251
|
Lack of Relationship Between Renal Function and Genetic Variants of CYP3A4, CYP3A5, MDR1, MRP2, UGT1A9, UGT1A8, and UGT2B7 in Patients After Liver Transplantation in a 2-Year Follow-up. Transplant Proc 2020; 52:2487-2491. [PMID: 32276840 DOI: 10.1016/j.transproceed.2020.01.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 01/26/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND The prolonged survival time after liver transplantation (LTX) creates the possibility of the occurrence and development of complications in the late post-transplantation period. Deterioration of renal function is 1 of these complications. The nephrotoxicity of calcineurin inhibitors (CNIs) and their metabolites produced during pharmacokinetic processes in the body is also postulated. The study was aimed at assessment of the relationship between selected single gene polymorphisms (SNPs) for enzymes and transport proteins and change of estimated glomerular filtration rate (ΔeGFR) during 2-year follow-up in LTX patients. METHODS The study involved 244 patients after LTX (105 women [43.0%] and 139 men [57.0%]) receiving tacrolimus (191; 78.3%) or cyclosporine A (53; 21.7%). The study protocol conforms with the Declaration of Helsinki. RESULTS We have not observed significant differences of ΔeGFR between groups distinguished based on analyzed genotypes in patients treated with cyclosporine or tacrolimus. CONCLUSION Genetic variations of CYP3A4, CYP3A5, MDR1, MRP2, UGT1A9, UGT2B7, and UGT2B7 tested in LTX recipients are not associated with kidney function during the 24-month follow-up.
Collapse
|
252
|
Turner RM, Fontana V, Zhang JE, Carr D, Yin P, FitzGerald R, Morris AP, Pirmohamed M. A Genome-wide Association Study of Circulating Levels of Atorvastatin and Its Major Metabolites. Clin Pharmacol Ther 2020; 108:287-297. [PMID: 32128760 DOI: 10.1002/cpt.1820] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 01/03/2023]
Abstract
Atorvastatin (ATV) is frequently prescribed and generally well tolerated, but can lead to myotoxicity, especially at higher doses. A genome-wide association study of circulating levels of ATV, 2-hydroxy (2-OH) ATV, ATV lactone (ATV L), and 2-OH ATV L was performed in 590 patients who had been hospitalized with a non-ST elevation acute coronary syndrome 1 month earlier and were on high-dose ATV (80 mg or 40 mg daily). The UGT1A locus (lead single nucleotide polymorphism, rs887829) was strongly associated with both increased 2-OH ATV/ATV (P = 7.25 × 10-16 ) and 2-OH ATV L/ATV L (P = 3.95 × 10-15 ) metabolic ratios. Moreover, rs45446698, which tags CYP3A7*1C, was nominally associated with increased 2-OH ATV/ATV (P = 6.18 × 10-7 ), and SLCO1B1 rs4149056 with increased ATV (P = 2.21 × 10-6 ) and 2-OH ATV (P = 1.09 × 10-6 ) levels. In a subset of these patients whose levels of ATV and metabolites had also been measured at 12 months after hospitalization (n = 149), all of these associations remained, except for 2-OH ATV and rs4149056 (P = 0.057). Clinically, rs4149056 was associated with increased muscular symptoms (odds ratio (OR) 3.97; 95% confidence interval (CI) 1.29-12.27; P = 0.016) and ATV intolerance (OR 1.55; 95% CI 1.09-2.19; P = 0.014) in patients (n = 870) primarily discharged on high-dose ATV. In summary, both novel and recognized genetic associations have been identified with circulating levels of ATV and its major metabolites. Further study is warranted to determine the clinical utility of genotyping rs4149056 in patients on high-dose ATV.
Collapse
Affiliation(s)
- Richard M Turner
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Vanessa Fontana
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Jieying E Zhang
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Daniel Carr
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Peng Yin
- Department of Biostatistics, University of Liverpool, Liverpool, UK.,Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Richard FitzGerald
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK.,Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
253
|
Gim JA, Kwon Y, Lee HA, Lee KR, Kim S, Choi Y, Kim YK, Lee H. A Machine Learning-Based Identification of Genes Affecting the Pharmacokinetics of Tacrolimus Using the DMET TM Plus Platform. Int J Mol Sci 2020; 21:E2517. [PMID: 32260456 PMCID: PMC7178269 DOI: 10.3390/ijms21072517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tacrolimus is an immunosuppressive drug with a narrow therapeutic index and larger interindividual variability. We identified genetic variants to predict tacrolimus exposure in healthy Korean males using machine learning algorithms such as decision tree, random forest, and least absolute shrinkage and selection operator (LASSO) regression. rs776746 (CYP3A5) and rs1137115 (CYP2A6) are single nucleotide polymorphisms (SNPs) that can affect exposure to tacrolimus. A decision tree, when coupled with random forest analysis, is an efficient tool for predicting the exposure to tacrolimus based on genotype. These tools are helpful to determine an individualized dose of tacrolimus.
Collapse
Affiliation(s)
- Jeong-An Gim
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea; (J.-A.G.); (Y.K.); (H.A.L.); (K.-R.L.); (S.K.)
- Medical Science Research Center, College of Medicine, Korea University, Seoul 02841, Korea
| | - Yonghan Kwon
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea; (J.-A.G.); (Y.K.); (H.A.L.); (K.-R.L.); (S.K.)
- Department of Biostatistics and Computing, Yonsei University Graduate School, Seoul 03722, Korea
| | - Hyun A Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea; (J.-A.G.); (Y.K.); (H.A.L.); (K.-R.L.); (S.K.)
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
| | - Kyeong-Ryoon Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea; (J.-A.G.); (Y.K.); (H.A.L.); (K.-R.L.); (S.K.)
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk 28116, Korea
| | - Soohyun Kim
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea; (J.-A.G.); (Y.K.); (H.A.L.); (K.-R.L.); (S.K.)
| | | | - Yu Kyong Kim
- Daewoong Pharmaceutical Co., Ltd., Seoul 06170, Korea;
| | - Howard Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea; (J.-A.G.); (Y.K.); (H.A.L.); (K.-R.L.); (S.K.)
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
254
|
Worsening of Kidney Transplant Function During 2-Year Follow-up Is Associated With the Genetic Variants of CYP3A4, MDR1, and UGT1A9. Transplant Proc 2020; 52:2363-2367. [PMID: 32222391 DOI: 10.1016/j.transproceed.2020.02.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Calcineurin inhibitors (CNIs), tacrolimus and cyclosporine, undergo pharmacokinetic processes. Enzymes and transport proteins found in various organs are involved. It is possible that genetic polymorphisms of these proteins influence CNIs pharmacokinetics and the generation of CNIs metabolites. CNIs may be nephrotoxic, and it is thought that some CNIs' metabolites may have a similar effect. The study was aimed at the assessment of the relationship between selected gene polymorphisms for enzymes and transport proteins and change of estimated glomerular filtration rate (eGFR) during a 2-year follow-up in kidney transplant (KTX) patients. METHODS The study involved 366 patients after KTX (160 women; 43.7%) receiving tacrolimus (62.57%) and cyclosporine (37.43%). The mean age was 50.1 years, and the median time after KTX was 60.5 months. The study protocol conformed with the Declaration of Helsinki. The percent of difference between eGFR at baseline and at 24 months (ΔeGFR) was calculated. We evaluated selected genetic polymorphisms of CYP3A4, CYP3A5, MDR1, UGT1A9, UGT2B7, UGT1A8, and MRP2. RESULTS In the tacrolimus group, there were no significant differences of ΔeGFR between groups distinguished based on analyzed genotypes. In the cyclosporine group, differences were found for CYP3A4∗22 C/C -12.3 (-26.8 to -1.8) versus C/T 13.2 (12.4 to 13.9), P = .034; MDR1 3435C>T C/T -18.2 (-31.5 to -5.7) versus C/C -1.8 (-17.1 to 6.9) vs T/T -8.1 (-18.4 to 12.4), P = .031; and UGT1A9 2152C>T C/C -9.0 (-25.5 to 2.8) versus C/T -26.8 (-31.9 to -24.1), P = .017. CONCLUSION The study results suggest that in KTX metabolic transformations and transport, especially of cyclosporine, dependence on the genetic variability of CYP3A4, UGT1A9, and MDR1 may contribute to kidney damage.
Collapse
|
255
|
Nakamura T, Fukuda M, Matsukane R, Suetsugu K, Harada N, Yoshizumi T, Egashira N, Mori M, Masuda S. Influence of POR*28 Polymorphisms on CYP3A5*3-Associated Variations in Tacrolimus Blood Levels at an Early Stage after Liver Transplantation. Int J Mol Sci 2020; 21:ijms21072287. [PMID: 32225074 PMCID: PMC7178010 DOI: 10.3390/ijms21072287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
It is well known that the CYP3A5*3 polymorphism is an important marker that correlates with the tacrolimus dose requirement after organ transplantation. Recently, it has been revealed that the POR*28 polymorphism affects the pharmacokinetics of tacrolimus in renal transplant patients. In this study, we examined whether POR*28 as well as CYP3A5*3 polymorphism in Japanese recipients and donors would be another biomarker for the variation of tacrolimus blood levels in the recipients during the first month after living-donor liver transplantation. We enrolled 65 patients treated with tacrolimus, who underwent liver transplantation between July 2016 and January 2019. Genomic DNA was extracted from whole-blood samples, and genotyping was performed to examine the presence of CYP3A5*3 and POR*28 polymorphisms in the recipients and donors. The CYP3A5*3/*3 genotype (defective CYP3A5) of the recipient (standard partial regression coefficient [median C/D ratio of CYP3A5 expressor vs. CYP3A5 non-expressor, p value]: Pod 1–7, β= −0.389 [1.76 vs. 2.73, p < 0.001]; Pod 8–14, β = −0.345 [2.03 vs. 2.83, p < 0.001]; Pod 15–21, β= −0.417 [1.75 vs. 2.94, p < 0.001]; Pod 22–28, β = −0.627 [1.55 vs. 2.90, p < 0.001]) rather than donor (Pod 1–7, β = n/a [1.88 vs. 2.76]; Pod 8–14, β = n/a [1.99 vs. 2.93]; Pod 15–21, β = −0.175 [1.91 vs. 2.94, p = 0.004]; Pod 22–28, β = n/a [1.61 vs. 2.67]) significantly contributed to the increase in the concentration/dose (C/D) ratio of tacrolimus for at least one month after surgery. We found that the tacrolimus C/D ratio significantly decreased from the third week after transplantation when the recipient carried both CYP3A5*1 (functional CYP3A5) and POR*28 (n = 19 [29.2%], median C/D ratio [inter quartile range] = 1.58 [1.39–2.17]), compared with that in the recipients carrying CYP3A5*1 and POR*1/*1 (n = 8 [12.3%], median C/D ratio [inter quartile range] = 2.23 [2.05–3.06]) (p < 0.001). In conclusion, to our knowledge, this is the first report suggesting that the POR*28 polymorphism is another biomarker for the tacrolimus oral dosage after liver transplantation in patients carrying CYP3A5*1 rather than CYP3A5*3/*3.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Clinical Pharmacology and Biopharmaceutics, The Pharmaceutical College, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Mio Fukuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Ryosuke Matsukane
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Kimitaka Suetsugu
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan
- Correspondence: ; Tel.: +81-476-28-1401
| |
Collapse
|
256
|
Han JM, Yee J, Chung JE, Lee KE, Park K, Gwak HS. Effects of cytochrome P450 oxidoreductase genotypes on the pharmacokinetics of amlodipine in healthy Korean subjects. Mol Genet Genomic Med 2020; 8:e1201. [PMID: 32134573 PMCID: PMC7216797 DOI: 10.1002/mgg3.1201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the effects of P450 oxidoreductase (POR) genetic polymorphisms on the pharmacokinetic parameters of amlodipine. METHODS After a single 10-mg dose of amlodipine administration, 25 healthy male subjects completed genotyping for 12 single nucleotide polymorphisms (SNPs) of the POR genes, cytochrome P450 (CYP)3A4 g.25343G>A (CYP3A4*1G), and CYP3A5 g.12083G>A (CYP3A5*3). Stratified analysis and in silico analysis to predict the possible effects of given variants on splicing were performed. RESULTS The maximum blood concentration (Cmax ) of amlodipine in carriers of g.57332T>C and g.56551G>A SNPs of the POR gene was statistically significantly different. In addition, T-allele carriers of g.57332T>C had a 21% higher Cmax than those with the CC genotype (p = .007). Subjects who carried the wild-type g.56551G>A allele also had a 1.12-fold significantly higher Cmax than subjects with mutant-type homozygous carriers (p = .033). In stratified analyses, g.57332T>C was significantly associated with a 1.3-fold increase in Cmax value in T-allele carriers compared with subjects with the CC genotype in CYP3A4 and CYP3A5 expressers. POR g.57332T>C increased the score above the threshold in both ESEfinder 3.0 and HSF 3.1. CONCLUSION This study identified a novel SNP of the POR gene, which affected amlodipine metabolism and may reduce interindividual variation in responses to amlodipine.
Collapse
Affiliation(s)
- Ji Min Han
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jee Eun Chung
- College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Kyung Eun Lee
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Kyungsoo Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
257
|
Moriwaki T, Abe S, Oshimura M, Kazuki Y. Transchromosomic technology for genomically humanized animals. Exp Cell Res 2020; 390:111914. [PMID: 32142854 DOI: 10.1016/j.yexcr.2020.111914] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
"Genomically" humanized animals are invaluable tools for generating human disease models and for biomedical research. Humanized animal models have generally been developed via conventional transgenic technologies; however, conventional gene delivery vectors such as viruses, plasmids, bacterial artificial chromosomes, P1 phase-derived artificial chromosomes, and yeast artificial chromosomes have limitations for transgenic animal creation as their loading gene capacity is restricted, and the expression of transgenes is unstable. Transchromosomic (Tc) techniques using mammalian artificial chromosomes, including human chromosome fragments, human artificial chromosomes, and mouse artificial chromosomes, have overcome these limitations. These tools can carry multiple genes or Mb-sized genomic loci and their associated regulatory elements, which has facilitated the creation of more useful and complex transgenic models for human disease, drug development, and humanized animal research. This review describes the history of Tc animal development, the applications of Tc animals, and future prospects.
Collapse
Affiliation(s)
- Takashi Moriwaki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Trans Chromosomics, Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuo Oshimura
- Trans Chromosomics, Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
258
|
Cheng H, Hosgood HD, Deng L, Ye K, Su C, Sharma J, Yang Y, Halmos B, Perez-Soler R. Survival Disparities in Black Patients With EGFR-mutated Non-small-cell Lung Cancer. Clin Lung Cancer 2020; 21:177-185. [PMID: 31420240 PMCID: PMC6980454 DOI: 10.1016/j.cllc.2019.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Little is known about the difference between black and non-black patients with epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC), particularly regarding survival. We thus characterized the EGFR expression profile, clinical characteristics, and survival outcome in these patients. PATIENT AND METHODS We reviewed the cancer registry and patient charts at a New York-Bronx network (n = 2773) treating a large population of minority patients, for non-squamous NSCLC (n = 1986) diagnosed between 2009 and 2015. Survival was adjusted for smoking, gender, age, weight, and stage. RESULTS The EGFR mutation rate was 15% (98/652) in tested patients (black, 14%; non-black, 16%). There was no significant difference between the 2 cohorts with respect to age at diagnosis, gender, presenting stages, and socioeconomic status. On the other hand, weight was noted to be heavier in black patients with EGFR-mutated NSCLC than their non-black counterparts (P = .012). After adjusting for gender, age, smoking status, weight, and stage, the multivariate analysis revealed no racial disparity in survival among patients with wild-type EGFR (P = .774); However, among patients with EGFR-mutated NSCLC, black patients had shorter survival in comparison with non-black patients (P = .001), with 2-year survival rates being 33% versus 61%, respectively. Such shorter survival was also observed among EGFR-inhibitor treated patients with common EGFR mutations (P = .040). CONCLUSIONS To our knowledge, this is the first report of inferior survival among black patients with NSCLC with EGFR mutations, relative to non-black patients. The survival disparities suggest the need of more tailored management for this patient population.
Collapse
Affiliation(s)
- Haiying Cheng
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY.
| | - H Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Lei Deng
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Christopher Su
- Department of Medicine, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY
| | - Janaki Sharma
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY
| | - Yuanquan Yang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Balazs Halmos
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY
| | - Roman Perez-Soler
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY
| |
Collapse
|
259
|
Cirnigliaro G, Di Bernardo I, Caricasole V, Piccoli E, Scaramelli B, Pomati S, Villa C, Pantoni L, Dell'Osso B. Treatment-related transient splenial lesion of the Corpus Callosum in patients with neuropsychiatric disorders: a literature overview with a case report. Expert Opin Drug Saf 2020; 19:315-325. [PMID: 32063066 DOI: 10.1080/14740338.2020.1731472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Transient-localized lesions of the splenium of the corpus callosum (SCC) have been described in various clinical conditions, some of them being attributed to the withdrawal of psychotropic drugs. The pathophysiology of the lesion reflects cytotoxic edema and reversible demyelination.Areas covered: The present article aimed at reviewing cases of transient SCC lesion exclusively related to changes in pharmacotherapy. It also reports the original case of a patient receiving a complex psychopharmacological therapy who developed a transient SCC lesion investigated by magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and pharmacogenetic profiling.Expert opinion: To date, only one review on the subject has been published, analyzing 22 cases of transient SCC lesion arising in epileptic patients on antiepileptic therapy. It hypothesized that the nature of the lesion is a cytotoxic edema and the cases described in the subsequent 14 years seem to support this hypothesis. The authors reported the case of an Italian-Egyptian patient who developed a transient SCC lesion after the rapid withdrawal of Carbamazepine and Lurasidone. The lesion completely disappeared from the MRI performed after 1 month. Patient's ethnic group and its pharmacogenetic profile were considered as possible causes of altered drug metabolism and, likely, of the SCC lesion.
Collapse
Affiliation(s)
- Giovanna Cirnigliaro
- Department of Mental Health, Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Ilaria Di Bernardo
- Department of Mental Health, Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Valentina Caricasole
- Department of Mental Health, Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Eleonora Piccoli
- Department of Mental Health, Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Barbara Scaramelli
- Department of Mental Health, Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Simone Pomati
- Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, Neurology Unit, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Chiara Villa
- Department of Radiology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Leonardo Pantoni
- Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, Neurology Unit, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy.,Centro per lo studio dei meccanismi molecolari alla base delle patologie neuro-psico-geriatriche, University of Milan, Milan, Italy
| | - Bernardo Dell'Osso
- Department of Mental Health, Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy.,Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, CA, USA.,Centro per lo studio dei meccanismi molecolari alla base delle patologie neuro-psico-geriatriche, University of Milan, Milan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Brain Therapeutic, University of Milan, Milan, Italy
| |
Collapse
|
260
|
El-Shair S, Al Shhab M, Zayed K, Alsmady M, Zihlif M. Association Between CYP3A4 and CYP3A5 Genotypes and Cyclosporine's Blood Levels and Doses among Jordanian Kidney Transplanted Patients. Curr Drug Metab 2020; 20:682-694. [PMID: 31385766 DOI: 10.2174/1389200220666190806141825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cyclosporine is used as an immunosuppressive agent in kidney transplantation. It has a narrow therapeutic window. Cyclosporine is predominantly metabolized by CYP3A4 and CYP3A5. The most common Single Nucleotide Polymorphisms (SNPs) affecting cyclosporine metabolism (CYP3A4*1B, CYP3A4*1G, CYP3A4*22 and CYP3A5*3) were investigated among Jordanian kidney transplanted patients to find out the genotypes and allele frequencies of these SNPs. Additionally, this study investigated whether genotypes of CYP3A4 and CYP3A5 affect C2 blood levels, dosing of cyclosporine and the prevalence of acute rejection. METHODS Blood samples of 109 adult patients taking cyclosporine as their primary immunosuppressant for kidney transplantation were collected from the Prince Hamzah Hospital, Amman, Jordan. Patients' first C2 blood levels and their first two given doses were collected. Patients were genotyped for the four SNPs using Polymerase Chain Reaction- restriction Fragment Length Polymorphism (PCR-RFLP) assay method. RESULTS Allele frequencies among Jordanian patients for CYP3A4*1B, CYP3A4*1G, CYP3A4*22 and CYP3A5*3 were 0.037, 0.399, 0.037 and 0.271, respectively. There was a significant association between CYP3A4*22 and mean difference in the second and first given doses (P=0.034). There was a big difference between CYP3A4*22 and the mean of the first C2 blood levels (P=0.063). CONCLUSION There was a strong association between CYP3A4*22 and the mean difference between the second and first given doses. There was a trend of significant difference between the mean of the first C2 blood levels among heterozygous CYP3A4*22 patients. Pharmacogenomics may hold promise in assisting the prediction of the best cyclosporine dose and C2 blood level among Jordanian kidney transplant patients.
Collapse
Affiliation(s)
- Sahar El-Shair
- Department of Pharmacology, The University of Jordan, Amman, Jordan
| | | | - Khaled Zayed
- Department of Nephrology and Kidney Transplantation, Prince Hamzah Hospital, Amman, Jordan
| | - Moaath Alsmady
- Department of Pharmacology, The University of Jordan, Amman, Jordan
| | - Malek Zihlif
- Department of Pharmacology, The University of Jordan, Amman, Jordan
| |
Collapse
|
261
|
Bonnet S, Falkowski S, Deppenweiler M, Monchaud C, Arnion H, Picard N, Woillard JB. Effect of genetic polymorphisms in CYP3A4, CYP3A5, and m-TOR on everolimus blood exposure and clinical outcomes in cancer patients. THE PHARMACOGENOMICS JOURNAL 2020; 20:647-654. [PMID: 32015456 DOI: 10.1038/s41397-020-0152-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Genetic variations in CYP3A4, CYP3A5, and m-TOR could contribute to interpatient variability regarding m-TOR inhibitors pharmacokinetics or cellular effects. The purpose of this study was to evaluate the influence of selected candidate variations in these genes on everolimus pharmacokinetics, efficacy, and toxicity in cancer patients. Thirty-four patients receiving everolimus for breast (n = 22) or renal (n = 10) cancers, or neuroendocrine tumors of pancreatic origin (n = 2) were included in the study. Six variants in genes related to everolimus pharmacokinetics (CYP3A4*22 and CYP3A5*3) or pharmacodynamics (m-TOR rs2295079, rs2295080, rs2024627 and rs1057079) were genotyped. Associations with trough concentrations (C0), dose reductions, or treatment interruptions due to toxicity and progression-free survival were investigated using generalized estimating equations and Cox models. CYP3A5 nonexpressers had significantly higher C0 as compared with expressers (βGG vs AG = + 6.32 ± 2.22 ng/mL, p = 0.004). m-TOR rs2024627 was significantly associated with an increased risk of cancer progression studied alone or as part of an haplotype (T vs C: HR = 2.60, 95% CI [1.16-5.80], p = 0.020; CTCG vs other haplotypes HR = 2.29, 95% CI [1.06-4.95], p = 0.035, respectively). This study showed that CYP3A5 expression impacts everolimus pharmacokinetics in cancer patients and identified a genetic variation in m-TOR associated with the risk of cancer progression.
Collapse
Affiliation(s)
- Stéphanie Bonnet
- University of Limoges, IPPRITT, F-87000, Limoges, France.,INSERM, IPPRITT, UMR1248, F-87000, Limoges, France
| | | | | | - Caroline Monchaud
- University of Limoges, IPPRITT, F-87000, Limoges, France.,INSERM, IPPRITT, UMR1248, F-87000, Limoges, France.,Department of Pharmacology and Toxicology, CHU Limoges, F-87000, Limoges, France
| | - Hélène Arnion
- University of Limoges, IPPRITT, F-87000, Limoges, France.,INSERM, IPPRITT, UMR1248, F-87000, Limoges, France
| | - Nicolas Picard
- University of Limoges, IPPRITT, F-87000, Limoges, France.,INSERM, IPPRITT, UMR1248, F-87000, Limoges, France.,Department of Pharmacology and Toxicology, CHU Limoges, F-87000, Limoges, France
| | - Jean-Baptiste Woillard
- University of Limoges, IPPRITT, F-87000, Limoges, France. .,INSERM, IPPRITT, UMR1248, F-87000, Limoges, France. .,Department of Pharmacology and Toxicology, CHU Limoges, F-87000, Limoges, France.
| |
Collapse
|
262
|
Jones S, Yarbrough AL, Fantegrossi WE, Prather PL, Bush JM, Radominska‐Pandya A, Fujiwara R. Identifying cytochrome P450s involved in oxidative metabolism of synthetic cannabinoid N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135). Pharmacol Res Perspect 2020; 8:e00561. [PMID: 32003945 PMCID: PMC6993754 DOI: 10.1002/prp2.561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 01/04/2020] [Indexed: 12/31/2022] Open
Abstract
Synthetic cannabinoids (SCBs), designer drugs marketed as legal alternatives to marijuana, act as ligands to cannabinoid receptors; however, they have increased binding affinity and potency, resulting in toxicity symptoms such as cardiovascular incidents, seizures, and potentially death. N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a third generation SCB. When incubated with hepatocytes, it undergoes oxidation, hydrolysis, and glucuronidation, resulting in 29 metabolites, with monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21) being the predominant metabolites. The enzymes responsible for this oxidative metabolism were unknown. Thus, the aim of this study was to identify the cytochrome P450 (P450s or CYPs) enzymes involved in the oxidative metabolism of STS-135. In this study, STS-135 was incubated with liver, intestinal, and brain microsomes and recombinant P450s to determine the enzymes involved in its metabolism. Metabolite quantification was carried out using ultra-performance liquid chromatography. STS-135 was extensively metabolized in HLMs and HIMs. Screening assays indicated CYP3A4 and CYP3A5 could be responsible for STS-135's oxidation. Through incubations with genotyped HLMs, CYP3A4 was identified as the primary oxidative enzyme. Interestingly, CYP2J2, a P450 isoform expressed in cardiovascular tissues, showed high activity towards the formation of M25 with a Km value of 11.4 μmol/L. Thus, it was concluded that STS-135 was primarily metabolized by CYP3A4 but may have extrahepatic metabolic pathways as well. Upon exposure to STS-135, individuals with low CYP3A4 activity could retain elevated blood concentration, resulting in toxicity. Additionally, CYP2J2 may aid in protecting against STS-135-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Sabrina Jones
- Department of Biochemistry and Molecular BiologySchool of MedicineUniversity of Arkansas for Medical SciencesLittle RockARUSA
- University of Arkansas FayettevilleFayettevilleARUSA
| | - Azure L. Yarbrough
- Department of Biochemistry and Molecular BiologySchool of MedicineUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Department of BiologyUniversity of Arkansas Little RockLittle RockARUSA
| | - William E. Fantegrossi
- Department of Pharmacology & ToxicologySchool of MedicineUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Paul L. Prather
- Department of Pharmacology & ToxicologySchool of MedicineUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - John M. Bush
- Department of BiologyUniversity of Arkansas Little RockLittle RockARUSA
| | - Anna Radominska‐Pandya
- Department of Biochemistry and Molecular BiologySchool of MedicineUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Ryoichi Fujiwara
- Department of Biochemistry and Molecular BiologySchool of MedicineUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
263
|
Comparison of steroid hormone hydroxylation mediated by cytochrome P450 3A subfamilies. Arch Biochem Biophys 2020; 682:108283. [PMID: 32001245 DOI: 10.1016/j.abb.2020.108283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 01/06/2023]
Abstract
Hydroxylation activity at the 6β-position of steroid hormones (testosterone, progesterone, and cortisol) by human cytochromes P450 (CYP) 3A4, polymorphic CYP3A5, and fetal CYP3A7 were compared to understand the catalytic properties of the major forms of human CYP3A subfamily. Testosterone, progesterone, and cortisol 6β-hydroxylation activities of recombinant CYP3A4, CYP3A5, and CYP3A7 were determined by liquid chromatography. Michaelis constants (Km) for CYP3A7-mediated 6β-hydroxylation of testosterone, progesterone, and cortisol were similar to those of CYP3A4 and CYP3A5. The maximal velocity (kcat) and kcat/Km values for CYP3A4 were the highest, followed by CYP3A5 and those for CYP3A7 were the lowest among three CYP3A subfamily members. A decrease in Km values for progesterone 6β-hydroxylation by CYP3A4, CYP3A5, and CYP3A7 in the presence of testosterone was observed, and the kcat values for CYP3A5 gradually increased with increasing testosterone. This indicated that testosterone stimulated progesterone 6β-hydroxylation by all three CYP3A subfamily members. However, progesterone inhibited testosterone 6β-hydroxylation mediated by CYP3A4, CYP3A5, and CYP3A7. In conclusion, the kcat values, rather than Km values, for 6β-hydroxylation of three steroid hormones mediated by CYP3A7 were different from those for CYP3A4 and CYP3A5. In addition, the inhibitory/stimulatory pattern of steroid-steroid interactions would be different among CYP3A subfamily members.
Collapse
|
264
|
Tönshoff B. Immunosuppressive therapy post-transplantation in children: what the clinician needs to know. Expert Rev Clin Immunol 2020; 16:139-154. [DOI: 10.1080/1744666x.2020.1714437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Burkhard Tönshoff
- Department of Pediatrics I, University Children’s Hospital, Heidelberg, Germany
| |
Collapse
|
265
|
Wang Z, Zheng M, Yang H, Han Z, Tao J, Chen H, Sun L, Guo M, Wang L, Tan R, Wei JF, Gu M. Association of Genetic Variants in CYP3A4, CYP3A5, CYP2C8, and CYP2C19 with Tacrolimus Pharmacokinetics in Renal Transplant Recipients. Curr Drug Metab 2020; 20:609-618. [PMID: 31244435 DOI: 10.2174/1389200220666190627101927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/05/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Our study aimed to investigate the pharmacogenetics of cytochrome P3A4 (CYP3A4), CYP3A5, CYP2C8, and CYP2C19 and their influence on TAC Pharmacokinetics (PKs) in short-term renal transplant recipients. METHODS A total of 105 renal transplant recipients were enrolled. Target Sequencing (TS) based on next-generation sequencing technology was used to detect all exons, exon/intron boundaries, and flanking regions of CYP3A4, CYP3A5, CYP2C8, and CYP2C19. After adjustment of Minor Allele Frequencies (MAF) and Hardy-Weinberg Equilibrium (HWE) analysis, tagger Single-nucleotide Polymorphisms (SNPs) and haplotypes were identified. Influence of tagger SNPs on TAC concentrations was analyzed. RESULTS A total of 94 SNPs were identified in TS analysis. Nine tagger SNPs were selected, and two SNPs (rs15524 and rs4646453) were noted to be significantly associated with TAC PKs in short-term post-transplant follow-up. Measurement time points of TAC, body mass index (BMI), usage of sirolimus, and incidence of Delayed Graft Function (DGF) were observed to be significantly associated with TAC PKs. Three haplotypes were identified, and rs15524-rs4646453 was found to remarkably contribute to TAC PKs. Recipients carrying H2/H2 (GG-AA) haplotype also showed significantly high weight- and dose-adjusted TAC concentrations in posttransplant periods of 7, 14, and 30 days and 3 and 6 months. CONCLUSIONS Two tagger SNPs, namely, rs15524 and rs4646453, are significantly related to the variability of TAC disposition, and TAC measurement time points, BMI, usage of sirolimus, and incidence of DGF contribute to this influence. Recipients carrying H2/H2 (GG-AA) haplotype in rs15524-rs4646453 may require a low dosage of TAC during 1-year follow-up posttransplant.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Miao Guo
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Libin Wang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
266
|
Ganesapandian M, Ramasamy K, Adithan S, Narayan SK. Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on dose-adjusted plasma levels of carbamazepine in epileptic patients in South Indian population. Indian J Pharmacol 2020; 51:384-388. [PMID: 32029960 PMCID: PMC6984020 DOI: 10.4103/ijp.ijp_122_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/18/2019] [Accepted: 12/23/2019] [Indexed: 11/06/2022] Open
Abstract
AIM: The aim of the study was to compare the dose-adjusted plasma levels of carbamazepine (CBZ) among expressers and nonexpressers of cytochrome P450 3A5 (CYP3A5)* 3 genotypes. SUBJECTS AND METHODS: The study was carried out in 100 epileptic patients who were on CBZ monotherapy. Steady-state plasma CBZ levels were measured using reverse-phase high-performance liquid chromatography method, and genotyping of CYP3A5 was done using real-time polymerase chain reaction method. RESULTS: Patients inheriting CYP3A5*3/*3 variant (nonexpressers) had an increased plasma concentration of CBZ (4.86 μg/ml) when compared to patients inheriting either CYP3A5*1/*1 or CYP3A5*1/*3 (expressers) (4.3 μg/ml, P = 0.004). Nonexpressers had significantly increased plasma concentrations of CBZ when adjusted for dose and weight when compared to expressers (P < 0.002 and P < 0.001, respectively). The frequency of adverse reactions in expressers and nonexpressers was 12% and 9%, respectively. CONCLUSION: There is a significant influence of CYP3A5*3 genetic polymorphism (6986A>G) on dose-adjusted plasma levels of CBZ in epileptic patients in the South Indian population.
Collapse
|
267
|
Banerjee BD, Kumar R, Thamineni KL, Shah H, Thakur GK, Sharma T. Effect of Environmental Exposure and Pharmacogenomics on Drug Metabolism. Curr Drug Metab 2020; 20:1103-1113. [PMID: 31933442 DOI: 10.2174/1389200221666200110153304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/02/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pesticides are major xenobiotic compounds and environmental pollutants, which are able to alter drug-metabolizing enzyme as well as pharmacokinetics of drugs. Subsequent to the release of the human genome project, genetic variations (polymorphism) become an integral part of drug development due to their influence on disease susceptibility/ progression of the disease and their impact on drug absorption, distribution, metabolism of active metabolites and finally excretion of the drug. Genetic polymorphisms crucially regulate pharmacokinetics and pharmacodynamics of drugs under the influence of physiological condition, lifestyle, as well as pathological conditions collectively. OBJECTIVE To review all the evidence concerning the effect of environmental exposure on drug metabolism with reference to pharmacogenomics. METHODS Scientific data search and review of basic, epidemiological, pharmacogenomics and pharmacokinetics studies were undertaken to evaluate the influence of environmental contaminants on drug metabolism. RESULTS Various environmental contaminants like pesticides effectively alter drug metabolism at various levels under the influence of pharmacogenomics, which interferes with pharmacokinetics of drug metabolism. Genetic polymorphism of phase I and phase II xenobiotic-metabolizing enzymes remarkably alters disease susceptibility as well as the progression of disease under the influence of various environmental contaminants at various levels. CONCLUSION Individual specific drug response may be attributed to a large variety of factors alone or in combination ranging from genetic variations (SNP, insertion, deletion, duplication etc.) to physiological setting (gender, age, body size, and ethnicity), environmental or lifestyle factors (radiation exposure, smoking, alcohol, nutrition, exposure to toxins, etc.); and pathological conditions (obesity, diabetes, liver and renal function).
Collapse
Affiliation(s)
- Basu Dev Banerjee
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi-110095, India
| | - Ranjeet Kumar
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi-110095, India
| | - Krishna Latha Thamineni
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi-110095, India
| | - Harendra Shah
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi-110095, India
| | - Gaurav Kumar Thakur
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi-110095, India
| | - Tusha Sharma
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi-110095, India
| |
Collapse
|
268
|
Di Napoli M, Singh P, Lattanzi S, Divani AA. The use of cilostazol for secondary stroke prevention: isn't time to be evaluated in Western countries? Expert Opin Pharmacother 2020; 21:381-387. [PMID: 31935129 DOI: 10.1080/14656566.2019.1707181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Mario Di Napoli
- Department of Neurology and Stroke Unit, San Camillo de' Lellis General Hospital, Rieti, Italy.,Neurological Section, Neuro-epidemiology Unit, SMDN, Centre for Cardiovascular Medicine and Cerebrovascular Disease Prevention, Sulmona, L'Aquila, Italy
| | - Puneetpal Singh
- Division of Molecular Genetics, Department of Human Genetics, Punjabi University, Patiala, India
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
269
|
Abstract
Carbamazepine (CMZ) is a drug from the group of anticonvulsants, similar in chemical structure to tricyclic antidepressants. CMZ is widely used for mental disorders and neurological diseases. The lecture discusses the safety of CMZ in respect to personalized medicine, while considering the pharmacogenetic profile of the patient.The authors declare about the absence of conflict of interest with respect to this publication. All authors contributed equally to this article.
Collapse
Affiliation(s)
- N. A. Shnayder
- Bekhterev National Medical Research Center of Psychiatry and Neurology
| | - E. N. Bochanova
- Bekhterev National Medical Research Center of Psychiatry and Neurology;
Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - D. V. Dmitrenko
- Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - R. F. Nasyrova
- Bekhterev National Medical Research Center of Psychiatry and Neurology
| |
Collapse
|
270
|
Khan AR, Raza A, Firasat S, Abid A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. THE PHARMACOGENOMICS JOURNAL 2020; 20:553-562. [PMID: 31902947 DOI: 10.1038/s41397-019-0144-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/29/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Tacrolimus is an immunosuppressive drug widely used in kidney transplantation. Cytochrome P450 3A5 (CYP3A5) protein is involved in tacrolimus metabolism. Single nucleotide polymorphism in the CYP3A5 gene (6986A>G) results in alteration in metabolic activity of CYP3A5 protein which eventually affects the tacrolimus concentration. Patients with CYP3A5 expresser genotypes (A/A *1/*1 and A/G *1/*3) metabolize tacrolimus more rapidly than CYP3A5 nonexpressers (G/G *3/*3). We performed meta-analysis to estimate the effect of CYP3A5 polymorphism on the trough concentration-dose ratio (Co/D) and risk of renal allograft rejection with similar post-transplant periods and Asian vs. European populations. Our results showed that the tacrolimus Co/D ratio is significantly lower in CYP3A5 expresser group as compared with nonexpresser in Asian as well as in European populations at any post-transplant period (p < 0.00001). No significant association was found with renal allograft rejection episodes between expressers and nonexpressers in European populations (OR: 1.12; p = 0.47). Interestingly, Asian population (with expresser genotypes) and patients after 3 years post-transplantation (with expresser genotypes) have a higher risk of rejection (OR: 1.62; p < 0.05), (OR: 1.68; p < 0.05), respectively. This could be due to high prevalence of expresser genotypes in Asian population. Few tacrolimus-based studies are identified with long-term graft survival. There is a need to have more studies looking for long-term graft survival in expresser as well as no-expresser groups especially in Asian populations who have high frequency of CYP3A5 functional genotype.
Collapse
Affiliation(s)
- Abdul Rafay Khan
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Ali Raza
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Sadaf Firasat
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Aiysha Abid
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan.
| |
Collapse
|
271
|
Hejazian SM, Zununi Vahed S, Moghaddas Sani H, Nariman-Saleh-Fam Z, Bastami M, Hosseiniyan Khatibi SM, Ardalan M, Samadi N. Steroid-resistant nephrotic syndrome: pharmacogenetics and epigenetic points and views. Expert Rev Clin Pharmacol 2020; 13:147-156. [PMID: 31847609 DOI: 10.1080/17512433.2020.1702877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Glucocorticoids (GCs) are the first-line therapy for patients with nephrotic syndrome (NS), a common glomerular disease, that cause complete remission in most of the cases. In response to the treatment, NS patients are divided into glucocorticoid-sensitive and -resistant. This variation is due to the differences in pharmacokinetics and pharmacodynamics of GCs in each patient that affect the response to the treatment modality. Since the genetic variations in drug-metabolizing enzymes and transporter proteins significantly impact the pharmacokinetics, efficacy and safety of the applied medications, this review highlights the basic mechanisms of genetic variations involved in GCs metabolism in drug-resistant NS patients.Areas covered: This review explains the pharmacogenetic variations that influence the profile of GCs responses and their pharmacokinetics in NS patients. Moreover, the epigenetic variations including histone modifications and miRNA gene regulation that have an influence on GCs responses will review. A comprehensive literature search was performed using different keywords to the reviewed topics.Expert opinion: The accumulative data suggest the importance of pharmacogenetic studies to develop personalized therapies and increase the GCs responsiveness in these patients. It is imperative to know that genetic testing does not give absolute answers to all existing questions in steroid resistance.
Collapse
Affiliation(s)
- Seyede Mina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hakimeh Moghaddas Sani
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Nasser Samadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
272
|
Farouk SS, Rein JL. The Many Faces of Calcineurin Inhibitor Toxicity-What the FK? Adv Chronic Kidney Dis 2020; 27:56-66. [PMID: 32147003 DOI: 10.1053/j.ackd.2019.08.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Calcineurin inhibitors (CNIs) are both the savior and Achilles' heel of kidney transplantation. Although CNIs have significantly reduced rates of acute rejection, their numerous toxicities can plague kidney transplant recipients. By 10 years, virtually all allografts will have evidence of CNI nephrotoxicity. CNIs have been strongly associated with hypertension, dyslipidemia, and new onset of diabetes after transplantation-significantly contributing to cardiovascular risk in the kidney transplant recipient. Multiple electrolyte derangements including hyperkalemia, hypomagnesemia, hypercalciuria, metabolic acidosis, and hyperuricemia may be challenging to manage for the clinician. Finally, CNI-associated tremor, gingival hyperplasia, and defects in hair growth can have a significant impact on the transplant recipient's quality of life. In this review, the authors briefly discuss the pharmacokinetics of CNI and discuss the numerous clinically relevant toxicities of commonly used CNIs, cyclosporine and tacrolimus.
Collapse
|
273
|
Wu B, Tong J, Ran Z. Tacrolimus Therapy in Steroid-Refractory Ulcerative Colitis: A Review. Inflamm Bowel Dis 2020; 26:24-32. [PMID: 30980713 DOI: 10.1093/ibd/izz068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Indexed: 12/25/2022]
Abstract
Inflammatory bowel diseases are known for a chronic inflammatory process of the gastrointestinal tract and include Crohn's disease and ulcerative colitis (UC). Patients who are dependent on or resistant to corticosteroids account for about 20% of severe UC patients. Tacrolimus is a calcineurin inhibitor that has recently been used in the treatment of steroid-refractory ulcerative colitis. Tacrolimus has been demonstrated to have remarkable therapeutic efficacy in UC patients, without increased risk of severe adverse effects such as induction of remission and maintenance therapy. This article reviews the mechanism of action, pharmacogenetics, efficacy, and safety of tacrolimus for patients with steroid-refractory ulcerative colitis.
Collapse
Affiliation(s)
- Biyu Wu
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Jinglu Tong
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Zhihua Ran
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
274
|
Tsutsui H, Kato M, Kuramoto S, Sekiguchi N, Shindoh H, Ozeki K. Quantitative evaluation of hepatic and intestinal induction of CYP3A in clinical practice. Xenobiotica 2019; 50:875-884. [PMID: 31885304 DOI: 10.1080/00498254.2019.1710620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This is the first report quantitatively evaluating the clinical induction of CYP3A in the liver and the intestine.To evaluate hepatic induction, we collected literature data on endogenous biomarkers of hepatic CYP3A induction which we then used to calculate the fold-induction (inducer-mediated change in biomarker level). Literature data on decreases in the area under the curve (AUC) of alfentanil, a CYP3A substrate, caused by CYP3A inducers were also collected. We used the hepatic intrinsic clearance of alfentanil to calculate the hepatic induction ratio (inducer-mediated change in intrinsic clearance). For intestinal induction, the intestinal bioavailability (Fg) of alfentanil was used to calculate the intestinal induction ratio. We determined in vivo maximum induction (Emax) and the average unbound plasma concentration (Cav,u) required for half the maximum induction (EC50) for inducers using an Emax model analysis.In our results, fold-induction was comparable to the induction ratio at several inducer concentrations, and almost the maximum induction was achieved by a therapeutic dose. Induction ratios in the intestine were similar to the liver.Our findings suggest that, by knowing only hepatic induction ratios for common inducers, we can quantitatively predict the decreases in the AUC of substrates by CYP3A induction.
Collapse
Affiliation(s)
- Haruka Tsutsui
- Research division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Motohiro Kato
- Research division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Shino Kuramoto
- Research division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Nobuo Sekiguchi
- Research division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Hidetoshi Shindoh
- Research division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Kazuhisa Ozeki
- Research division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| |
Collapse
|
275
|
Functional impact of cytochrome P450 3A (CYP3A) missense variants in cattle. Sci Rep 2019; 9:19672. [PMID: 31873175 PMCID: PMC6927969 DOI: 10.1038/s41598-019-56271-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Cytochrome P450 3A is the most important CYP subfamily in humans, and CYP3A4/CYP3A5 genetic variants contribute to inter-individual variability in drug metabolism. However, no information is available for bovine CYP3A (bCYP3A). Here we described bCYP3A missense single nucleotide variants (SNVs) and evaluated their functional effects. CYP3A28, CYP3A38 and CYP3A48 missense SNVs were identified in 300 bulls of Piedmontese breed through targeted sequencing. Wild-type and mutant bCYP3A cDNAs were cloned and expressed in V79 cells. CYP3A-dependent oxidative metabolism of testosterone (TST) and nifedipine (NIF) was assessed by LC-MS/MS. Finally, SNVs functional impact on TST hydroxylation was measured ex vivo in liver microsomes from individually genotyped animals. Thirteen missense SNVs were identified and validated. Five variants showed differences in CYP3A catalytic activity: three CYP3A28 SNVs reduced TST 6β-hydroxylation; one CYP3A38 variant increased TST 16β-hydroxylation, while a CYP3A48 SNV showed enhanced NIF oxidation. Individuals homozygous for rs384467435 SNV showed a reduced TST 6β-hydroxylation. Molecular modelling showed that most of SNVs were distal to CYP3A active site, suggesting indirect effects on the catalytic activity. Collectively, these findings demonstrate the importance of pharmacogenetics studies in veterinary species and suggest bCYP3A genotype variation might affect the fate of xenobiotics in food-producing species such as cattle.
Collapse
|
276
|
Shugg T, Egly C, Stamatkin CW, Patil AS, Tisdale JE, Overholser BR. Progesterone Metabolites Inhibit the Human Ether-a-go-go-Related Gene and Predict QT Interval Length. J Clin Pharmacol 2019; 60:648-659. [PMID: 31829451 PMCID: PMC10170396 DOI: 10.1002/jcph.1563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/12/2019] [Indexed: 11/08/2022]
Abstract
A decrease in the human ether-a-go-go-related gene (hERG/KCNH2)-related channel has been linked to intrauterine fetal death. The formation of cytochrome P450 (CYP) 3A-mediated progesterone metabolites, 6-beta-hydroxy-progesterone (6β-OHP) and 16α-hydroxy-progesterone (16α-OHP), is variable among adults and differs from fetal metabolism. The primary objective of this study was to assess the potential for progesterone metabolites to inhibit hERG-related current and predict QTc intervals. Whole-cell voltage-clamp electrophysiology was performed on human embryonic kidney 293 cells stably expressing hERG exposed to progesterone or metabolites. Both 6β-OHP and 16α-OHP positively shifted the voltage dependence of activation relative to vehicle from -4.0 ± 0.8 to -0.3 ± 0.8 mV, P < .01; and 1.0 ± 0.6 mV, P < .01, respectively. In addition, 6β-OHP decreased maximal outward tail currents from 49.4 ± 4.9 to 32.5 ± 4.1 pA/pF, P < 0.01, and reduced the expression of fully glycosylated hERG by 42%. Healthy female subjects were administered progesterone 400 mg orally for 7 days, ibutilide 0.003 mg/kg was infused, and serial electrocardiograms and blood samples collected. Relationships between rate-corrected QT intervals (QTcI) with circulating hormones and metabolites were assessed. The 6β-OHP and 16α-OHP metabolites were independent predictors of QTcI intervals prior to and following ibutilide administration. In conclusion, the progesterone metabolites formed via CYP3A cause inhibitory effects on hERG channels and predict QTcI intervals in healthy women pretreated with progesterone. Further study into maternal and fetal exposure to these metabolites and potential to prolong cardiac repolarization is warranted.
Collapse
Affiliation(s)
- Tyler Shugg
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Christian Egly
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Chris W Stamatkin
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Avinash S Patil
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Center for Personalized Obstetric Medicine, Valley Perinatal Services, Phoenix, Arizona, USA
| | - James E Tisdale
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA.,Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brian R Overholser
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA.,Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
277
|
Xu J, Wang W, Yang X, Xiong A, Yang L, Wang Z. Pyrrolizidine alkaloids: An update on their metabolism and hepatotoxicity mechanism. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
278
|
Taqi MM, Faisal M, Zaman H. OPRM1 A118G Polymorphisms and Its Role in Opioid Addiction: Implication on Severity and Treatment Approaches. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:361-368. [PMID: 31819591 PMCID: PMC6885558 DOI: 10.2147/pgpm.s198654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
The epidemic of opioid addiction is shaping up as the most serious clinical issues of current times. Opioids have the greatest propensity to develop addiction after first exposure. Molecular, genetic variations, epigenetic alterations, and environmental factors are also implicated in the development of opioid addiction. Genetic and epigenetic variations in candidate genes have been identified for their associations with opioid addiction. OPRM1 nonsynonymous single nucleotide polymorphism rs1799971 (A118G) is the most prominent candidate due to its significant association with onset and treatment of opioid addiction. Marked inter-individual variability in response to available maintenance pharmacotherapies is the common feature observed in individuals with opioid addiction. Several therapies are only effective among subgroups of opioid individuals which indicate that ethnic, environmental factors and genetic polymorphism including rs1799971 may be responsible for the response to treatment. Pharmacogenetics has the potential to enhance our understanding around the underlying genetic, epigenetic and molecular mechanisms responsible for the heterogeneous response of maintenance pharmacotherapies in opioid addiction. A more detailed understanding of molecular, epigenetic and genetic variants especially the implication of OPRM1 A118G polymorphism in an individual may serve as the way forward to address the opioid epidemic. Personalized medicine, which involves developing targeted pharmacotherapies in accordance with individual genetic and epigenetic makeup, are required to develop safe and effective treatments for opioid addiction.
Collapse
Affiliation(s)
- Malik Mumtaz Taqi
- Division of Mental Health and Addiction, University of Oslo, Oslo, Norway
| | - Muhammad Faisal
- Faculty of Health Studies, University of Bradford, Bradford, UK.,Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Hadar Zaman
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
279
|
Oliveira-Paula GH, Pereira SC, Tanus-Santos JE, Lacchini R. Pharmacogenomics And Hypertension: Current Insights. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:341-359. [PMID: 31819590 PMCID: PMC6878918 DOI: 10.2147/pgpm.s230201] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022]
Abstract
Hypertension is a multifactorial disease that affects approximately one billion subjects worldwide and is a major risk factor associated with cardiovascular events, including coronary heart disease and cerebrovascular accidents. Therefore, adequate blood pressure control is important to prevent these events, reducing premature mortality and disability. However, only one third of patients have the effective control of blood pressure, despite several classes of antihypertensive drugs available. These disappointing outcomes may be at least in part explained by interpatient variability in drug response due to genetic polymorphisms. To address the effects of genetic polymorphisms on blood pressure responses to the antihypertensive drug classes, studies have applied candidate genes and genome wide approaches. More recently, a third approach that considers gene-gene interactions has also been applied in hypertension pharmacogenomics. In this article, we carried out a comprehensive review of recent findings on the pharmacogenomics of antihypertensive drugs, including diuretics, β-blockers, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, and calcium channel blockers. We also discuss the limitations and inconsistences that have been found in hypertension pharmacogenomics and the challenges to implement this valuable approach in clinical practice.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Sherliane C Pereira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
280
|
A dual functional probe for assessing human CYP450 3A5 and 3A enzymes bioactivities. Future Med Chem 2019; 11:2891-2903. [PMID: 31702381 DOI: 10.4155/fmc-2019-0173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: CYP3A5 plays a vital role in the drug metabolism, it displays varied expression levels among individuals and is easily influenced by genetic polymorphisms and some diseases. Methodology & results: A dual function probe isobutyryl-11-keto-β-boswellic acid (IKBA) was developed; it possessed a high selectivity toward CYP3A5 and CYP3A enzymes for its two individual metabolites, respectively. The probe has the high accuracy and wide applicability in measuring the real activity of CYP3A5. Finally, IKBA was successfully used for the evaluation of the activity of CYP3A5 and CYP3A enzymes in various bio samples. Conclusion: IKBA could serve as a useful tool for exploring the physiology and pathology functions of CYP3A5 and give some useful guidance for the rational use of clinical drugs.
Collapse
|
281
|
Kobayashi K, Kuze J, Abe S, Takehara S, Minegishi G, Igarashi K, Kitajima S, Kanno J, Yamamoto T, Oshimura M, Kazuki Y. CYP3A4 Induction in the Liver and Intestine of Pregnane X Receptor/CYP3A-Humanized Mice: Approaches by Mass Spectrometry Imaging and Portal Blood Analysis. Mol Pharmacol 2019; 96:600-608. [PMID: 31455676 DOI: 10.1124/mol.119.117333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/23/2019] [Indexed: 02/14/2025] Open
Abstract
Induction of cytochrome P450 enzyme 3A (CYP3A) in response to pregnane X receptor (PXR) activators shows species-specific differences. To study the induction of human CYP3A in response to human PXR activators, we generated a double-humanized mouse model of PXR and CYP3A. CYP3A-humanized mice generated by using a mouse artificial chromosome (MAC) vector containing the entire genomic human CYP3A locus (hCYP3A-MAC mouse line) were bred with PXR-humanized mice in which the ligand-binding domain of mouse PXR was replaced with that of human PXR, resulting in double-humanized mice (hCYP3A-MAC/hPXR mouse line). Oral administration of the human PXR activator rifampicin increased hepatic expression of CYP3A4 mRNA and triazolam (TRZ) 1'- and 4-hydroxylation activities, CYP3A probe activities, in the liver and intestine microsomes of hCYP3A-MAC/hPXR mice. The plasma concentration of TRZ after oral dosing was significantly decreased by rifampicin treatment in hCYP3A-MAC/hPXR mice but not in hCYP3A-MAC mice. In addition, mass spectrometry imaging analysis showed that rifampicin treatment increased the formation of hydroxy TRZ in the intestine of hCYP3A-MAC/hPXR mice after oral dosing of TRZ. The plasma concentration of 1'- and 4-hydroxy TRZ in portal blood was also increased by rifampicin treatment in hCYP3A-MAC/hPXR mice. These results suggest that the hCYP3A-MAC/hPXR mouse line may be a useful model to predict human PXR-dependent induction of metabolism of CYP3A4 substrates in the liver and intestine. SIGNIFICANCE STATEMENT: We generated a double-humanized mouse line for CYP3A and PXR. Briefly, CYP3A-humanized mice generated by using a mouse artificial chromosome vector containing the entire genomic human CYP3A locus were bred with PXR-humanized mice in which the ligand-binding domain of mouse PXR was replaced with that of human PXR. Expression of CYP3A4 and metabolism of triazolam, a typical CYP3A substrate, in the liver of CYP3A/PXR-humanized mice were enhanced in response to rifampicin, a typical human PXR activator. Enhancement of triazolam metabolism in the intestine of CYP3A/PXR-humanized mice was firstly shown by combination of mass spectrometry imaging of sliced intestine and liquid chromatography with tandem mass spectrometry analysis of metabolite concentration in portal blood after oral dosing of triazolam.
Collapse
Affiliation(s)
- Kaoru Kobayashi
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan
| | - Jiro Kuze
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan
| | - Satoshi Abe
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan
| | - Shoko Takehara
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan
| | - Genki Minegishi
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan
| | - Katsuhide Igarashi
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan
| | - Satoshi Kitajima
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan
| | - Jun Kanno
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan
| | - Takushi Yamamoto
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan
| | - Mitsuo Oshimura
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan
| | - Yasuhiro Kazuki
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (K.K., G.M.); Discovery Drug Metabolism & Pharmacokinetics, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd., Ibaraki (J.Ku.); Chromosome Engineering Research Center (CERC), Tottori University, Tottori (S.A., S.T., M.O., Y.K.); Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo (K.I.); Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institutes of Health Sciences, Kanagawa (S.K., J.Ka.); Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa (J.Ka.); Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto (T.Y.); and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori (Y.K.), Japan
| |
Collapse
|
282
|
Bissada JE, Truong V, Abouda AA, Wines KJ, Crouch RD, Jackson KD. Interindividual Variation in CYP3A Activity Influences Lapatinib Bioactivation. Drug Metab Dispos 2019; 47:1257-1269. [PMID: 31492693 PMCID: PMC6815940 DOI: 10.1124/dmd.119.088823] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Lapatinib is a dual tyrosine kinase inhibitor associated with rare but potentially severe idiosyncratic hepatotoxicity. We have previously shown that cytochromes P450 CYP3A4 and CYP3A5 quantitatively contribute to lapatinib bioactivation, leading to formation of a reactive, potentially toxic quinone imine. CYP3A5 is highly polymorphic; however, the impact of CYP3A5 polymorphism on lapatinib metabolism has not been fully established. The goal of this study was to determine the effect of CYP3A5 genotype and individual variation in CYP3A activity on the metabolic activation of lapatinib using human-relevant in vitro systems. Lapatinib metabolism was examined using CYP3A5-genotyped human liver microsomes and cryopreserved human hepatocytes. CYP3A and CYP3A5-selective activities were measured in liver tissues using probe substrates midazolam and T-5 (T-1032), respectively, to evaluate the correlation between enzymatic activity and lapatinib metabolite formation. Drug metabolites were measured by high-performance liquid chromatography-tandem mass spectrometry. Further, the relative contributions of CYP3A4 and CYP3A5 to lapatinib O-debenzylation were estimated using selective chemical inhibitors of CYP3A. The results from this study demonstrated that lapatinib O-debenzylation and quinone imine-GSH conjugate formation were highly correlated with hepatic CYP3A activity, as measured by midazolam 1'-hydroxylation. CYP3A4 played a dominant role in lapatinib bioactivation in all liver tissues evaluated. The CYP3A5 contribution to lapatinib bioactivation varied by individual donor and was dependent on CYP3A5 genotype and activity. CYP3A5 contributed approximately 20%-42% to lapatinib O-debenzylation in livers from CYP3A5 expressers. These findings indicate that individual CYP3A activity, not CYP3A5 genotype alone, is a key determinant of lapatinib bioactivation and likely influences exposure to reactive metabolites. SIGNIFICANCE STATEMENT: This study is the first to examine the effect of CYP3A5 genotype, total CYP3A activity, and CYP3A5-selective activity on lapatinib bioactivation in individual human liver tissues. The results of this investigation indicate that lapatinib bioactivation via oxidative O-debenzylation is highly correlated with total hepatic CYP3A activity, and not CYP3A5 genotype alone. These findings provide insight into the individual factors, namely, CYP3A activity, that may affect individual exposure to reactive, potentially toxic metabolites of lapatinib.
Collapse
Affiliation(s)
- Jennifer E Bissada
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., V.T., A.A.A., K.J.W., R.D.C., K.D.J.); Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (R.D.C., K.D.J.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J.)
| | - Vivian Truong
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., V.T., A.A.A., K.J.W., R.D.C., K.D.J.); Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (R.D.C., K.D.J.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J.)
| | - Arsany A Abouda
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., V.T., A.A.A., K.J.W., R.D.C., K.D.J.); Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (R.D.C., K.D.J.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J.)
| | - Kahari J Wines
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., V.T., A.A.A., K.J.W., R.D.C., K.D.J.); Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (R.D.C., K.D.J.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J.)
| | - Rachel D Crouch
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., V.T., A.A.A., K.J.W., R.D.C., K.D.J.); Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (R.D.C., K.D.J.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J.)
| | - Klarissa D Jackson
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., V.T., A.A.A., K.J.W., R.D.C., K.D.J.); Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (R.D.C., K.D.J.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J.)
| |
Collapse
|
283
|
Zhang Z, Lu X, Dong L, Ma J, Fan X. Clinical observation on the effect of Wuzhi soft capsule on FK506 concentration in membranous nephropathy patients. Medicine (Baltimore) 2019; 98:e18150. [PMID: 31770256 PMCID: PMC6890353 DOI: 10.1097/md.0000000000018150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The current research aimed to investigate the correlation between the effect of Wuzhi soft capsule (WZC) on FK506 concentration and CYP3A5 gene polymorphism in patients with membranous nephropathy (MN).Seventy-five patients with idiopathic MN were enrolled and divided according to the expression of CYP3A5 gene metabolic enzyme into group A (CP3A5 metabolic enzyme function expression types CYP3A5*1/*1 type and CYP3A5*1/*3 type), and group B (non-expression type CYP3A5*3/*3 type). All patients were given oral administration of tacrolimus capsule at the initial dose of 1 mg for twice a day 1 hour before breakfast and dinner. Afterwards, the oral administration of WZC was added at the dose of 0.5 g for 3 times a day within half an hour after 3 meals.The blood concentrations of FK506 in groups A and B were significantly higher than those before administration. Compared with that before administration, the FK506 blood concentration was increased by 3.051 ± 0.774 ng/ml after adding the WZC. Besides, the blood concentrations of FK506 in group A were lower than those in group B before and after administration; meanwhile, the 24 hours total urine protein and the biochemical indexes in both groups displayed no statistically significant difference. Only 1 case of diarrhea was observed, which was relieved after the reduction of tacrolimus.Wuzhi soft capsule can significantly increase the blood concentration of FK506 in MN patients. Moreover, the CYP3A5 genotyping should be considered when WZC is used to increase the blood concentration of FK506.
Collapse
Affiliation(s)
- Zhu Zhang
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital
| | - Xiaobei Lu
- Department of Nephrology, People's Hospital of Zhengzhou, Zhengzhou
| | - Leipeng Dong
- Department of Nephrology, The people's Hospital of Xuchang, Xuchang
| | - Jiwei Ma
- Department of Nephrology, First affiliated Hospital of Henan university of traditional Chinese medicine, Zhengzhou, China
| | - Xiaoguang Fan
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital
| |
Collapse
|
284
|
Fuselli S. Beyond drugs: the evolution of genes involved in human response to medications. Proc Biol Sci 2019; 286:20191716. [PMID: 31640517 DOI: 10.1098/rspb.2019.1716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genetic variation of our species reflects human demographic history and adaptation to diverse local environments. Part of this genetic variation affects individual responses to exogenous substances, such as food, pollutants and drugs, and plays an important role in drug efficacy and safety. This review provides a synthesis of the evolution of loci implicated in human pharmacological response and metabolism, interpreted within the theoretical framework of population genetics and molecular evolution. In particular, I review and discuss key evolutionary aspects of different pharmacogenes in humans and other species, such as the relationship between the type of substrates and rate of evolution; the selective pressure exerted by landscape variables or dietary habits; expected and observed patterns of rare genetic variation. Finally, I discuss how this knowledge can be translated directly or after the implementation of specific studies, into practical guidelines.
Collapse
Affiliation(s)
- Silvia Fuselli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
285
|
Matsumoto J, San SN, Fujiyoshi M, Kawauchi A, Chiba N, Tagai R, Sanbe R, Yanaka S, Sakaue H, Kato Y, Nakamura H, Yamada H, Ariyoshi N. Effect of CYP3A5*3 genetic variant on the metabolism of direct-acting antivirals in vitro: a different effect on asunaprevir versus daclatasvir and beclabuvir. J Hum Genet 2019; 65:143-153. [PMID: 31645655 DOI: 10.1038/s10038-019-0685-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
Direct-acting antivirals, asunaprevir (ASV), daclatasvir (DCV), and beclabuvir (BCV) are known to be mainly metabolized by CYP3A enzymes; however, the differences in the detailed metabolic activities of CYP3A4 and CYP3A5 on these drugs are not well clarified. The aim of the present study was to elucidate the relative contributions of CYP3A4 and CYP3A5 to the metabolism of ASV, DCV, and BCV, as well as the effect of CYP3A5*3 genetic variant in vitro. The amount of each drug and their major metabolites were determined using LC-MS/MS. Recombinant CYP3As and CYP3A5*3-genotyped human liver microsomes (CYP3A5 expressers or non-expressers) were used for the determination of their metabolic activities. The contribution of CYP3A5 to ASV metabolism was considerable compared to that of CYP3A4. Consistently, ASV metabolic activity in CYP3A5 expressers was higher than those in CYP3A5 non-expresser. Moreover, CYP3A5 expression level was significantly correlated with ASV metabolism. In contrast, these observations were not found in DCV and BCV metabolism. To our knowledge, this is the first study to directly demonstrate the effect of CYP3A5*3 genetic variants on the metabolism of ASV. The findings of the present study may provide basic information on ASV, DCV, and BCV metabolisms.
Collapse
Affiliation(s)
- Jun Matsumoto
- Department of Personalized Medicine and Preventive Healthcare Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Su Nwe San
- Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Masachika Fujiyoshi
- Department of Personalized Medicine and Preventive Healthcare Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ayano Kawauchi
- Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Natsumi Chiba
- Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Ran Tagai
- Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Ryoko Sanbe
- Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Shiho Yanaka
- Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Hiroaki Sakaue
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshinori Kato
- Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Hiroyoshi Nakamura
- Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan.,Division of Pharmacy, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Harumi Yamada
- Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Noritaka Ariyoshi
- Department of Personalized Medicine and Preventive Healthcare Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
286
|
|
287
|
Lauschke VM, Nordling Å, Zhou Y, Fontalva S, Barragan I, Ingelman-Sundberg M. CYP3A5 is unlikely to mediate anticancer drug resistance in hepatocellular carcinoma. Pharmacogenomics 2019; 20:1085-1092. [DOI: 10.2217/pgs-2019-0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recently, it was published that CYP3A5 contributes to chemotherapeutic drug resistance in a wide range of solid tumors, including hepatocellular carcinoma. However, CYP3A5 is highly polymorphic and 90% of Caucasians are homozygous for the loss-of-function allele CYP3A5*3. Here, we evaluate the relationship between CYP3A5 genotype and expression level of both CYP3A5 transcripts and protein in biopsies from 19 pairs of liver tumors and corresponding peritumoral tissue. We find that CYP3A5 transcript levels are reduced compared with peritumoral controls. Moreover, we do not detect CYP3A5 protein in homozygous CYP3A5*3 carriers and no relative increase of CYP3A5 in tumoral tissue of CYP3A5*1 carriers. We conclude that anticancer drug resistance is unlikely to be caused by increased CYP3A5 expression.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology & Pharmacology, Karolinska Institutet, Biomedicum 5B, SE-171 77 Stockholm, Sweden
| | - Åsa Nordling
- Department of Physiology & Pharmacology, Karolinska Institutet, Biomedicum 5B, SE-171 77 Stockholm, Sweden
| | - Yitian Zhou
- Department of Physiology & Pharmacology, Karolinska Institutet, Biomedicum 5B, SE-171 77 Stockholm, Sweden
| | - Sara Fontalva
- Medical Oncology Service, Hospitales Universitarios Regional y Virgen de la Victoria, Institute of Biomedical Research in Malaga, University of Málaga, Málaga, Spain
| | - Isabel Barragan
- Department of Physiology & Pharmacology, Karolinska Institutet, Biomedicum 5B, SE-171 77 Stockholm, Sweden
- Medical Oncology Service, Hospitales Universitarios Regional y Virgen de la Victoria, Institute of Biomedical Research in Malaga, University of Málaga, Málaga, Spain
| | - Magnus Ingelman-Sundberg
- Department of Physiology & Pharmacology, Karolinska Institutet, Biomedicum 5B, SE-171 77 Stockholm, Sweden
| |
Collapse
|
288
|
Nowicka M, Górska M, Nowicka Z, Edyko K, Edyko P, Wiślicki S, Zawiasa-Bryszewska A, Strzelczyk J, Matych J, Kurnatowska I. Tacrolimus: Influence of the Posttransplant Concentration/Dose Ratio on Kidney Graft Function in a Two-Year Follow-Up. Kidney Blood Press Res 2019; 44:1075-1088. [PMID: 31522184 DOI: 10.1159/000502290] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Tacrolimus (TAC) metabolism rate has the potential to impact graft function after kidney transplantation (KTx). We aimed to analyze the relationship between the early post-KTx TAC C/D ratio (blood trough concentration normalized by total daily dose) and kidney graft function in a 2-year follow-up. METHODS We retrospectively analyzed data from 101 post-KTx patients at 3, 6, 12, and 24 months after KTx to identify the C/D ratio cutoff value optimal for dividing patients into fast and slow TAC metabolizers. We investigated the relationship between their TAC metabolism rate and graft function. RESULTS Patients were divided based on the TAC C/D ratio at 6 months after KTx of 1.47 ng/mL * 1 mg. Fast metabolizers (C/D ratio <1.47 ng/mL * 1 mg) presented with significantly worse graft function throughout the whole study period (p < 0.05 at each timepoint) and were significantly less likely to develop good graft function (estimated glomerular filtration rate ≥45 mL/min/1.73 m2) than slow metabolizers. Our model based on donor and recipient age, recipient sex and slow/fast metabolism status allowed for identification of patients with compromised graft function in 2-year follow-up with 66.7% sensitivity and 94.6% specificity. CONCLUSION Estimating TAC C/D ratio at 6 months post-KTx might help identify patients at risk of developing deteriorated graft function in a 2-year follow-up.
Collapse
Affiliation(s)
- Maja Nowicka
- Department of Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Monika Górska
- Department of Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Zuzanna Nowicka
- Department of Clinical Pharmacology, Medical University of Lodz, Lodz, Poland.,Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Krzysztof Edyko
- Department of Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Piotr Edyko
- Department of Urology and Kidney Transplantation, N Pirogov Provincial Specialist Hospital, Lodz, Poland
| | - Sebastian Wiślicki
- Clinical Department of Anesthesiology and Intensive Care and Pain Management, University Clinical Hospital No 1 N Barlicki in Lodz, Lodz, Poland
| | - Anna Zawiasa-Bryszewska
- Department of Clinical Pharmacology, Medical University of Lodz, Lodz, Poland.,Department of Nephrology, University Clinical Hospital No 1 N Barlicki in Lodz, Lodz, Poland
| | - Janusz Strzelczyk
- Department of General and Transplant Surgery, Medical University of Lodz, Lodz, Poland
| | - Józef Matych
- Department of Urology and Kidney Transplantation, N Pirogov Provincial Specialist Hospital, Lodz, Poland
| | - Ilona Kurnatowska
- Department of Clinical Pharmacology, Medical University of Lodz, Lodz, Poland, .,Department of Nephrology, University Clinical Hospital No 1 N Barlicki in Lodz, Lodz, Poland,
| |
Collapse
|
289
|
Guo Y, Lucksiri A, Dickinson GL, Vuppalanchi RK, Hilligoss JK, Hall SD. Quantitative Prediction of CYP3A4- and CYP3A5-Mediated Drug Interactions. Clin Pharmacol Ther 2019; 107:246-256. [PMID: 31356678 DOI: 10.1002/cpt.1596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/06/2019] [Indexed: 11/08/2022]
Abstract
We verified a physiologically-based pharmacokinetic (PBPK) model to predict cytochrome P450 3A4/5-mediated drug-drug interactions (DDIs). A midazolam (MDZ)-ketoconazole (KTZ) interaction study in 24 subjects selected by CYP3A5 genotype, and liquid chromatography and mass spectroscopy quantification of CYP3A4/5 abundance from independently acquired and genotyped human liver (n = 136) and small intestinal (N = 12) samples, were conducted. The observed CYP3A5 genetic effect on MDZ systemic and oral clearance was successfully replicated by a mechanistic framework incorporating the proteomics-informed CYP3A abundance and optimized small intestinal CYP3A4 abundance based on MDZ intestinal availability (FG ) of 0.44. Furthermore, combined with a modified KTZ PBPK model, this framework recapitulated the observed geometric mean ratio of MDZ area under the curve (AUCR) following 200 or 400 mg KTZ, which was, respectively, 2.7-3.4 and 3.9-4.7-fold in intravenous administration and 11.4-13.4 and 17.0-19.7-fold in oral administration, with AUCR numerically lower (P > 0.05) in CYP3A5 expressers than nonexpressers. In conclusion, the developed mechanistic framework supports dynamic prediction of CYP3A-mediated DDIs in study planning by bridging DDIs between CYP3A5 expressers and nonexpressers.
Collapse
Affiliation(s)
- Yingying Guo
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center DC0714, Indianapolis, Indiana, USA
| | - Aroonrut Lucksiri
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Gemma L Dickinson
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center DC0714, Indianapolis, Indiana, USA
| | - Raj K Vuppalanchi
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Janna K Hilligoss
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Stephen D Hall
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center DC0714, Indianapolis, Indiana, USA
| |
Collapse
|
290
|
Riva N, Woillard JB, Distefano M, Moragas M, Dip M, Halac E, Cáceres Guido P, Licciardone N, Mangano A, Bosaleh A, de Davila MT, Schaiquevich P, Imventarza O. Identification of Factors Affecting Tacrolimus Trough Levels in Latin American Pediatric Liver Transplant Patients. Liver Transpl 2019; 25:1397-1407. [PMID: 31102573 DOI: 10.1002/lt.25495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022]
Abstract
Tacrolimus is the cornerstone in pediatric liver transplant immunosuppression. Despite close monitoring, fluctuations in tacrolimus blood levels affect safety and efficacy of immunosuppressive treatments. Identifying the factors related to the variability in tacrolimus exposure may be helpful in tailoring the dose. The aim of the present study was to characterize the clinical, pharmacological, and genetic variables associated with systemic tacrolimus exposure in pediatric liver transplant patients. De novo transplant patients with a survival of more than 1 month were considered for inclusion and were genotyped for cytochrome P450 3A5 (CYP3A5). Peritransplant clinical factors and laboratory covariates were recorded retrospectively between 1 month and 2 years after transplant, including alanine aminotransferase (ALT), aspartate aminotransferase, hematocrit, and tacrolimus predose steady-state blood concentrations collected 12 hours after tacrolimus dosing. A linear mixed effect (LME) model was used to assess the association of these factors and the log-transformed tacrolimus dose-normalized trough concentration (logC0/D) levels. Bootstrapping was used to internally validate the final model. External validation was performed in an independent group of patients who matched the original population. The developed LME model described that logC0/D increases with increases in time after transplant (β = 0.019, 95% confidence interval [CI], 0.010-0.028) and ALT values (β = 0.00030, 95% CI, 0.00002-0.00056), whereas logC0/D is significantly lower in graft CYP3A5 expressers compared with nonexpressers (β = -0.349, 95% CI, -0.631 to -0.062). In conclusion, donor CYP3A5 genotype, time after transplant, and ALT values are associated with tacrolimus disposition between 1 month and 2 years after transplant. A better understanding of tacrolimus exposure is essential to minimize the occurrence of an out-of-range therapeutic window that may lead to adverse drug reactions or acute rejection.
Collapse
Affiliation(s)
- Natalia Riva
- Unit of Clinical Pharmacokinetics, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jean-Baptiste Woillard
- Department of Pharmacology and Toxicology, University of Limoges, Centre Hospitalier Universitaire Limoges, INSERM, IPPRITT, U1248, Limoges, France
| | - Maximiliano Distefano
- Laboratory of Cell Biology and Retrovirus, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Matias Moragas
- Laboratory of Cell Biology and Retrovirus, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Marcelo Dip
- Liver Transplant Service, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Esteban Halac
- Liver Transplant Service, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Paulo Cáceres Guido
- Unit of Clinical Pharmacokinetics, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Nieves Licciardone
- Central Laboratory, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Andrea Mangano
- Laboratory of Cell Biology and Retrovirus, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Bosaleh
- Pathology Service, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | | | - Paula Schaiquevich
- Unit of Clinical Pharmacokinetics, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Oscar Imventarza
- Liver Transplant Service, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
291
|
Li H, Lampe JN. Neonatal cytochrome P450 CYP3A7: A comprehensive review of its role in development, disease, and xenobiotic metabolism. Arch Biochem Biophys 2019; 673:108078. [PMID: 31445893 DOI: 10.1016/j.abb.2019.108078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
The human cytochrome P450 CYP3A7, once thought to be an enzyme exclusive to fetal livers, has more recently been identified in neonates and developing infants as old as 24 months post-gestational age. CYP3A7 has been demonstrated to metabolize two endogenous compounds that are known to be important in the growth and development of the fetus and neonate, namely dehydroepiandrosterone sulfate (DHEA-S) and all-trans retinoic acid (atRA). In addition, it is also known to metabolize a variety of drugs and xenobiotics, albeit generally to a lesser extent relative to CYP3A4/5. CYP3A7 is an important component in the development and protection of the fetal liver and additionally plays a role in certain disease states, such as cancer and adrenal hyperplasia. Ultimately, a full understanding of the expression, regulation, and metabolic properties of CYP3A7 is needed to provide neonates with appropriate individualized pharmacotherapy. This article summarizes the current state of knowledge of CYP3A7, including its discovery, distribution, alleles, RNA splicing, expression and regulation, metabolic properties, substrates, and inhibitors.
Collapse
Affiliation(s)
- Haixing Li
- Sino-German Joint Research Institute Nanchang University, 235 East Nanjing Road, Nanchang, 330047, Jiangxi, PR China
| | - Jed N Lampe
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Mail Stop C238, 12850 E. Montview Blvd., Aurora, CO, 80045, USA.
| |
Collapse
|
292
|
Matlock MK, Tambe A, Elliott-Higgins J, Hines RN, Miller GP, Swamidass SJ. A Time-Embedding Network Models the Ontogeny of 23 Hepatic Drug Metabolizing Enzymes. Chem Res Toxicol 2019; 32:1707-1721. [PMID: 31304741 PMCID: PMC6933754 DOI: 10.1021/acs.chemrestox.9b00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pediatric patients are at elevated risk of adverse drug reactions, and there is insufficient information on drug safety in children. Complicating risk assessment in children, there are numerous age-dependent changes in the absorption, distribution, metabolism, and elimination of drugs. A key contributor to age-dependent drug toxicity risk is the ontogeny of drug metabolism enzymes, the changes in both abundance and type throughout development from the fetal period through adulthood. Critically, these changes affect not only the overall clearance of drugs but also exposure to individual metabolites. In this study, we introduce time-embedding neural networks in order to model population-level variation in metabolism enzyme expression as a function of age. We use a time-embedding network to model the ontogeny of 23 drug metabolism enzymes. The time-embedding network recapitulates known demographic factors impacting 3A5 expression. The time-embedding network also effectively models the nonlinear dynamics of 2D6 expression, enabling a better fit to clinical data than prior work. In contrast, a standard neural network fails to model these features of 3A5 and 2D6 expression. Finally, we combine the time-embedding model of ontogeny with additional information to estimate age-dependent changes in reactive metabolite exposure. This simple approach identifies age-dependent changes in exposure to valproic acid and dextromethorphan metabolites and suggests potential mechanisms of valproic acid toxicity. This approach may help researchers evaluate the risk of drug toxicity in pediatric populations.
Collapse
Affiliation(s)
- Matthew K Matlock
- Department of Pathology and Immunology , Washington University in St. Louis , Saint Louis , Missouri 63110 , United States
| | - Abhik Tambe
- Department of Pathology and Immunology , Washington University in St. Louis , Saint Louis , Missouri 63110 , United States
| | - Jack Elliott-Higgins
- Department of Pathology and Immunology , Washington University in St. Louis , Saint Louis , Missouri 63110 , United States
| | - Ronald N Hines
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency , Research Triangle Park , North Carolina 27709 , United States
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - S Joshua Swamidass
- Institute for Informatics , Washington University in St. Louis , Saint Louis , Missouri 63110 , United States
| |
Collapse
|
293
|
CYP3A5 and CYP3A7 genetic polymorphisms affect tacrolimus concentration in pediatric patients with nephrotic range proteinuria. Eur J Clin Pharmacol 2019; 75:1533-1540. [DOI: 10.1007/s00228-019-02726-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023]
|
294
|
Khojasteh SC, Bumpus NN, Driscoll JP, Miller GP, Mitra K, Rietjens IMCM, Zhang D. Biotransformation and bioactivation reactions - 2018 literature highlights. Drug Metab Rev 2019; 51:121-161. [PMID: 31170851 DOI: 10.1080/03602532.2019.1615937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the past three decades, ADME sciences have become an integral component of the drug discovery and development process. At the same time, the field has continued to evolve, thus, requiring ADME scientists to be knowledgeable of and engage with diverse aspects of drug assessment: from pharmacology to toxicology, and from in silico modeling to in vitro models and finally in vivo models. Progress in this field requires deliberate exposure to different aspects of ADME; however, this task can seem daunting in the current age of mass information. We hope this review provides a focused and brief summary of a wide array of critical advances over the past year and explains the relevance of this research ( Table 1 ). We divided the articles into categories of (1) drug optimization, (2) metabolites and drug metabolizing enzymes, and (3) bioactivation. This annual review is the fourth of its kind (Baillie et al. 2016 ; Khojasteh et al. 2017 , 2018 ). We have followed the same format we used in previous years in terms of the selection of articles and the authoring of each section. This effort in itself also continues to evolve. I am pleased that Rietjens, Miller, and Mitra have again contributed to this annual review. We would like to welcome Namandjé N. Bumpus, James P. Driscoll, and Donglu Zhang as authors for this year's issue. We strive to maintain a balance of authors from academic and industry settings. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. Cyrus Khojasteh, on behalf of the authors.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc , South San Francisco , CA , USA
| | - Namandjé N Bumpus
- Department of Medicine - Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics, MyoKardia Inc. , South San Francisco , CA , USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Kaushik Mitra
- Department of Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories (MRL), Merck & Co., Inc , West Point , PA , USA
| | | | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc , South San Francisco , CA , USA
| |
Collapse
|
295
|
Bolaji OO, Adehin A, Adeagbo BA. Pharmacogenomics in the Nigerian population: the past, the present and the future. Pharmacogenomics 2019; 20:915-926. [DOI: 10.2217/pgs-2019-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Nigerian population exhibits huge ethnic and genetic diversity, typical of African populations, which can be harnessed for improved drug-response and disease management. Existing data on genes relevant to drug response, so far generated for the population, indeed confirm the prevalence of some clinically significant pharmacogenes. These reports detail prevailing genetic alleles and metabolic phenotypes of vital drug metabolizing monooxygenases, transferases and drug transporters. While the utilization of existing pharmacogenomic data for healthcare delivery remains unpopular, several past and on-going studies suggest that a future shift toward genotype-stratified dosing of drugs and disease management in the population is imminent. This review discusses the present state of pharmacogenomics in Nigeria and the potential benefits of sustained research in this field for the population.
Collapse
Affiliation(s)
- Oluseye O Bolaji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ayorinde Adehin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Babatunde A Adeagbo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
296
|
Al-Eitan LN, Mohammad NN, Al-Maqableh HW, Hakooz NM, Dajani RB. Genetic Polymorphisms of Pharmacogenomic VIP Variants in the Circassian Subpopulation from Jordan. Curr Drug Metab 2019; 20:674-681. [PMID: 31362667 DOI: 10.2174/1389200220666190729124000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/27/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND It has been suggested that genetic variation within candidate pharmacogenes contributes to the differences in drug safety and efficacy as well as risk of adverse drug reactions among different ethnic groups. Illustrating the polymorphic distribution of Very Important Pharmacogenes (VIPs) in various ethnic groups will contribute to the development of personalized medicine for those populations. OBJECTIVE The present study aimed to identify the polymorphic distribution of VIPs in the Circassian subpopulation of Jordan and compare their allele frequencies with those of other populations. METHODS A total of 130 healthy and unrelated Circassian adults from Jordan were randomly recruited and genotyped for eleven VIP variants within the thiopurine S-methyltransferase (TPMT), ATP-binding cassette, sub-family B, member 1 (ABCB1), and vitamin D receptor (VDR) genes via Sequenom's MassARRAY® genotyping platform (iPLEX GOLD). RESULTS Our data on the allelic frequencies of the investigated VIP variants were compared to those of 18 other populations, comprising 11 HapMap populations, 6 Exome Aggregation Consortium populations, and the Chechen- Jordanian population from Jordan. Circassian-Jordanians were found to most resemble the African, Chechen- Jordanian, European (Finnish), European (non-Finnish), and South-Asian populations. CONCLUSION Circassians from Jordan significantly differ from other populations in terms of the allelic frequencies of selected VIP variants. The present findings constitute the first set of pharmacogenetic data for Circassian population from Jordan, providing a basis for safe drug administration that may be useful in diagnosing and treating diseases in this ethnic group.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Namarg N Mohammad
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Haneen W Al-Maqableh
- Department of Biology and Biotechnology, Hashemite University, Zarqa 13133, Jordan
| | - Nancy M Hakooz
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Rana B Dajani
- Department of Biology and Biotechnology, Hashemite University, Zarqa 13133, Jordan.,Radcliffe Institute for Advanced Studies, Harvard University, Cambridge, 02138 MA, United States
| |
Collapse
|
297
|
Coller JK, Ramachandran J, John L, Tuke J, Wigg A, Doogue M. The impact of liver transplant recipient and donor genetic variability on tacrolimus exposure and transplant outcome. Br J Clin Pharmacol 2019; 85:2170-2175. [PMID: 31219197 DOI: 10.1111/bcp.14034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
This study investigated the effect of recipient and donor genetic variability on dose-adjusted steady-state tacrolimus concentrations (Css ) and clinical outcomes 3 and 6 months after liver transplant. Twenty-nine recipients and matched donor blood samples were genotyped for 27 single nucleotide polymorphisms including CYP3A5*3 (rs776746), ABCB1 haplotype and immune genes. Associations between genetic variability and clinical parameters and Css and the occurrence of rejection and nephrotoxicity were analysed by multivariate and multinomial logistic regression modelling and Jonckheere-Terpstra tests examined the impact of combined donor/recipient CYP3A5 expression on Css . At 3 months post-transplant modelling revealed an association between tacrolimus Css and recipient CASP1 rs580523 genotype (P = 0.005), accounting for 52% Css variance. Jonckheere-Terpstra tests revealed that as combined donor/recipient CYP3A5 expression increased, Css decreased (P = 0.010 [3 months], 0.018 [6 months]). As this is the first report of CASP1 genetic variability influencing tacrolimus Css , further validation in larger cohorts is required.
Collapse
Affiliation(s)
- Janet K Coller
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Jeyamani Ramachandran
- Hepatology and Liver Transplantation Medicine Unit, Flinders Medical Centre, Bedford Park, Australia.,South Australian Liver Transplant Unit, Flinders Medical Centre, Bedford Park, Australia
| | - Libby John
- South Australian Liver Transplant Unit, Flinders Medical Centre, Bedford Park, Australia
| | - Jonathan Tuke
- School of Mathematical Sciences, University of Adelaide, Adelaide, Australia.,ARC Centre of Excellence for Mathematical & Statistical Frontiers, School of Mathematical Sciences, University of Adelaide, Adelaide, Australia
| | - Alan Wigg
- Hepatology and Liver Transplantation Medicine Unit, Flinders Medical Centre, Bedford Park, Australia.,South Australian Liver Transplant Unit, Flinders Medical Centre, Bedford Park, Australia
| | - Matthew Doogue
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
298
|
Bartlett FE, Carthon CE, Hagopian JC, Horwedel TA, January SE, Malone A. Tacrolimus Concentration-to-Dose Ratios in Kidney Transplant Recipients and Relationship to Clinical Outcomes. Pharmacotherapy 2019; 39:827-836. [PMID: 31230376 DOI: 10.1002/phar.2300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION One factor impacting tacrolimus interpatient variability is the presence of CYP3A5 polymorphisms. Low tacrolimus concentration-to-dose ratios (CDRs), or rapid metabolizers (RMs), have been associated with poor graft function outcomes and higher biopsy-proven acute rejection (BPAR) rates in a predominantly white population. Pretransplant CYP genotyping is not routinely conducted, and therefore only a small number of studies have assessed the use of tacrolimus CDRs as a surrogate for metabolism. We explored differences in outcomes between patients with low tacrolimus CDRs and high tacrolimus CDRs (i.e., nonrapid metabolizers [NRMs]) in a diverse patient population. OBJECTIVE To determine the relationship between tacrolimus CDRs and graft and patient outcomes in kidney transplant recipients at a large transplant center between 2006 and 2016. METHODS Inclusion criteria consisted of adult kidney transplant recipients who received rabbit antithymocyte globulin induction followed by a maintenance regimen of tacrolimus, mycophenolate, and prednisone. The primary end point was BPAR at 1 year. Secondary end points included graft survival, patient survival, and toxicities. Determination of clusters was conducted using the two-step cluster analysis with a defined two-cluster distribution. Kaplan-Meier survival curves were created using the log-rank test. RESULTS The NRM cluster consisted of 322 patients with a mean CDR of 2.91 ng/ml/mg. The RM cluster consisted of 932 patients with a mean CDR of 1.14 ng/ml/mg. The BPAR at 1 year posttransplant was 3.7% in the NRM cluster and 3.6% in the RM cluster (p=0.95). Death at 5 years was higher in the NRM group compared with the RM group for unknown reasons (p=0.03). Differences in the incidence of posttransplant toxicities were not statistically significant at any time point, except for increased rates of cutaneous cancer at 5 years and cardiovascular disease overall in the NRM group. CONCLUSION Tailoring tacrolimus therapy early posttransplant based on CDR is not supported by the findings in this study.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew Malone
- Division of Nephrology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
299
|
Lionaki S, Liapis G, Boletis JN. Pathogenesis and Management of Acute Kidney Injury in Patients with Nephrotic Syndrome Due to Primary Glomerulopathies. ACTA ACUST UNITED AC 2019; 55:medicina55070365. [PMID: 31336742 PMCID: PMC6681356 DOI: 10.3390/medicina55070365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
Acute kidney injury in the context of nephrotic syndrome is a serious and alarming clinical problem. Largely, acute kidney injury is a relatively frequent complication among patients with comorbidities while it has been independently associated with an increased risk of adverse outcomes, including death and chronic kidney disease. Nephrotic syndrome, without hematuria or with minimal hematuria, includes a list of certain glomerulopathies; minimal change disease, focal segmental glomerulosclerosis and membranous nephropathy. In the light of primary nephrotic syndrome, pathophysiology of acute kidney injury is differentiated by the nature of the primary disease and the severity of the nephrotic state. This review aims to explore the clinical circumstances and pathogenetic mechanisms of acute kidney injury in patients with nephrotic syndrome due to primary glomerulopathies, focusing on newer perceptions regarding the pathogenesis and management of this complicated condition, for the prompt recognition and timely initiation of appropriate treatment in order to restore renal function to its baseline level. Prompt recognition of the precise cause of acute kidney injury is crucial for renal recovery. Clinical characteristics, laboratory and serological findings along with histopathological findings, if required, will reveal the implicated pathway leading to individualized approach and management.
Collapse
Affiliation(s)
- Sophia Lionaki
- Nephrology Department & Transplantation Unit, Laiko Hospital, Faculty of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece.
| | - George Liapis
- Department of Pathology, Laiko Hospital, Faculty of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - John N Boletis
- Nephrology Department & Transplantation Unit, Laiko Hospital, Faculty of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
300
|
Anutrakulchai S, Pongskul C, Kritmetapak K, Limwattananon C, Vannaprasaht S. Therapeutic concentration achievement and allograft survival comparing usage of conventional tacrolimus doses and CYP3A5 genotype-guided doses in renal transplantation patients. Br J Clin Pharmacol 2019; 85:1964-1973. [PMID: 31077425 DOI: 10.1111/bcp.13980] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/04/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Although cytochromeP450(CYP)3A5 gene polymorphism affects personalized tacrolimus doses, there is no consensus as to whether CYP3A5 genotypes should be determined to adjust the doses. The aims were to compare the therapeutic ranges and clinical outcomes between the conventional and genotype-guided tacrolimus doses. METHODS This randomized controlled study compared 63 cases of the conventional tacrolimus dose group (0.1 mg/kg/day) with 62 cases of the genotype-guided doses group of 0.125, 0.1 and 0.08 mg/kg for CYP3A5*1/*1, *1/*3, and *3/*3 genotypes for the initial 3 days of kidney transplantation. After day 3, dose adjustment occurred in both groups to achieve therapeutic concentrations. RESULTS The genotype-guided group had an increased proportion of patients with tacrolimus concentrations in the therapeutic range at the steady state on day 3 (40.3 vs 23.8%, P = .048). A lower proportion of over-therapeutic concentration patients was noted in the genotype-guided group in the CYP3A5*3/*3 genotype (9.7 vs 27%, P = .013). Unexpectedly, more delayed graft functions (DGFs) were in the genotype-guided group (41.9 vs 22.2%, P = .018) especially in the CYP3A5*1/*1 participants who might have had an aggravated DGF by a longer ischaemic time and higher serum donor creatinine levels than in the control group. There were no significant differences of glomerular filtration rates or graft or patient survivals over a median 37-month follow-up period. CONCLUSIONS Determination of the CYP3A5 genotype improved therapeutic range achievement. CYP3A5*1/*1 patients who have high risks of DGF should be closely monitored because of an increased risk of DGF and reduced glomerular filtration rate with high tacrolimus doses.
Collapse
Affiliation(s)
- Sirirat Anutrakulchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Cholatip Pongskul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kittrawee Kritmetapak
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chulaporn Limwattananon
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand
| | - Suda Vannaprasaht
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|