PMID: 16885217 PMCID: PMC3874421 DOI: 10.1523/jneurosci.2350-06.2006] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles undergo a maturation step, termed priming, in which they become competent to fuse with the plasma membrane. To morphologically define the site of vesicle priming and identify fusion-competent synaptic vesicles, we combined a rapid physical-fixation technique with immunogold staining and high-resolution morphometric analysis at Caenorhabditis elegans neuromuscular junctions. In these presynaptic terminals, a subset of synaptic vesicles contact the plasma membrane within approximately 100 nm of a presynaptic dense projection. UNC-13, a protein required for vesicle priming, localizes to this same region of the plasma membrane. In an unc-13 null mutant, few synaptic vesicles contact the plasma membrane, suggesting that membrane-contacting synaptic vesicles represent the morphological correlates of primed vesicles. Interestingly, a subpopulation of membrane-contacting vesicles, located within 30 nm of a dense projection, are unperturbed in unc-13 mutants. We show that UNC-10/Rim, a protein implicated in presynaptic plasticity, localizes to dense projections and that loss of UNC-10/Rim causes an UNC-13-independent reduction in membrane-contacting synaptic vesicles within 30 nm of the dense projections. Our data together identify a discrete domain for vesicle priming within 100 nm of dense projections and further suggest that UNC-10/Rim and UNC-13 separately contribute to the membrane localization of synaptic vesicles within this domain.
Collapse
|
267
|
Ishikawa Y, Cho G, Yuan Z, Skowronski MT, Pan Y, Ishida H. Water channels and zymogen granules in salivary glands. J Pharmacol Sci 2006; 100:495-512. [PMID: 16799262 DOI: 10.1254/jphs.crj06007x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Salivary secretion occurs in response to stimulation by neurotransmitters released from autonomic nerve endings. The molecular mechanisms underlying the secretion of water, a main component of saliva, from salivary glands are not known; the plasma membrane is a major barrier to water transport. A 28-kDa integral membrane protein, distributed in highly water-permeable tissues, was identified as a water channel protein, aquaporin (AQP). Thirteen AQPs (AQP0 - AQP12) have been identified in mammals. AQP5 is localized in lipid rafts under unstimulated conditions and translocates to the apical plasma membrane in rat parotid glands upon stimulation by muscarinic agonists. The importance of increases in intracellular calcium concentration [Ca(2+)](i) and the nitric oxide synthase and protein kinase G signaling pathway in the translocation of AQP5 is reviewed in section I. Signals generated by the activation of Ca(2+) mobilizing receptors simultaneously trigger and regulate exocytosis. Zymogen granule exocytosis occurs under the control of essential process, stimulus-secretion coupling, in salivary glands. Ca(2+) signaling is a principal signal in both protein and water secretion from salivary glands induced by cholinergic stimulation. On the other hand, the cyclic adenosine monophosphate (cAMP)/cAMP-dependent protein kinase system has a major role in zymogen granule exocytosis without significant increases in [Ca(2+)](i). In section II, the mechanisms underlying the control of salivary protein secretion and its dysfunction are reviewed.
Collapse
Affiliation(s)
- Yasuko Ishikawa
- Department of Pharmacology, The University of Tokushima School of Dentistry, Tokushima, Japan.
| | | | | | | | | | | |
Collapse
|
268
|
Jastrow H, Racke J. Analysis of synaptic bodies in the Sprague-Dawley rat pineal gland under extreme photoperiods. Micron 2006; 38:237-51. [PMID: 16978867 DOI: 10.1016/j.micron.2006.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/04/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
Synaptic bodies (SBs) are small, prominent organelles in pinealocytes, most probably involved in signal transduction processes. To check the influence of the photoperiod on their shape plasticity and number we chose two extreme lighting conditions, i.e. 20h of illumination followed by 4h of darkness (LD 20:4) versus (LD 4:20). Pineal glands were assessed at 0, 4 and 13h after dark onset. Under both conditions reconstructed SBs were plates or ribbons but never spheres and there were no obvious differences in morphology. Photoperiodic changes in SB profile size and number were investigated: application of the established method for SB quantification based on single section profile counts (SSPC) of areas showed a significant increase of SB profiles under LD 20:4. However, it has to be noted that SSPC depend on both, number and size of the structures. In contrast to this, modification of the disector counting method, also applied for unbiased quantification of whole SBs, revealed that rat pinealocytes show insignificantly more SBs under LD 20:4 than under 4:20 conditions. The lengths of the SB profiles, which were first measured under different conditions in this study, depend on SB size. They increased significantly under LD 20:4. In conclusion, we detected only an increase in SB size but not in their number. We further prove that, at least for SBs, it is of no value to calculate disector levels from SSPCs.
Collapse
Affiliation(s)
- Holger Jastrow
- Department of Anatomy and Cell Biology, Histology, Johannes Gutenberg-University, Becherweg 13, D-55128 Mainz, Germany.
| | | |
Collapse
|
269
|
Schoch S, Gundelfinger ED. Molecular organization of the presynaptic active zone. Cell Tissue Res 2006; 326:379-91. [PMID: 16865347 DOI: 10.1007/s00441-006-0244-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 05/10/2006] [Indexed: 11/26/2022]
Abstract
The exocytosis of neurotransmitter-filled synaptic vesicles is under tight temporal and spatial control in presynaptic nerve terminals. The fusion of synaptic vesicles is restricted to a specialized area of the presynaptic plasma membrane: the active zone. The protein network that constitutes the cytomatrix at the active zone (CAZ) is involved in the organization of docking and priming of synaptic vesicles and in mediating use-dependent changes in release during short-term and long-term synaptic plasticity. To date, five protein families whose members are highly enriched at active zones (Munc13s, RIMs, ELKS proteins, Piccolo and Bassoon, and the liprins-alpha), have been characterized. These multidomain proteins are instrumental for the diverse functions performed by the presynaptic active zone.
Collapse
Affiliation(s)
- Susanne Schoch
- Emmy Noether Research Group, Institute of Neuropathology and Department of Epileptology, University of Bonn Medical Center, Sigmund Freud Strasse 25, 53105 Bonn, Germany.
| | | |
Collapse
|
270
|
Deák F, Shin OH, Tang J, Hanson P, Ubach J, Jahn R, Rizo J, Kavalali ET, Südhof TC. Rabphilin regulates SNARE-dependent re-priming of synaptic vesicles for fusion. EMBO J 2006; 25:2856-66. [PMID: 16763567 PMCID: PMC1500841 DOI: 10.1038/sj.emboj.7601165] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 05/03/2006] [Indexed: 11/08/2022] Open
Abstract
Synaptic vesicle fusion is catalyzed by assembly of synaptic SNARE complexes, and is regulated by the synaptic vesicle GTP-binding protein Rab3 that binds to RIM and to rabphilin. RIM is a known physiological regulator of fusion, but the role of rabphilin remains obscure. We now show that rabphilin regulates recovery of synaptic vesicles from use-dependent depression, probably by a direct interaction with the SNARE protein SNAP-25. Deletion of rabphilin dramatically accelerates recovery of depressed synaptic responses; this phenotype is rescued by viral expression of wild-type rabphilin, but not of mutant rabphilin lacking the second rabphilin C2 domain that binds to SNAP-25. Moreover, deletion of rabphilin also increases the size of synaptic responses in synapses lacking the vesicular SNARE protein synaptobrevin in which synaptic responses are severely depressed. Our data suggest that binding of rabphilin to SNAP-25 regulates exocytosis of synaptic vesicles after the readily releasable pool has either been physiologically exhausted by use-dependent depression, or has been artificially depleted by deletion of synaptobrevin.
Collapse
Affiliation(s)
- Ferenc Deák
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ok-Ho Shin
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiong Tang
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Phyllis Hanson
- Department of Pharmacology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Josep Ubach
- Departments of Biochemistry and Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Reinhard Jahn
- Department of Pharmacology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Josep Rizo
- Departments of Biochemistry and Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ege T Kavalali
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas C Südhof
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
271
|
Sakane A, Manabe S, Ishizaki H, Tanaka-Okamoto M, Kiyokage E, Toida K, Yoshida T, Miyoshi J, Kamiya H, Takai Y, Sasaki T. Rab3 GTPase-activating protein regulates synaptic transmission and plasticity through the inactivation of Rab3. Proc Natl Acad Sci U S A 2006; 103:10029-34. [PMID: 16782817 PMCID: PMC1502500 DOI: 10.1073/pnas.0600304103] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rab3A small G protein is a member of the Rab family and is most abundant in the brain, where it is localized on synaptic vesicles. Evidence is accumulating that Rab3A plays a key role in neurotransmitter release and synaptic plasticity. Rab3A cycles between the GDP-bound inactive and GTP-bound active forms, and this change in activity is associated with the trafficking cycle of synaptic vesicles at nerve terminals. Rab3 GTPase-activating protein (GAP) stimulates the GTPase activity of Rab3A and is expected to determine the timing of the dissociation of Rab3A from synaptic vesicles, which may be coupled with synaptic vesicle exocytosis. Rab3 GAP consists of two subunits: the catalytic subunit p130 and the noncatalytic subunit p150. Recently, mutations in p130 were found to cause Warburg Micro syndrome with severe mental retardation. Here, we generated p130-deficient mice and found that the GTP-bound form of Rab3A accumulated in the brain. Loss of p130 in mice resulted in inhibition of Ca(2+)-dependent glutamate release from cerebrocortical synaptosomes and altered short-term plasticity in the hippocampal CA1 region. Thus, Rab3 GAP regulates synaptic transmission and plasticity by limiting the amount of the GTP-bound form of Rab3A.
Collapse
Affiliation(s)
| | | | - Hiroyoshi Ishizaki
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka 537-8511, Japan
| | - Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka 537-8511, Japan
| | - Emi Kiyokage
- Anatomy and Cell Biology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Kazunori Toida
- Anatomy and Cell Biology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Takayuki Yoshida
- Department of Molecular Neuroanatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; and
| | - Jun Miyoshi
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka 537-8511, Japan
| | - Haruyuki Kamiya
- Department of Molecular Neuroanatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; and
| | - Yoshimi Takai
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | - Takuya Sasaki
- Departments of *Biochemistry and
- To whom correspondence should be addressed at:
Department of Biochemistry, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan. E-mail:
| |
Collapse
|
272
|
tom Dieck S, Brandstätter JH. Ribbon synapses of the retina. Cell Tissue Res 2006; 326:339-46. [PMID: 16775698 DOI: 10.1007/s00441-006-0234-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 04/27/2006] [Indexed: 11/24/2022]
Abstract
Vision is a highly complex task that involves several steps of parallel information processing in various areas of the central nervous system. Complex processing of visual signals occurs as early as at the retina, the first stage in the visual system. Various aspects of visual information are transmitted in parallel from the photoreceptors (the input neurons of the retina) through their interconnecting bipolar cells to the ganglion cells (the output neurons). Photoreceptors and bipolar cells transfer information via the release of the neurotransmitter glutamate at a specialized synapse, the ribbon synapse. Although known from early days of electron microscopy, the precise functioning of ribbon synapses has yet to be explained. In this review, we highlight recent advances towards understanding the molecular composition and function of this enigmatic synapse.
Collapse
Affiliation(s)
- Susanne tom Dieck
- Institute for Biology, Department of Zoology, University of Erlangen-Nuernberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | | |
Collapse
|
273
|
Michaelides M, Hardcastle AJ, Hunt DM, Moore AT. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol 2006; 51:232-58. [PMID: 16644365 DOI: 10.1016/j.survophthal.2006.02.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The cone and cone-rod dystrophies form part of a heterogeneous group of retinal disorders that are an important cause of visual impairment in children and adults. There have been considerable advances made in recent years in our understanding of the pathogenesis of these retinal dystrophies, with many of the chromosomal loci and causative genes having now been identified. Mutations in 12 genes, including GUCA1A, peripherin/RDS, ABCA4 and RPGR, have been described to date; and in many cases detailed functional assessment of the effects of the encoded mutant proteins has been undertaken. This improved knowledge of disease mechanisms has raised the possibility of future treatments for these disorders, for which there are no specific therapies available at the present time.
Collapse
|
274
|
Inoue E, Mochida S, Takagi H, Higa S, Deguchi-Tawarada M, Takao-Rikitsu E, Inoue M, Yao I, Takeuchi K, Kitajima I, Setou M, Ohtsuka T, Takai Y. SAD: a presynaptic kinase associated with synaptic vesicles and the active zone cytomatrix that regulates neurotransmitter release. Neuron 2006; 50:261-75. [PMID: 16630837 DOI: 10.1016/j.neuron.2006.03.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 09/02/2005] [Accepted: 03/13/2006] [Indexed: 11/25/2022]
Abstract
A serine/threonine kinase SAD-1 in C. elegans regulates synapse development. We report here the isolation and characterization of mammalian orthologs of SAD-1, named SAD-A and SAD-B, which are specifically expressed in the brain. SAD-B is associated with synaptic vesicles and, like the active zone proteins CAST and Bassoon, is tightly associated with the presynaptic cytomatrix in nerve terminals. A short conserved region (SCR) in the COOH-terminus is required for the synaptic localization of SAD-B. Overexpression of SAD-B in cultured rat hippocampal neurons significantly increases the frequency of miniature excitatory postsynaptic current but not its amplitude. Introduction of SCR into presynaptic superior cervical ganglion neurons in culture significantly inhibits evoked synaptic transmission. Moreover, SCR decreases the size of the readily releasable pool measured by applying hypertonic sucrose. Furthermore, SAD-B phosphorylates the active zone protein RIM1 but not Munc13-1. These results suggest that mammalian SAD kinase presynaptically regulates neurotransmitter release.
Collapse
Affiliation(s)
- Eiji Inoue
- KAN Research Institute, Kyoto 600-8815, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Tao-Cheng JH. Activity-related redistribution of presynaptic proteins at the active zone. Neuroscience 2006; 141:1217-24. [PMID: 16757121 DOI: 10.1016/j.neuroscience.2006.04.061] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/26/2006] [Accepted: 04/26/2006] [Indexed: 11/23/2022]
Abstract
Immunogold labeling distributions of seven presynaptic proteins were quantitatively analyzed under control conditions and after high K+ depolarization in excitatory synapses from dissociated rat hippocampal cultures. Three parallel zones in presynaptic terminals were sampled: zones I and II, each about one synaptic vesicle wide extending from the active zone; and zone III, containing a distal pool of vesicles up to 200 nm from the presynaptic membrane. The distributions of SV2 and synaptophysin, two synaptic vesicle integral membrane proteins, generally followed the distribution of synaptic vesicles, which were typically evenly distributed under control conditions and had a notable depletion in zone III after stimulation. Labels of synapsin I and synuclein, two synaptic vesicle-associated proteins, were similar to each other; both were particularly sparse in zone I under control conditions but showed a prominent enrichment toward the active zone, after stimulation. Labels of Bassoon, Piccolo and RIM 1, three active zone proteins, had very different distribution profiles from one another under control conditions. Bassoon was enriched in zone II, Piccolo and RIM 1 in zone I. After stimulation, Bassoon and Piccolo remained relatively unchanged, but RIM 1 redistributed with a significant decrease in zone I, and increases in zones II and III. These results demonstrate that Bassoon and Piccolo are stable components of the active zone while RIM 1, synapsin I and synuclein undergo dynamic redistribution with synaptic activity.
Collapse
Affiliation(s)
- J-H Tao-Cheng
- Electron Microscopy Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 49, Room 3A50, Bethesda, MD 40892, USA.
| |
Collapse
|
276
|
Andrews-Zwilling YS, Kawabe H, Reim K, Varoqueaux F, Brose N. Binding to Rab3A-interacting molecule RIM regulates the presynaptic recruitment of Munc13-1 and ubMunc13-2. J Biol Chem 2006; 281:19720-31. [PMID: 16704978 DOI: 10.1074/jbc.m601421200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transmitter release at synapses between nerve cells is spatially restricted to active zones, where synaptic vesicle docking, priming, and Ca2+-dependent fusion take place in a temporally highly coordinated manner. Munc13s are essential for priming synaptic vesicles to a fusion competent state, and their specific active zone localization contributes to the active zone restriction of transmitter release and the speed of excitation-secretion coupling. However, the molecular mechanism of the active zone recruitment of Munc13s is not known. We show here that the active zone recruitment of Munc13 isoforms Munc13-1 and ubMunc13-2 is regulated by their binding to the Rab3A-interacting molecule RIM1alpha, a key determinant of long term potentiation of synaptic transmission at mossy fiber synapses in the hippocampus. We identify a single point mutation in Munc13-1 and ubMunc13-2 (I121N) that, depending on the type of assay used, strongly perturbs or abolishes RIM1alpha binding in vitro and in cultured fibroblasts, and we demonstrate that RIM1alpha binding-deficient ubMunc13-2(I121) is not efficiently recruited to synapses. Moreover, the levels of Munc13-1 and ubMunc13-2 levels are decreased in RIM1alpha-deficient brain, and Munc13-1 is not properly enriched at active zones of mossy fiber terminals of the mouse hippocampus if RIM1alpha is absent. We conclude that one function of the Munc13/RIM1alpha interaction is the active zone recruitment of Munc13-1 and ubMunc13-2.
Collapse
Affiliation(s)
- Yaisa S Andrews-Zwilling
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|
277
|
Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Dürrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Buchner E. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 2006; 49:833-44. [PMID: 16543132 DOI: 10.1016/j.neuron.2006.02.008] [Citation(s) in RCA: 703] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/12/2005] [Accepted: 02/06/2006] [Indexed: 10/24/2022]
Abstract
Neurotransmitters are released at presynaptic active zones (AZs). In the fly Drosophila, monoclonal antibody (MAB) nc82 specifically labels AZs. We employ nc82 to identify Bruchpilot protein (BRP) as a previously unknown AZ component. BRP shows homology to human AZ protein ELKS/CAST/ERC, which binds RIM1 in a complex with Bassoon and Munc13-1. The C terminus of BRP displays structural similarities to multifunctional cytoskeletal proteins. During development, transcription of the bruchpilot locus (brp) coincides with neuronal differentiation. Panneural reduction of BRP expression by RNAi constructs permits a first functional characterization of this large AZ protein: larvae show reduced evoked but normal spontaneous transmission at neuromuscular junctions. In adults, we observe loss of T bars at active zones, absence of synaptic components in electroretinogram, locomotor inactivity, and unstable flight (hence "bruchpilot"-crash pilot). We propose that BRP is critical for intact AZ structure and normal-evoked neurotransmitter release at chemical synapses of Drosophila.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Animals, Genetically Modified
- Behavior, Animal
- Blotting, Northern/methods
- Blotting, Western/methods
- Cloning, Molecular
- Drosophila
- Drosophila Proteins/genetics
- Drosophila Proteins/physiology
- Dynamins/metabolism
- Electrophoresis, Gel, Two-Dimensional/methods
- Green Fluorescent Proteins/biosynthesis
- Humans
- Immunochemistry/methods
- In Situ Hybridization/methods
- Intracellular Signaling Peptides and Proteins/chemistry
- Intracellular Signaling Peptides and Proteins/metabolism
- Membrane Potentials/drug effects
- Membrane Potentials/genetics
- Membrane Potentials/physiology
- Microscopy, Electron, Transmission/methods
- Molecular Sequence Data
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/metabolism
- Neuromuscular Junction/physiology
- Neuromuscular Junction/ultrastructure
- Presynaptic Terminals/metabolism
- RNA Polymerase I
- RNA, Messenger/biosynthesis
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Structural Homology, Protein
- Walking/physiology
Collapse
Affiliation(s)
- Dhananjay A Wagh
- Lehrstuhl für Genetik und Neurobiologie, Theodor-Boveri-Institut für Biowissenschaften, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Deguchi-Tawarada M, Inoue E, Takao-Rikitsu E, Inoue M, Kitajima I, Ohtsuka T, Takai Y. Active zone protein CAST is a component of conventional and ribbon synapses in mouse retina. J Comp Neurol 2006; 495:480-96. [PMID: 16485285 DOI: 10.1002/cne.20893] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CAST is a novel cytomatrix at the active zone (CAZ)-associated protein. In conventional brain synapses, CAST forms a large molecular complex with other CAZ proteins, including RIM, Munc13-1, Bassoon, and Piccolo. Here we investigated the distribution of CAST and its structurally related protein, ELKS, in mouse retina. Immunofluorescence analyses revealed that CAST and ELKS showed punctate signals in the outer and inner plexiform layers of the retina that were well-colocalized with those of Bassoon and RIM. Both proteins were found presynaptically at glutamatergic ribbon synapses, and at conventional GABAergic and glycinergic synapses. Moreover, immunoelectron microscopy revealed that CAST, like Bassoon and RIM, localized at the base of synaptic ribbons, whereas ELKS localized around the ribbons. Both proteins also localized in the vicinity of the presynaptic plasma membrane of conventional synapses in the retina. These results indicated that CAST and ELKS were novel components of the presynaptic apparatus of mouse retina.
Collapse
|
279
|
Tomas A, Yermen B, Min L, Pessin JE, Halban PA. Regulation of pancreatic beta-cell insulin secretion by actin cytoskeleton remodelling: role of gelsolin and cooperation with the MAPK signalling pathway. J Cell Sci 2006; 119:2156-67. [PMID: 16638805 DOI: 10.1242/jcs.02942] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously isolated two MIN6 beta-cell sublines, B1, highly responsive to glucose-stimulated insulin secretion, and C3, markedly refractory (Lilla, V., Webb, G., Rickenbach, K., Maturana, A., Steiner, D. F., Halban, P. A. and Irminger, J. C. (2003) Endocrinology 144, 1368-1379). We now demonstrate that C3 cells have substantially increased amounts of F-actin stress fibres whereas B1 cells have shorter cortical F-actin. Consistent with these data, B1 cells display glucose-dependent actin remodelling whereas, in C3 cells, F-actin is refractory to this secretagogue. Furthermore, F-actin depolymerisation with latrunculin B restores glucose-stimulated insulin secretion in C3 cells. In parallel, glucose-stimulated ERK1/2 activation is greater in B1 than in C3 cells, and is potentiated in both sublines following F-actin depolymerisation. Glucose-activated phosphoERK1/2 accumulates at actin filament tips adjacent to the plasma membrane, indicating that these are the main sites of action for this kinase during insulin secretion. In addition, B1 cell expression of the calcium-dependent F-actin severing protein gelsolin is >100-fold higher than that of C3 cells. Knock-down of gelsolin reduced glucose-stimulated insulin secretion, whereas gelsolin over-expression potentiated secretion from B1 cells. Gelsolin localised along depolymerised actin fibres after glucose stimulation. Taken together, these data demonstrate that F-actin reorganization prior to insulin secretion requires gelsolin and plays a role in the glucose-dependent MAPK signal transduction that regulates beta-cell insulin secretion.
Collapse
Affiliation(s)
- Alejandra Tomas
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland.
| | | | | | | | | |
Collapse
|
280
|
Abstract
Rim was originally identified as a protein that contains a putative Rab3A-effector domain at the N-terminus, the same as rabphilin, and two forms of Rim, Rim1 and Rim2, have been reported in mammals. The putative Rab3A-binding domain (RBD) of Rim consists of two alpha-helical regions (named RBD1 and RBD2) separated by two zinc finger motifs, and several alternative splicing events occur in the RBD1 of both Rims that result in the production of long forms and short forms of RBD. The short forms of Rim2 RBD are capable of interacting with Rab3A with high affinity in vitro, and it is recruited to dense-core vesicles (DCVs) in neuroendocrine PC12 cells through interaction with endogenous Rab3A, whereas the long forms of Rim2 RBD show dramatically reduced Rab3A-binding activity in vitro (more than a 50-fold decrease in affinity compared with the short forms of Rim2 RBD), and it is mainly present in the cytoplasm and nucleus. Expression of the shortest form of Rim2 RBD, but not its Rab3A binding-defective mutant (E36A/R37S), promotes high-KCl-dependent neuropeptide Y secretion from PC12 cells, suggesting that the Rim2 containing the short forms of RBD functions as a Rab3A effector during DCV exocytosis. In this Chapter, I describe several assay methods that have been used to determine the physiological significance of the alternative splicing event in the RBD1 of Rim2, including assays for the in vitro interaction between Rim2 RBD and Rab3A and for the localization of Rim2-RBD on DCVs in PC12 cells.
Collapse
|
281
|
Abstract
Rab, monomeric small Ras-like GTPase, regulates intracellular membrane trafficking in eukaryotic cells. Rab3 is involved in the exocytotic process in a variety of secretory cells including neuronal, neuroendocrine, endocrine, and exocrine cells. Noc2, originally identified as a molecule homologous to Rabphilin-3, is a putative effector of Rab3. Noc2 interacts with the active (GTP-bound) form of Rab3 and regulates hormone secretion in neuroendocrine and endocrine cells and enzyme release in exocrine cells. This chapter describes two kinds of interaction assay by which the association of Noc2 with Rab3 is analyzed: a yeast two-hybrid assay to detect the interaction of Noc2 with the active form of Rab3 in intact cells and a pull-down assay using GST-fused Noc2 protein to ascertain the physical interaction of Noc2 and Rab3 in vitro. Thus, the Noc2 knockout mouse is a useful model for studying the functional consequences of disruption of the interaction.
Collapse
|
282
|
Abstract
Rab3A, a member of the Rab3 small GTP-binding protein (G protein) family, regulates Ca(2+)-dependent exocytosis of neurotransmitter. Rab3A cycles between the GDP-bound inactive and GTP-bound active forms, and the former is converted to the latter by the action of a GDP/GTP exchange protein (GEP). We have previously purified a GEP from rat brain with lipid-modified Rab3A as a substrate. Purified Rab3 GEP is active on all the Rab3 subfamily members including Rab3A, -3B, -3C, and -3D. Purified Rab3 GEP is active on the lipid-modified form, but not on the lipid-unmodified form. Purified Rab3 GEP is inactive on Rab3A complexed with Rab GDI. The recombinant protein is prepared from the Rab3 GEP-expressed Spodoptera frugiperda cells (Sf9 cells). The properties of recombinant Rab3 GEP, including the requirement for lipid modifications of Rab3A, the substrate specificity, and the sensitivity to Rab GDI, are similar to those of purified Rab3 GEP. Overexpression of Rab3 GEP inhibits Ca(2+)-dependent exocytosis from PC12 cells. On the other hand, Rab3 GEP is identical to a protein named DENN/MADD: differentially expressed in normal versus neoplastic (DENN)/mitogen-activated protein kinase-activating death domain (MADD). Here, we describe the purification method for recombinant Rab3 GEP from Sf9 cells and the functional properties of Rab3 GEP in Ca(2+)-dependent exocytosis by use of the human growth hormone coexpression assay system of PC12 cells.
Collapse
|
283
|
Nicholls RE, Zhang XL, Bailey CP, Conklin BR, Kandel ER, Stanton PK. mGluR2 acts through inhibitory Galpha subunits to regulate transmission and long-term plasticity at hippocampal mossy fiber-CA3 synapses. Proc Natl Acad Sci U S A 2006; 103:6380-5. [PMID: 16606834 PMCID: PMC1458886 DOI: 10.1073/pnas.0601267103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presynaptic inhibitory G protein-coupled receptors play a critical role in regulating transmission at a number of synapses in the central and peripheral nervous system. We generated transgenic mice that express a constitutively active form of an inhibitory Galpha subunit to examine the molecular mechanisms underlying the actions of one such receptor, metabotropic glutamate receptor (mGluR) 2, at mossy fiber-CA3 synapses in the hippocampus. mGluR2 participates in at least three types of mossy fiber synaptic plasticity, (i) transient suppression of synaptic transmission, (ii) long-term depression (LTD), and (iii) inhibition of long-term potentiation (LTP), and we find that inhibitory Galpha signaling is sufficient to account for the actions of mGluR2 in each. The fact that constitutively active Galphai2 occludes the transient suppression of synaptic transmission by mGluR2, while enhancing LTD, suggests further that these two forms of plasticity are expressed via different mechanisms. In addition, the LTP deficit observed in constitutively active Galphai2-expressing mice suggests that mGluR2 activation may serve as a metaplastic switch to permit the induction of LTD by inhibiting LTP.
Collapse
Affiliation(s)
| | | | - Christopher P. Bailey
- Department of Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom; and
| | - Bruce R. Conklin
- The J. David Gladstone Institute of Cardiovascular Disease, Departments of Medicine and Pharmacology, University of California, San Francisco, CA 94158
| | - Eric R. Kandel
- *Center for Neurobiology and Behavior
- Howard Hughes Medical Institute, and
- **Kavli Institute for Brain Sciences, Columbia University, New York, NY 10032
- To whom correspondence should be addressed. E-mail:
| | - Patric K. Stanton
- Departments of Cell Biology and Anatomy and
- Neurology, New York Medical College, Valhalla, NY 10595
| |
Collapse
|
284
|
Schlüter OM, Basu J, Südhof TC, Rosenmund C. Rab3 superprimes synaptic vesicles for release: implications for short-term synaptic plasticity. J Neurosci 2006; 26:1239-46. [PMID: 16436611 PMCID: PMC6674574 DOI: 10.1523/jneurosci.3553-05.2006] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic vesicle trafficking and priming are important steps in regulating synaptic transmission and plasticity. The four closely related small GTP-binding proteins Rab3A, Rab3B, Rab3C, and Rab3D are believed to be important for these steps. In mice, the complete absence of all Rab3s leads to perinatal lethality accompanied by a 30% reduction of probability of Ca2+-triggered synaptic release. This study examines the role of Rab3 during Ca2+-triggered release in more detail and identifies its impact on short-term plasticity. Using patch-clamp electrophysiology of autaptic neuronal cultures from Rab3-deficient mouse hippocampus, we show that excitatory Rab3-deficient neurons display unique time- and frequency-dependent short-term plasticity characteristics in response to spike trains. Analysis of vesicle release and repriming kinetics as well as Ca2+ sensitivity of release indicate that Rab3 acts on a subset of primed, fusion competent vesicles. They lower the amount of Ca2+ required for action potential-triggered release, which leads to a boosting of release probability, but their action also introduces a significant delay in the supply of these modified vesicles. As a result, Rab3-induced modifications to primed vesicles causes a transient increase in the transduction efficacy of synaptic action potential trains and optimizes the encoding of synaptic information at an intermediate spike frequency range.
Collapse
|
285
|
Deken SL, Vincent R, Hadwiger G, Liu Q, Wang ZW, Nonet ML. Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans. J Neurosci 2006; 25:5975-83. [PMID: 15976086 PMCID: PMC6724794 DOI: 10.1523/jneurosci.0804-05.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Active zone proteins play a fundamental role in regulating neurotransmitter release and defining release sites. The functional roles of active zone components are beginning to be elucidated; however, the mechanisms of active zone protein localization are unknown. Studies have shown that glutamine, leucine, lysine, and serine-rich protein (ELKS), a recently defined member of the active zone complex, acts to localize the active zone protein Rab3a-interacting molecule (RIM) and regulates synaptic transmission in cultured neurons. Here, we test the function of ELKS in vivo. Like mammalian ELKS, Caenorhabditis elegans ELKS is an active zone protein that directly interacts with the postsynaptic density-25/Discs large/zona occludens (PDZ) domain of RIM. However, RIM protein localizes in the absence of ELKS and vice versa. In addition, elks mutants exhibit neither the behavioral nor the physiological defects associated with unc-10 RIM mutants, indicating that ELKS is not a critical component of the C. elegans release machinery. Interestingly, expression of the soluble PDZ domain of RIM disrupts ELKS active zone targeting, suggesting a tight association between the two proteins in vivo. RIM truncations containing only the PDZ and C2A domains target to release sites in an ELKS-dependent manner. Together, these data identify ELKS as a new member of the C. elegans active zone complex, define the role of ELKS in synaptic transmission, and characterize the relationship between ELKS and RIM in vivo. Furthermore, they demonstrate that multiple different protein-protein interactions redundantly anchor both ELKS and RIM to active zones and implicate novel proteins in the formation of the active zone.
Collapse
Affiliation(s)
- Scott L Deken
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
286
|
Khanna R, Li Q, Sun L, Collins TJ, Stanley EF. N type Ca2+ channels and RIM scaffold protein covary at the presynaptic transmitter release face but are components of independent protein complexes. Neuroscience 2006; 140:1201-8. [PMID: 16757118 DOI: 10.1016/j.neuroscience.2006.04.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/21/2006] [Accepted: 04/12/2006] [Indexed: 11/28/2022]
Abstract
Fast neurotransmitter release at presynaptic terminals occurs at specialized transmitter release sites where docked secretory vesicles are triggered to fuse with the membrane by the influx of Ca2+ ions that enter through local N type (CaV2.2) calcium channels. Thus, neurosecretion involves two key processes: the docking of vesicles at the transmitter release site, a process that involves the scaffold protein RIM (Rab3A interacting molecule) and its binding partner Munc-13, and the subsequent gating of vesicle fusion by activation of the Ca2+ channels. It is not known, however, whether the vesicle fusion complex with its attached Ca2+ channels and the vesicle docking complex are parts of a single multifunctional entity. The Ca2+ channel itself and RIM were used as markers for these two elements to address this question. We carried out immunostaining at the giant calyx-type synapse of the chick ciliary ganglion to localize the proteins at a native, undisturbed presynaptic nerve terminal. Quantitative immunostaining (intensity correlation analysis/intensity correlation quotient method) was used to test the relationship between these two proteins at the nerve terminal transmitter release face. The staining intensities for CaV2.2 and RIM covary strongly, consistent with the expectation that they are both components of the transmitter release sites. We then used immunoprecipitation to test if these proteins are also parts of a common molecular complex. However, precipitation of CaV2.2 failed to capture either RIM or Munc-13, a RIM binding partner. These findings indicate that although the vesicle fusion and the vesicle docking mechanisms coexist at the transmitter release face they are not parts of a common stable complex.
Collapse
Affiliation(s)
- R Khanna
- Cellular and Molecular Biology Division, MP14-320 Toronto Western Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario, M5T 2S8 Canada
| | | | | | | | | |
Collapse
|
287
|
Weleber RG, Gregory-Evans K. Retinitis Pigmentosa and Allied Disorders. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
288
|
Fejtova A, Gundelfinger ED. Molecular organization and assembly of the presynaptic active zone of neurotransmitter release. Results Probl Cell Differ 2006; 43:49-68. [PMID: 17068967 DOI: 10.1007/400_012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
At chemical synapses, neurotransmitter is released at a restricted region of the presynaptic plasma membrane, called the active zone. At the active zone, a matrix of proteins is assembled, which is termed the presynaptic grid or cytomatrix at the active zone (CAZ). Components of the CAZ are thought to localize and organize the synaptic vesicle cycle, a series of membrane trafficking events underlying regulated neurotransmitter exocytosis. This review is focused on a set of specific proteins involved in the structural and functional organization of the CAZ. These include the multi-domain Rab3-effector proteins RIM1alpha and RIM2alpha; Bassoon and Piccolo, two multi-domain CAZ scaffolding proteins of enormous size; as well as members of the CAST/ERC family of CAZ-specific structural proteins. Studies on ribbon synapses of retinal photoreceptor cells have fostered understanding the molecular design of the CAZ. In addition, the analysis of the delivery pathways for Bassoon and Piccolo to presynaptic sites during development has produced new insights into assembly mechanisms of brain synapses during development. Based on these studies, the active zone transport vesicle hypothesis was formulated, which postulates that active zones, at least in part, are pre-assembled in neuronal cell bodies and transported as so-called Piccolo-Bassoon transport vesicles (PTVs) to sites of synaptogenesis. Several PTVs can fuse on demand with the presynaptic membrane to rapidly form an active zone.
Collapse
Affiliation(s)
- Anna Fejtova
- Leibniz Institute for Neurobiology, Department of Neurochemistry and Molecular Biology, Magdeburg, Germany.
| | | |
Collapse
|
289
|
Han JH, Lee C, Cheang Y, Kaang BK. Suppression of long-term facilitation by Rab3-effector protein interaction. ACTA ACUST UNITED AC 2005; 139:13-22. [PMID: 15936113 DOI: 10.1016/j.molbrainres.2005.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 04/28/2005] [Accepted: 05/01/2005] [Indexed: 11/24/2022]
Abstract
Long-term facilitation (LTF) in Aplysia is achieved by the modulation of presynaptic release. However, the underlying mechanism that might be related with the regulation of synaptic vesicle release remains unknown. Since Rab3, a neuronal GTP-binding protein, is known to be a key regulator of synaptic vesicle fusion, we investigated the involvement of Rab3 in LTF. To address this issue, we examined the effect of overexpression of wild type Aplysia Rab3 (apRab3) and its mutant forms on LTF. Overexpression of either apRab3 Q80L, a constitutively active apRab3 mutant, or wild type apRab3 completely inhibited LTF. This inhibitory role of apRab3 appears to be mediated by an interaction with an effector molecule(s), possibly Rim. Expression of apRab3 Q80L, V54E double mutant, which do not bind effector molecules such as Rim or Rabphilin, had no effect on LTF. Furthermore, expression of apRab3 Q80L, F18L, D19E triple mutant, which has reduced binding activity with Rim but normally binds with Rabphilin, enhanced evoked basal synaptic release, and the increase in synaptic strength occluded LTF. In conclusion, our data suggest that apRab3 may act as a negative clamp of LTF through the interaction with effector protein(s), possibly Rim.
Collapse
Affiliation(s)
- Jin-Hee Han
- National Research Laboratory of Neurobiology, Institute of Molecular Biology and Genetics, School of Biological Sciences, College of Natural Sciences, Seoul National University, San 56-1 Silim-dong Kwanak-gu, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|
290
|
Morgans CW, Bayley PR, Oesch NW, Ren G, Akileswaran L, Taylor WR. Photoreceptor calcium channels: Insight from night blindness. Vis Neurosci 2005; 22:561-8. [PMID: 16332266 DOI: 10.1017/s0952523805225038] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 05/26/2005] [Indexed: 11/06/2022]
Abstract
The genetic locus for incomplete congenital stationary night blindness
(CSNB2) has been identified as the CACNA1f gene, encoding the
α1F calcium channel subunit, a member of the L-type family
of calcium channels. The electroretinogram associated with CSNB2
implicates α1F in synaptic transmission between retinal
photoreceptors and bipolar cells. Using a recently developed monoclonal
antibody to α1F, we localize the channel to ribbon active
zones in rod photoreceptor terminals of the mouse retina, supporting a
role for α1F in mediating glutamate release from rods.
Detergent extraction experiments indicate that α1F is part
of a detergent-resistant active zone complex, which also includes the
synaptic ribbons. Comparison of native mouse rod calcium currents with
recombinant α1F currents reveals that the
current–voltage relationship for the native current is shifted
approximately 30 mV to more hyperpolarized potentials than for the
recombinant α1F current, suggesting modulation of the
native channel by intracellular factors. Lastly, we present evidence for
L-type α1D calcium channel subunits in cone terminals of
the mouse retina. The presence of α1D channels in cones may
explain the residual visual abilities of individuals with CSNB2.
Collapse
Affiliation(s)
- Catherine W Morgans
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | | | | | | | | | |
Collapse
|
291
|
Abstract
RIM1alpha (Rab3-interacting molecule 1alpha) is a large multidomain protein that is localized to presynaptic active zones [Wang, Okamoto, Schmitz, Hofmann and Südhof (1997) Nature (London) 388, 593-598] and is the founding member of the RIM protein family that also includes RIM2alpha, 2beta, 2gamma, 3gamma and 4gamma [Wang and Südhof (2003) Genomics 81, 126-137]. In presynaptic nerve termini, RIM1alpha interacts with a series of presynaptic proteins, including the synaptic vesicle GTPase Rab3 and the active zone proteins Munc13, liprins and ELKS (a protein rich in glutamate, leucine, lysine and serine). Mouse KOs (knockouts) revealed that, in different types of synapses, RIM1alpha is essential for different forms of synaptic plasticity. In CA1-region Schaffer-collateral excitatory synapses and in GABAergic synapses (where GABA is gamma-aminobutyric acid), RIM1alpha is required for maintaining normal neurotransmitter release and short-term synaptic plasticity. In contrast, in excitatory CA3-region mossy fibre synapses and cerebellar parallel fibre synapses, RIM1alpha is necessary for presynaptic long-term, but not short-term, synaptic plasticity. In these synapses, the function of RIM1alpha in presynaptic long-term plasticity depends, at least in part, on phosphorylation of RIM1alpha at a single site, suggesting that RIM1alpha constitutes a 'phosphoswitch' that determines synaptic strength. However, in spite of the progress in understanding RIM1alpha function, the mechanisms by which RIM1alpha acts remain unknown. For example, how does phosphorylation regulate RIM1alpha, what is the relationship of the function of RIM1alpha in basic release to synaptic plasticity and what is the physiological significance of different forms of RIM-dependent plasticity? Moreover, the roles of other RIM isoforms are unclear. Addressing these important questions will contribute to our view of how neurotransmitter release is regulated at the presynaptic active zone.
Collapse
|
292
|
Heo JB, Rho HS, Kim SW, Hwang SM, Kwon HJ, Nahm MY, Bang WY, Bahk JD. OsGAP1 functions as a positive regulator of OsRab11-mediated TGN to PM or vacuole trafficking. PLANT & CELL PHYSIOLOGY 2005; 46:2005-18. [PMID: 16230331 DOI: 10.1093/pcp/pci215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Ypt/Rab family of small G-proteins is important in regulating vesicular transport. Rabs hydrolyze GTP very slowly on their own and require GTPase-activating proteins (GAPs). Here we report the identification and characterization of OsGAP1, a Rab-specific rice GAP. OsGAP1 strongly stimulated OsRab8a and OsRab11, which are homologs of the mammalian Rab8 and Rab11 proteins that are essential for Golgi to plasma membrane (PM) and trans-Golgi network (TGN) to PM trafficking, respectively. Substitution of two invariant arginines within the catalytic domain of Oryza sativa GTPase-activating protein 1 (OsGAP1) with alanines significantly inhibited its GAP activity. In vivo targeting experiments revealed that OsGAP1 localizes to the TGN or pre-vacuolar compartment (PVC). A yeast expression system demonstrated that wild-type OsGAP1 facilitates O. sativa dissociation inhibitor 3 (OsGDI3)-catalyzed OsRab11 recycling at an early stage, but the OsGAP1(R385A) and (R450A) mutants do not. Thus, GTP hydrolysis is essential for Rab recycling. Moreover, expression of the OsGAP1 mutants in Arabidopsis protoplasts inhibited the trafficking of some cargo proteins, including the PM-localizing H+-ATPase-green fluorescent protein (GFP) and Ca2+-ATPase8-GFP and the central vacuole-localizing Arabidopsis aleurain-like protein (AALP)-GFP. The OsGAP1 mutants caused these proteins to accumulate at the Golgi apparatus. Surprisingly, OsRab11 overproduction relieved the inhibitory effect of the OsGAP1 mutants on vesicular trafficking. OsRab8a had no such effect. Thus, the OsGAP1 mutants may inhibit TGN to PM or central vacuole trafficking because they induce the sequestration of endogenous Rab11. We propose that OsGAP1 facilitates vesicular trafficking from the TGN to the PM or central vacuole by both stimulating the GTPase activity of OsRab11 and increasing the recycling of inactive OsRab11.
Collapse
Affiliation(s)
- Jae Bok Heo
- Division of Applied Life Sciences, Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
293
|
Abstract
The molecular organization of ribbon synapses in photoreceptors and ON bipolar cells is reviewed in relation to the process of neurotransmitter release. The interactions between ribbon synapse-associated proteins, synaptic vesicle fusion machinery and the voltage-gated calcium channels that gate transmitter release at ribbon synapses are discussed in relation to the process of synaptic vesicle exocytosis. We describe structural and mechanistic specializations that permit the ON bipolar cell to release transmitter at a much higher rate than the photoreceptor does, under in vivo conditions. We also consider the modulation of exocytosis at photoreceptor synapses, with an emphasis on the regulation of calcium channels.
Collapse
Affiliation(s)
- Ruth Heidelberger
- Department of Neurobiology & Anatomy, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Wallace B. Thoreson
- Department of Ophthalmology & Visual Sciences and Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul Witkovsky
- Department of Ophthalmology and Department of Physiology & Neuroscience, New York University School of Medicine, New York, NY 10016, USA
- *Corresponding author. Tel: +1 212 263 6488; fax: +1 212 263 7602. E-mail address: (P. Witkovsky)
| |
Collapse
|
294
|
Charlie NK, Schade MA, Thomure AM, Miller KG. Presynaptic UNC-31 (CAPS) is required to activate the G alpha(s) pathway of the Caenorhabditis elegans synaptic signaling network. Genetics 2005; 172:943-61. [PMID: 16272411 PMCID: PMC1456257 DOI: 10.1534/genetics.105.049577] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
C. elegans mutants lacking the dense-core vesicle priming protein UNC-31 (CAPS) share highly similar phenotypes with mutants lacking a neuronal G alpha(s) pathway, including strong paralysis despite exhibiting near normal levels of steady-state acetylcholine release as indicated by drug sensitivity assays. Our genetic analysis shows that UNC-31 and neuronal G alpha(s) are different parts of the same pathway and that the UNC-31/G alpha(s) pathway is functionally distinct from the presynaptic G alpha(q) pathway with which it interacts. UNC-31 acts upstream of G alpha(s) because mutations that activate the G alpha(s) pathway confer similar levels of strongly hyperactive, coordinated locomotion in both unc-31 null and (+) backgrounds. Using cell-specific promoters, we show that both UNC-31 and the G alpha(s) pathway function in cholinergic motor neurons to regulate locomotion rate. Using immunostaining we show that UNC-31 is often concentrated at or near active zones of cholinergic motor neuron synapses. Our data suggest that presynaptic UNC-31 activity, likely acting via dense-core vesicle exocytosis, is required to locally activate the neuronal G alpha(s) pathway near synaptic active zones.
Collapse
Affiliation(s)
- Nicole K Charlie
- Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
295
|
Abstract
Stimulus-secretion coupling is an essential process in secretory cells in which regulated exocytosis occurs, including neuronal, neuroendocrine, endocrine, and exocrine cells. While an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) is the principal signal, other intracellular signals also are important in regulated exocytosis. In particular, the cAMP signaling system is well known to regulate and modulate exocytosis in a variety of secretory cells. Until recently, it was generally thought that the effects of cAMP in regulated exocytosis are mediated by activation of cAMP-dependent protein kinase (PKA), a major cAMP target, followed by phosphorylation of the relevant proteins. Although the involvement of PKA-independent mechanisms has been suggested in cAMP-regulated exocytosis by pharmacological approaches, the molecular mechanisms are unknown. Newly discovered cAMP-GEF/Epac, which belongs to the cAMP-binding protein family, exhibits guanine nucleotide exchange factor activities and exerts diverse effects on cellular functions including hormone/transmitter secretion, cell adhesion, and intracellular Ca(2+) mobilization. cAMP-GEF/Epac mediates the PKA-independent effects on cAMP-regulated exocytosis. Thus cAMP regulates and modulates exocytosis by coordinating both PKA-dependent and PKA-independent mechanisms. Localization of cAMP within intracellular compartments (cAMP compartmentation or compartmentalization) may be a key mechanism underlying the distinct effects of cAMP in different domains of the cell.
Collapse
Affiliation(s)
- Susumu Seino
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | |
Collapse
|
296
|
Powell CM. Gene targeting of presynaptic proteins in synaptic plasticity and memory: across the great divide. Neurobiol Learn Mem 2005; 85:2-15. [PMID: 16230036 PMCID: PMC3910109 DOI: 10.1016/j.nlm.2005.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 08/09/2005] [Accepted: 08/11/2005] [Indexed: 12/21/2022]
Abstract
The past few decades have seen an explosion in our understanding of the molecular basis of learning and memory. The majority of these studies in mammals focused on post-synaptic signal transduction cascades involved in post-synaptic long-lasting plasticity. Until recently, relatively little work examined the role of presynaptic proteins in learning and memory in complex systems. The synaptic cleft figuratively represents a "great divide" between our knowledge of post- versus presynaptic involvement in learning and memory. While great strides have been made in our understanding of presynaptic proteins, we know very little of how presynaptically expressed forms of short- and long-term plasticity participate in information processing and storage. The paucity of cognitive behavioral research in the area of presynaptic proteins, however, is in stark contrast to the plethora of information concerning presynaptic protein involvement in neurotransmitter release, in modulation of release, and in both short- and long-term forms of presynaptic plasticity. It is now of great interest to begin to link the extensive literature on presynaptic proteins and presynaptic plasticity to cognitive behavior. In the future there is great promise with these approaches for identifying new targets in the treatment of cognitive disorders. This review article briefly surveys current knowledge on the role of presynaptic proteins in learning and memory in mammals and suggests future directions in learning and memory research on the presynaptic rim of the "great divide."
Collapse
Affiliation(s)
- Craig M Powell
- Department of Neurology, The University of Texas, Southwestern Medical Center, Dallas, TX 75225, USA.
| |
Collapse
|
297
|
Wu S, Mehta SQ, Pichaud F, Bellen HJ, Quiocho FA. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat Struct Mol Biol 2005; 12:879-85. [PMID: 16155582 DOI: 10.1038/nsmb987] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 08/03/2005] [Indexed: 12/12/2022]
Abstract
Sec15, a component of the exocyst, recognizes vesicle-associated Rab GTPases, helps target transport vesicles to the budding sites in yeast and is thought to recruit other exocyst proteins. Here we report the characterization of a 35-kDa fragment that comprises most of the C-terminal half of Drosophila melanogaster Sec15. This C-terminal domain was found to bind a subset of Rab GTPases, especially Rab11, in a GTP-dependent manner. We also provide evidence that in fly photoreceptors Sec15 colocalizes with Rab11 and that loss of Sec15 affects rhabdomere morphology. Determination of the 2.5-A crystal structure of the C-terminal domain revealed a novel fold consisting of ten alpha-helices equally distributed between two subdomains (N and C subdomains). We show that the C subdomain, mainly via a single helix, is sufficient for Rab binding.
Collapse
Affiliation(s)
- Shuya Wu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
298
|
Lu J, Li H, Wang Y, Südhof TC, Rizo J. Solution Structure of the RIM1α PDZ Domain in Complex with an ELKS1b C-terminal Peptide. J Mol Biol 2005; 352:455-66. [PMID: 16095618 DOI: 10.1016/j.jmb.2005.07.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 07/13/2005] [Accepted: 07/14/2005] [Indexed: 11/27/2022]
Abstract
PDZ domains are widespread protein modules that commonly recognize C-terminal sequences of target proteins and help to organize macromolecular signaling complexes. These sequences usually bind in an extended conformation to relatively shallow grooves formed between a beta-strand and an alpha-helix in the corresponding PDZ domains. Because of this binding mode, many PDZ domains recognize primarily the C-terminal and the antepenultimate side-chains of the target protein, which commonly conform to motifs that have been categorized into different classes. However, an increasing number of PDZ domains have been found to exhibit unusual specificities. These include the PDZ domain of RIMs, which are large multidomain proteins that regulate neurotransmitter release and help to organize presynaptic active zones. The RIM PDZ domain binds to the C-terminal sequence of ELKS with a unique specificity that involves each of the four ELKS C-terminal residues. To elucidate the structural basis for this specificity, we have determined the 3D structure in solution of an RIM/ELKS C-terminal peptide complex using NMR spectroscopy. The structure shows that the RIM PDZ domain contains an unusually deep and narrow peptide-binding groove with an exquisite shape complementarity to the four ELKS C-terminal residues in their bound conformation. This groove is formed, in part, by a set of side-chains that is conserved selectively in RIM PDZ domains and that hence determines, at least in part, their unique specificity.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
299
|
Star EN, Newton AJ, Murthy VN. Real-time imaging of Rab3a and Rab5a reveals differential roles in presynaptic function. J Physiol 2005; 569:103-17. [PMID: 16141272 PMCID: PMC1464220 DOI: 10.1113/jphysiol.2005.092528] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigated the roles of two Rab-family proteins, Rab3a and Rab5a, in hippocampal synaptic transmission using real-time fluorescence imaging. During synaptic activity, Rab3a dissociated from synaptic vesicles and dispersed into neighbouring axonal regions. Dispersion required calcium-dependent exocytosis and was complete before the entire vesicle pool turned over. In contrast, even prolonged synaptic activity produced limited dispersion of Rab5a. A GTPase-deficient mutant, Rab3a (Q81L), dispersed more slowly than wild-type Rab3a, and decreased the rate of exocytosis and the size of the recycling pool of vesicles. While overexpression of Rab3a did not affect vesicle recycling, overexpression of Rab5a reduced the recycling pool size by 50%. We propose that while Rab3a preferentially associates with recycling synaptic vesicles and modulates their trafficking, Rab5a is largely excluded from recycling vesicles.
Collapse
Affiliation(s)
- Erin N Star
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
300
|
Barclay JW, Morgan A, Burgoyne RD. Calcium-dependent regulation of exocytosis. Cell Calcium 2005; 38:343-53. [PMID: 16099500 DOI: 10.1016/j.ceca.2005.06.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 11/30/2022]
Abstract
A rapid increase in intracellular calcium directly triggers regulated exocytosis. In addition, changes in intracellular calcium concentration can adjust the extent of exocytosis (quantal content) or the magnitude of individual release events (quantal size) in both the short- and long-term. It is generally agreed that calcium achieves this regulation via an interaction with a number of different molecular targets located at or near to the site of membrane fusion. We review here the synaptic proteins with defined calcium-binding domains and protein kinases activated by calcium, summarize what is known about their function in membrane fusion and the experimental evidence in support of their involvement in synaptic plasticity.
Collapse
Affiliation(s)
- Jeff W Barclay
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | |
Collapse
|