251
|
Li L, Li H, Zhou Q, Lu Y, Chen P, Wang X, Zhao H. Implication of nuclear factor-erythroid 2-like 2/heme oxygenase 1 pathway in the protective effects of coenzyme Q10 against preeclampsia-like in a rat model. Microcirculation 2020; 27:e12651. [PMID: 32697403 DOI: 10.1111/micc.12651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Preeclampsia has ranked as one of the leading causes of both maternal and prenatal morbidity and mortality around the world. The hypotensive effect of coenzyme Q10 has been widely reported in preeclampsia rat model. However, the detailed mechanism remains unclear. METHODS L-NAME was utilized to establish the preeclampsia rat model. Biomarker assessments were performed to identify the levels of vascular factors including soluble fms-like tyrosine kinase (sFlt-1) and placental growth factor (PlGF), the circulating cytokines including interleukin 6, tumor necrosis factor α and interleukin 1β, and oxidative stress factors including malondialdehyde, H2 O2 , glutathione, superoxide dismutase, glutathione peroxidase, and Catalase. QRT-PCR was used to demonstrate the levels of cytokines in placenta tissues, and Western blot was performed to estimate the nuclear factor-erythroid 2-like 2 (Nrf2) and heme oxygenase 1 (HO-1) protein levels. RESULTS Coenzyme Q10 treatment decreased the blood pressure in rat model with preeclampsia by regulating the circulating levels of sFlt-1 and PlGF. Coenzyme Q10 attenuated serum and placental inflammation and oxidative stress in L-NAME-induced preeclampsia rats. Coenzyme Q10 activated the placental Nrf2/HO-1 pathway in L-NAME-induced preeclampsia rats. CONCLUSION Coenzyme Q10 attenuated placental inflammatory and oxidative stress, thereby protecting the rats against preeclampsia by activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Jinan, China
| | - Hongyan Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qian Zhou
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yuan Lu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Pengzheng Chen
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xietong Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Jinan, China.,Maternal and Child Health Care of Shandong Province, Jinan, China
| | - Heyong Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Jinan, China.,Maternal and Child Health Care of Shandong Province, Jinan, China
| |
Collapse
|
252
|
Sumida K, Han Z, Dashputre AA, Potukuchi PK, Kovesdy CP. Association between Nrf2 and CDKN2A expression in patients with end-stage renal disease: a pilot study. Aging (Albany NY) 2020; 12:16357-16367. [PMID: 32661200 PMCID: PMC7485736 DOI: 10.18632/aging.103685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/29/2020] [Indexed: 04/12/2023]
Abstract
Patients with end-stage renal disease (ESRD) display phenotypic features of premature biological aging, characterized by disproportionately high morbidity and mortality at a younger age. Nuclear factor erythroid 2-related factor 2 (Nrf2) activity, a master regulator of antioxidative responses, declines with age and is implicated in the pathogenesis of age-related disorders; however, little is known about the association between Nrf2 and premature biological aging in ESRD patients. In a cross-sectional pilot cohort of 34 ESRD patients receiving maintenance hemodialysis, we measured the expression of Nrf2 and cyclin-dependent kinase inhibitor 2A (CDKN2A, or p16INK4a, a biomarker of biological aging) genes in whole blood and examined the association of Nrf2 with CDKN2A expression, using Spearman's rank correlation and multivariable linear regression models with adjustment for potential confounders. There was a significant negative correlation between Nrf2 and CDKN2A expression (rho=-0.51, P=0.002); while no significant correlation was found between Nrf2 expression and chronological age (rho=-0.02, P=0.91). After multivariable adjustment, Nrf2 expression remained significantly and negatively associated with CDKN2A expression (β coefficient=-1.51, P=0.01), independent of chronological age, gender, race, and diabetes status. These findings suggest a potential contribution of Nrf2 dysfunction to the development of premature biological aging and its related morbidities in ESRD patients.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zhongji Han
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ankur A. Dashputre
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Institute for Health Outcomes and Policy, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Praveen K. Potukuchi
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Csaba P. Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Nephrology Section, Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
253
|
Wei YZ, Zhu GF, Zheng CQ, Li JJ, Sheng S, Li DD, Wang GQ, Zhang F. Ellagic acid protects dopamine neurons from rotenone-induced neurotoxicity via activation of Nrf2 signalling. J Cell Mol Med 2020; 24:9446-9456. [PMID: 32657027 PMCID: PMC7417702 DOI: 10.1111/jcmm.15616] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease. Oxidative stress is one of key contributors to PD. Nuclear factor erythroid-2-related factor 2 (Nrf2) is considered to be a master regulator of many genes involved in anti-oxidant stress to attenuate cell death. Therefore, activation of Nrf2 signalling provides an effective avenue to treat PD. Ellagic acid (EA), a natural polyphenolic contained in fruits and nuts, possesses amounts of pharmacological activities, such as anti-oxidant stress and anti-inflammation. Recent studies have confirmed EA could be used as a neuroprotective agent in neurodegenerative diseases. Here, mice subcutaneous injection of rotenone (ROT)-induced DA neuronal damage was performed to investigate EA-mediated neuroprotection. In addition, adult Nrf2 knockout mice and different cell cultures including MN9D-enciched, MN9D-BV-2 and MN9D-C6 cell co-cultures were applied to explore the underlying mechanisms. Results demonstrated EA conferred neuroprotection against ROT-induced DA neurotoxicity. Activation of Nrf2 signalling was involved in EA-mediated DA neuroprotection, as evidenced by the following observations. First, EA activated Nrf2 signalling in ROT-induced DA neuronal damage. Second, EA generated neuroprotection with the presence of astroglia and silence of Nrf2 in astroglia abolished EA-mediated neuroprotection. Third, EA failed to produce DA neuroprotection in Nrf2 knockout mice. In conclusion, this study identified EA protected against DA neuronal loss via an Nrf2-dependent manner.
Collapse
Affiliation(s)
- Yi-Zheng Wei
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Guo-Fu Zhu
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Chang-Qing Zheng
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing-Jie Li
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Shuo Sheng
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Dai-di Li
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Guo-Qing Wang
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
254
|
Zhang Y, Chen Y, Li B, Ding P, Jin D, Hou S, Cai X, Sheng X. The effect of monotropein on alleviating cisplatin-induced acute kidney injury by inhibiting oxidative damage, inflammation and apoptosis. Biomed Pharmacother 2020; 129:110408. [PMID: 32574971 DOI: 10.1016/j.biopha.2020.110408] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Although cisplatin is a common drug in the treatment of malignant tumors, its clinical application is limited due to various side effects, especially acute kidney injury (AKI). Till now, few effective pharmacological strategies can be applied to inhibit cisplatin-induced AKI. Here, we aimed to investigate the protective effects and possible mechanisms of monotropein on cisplatin-induced AKI. In this study, an AKI model was established in cisplatin-treated mice, and serum level of inflammatory cytokines, protein expressions of biochemical indicators and renal pathology were analyzed. Our results showed that our results showed that monotropein could significantly attenuate cisplatin-induced nephrotoxicity and reduce the levels of blood urea nitrogen (BUN) and serum creatinine (CRE). Furthermore, monotropein inhibited cisplatin-induced oxidative stress by reducing MDA level and increasing the activities of GSH, SOD and CAT. The underlying mechanisms of monotropein on alleviating cisplatin-induced AKI were associated with the activation of Nrf2/HO-1 pathway against oxidative stress and the inhibition on NF-κB signaling to suppress inflammation as well as the regulation on the expressions of proteins in apoptosis pathway in this renal injury model. This study firstly provided the evidence that monotropein could significantly attenuate cisplatin-induced AKI and suggested that monotropein might be used as a potential agent to alleviate side effects of cisplatin.
Collapse
Affiliation(s)
- Yuping Zhang
- Department of Gynaecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Baixue Li
- Department of Gynaecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Daxiang Jin
- Department of Osteology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xiaochun Cai
- Department of Gynecology and Obstetrics, Chenghai District People's Hospital, Shantou, 515800, Guangdong, China.
| | - Xiujie Sheng
- Department of Gynaecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
255
|
Portal inflammation predicts renal dysfunction in patients with nonalcoholic fatty liver disease. Hepatol Int 2020; 14:798-807. [DOI: 10.1007/s12072-020-10063-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
|
256
|
HIV protease inhibitor ritonavir induces renal fibrosis and dysfunction: role of platelet-derived TGF-β1 and intervention via antioxidant pathways. AIDS 2020; 34:989-1000. [PMID: 32167970 DOI: 10.1097/qad.0000000000002516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Chronic kidney disease (CKD) with tubular injury and fibrosis occurs in HIV infection treated with certain protease inhibitor-based antiretroviral therapies. The pathophysiology is unclear. DESIGN We hypothesized that fibrosis, mediated by platelet-derived transforming growth factor (TGF)-β1, underlies protease inhibitor-associated CKD. We induced this in mice exposed to the protease inhibitor ritonavir (RTV), and intervened with low-dose inhaled carbon monoxide (CO), activating erythroid 2-related factor (Nrf2)-associated antioxidant pathways. METHODS Wild-type C57BL/6 mice and mice deficient in platelet TGF-β1, were given RTV (10 mg/kg) or vehicle daily for 8 weeks. Select groups were exposed to CO (250 ppm) for 4 h after RTV or vehicle injection. Renal disorder, fibrosis, and TGF-β1-based and Nrf2-based signaling were examined by histology, immunofluorescence, and flow cytometry. Renal damage and dysfunction were assessed by KIM-1 and cystatin C ELISAs. Clinical correlations were sought among HIV-infected individuals. RESULTS RTV-induced glomerular and tubular injury, elevating urinary KIM-1 (P = 0.004). It enhanced TGF-β1-related signaling, accompanied by kidney fibrosis, macrophage polarization to an inflammatory phenotype, and renal dysfunction with cystatin C elevation (P = 0.008). Mice lacking TGF-β1 in platelets were partially protected from these abnormalities. CO inhibited RTV-induced fibrosis and macrophage polarization in association with upregulation of Nrf2 and heme oxygenase-1 (HO-1). Clinically, HIV infection correlated with elevated cystatin C levels in untreated women (n = 17) vs. age-matched controls (n = 19; P = 0.014). RTV-treated HIV+ women had further increases in cystatin C (n = 20; P = 0.05), with parallel elevation of HO-1. CONCLUSION Platelet TGF-β1 contributes to RTV-induced kidney fibrosis and dysfunction, which may be amenable to antioxidant interventions.
Collapse
|
257
|
Liu S, Zhang X, Wang J. Isovitexin protects against cisplatin-induced kidney injury in mice through inhibiting inflammatory and oxidative responses. Int Immunopharmacol 2020; 83:106437. [DOI: 10.1016/j.intimp.2020.106437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023]
|
258
|
Luo R, Jin H, Li L, Hu YX, Xiao F. Long Noncoding RNA MEG3 Inhibits Apoptosis of Retinal Pigment Epithelium Cells Induced by High Glucose via the miR-93/Nrf2 Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1813-1822. [PMID: 32473920 DOI: 10.1016/j.ajpath.2020.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in developed nations. Though plasma microRNA-93 (miR-93) is associated with the risk of DR, the function and regulatory mechanism of miR-93 during DR remains unclear. Blood samples were collected from 12 DR patients and 12 healthy controls. Primary human retinal pigment epithelium (RPE) cells and ARPE-19 cells were cultured in 5 mmol/L or 33 mmol/L d-glucose medium. Long noncoding (lnc) RNA MEG3 and miR-93 expression was detected by real-time quantitative PCR. The effect of MEG3 and miR-93 on high glucose (HG)-induced apoptosis was detected by MTT and flow cytometry. IL-6 and tumor necrosis factor-α levels were detected by enzyme-linked immunosorbent assay. The relationships among MEG3, miR-93, and Nrf2 (also known as NFE2L2) were explored via dual-luciferase reporter assay. lncRNA MEG3 and Nrf2 were decreased and miR-93 was increased in blood samples of DR patients and HG-treated human RPE and ARPE-19 cells. Overexpression of miR-93 inhibited cell proliferation and promoted apoptosis, whereas overexpression of Nrf2 or MEG3 promoted proliferation and suppressed apoptosis and inflammation. In addition, MEG3 targeted miR-93 and down-regulated miR-93. Moreover, miR-93 directly targeted Nrf2 and negatively regulated Nrf2. This study suggests that lncRNA MEG3 depresses HG-induced apoptosis and inflammation of RPE via miR-93/Nrf2 axis, providing a novel perspective on the genesis and development of DR.
Collapse
Affiliation(s)
- Rong Luo
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Han Jin
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Lan Li
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Yu-Xiang Hu
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Fan Xiao
- Department of Ophthalmology, Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China.
| |
Collapse
|
259
|
Chen X, Qi J, Wu Q, Jiang H, Wang J, Chen W, Mao A, Zhu M. High glucose inhibits vascular endothelial Keap1/Nrf2/ARE signal pathway via downregulation of monomethyltransferase SET8 expression. Acta Biochim Biophys Sin (Shanghai) 2020; 52:506-516. [PMID: 32369110 DOI: 10.1093/abbs/gmaa023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia-mediated reactive oxygen species (ROS) accumulation plays an important role in hyperglycemia-induced endothelial injury. Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway inhibition participates in hyperglycemia-induced ROS accumulation. Our previous study indicated that SET8 overexpression inhibits high glucose-mediated ROS accumulation in human umbilical vein endothelial cells (HUVECs). In the present study, we hypothesize that SET8 may play a major role in high glucose-induced ROS accumulation via modulation of Keap1/Nrf2/ARE pathway. Our data indicated that high glucose mediated cell viability reduction, ROS accumulation, and Nrf2/ARE signal pathway inhibition via upregulation of Keap1 expression in HUVECs. Moreover, high glucose inhibited the expressions of SET8 and H4K20me1 (a downstream target of SET8). SET8 overexpression improved high glucose-mediated Keap1/Nrf2/ARE pathway inhibition and endothelial oxidation. Consistently, the effects of sh-SET8 were similar to that of high glucose treatment and were reversed by si-Keap1. A mechanistic study found that H4K20me1 was enriched at the Keap1 promoter region. SET8 overexpression attenuated Keap1 promoter activity and its expression, while mutant SET8 R259G did not affect Keap1 promoter activity and expression. The results of this study demonstrated that SET8 negatively regulates Keap1 expression, thus participating in high glucose-mediated Nrf2/ARE signal pathway inhibition and oxidative injury in HUVECs.
Collapse
Affiliation(s)
- Xiangyuan Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie Qi
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qichao Wu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hui Jiang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wankun Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
260
|
Wang T, Dai F, Li GH, Chen XM, Li YR, Wang SQ, Ren DM, Wang XN, Lou HX, Zhou B, Shen T. Trans-4,4'-dihydroxystilbene ameliorates cigarette smoke-induced progression of chronic obstructive pulmonary disease via inhibiting oxidative stress and inflammatory response. Free Radic Biol Med 2020; 152:525-539. [PMID: 31760092 DOI: 10.1016/j.freeradbiomed.2019.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease resulted from airflow obstructions, and there is a driving requirement for novel and effective preventive and therapeutic agents of COPD. Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been regarded to be a promising therapeutic target for COPD. Resveratrol is a natural Nrf2 activator with antioxidant and anti-inflammatory properties, however, its application is limited by its relative low efficiency and poor bioavailability. Herein, based on the skeleton of resveratrol, trans-4,4'-dihydroxystilbene (DHS) has been firstly identified to be an Nrf2 activator, which is more potent than the well-known sulforaphane (SF) and resveratrol. Our results indicate that DHS blocks Nrf2 ubiquitylation through specifically reacting with Cys151 cysteine in Keap1 protein to activate Nrf2-regulated defensive response, and thus enhances intracellular antioxidant capability. Furthermore, DHS relieves lipopolysaccharide (LPS)-stimulated inflammatory response via inhibition of NF-κB. Importantly, DHS significantly ameliorates pathological alterations (e.g. infiltration of leukocytes and fibrosis), downregulates the levels of oxidant biomarkers malondialdehyde (MDA) and 8-oxo-7,8-dihydro-2'-deoxyguanosin (8-oxo-dG), and inhibits the overproductions of inflammatory mediators [e.g. tumor necrosis factor α (TNF-α), cyclooxygenase-2 (COX-2), and matrix metalloproteinase-9 (MMP-9)] in a cigarette smoke (CS)-induced pulmonary impairment mice model. Taken together, this study demonstrates that DHS attenuates the CS-induced pulmonary impairments through inhibitions of oxidative stress and inflammatory response targeting Nrf2 and NF-κB in vitro and in vivo, and could be developed into a preventive agent against pulmonary impairments induced by CS.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Fang Dai
- State Key Lab of Applied Organic Chemistry, Lanzhou University, Lanzhou, People's Republic of China
| | - Guo-Hui Li
- Department of Pharmacy, Jinan Maternity and Child Care Hospital, Jinan, People's Republic of China
| | - Xue-Mei Chen
- Department of Health Management, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ru Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Shu-Qi Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Bo Zhou
- State Key Lab of Applied Organic Chemistry, Lanzhou University, Lanzhou, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
261
|
Cilastatin Preconditioning Attenuates Renal Ischemia-Reperfusion Injury via Hypoxia Inducible Factor-1α Activation. Int J Mol Sci 2020; 21:ijms21103583. [PMID: 32438631 PMCID: PMC7279043 DOI: 10.3390/ijms21103583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cilastatin is a specific inhibitor of renal dehydrodipeptidase-1. We investigated whether cilastatin preconditioning attenuates renal ischemia-reperfusion (IR) injury via hypoxia inducible factor-1α (HIF-1α) activation. Human proximal tubular cell line (HK-2) was exposed to ischemia, and male C57BL/6 mice were subjected to bilateral kidney ischemia and reperfusion. The effects of cilastatin preconditioning were investigated both in vitro and in vivo. In HK-2 cells, cilastatin upregulated HIF-1α expression in a time- and dose-dependent manner. Cilastatin enhanced HIF-1α translation via the phosphorylation of Akt and mTOR was followed by the upregulation of erythropoietin (EPO) and vascular endothelial growth factor (VEGF). Cilastatin did not affect the expressions of PHD and VHL. However, HIF-1α ubiquitination was significantly decreased after cilastatin treatment. Cilastatin prevented the IR-induced cell death. These cilastatin effects were reversed by co-treatment of HIF-1α inhibitor or HIF-1α small interfering RNA. Similarly, HIF-1α expression and its upstream and downstream signaling were significantly enhanced in cilastatin-treated kidney. In mouse kidney with IR injury, cilastatin treatment decreased HIF-1α ubiquitination independent of PHD and VHL expression. Serum creatinine level and tubular necrosis, and apoptosis were reduced in cilastatin-treated kidney with IR injury, and co-treatment of cilastatin with an HIF-1α inhibitor reversed these effects. Thus, cilastatin preconditioning attenuated renal IR injury via HIF-1α activation.
Collapse
|
262
|
Autophagy Induced by ROS Aggravates Testis Oxidative Damage in Diabetes via Breaking the Feedforward Loop Linking p62 and Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7156579. [PMID: 32509151 PMCID: PMC7254092 DOI: 10.1155/2020/7156579] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022]
Abstract
Testicular dysfunction due to hyperglycemia is the main cause of infertility in diabetic men. Over the years, in order to solve this growing problem, a lot of research has been done and a variety of treatments have been created, but so far, there is no safe, effective, and practical method to prevent male infertility caused by diabetes. In this review, we emphasize the male infertility mechanism caused by diabetes from the effects of oxidative stress and autophagy on the function of testes via the PI3K/Akt/mTOR signaling pathway, and we highlight that oxidative stress-induced autophagy breaks the feedforward loop linking Nrf2 and p62 and promotes oxidative damage in diabetic testes.
Collapse
|
263
|
Rayego-Mateos S, Valdivielso JM. New therapeutic targets in chronic kidney disease progression and renal fibrosis. Expert Opin Ther Targets 2020; 24:655-670. [PMID: 32338087 DOI: 10.1080/14728222.2020.1762173] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The current therapeutic armamentarium to prevent chronic kidney disease (CKD) progression is limited to the control of blood pressure and in diabetic patients, the strict control of glucose levels. Current research is primarily focused on the reduction of inflammation and fibrosis at different levels. AREAS COVERED This article examines the latest progress in this field and places an emphasis on inflammation, oxidative stress, and fibrosis. New therapeutic targets are described and evidence from experimental and clinical studies is summarized. We performed a search in Medline for articles published over the last 10 years. EXPERT OPINION The search for therapeutic targets of renal inflammation is hindered by an incomplete understanding of the pathophysiology. The determination of the specific inducers of inflammation in the kidney is an area of heightened potential. Prevention of the progression of renal fibrosis by blocking TGF-β signaling has been unsuccessful, but the investigation of signaling pathways involved in late stages of fibrosis progression could yield improved results. Preventive strategies such as the modification of microbiota-inducers of uremic toxins involved in CKD progression is a promising field because of the interaction between the gut microbiota and the renal system.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Red De Investigación Renal (Redinren) , Spain.,Vascular and Renal Translational Research Group, Institut De Recerca Biomèdica De Lleida IRBLleida , Lleida, Spain
| | - Jose M Valdivielso
- Red De Investigación Renal (Redinren) , Spain.,Vascular and Renal Translational Research Group, Institut De Recerca Biomèdica De Lleida IRBLleida , Lleida, Spain
| |
Collapse
|
264
|
Li N, Xu M, Wu M, Zhao G. Cinnamtannin A2 protects the renal injury by attenuates the altered expression of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) expression in 5/6 nephrectomized rat model. AMB Express 2020; 10:87. [PMID: 32385622 PMCID: PMC7210374 DOI: 10.1186/s13568-020-01022-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Present investigation determines the protective effect of Cinnamtannin A2 against chronic renal failure (CRF). 5/6 nephrectomized rat model was used to induced CRF by removing the kidneys and rats were treated with Cinnamtannin A2 10 mg/kg, i.p. for the period 30 days. Nephroprotective effect Cinnamtannin A2 was assessed by estimating the biochemical parameters of renal function test and cytokines in the serum of nephractomized rats. Oxidative stress parameters were estimated in the kidney tissue and western blot assay and qRT-PCR assay was performed to determine the expression of protein in renal tissue of nephractomized rats. Moreover histopathology study was done to observe the tubular injury. Data of the report reveals that treatment with Cinnamtannin A2 ameliorates the altered level of creatinine, blood urea nitrogen (BUN), Neutrophil gelatinase-associated lipocalin (NGAL), Kidney Injury Molecule-1 (KIM-1) and cytokines in the serum and microalbuminurea in the urine of 5/6 nephrectomized rat. Oxidative stress level was reduced in Cinnamtannin A2 treated group than CRF group. Moreover treatment with Cinnamtannin A2 attenuates the altered expression of proteins involved in Nrf2-Keap1 pathway in the kidney tissue of 5/6 nephrectomized rat. Result of histopathology reveals that tubular injury score was reduced in the kidney tissue of Cinnamtannin A2 treated group than CRF group. In conclusion, data of the report suggest that treatment with Cinnamtannin A2 ameliorates the level of KIM1 and NAGL in 5/6 nephractomized rats by regulating Nrf2- Keap1 pathway.
Collapse
Affiliation(s)
- Na Li
- grid.64924.3d0000 0004 1760 5735Department of Nephrology, The third Hospital of Jilin University, No 126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Mingzhu Xu
- grid.64924.3d0000 0004 1760 5735Department of Nephrology, The third Hospital of Jilin University, No 126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Mei Wu
- grid.64924.3d0000 0004 1760 5735Central Laboratory, The third Hospital of Jilin University, Changchun, 130033 Jilin People’s Republic of China
| | - Guanjie Zhao
- grid.64924.3d0000 0004 1760 5735Department of Nephrology, The third Hospital of Jilin University, No 126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| |
Collapse
|
265
|
Priya Dharshini LC, Vishnupriya S, Sakthivel KM, Rasmi RR. Oxidative stress responsive transcription factors in cellular signalling transduction mechanisms. Cell Signal 2020; 72:109670. [PMID: 32418887 DOI: 10.1016/j.cellsig.2020.109670] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022]
Abstract
Oxidative stress results from the imbalances in the development of reactive oxygen species (ROS) and antioxidants defence system resulting in tissue injury. A key issue resulting in the modulation of ROS is that it alters hosts molecular, structural and functional properties which is accomplished via various signalling pathways which either activate or inhibit numerous transcription factors (TFs). Some of the regulators include Nuclear erythroid-2 related factors (Nrf-2), CCAAT/enhancer-binding protein delta (CEBPD), Activator Protein-1 (AP-1), Hypoxia-inducible factor 1(HIF-1), Nuclear factor κB (NF-κB), Specificity Protein-1 (SP-1) and Forkhead Box class O (FoxO) transcription factors. The expression of these transcription factors are dependent upon the stress signal and are sometimes interlinked. They are highly specific having their own regulation cellular events. Depending upon the transcription factors and better knowledge on the type of the oxidative stress help researchers develop safe, novel targets which can serve as efficient therapeutic targets for several disease conditions.
Collapse
Affiliation(s)
| | - Selvaraj Vishnupriya
- Department of Biotechnology, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India.
| |
Collapse
|
266
|
Xue Y, Wang AZ. DJ-1 plays a neuroprotective role in SH-SY5Y cells by modulating Nrf2 signaling in response to lidocaine-mediated oxidative stress and apoptosis. Kaohsiung J Med Sci 2020; 36:630-639. [PMID: 32363780 DOI: 10.1002/kjm2.12218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/23/2020] [Indexed: 01/04/2023] Open
Abstract
To investigate the effects of DJ-1 on lidocaine-induced cytotoxicity in neurons and the link with Nrf2 signaling, SH-SY5Y cells were treated with 1, 4, 8, and 16 mM lidocaine. Cell viability was measured by MTT assay, and apoptosis was measured by flow cytometry analysis. The mitochondrial membrane potential, reactive oxygen species (ROS) levels, lipid peroxidation (MDA), and GSH/GSSG ratio were determined with specific kits. Expression of DJ-1, Nrf2, and Nrf2 downstream signaling proteins (glutathione peroxidase [GPx], heme oxygenase-1 [HO-1], catalase [CAT], and glutathione reductase [GR]), was determined by western blot and qRT-PCR. The cell viability was dramatically decreased, while levels of apoptosis, ROS and Cys106-oxidized DJ-1 were significantly enhanced following treatment with lidocaine (concentration 4-16 mM), and increases were observed in a dose-dependent manner. After treatment with 8 mM lidocaine, DJ-1, and nuclear Nrf2, as well as antioxidative stress-related proteins, GPx, GR, HO-1, and CAT, were all significantly inhibited. Overexpression of DJ-1 suppressed lidocaine-induced apoptosis and oxidative stress in SH-SY5Y cells and activated Nrf2 signalling at the same time, and these effects were reversed by the inhibition of Nrf2. DJ-1 could protect SH-SY5Y cells from lidocaine-induced apoptosis through inhibition of oxidative stress via Nrf2 signaling.
Collapse
Affiliation(s)
- Ying Xue
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ai-Zhong Wang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
267
|
Cao H, Cheng Y, Gao H, Zhuang J, Zhang W, Bian Q, Wang F, Du Y, Li Z, Kong D, Ding D, Wang Y. In Vivo Tracking of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improving Mitochondrial Function in Renal Ischemia-Reperfusion Injury. ACS NANO 2020; 14:4014-4026. [PMID: 32212674 DOI: 10.1021/acsnano.9b08207] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Extracellular vesicles (EVs) released by mesenchymal stem cells (MSCs) have exhibited regenerative capability in animal models of ischemia-reperfusion (I/R) acute kidney injury (AKI) and are considered as potential alternatives to direct MSC therapy. However, real-time in vivo imaging of MSC-EVs in renal I/R injury has yet to be established. Renal intracellular targets of MSC-EVs responsible for their regenerative effects also remain elusive. Here, we report that we real-time observed MSC-EVs specifically accumulated in the injured kidney and were taken up by renal proximal tubular epithelia cells (TECs) via DPA-SCP with aggregation-induced emission (AIE) characteristics. DPA-SCP precisely tracked the fate of MSC-EVs in a renal I/R injury mouse model for 72 h and exhibited superior spatiotemporal resolution and tracking ability to popular commercially available EV tracker PKH26. Further analysis revealed that the accumulated MSC-EVs stimulated mitochondrial antioxidant defense and ATP production via activating the Keap1-Nrf2 signaling pathway, which protected TECs against oxidative insult by reducing mitochondrial fragmentation, normalizing mitochondrial membrane potential, and increasing mitochondrial DNA copy number. Increased microRNA-200a-3p expression in renal TECs induced by MSC-EVs was identified as a regulatory mechanism contributing to the protective actions on mitochondria as well as stimulating the renal signal transduction pathways. In conclusion, MSC-EVs accumulated in the renal tubules during renal I/R injury and promoted the recovery of kidney function via activating the Keap1-Nrf2 signaling pathway and enhancing mitochondrial function of TECs. DPA-SCP with AIE characteristics allows noninvasive and precise in vivo visualization of MSC-EVs in kidney repair.
Collapse
Affiliation(s)
- Hongmei Cao
- Department of Biochemistry, Nankai University School of Medicine, Tianjin 300071, China
- Department of Nephrology, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuanqiu Cheng
- Department of Biochemistry, Nankai University School of Medicine, Tianjin 300071, China
| | - Heqi Gao
- The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhuang
- Department of Biochemistry, Nankai University School of Medicine, Tianjin 300071, China
| | - Weiguang Zhang
- Department of Nephrology, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Chinese PLA General Hospital, Beijing 100853, China
| | - Qiang Bian
- National Pesticide Engineering Research Center, Nankai University, Tianjin 300071, China
| | - Fang Wang
- Tianjin Nankai Hospital, Tianjin 300100, China
| | - Yuan Du
- Tianjin Nankai Hospital, Tianjin 300100, China
| | - Zongjin Li
- Department of Biochemistry, Nankai University School of Medicine, Tianjin 300071, China
| | - Deling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Ding
- The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuebing Wang
- Department of Biochemistry, Nankai University School of Medicine, Tianjin 300071, China
- Department of Nephrology, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
268
|
Yang WJ, Chen XM, Wang SQ, Hu HX, Cheng XP, Xu LT, Ren DM, Wang XN, Zhao BB, Lou HX, Shen T. 4β-Hydroxywithanolide E from Goldenberry (Whole Fruits of Physalis peruviana L.) as a Promising Agent against Chronic Obstructive Pulmonary Disease. JOURNAL OF NATURAL PRODUCTS 2020; 83:1217-1228. [PMID: 32159343 DOI: 10.1021/acs.jnatprod.9b01265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Environmental toxicant- and oxidant-induced [e.g., cigarette smoke (CS)] respiratory oxidative stress and inflammatory response play a vital role in the onset and progression of COPD. The nuclear factor erythroid 2-related factor 2 (Nrf2) represents an important mechanism for regulating intracellular oxidative stress and inflammatory response and is a promising target for developing agents against COPD. Herein, a bioactivity-guided purification of goldenberry (whole fruits of Physalis peruviana L.) led to the isolation of a novel and potent Nrf2 activator 4β-hydroxywithanolide E (4β-HWE). Our study indicated that (i) 4β-HWE activated the Nrf2-mediated defensive response through interrupting Nrf2-Keap1 protein-protein interaction (PPI) via modification of Cys151 and Cys288 cysteine residues in Keap1 and accordingly suppressing the ubiquitination of Nrf2. (ii) 4β-HWE enhanced intracellular antioxidant capacity and inhibited oxidative stress in normal human lung epithelial Beas-2B cells and wild-type AB zebrafish. (iii) 4β-HWE blocked LPS-stimulated inflammatory response and inhibited LPS-stimulated NF-κB activation in RAW 264.7 murine macrophages. (iv) 4β-HWE effectively suppressed oxidative stress and inflammatory response in a CS-induced mice model of pulmonary injury. Collectively, these results display the feasibility of using 4β-HWE to prevent or alleviate the pathological progression of COPD and suggest that 4β-HWE is a candidate or a leading molecule against COPD.
Collapse
Affiliation(s)
- Wen-Jing Yang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xue-Mei Chen
- Department of Maternity, Binzhou Central Hospital, Binzhou Shandong 256603, People's Republic of China
| | - Shu-Qi Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Hui-Xin Hu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xin-Ping Cheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Lin-Tao Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Bao-Bing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China
| |
Collapse
|
269
|
Nezu M, Suzuki N. Roles of Nrf2 in Protecting the Kidney from Oxidative Damage. Int J Mol Sci 2020; 21:ijms21082951. [PMID: 32331329 PMCID: PMC7215459 DOI: 10.3390/ijms21082951] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Over 10% of the global population suffers from kidney disease. However, only kidney replacement therapies, which burden medical expenses, are currently effective in treating kidney disease. Therefore, elucidating the complicated molecular pathology of kidney disease is an urgent priority for developing innovative therapeutics for kidney disease. Recent studies demonstrated that intertwined renal vasculature often causes ischemia-reperfusion injury (IRI), which generates oxidative stress, and that the accumulation of oxidative stress is a common pathway underlying various types of kidney disease. We reported that activating the antioxidative transcription factor Nrf2 in renal tubules in mice with renal IRI effectively mitigates tubular damage and interstitial fibrosis by inducing the expression of genes related to cytoprotection against oxidative stress. Additionally, since the kidney performs multiple functions beyond blood purification, renoprotection by Nrf2 activation is anticipated to lead to various benefits. Indeed, our experiments indicated the possibility that Nrf2 activation mitigates anemia, which is caused by impaired production of the erythroid growth factor erythropoietin from injured kidneys, and moderates organ damage worsened by anemic hypoxia. Clinical trials investigating Nrf2-activating compounds in kidney disease patients are ongoing, and beneficial effects are being obtained. Thus, Nrf2 activators are expected to emerge as first-in-class innovative medicine for kidney disease treatment.
Collapse
Affiliation(s)
- Masahiro Nezu
- Department of Endocrinology and Diabetes, Yamanashi Prefectural Central Hospital, Fujimi 1-1-1, Kofu, Japan;
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Japan
- Correspondence: ; Tel.: +81-22-717-8206
| |
Collapse
|
270
|
Olivier V, Dunyach-Remy C, Corbeau P, Cristol JP, Sutra T, Burtey S, Lavigne JP, Moranne O. Factors of microinflammation in non-diabetic chronic kidney disease: a pilot study. BMC Nephrol 2020; 21:141. [PMID: 32316931 PMCID: PMC7175551 DOI: 10.1186/s12882-020-01803-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background The relationships between digestive bacterial translocation, uremic toxins, oxidative stress and microinflammation in a population of chronic kidney disease (CKD) patients without metabolic nor inflammatory disease are unknown. Methods Bacterial translocation, uremic toxins, oxidative stress, and inflammation were assessed by measuring plasma levels of 16S ribosomal DNA (16S rDNA), p-cresyl sulfate (PCS), indoxyl sulfate (IS), indole acetic acid (IAA), F2-isoprostanes, hsCRP and receptor I of TNFα (RITNFα) in patients without metabolic nor inflammatory disease. 44 patients with CKD from stage IIIB to V and 14 controls with normal kidney function were included from the nephrology outpatients. 11 patients under hemodialysis (HD) were also included. Correlations between each factor and microinflammation markers were studied. Results 16S rDNA levels were not increased in CKD patients compared to controls but were decreased in HD compared to non-HD stage V patients (4.7 (3.9–5.3) vs 8.6 (5.9–9.7) copies/μl, p = 0.002). IS, PCS and IAA levels increased in HD compared to controls (106.3 (73.3–130.4) vs 3.17 (2.4–5.1) μmol/l, p < 0.0001 for IS; 174.2 (125–227.5) vs 23.7 (13.9–52.6) μmol/l, p = 0.006 for PCS; and 3.7 (2.6–4.6) vs 1.3 (1.0–1.9) μmol/l, p = 0.0002 for IAA). Urea increased in non-HD stage V patients compared to controls (27.6 (22.7–30.9) vs 5.4 (4.8–6.4) mmol/l, p < 0.0001) and was similar in HD and in non-HD stage V (19.3 (14.0–24.0) vs 27.6 (22.7–30.9) mmol/l, p = 0.7). RITNFα levels increased in HD patients compared to controls (12.6 (9.6–13.3) vs 1.1 (1.0–1.4) ng/ml, p < 0.0001); hsCRP levels increased in non-HD stage V patients compared to controls (2.9 (1.4–8.5) vs 0.8 (0.5–1.7) mg/l, p = 0.01) and remained stable in HD patients (2.9 (1.4–8.5) vs 5.1 (0.9–11.5) mg/l, p = 1). F2-isoprostanes did not differ in CKD patients compared to controls. Among uremic toxins, IS and urea were correlated to RITNFα (r = 0.8, p < 0.0001 for both). PCS, IS and urea were higher in patients with hsCRP≧5 mg/l (p = 0.01, 0.04 and 0.001 respectively). 16S rDNA, F2-isoprostanes were not correlated to microinflammation markers in our study. Conclusions In CKD patients without any associated metabolic nor inflammatory disease, only PCS, IS, and urea were correlated with microinflammation. Bacterial translocation was decreased in patients under HD and was not correlated to microinflammation.
Collapse
Affiliation(s)
- Valerie Olivier
- Department of Nephrology - Dialysis - Apheresis, Caremeau Hospital, University Montpellier-Nîmes, CHU Nîmes, Nimes, France.
| | - Catherine Dunyach-Remy
- Department of Microbiology and Hospital Hygiene, U1047, INSERM, University of Montpellier, CHU Nîmes, Nîmes, France
| | - Pierre Corbeau
- UMR9002, Institute for Human Genetics, CNRS-University of Montpellier, Montpellier, France
| | - Jean-Paul Cristol
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier, France.,Department of Biochemistry and Hormonology, CHU Montpellier, Montpellier, France
| | - Thibault Sutra
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier, France.,Department of Biochemistry and Hormonology, CHU Montpellier, Montpellier, France
| | - Stephane Burtey
- C2VN, INSERM 1263, INRA 1260, Aix-Marseille University, Marseille, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, U1047, INSERM, University of Montpellier, CHU Nîmes, Nîmes, France
| | - Olivier Moranne
- Department of Nephrology - Dialysis - Apheresis, Caremeau Hospital, University Montpellier-Nîmes, CHU Nîmes, Nimes, France.,EA2415, Laboratoire Epidémiologie, Santé Publique, Biostatistiques, University of Montpellier, Nîmes, France
| |
Collapse
|
271
|
GSTM1-null allele predicts rapid disease progression in nondialysis patients and mortality among South Indian ESRD patients. Mol Cell Biochem 2020; 469:21-28. [PMID: 32304007 DOI: 10.1007/s11010-020-03724-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/20/2020] [Indexed: 01/26/2023]
Abstract
Chronic kidney disease (CKD) is one of the main causes of early death in humans worldwide. Glutathione S-Transferases (GSTs) are involved in a series of xenobiotics metabolism and free radical scavenging. The previous studies elucidated the interlink between GST variants and to the development of various diseases. The present case-control study performed to ascertain whether GST polymorphisms are associated with the incidence and advancement of CKD. From the Southern part of India, a total of 392 CKD patients (nondialysis, ND; n = 170, end-stage renal disease, ESRD; n = 222) and 202 healthy individuals were enrolled. Patients were followed-up for 70 months. Serum biochemical parameters were recorded, and the extraction of DNA was done from the patient's blood samples. To genotype study participants, multiplex PCR for GSTM1/T1 was performed. Statistical analysis was carried out to analyze the relationship between gene frequency and sonographic grading, as well as biochemical parameters for disease development. The GSTM1-null genotype showed threefold increased risk (OR = 2.9304; 95% CI 1.8959 to 4.5296; P < 0.0001) to CKD development and twofold increased risk (OR = 1.8379; 95% CI 1.1937 to 2.8299; P = 0.0057) to ESRD progression. During the mean follow-up of 41 months study, multivariate Cox regression analysis revealed that GSTM1-null genotype has 4 times increased the risk for all-cause rapid disease progression to ESRD among ND patients and 3.85-fold increased risk for death among ESRD patients. Survival analysis revealed that patients with GSTM1-present allele showed a significantly diminished risk of mortality compared to patients bearing the GSTM1-null allele among ESRD patients with a hazard ratio of 4.6242 (P < 0.0001). Thus, present data confirm that GSTM1-null genotype increased the risk for all-cause rapid disease progression to ESRD among ND patients. Based on our results, GSTM1-null genotype could be considered as a significant predictor for causing mortality among CKD patients when compared to all other variables.
Collapse
|
272
|
Randomized Clinical Trial on the Effect of Bardoxolone Methyl on GFR in Diabetic Kidney Disease Patients (TSUBAKI Study). Kidney Int Rep 2020; 5:879-890. [PMID: 32518870 PMCID: PMC7271944 DOI: 10.1016/j.ekir.2020.03.030] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Bardoxolone methyl significantly increases estimated glomerular filtration rate (eGFR) in patients with chronic kidney disease (CKD). However, the phase 3 study, Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes Mellitus: the Occurrence of Renal Events (BEACON), was terminated prematurely because bardoxolone methyl increased the risk for early-onset fluid overload in patients with identifiable risk factors for heart failure (elevated baseline B-type natriuretic peptide levels >200 pg/ml and prior history of hospitalization for heart failure). The Phase 2 Study of Bardoxolone Methyl in Patients with Chronic Kidney Disease and Type 2 Diabetes (TSUBAKI) study aimed to determine if patients without risk factors can mitigate the risk for fluid overload and whether changes in eGFR with bardoxolone methyl reflect true increases in GFR. Methods This phase 2, randomized, multicenter, double-blind, placebo-controlled study enrolled patients with type 2 diabetes and stage 3-4 CKD. Patients were randomized 1:1 to bardoxolone methyl (n = 41) or placebo (n = 41) (cohort G3), or 2:1 to bardoxolone methyl (n = 24) or placebo (n = 14) (cohort G4), administered orally once daily for 16 weeks using a dose-titration scheme. The primary efficacy endpoint was change from baseline in GFR measured by inulin clearance at week 16 in the cohort G3. Results A total of 40 patients were evaluated for the prespecified primary efficacy analysis. Mean change (95% confidence interval [CI]) from baseline in GFR was 5.95 (2.29 to 9.60) and -0.69 (-3.83 to 2.45) ml/min per 1.73 m2 for patients randomized to bardoxolone methyl and placebo, respectively, with a significant intergroup difference of 6.64 ml/min per 1.73 m2 (P = 0.008). Increases in the albumin/creatinine ratio were observed in the bardoxolone methyl group vs the placebo group. The most common adverse events (≥15% in either group) were viral upper respiratory tract infection, increased alanine aminotransferase, increased aspartate aminotransferase, increased γ-glutamyltransferase, and constipation. Peripheral edema was reported by 4 patients receiving bardoxolone methyl and by 1 patient receiving placebo; all events were mild and self-limiting. No patient died or experienced heart failure. The study discontinuation rate was higher in the bardoxolone methyl group (cohort G3, n = 8; cohort G4, n = 7) than the placebo group (cohort G3, n = 1; cohort G4, n = 0). Conclusion Bardoxolone methyl significantly increased measured GFR, and further investigation is ongoing to evaluate whether it provides clinical benefit without major safety concerns in selected patients with CKD.
Collapse
|
273
|
Zager RA, Johnson ACM, Guillem A, Keyser J, Singh B. A Pharmacologic "Stress Test" for Assessing Select Antioxidant Defenses in Patients with CKD. Clin J Am Soc Nephrol 2020; 15:633-642. [PMID: 32291269 PMCID: PMC7269210 DOI: 10.2215/cjn.15951219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/20/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Oxidative stress is a hallmark and mediator of CKD. Diminished antioxidant defenses are thought to be partly responsible. However, there is currently no way to prospectively assess antioxidant defenses in humans. Tin protoporphyrin (SnPP) induces mild, transient oxidant stress in mice, triggering increased expression of select antioxidant proteins (e.g., heme oxygenase 1 [HO-1], NAD[P]H dehydrogenase [quinone] 1 [NQO1], ferritin, p21). Hence, we tested the hypothesis that SnPP can also variably increase these proteins in humans and can thus serve as a pharmacologic "stress test" for gauging gene responsiveness and antioxidant reserves. DESIGN , setting, participants, & measurementsA total of 18 healthy volunteers and 24 participants with stage 3 CKD (n=12; eGFR 30-59 ml/min per 1.73 m2) or stage 4 CKD (n=12; eGFR 15-29 ml/min per 1.73 m2) were injected once with SnPP (9, 27, or 90 mg). Plasma and/or urinary antioxidant proteins were measured at baseline and for up to 4 days post-SnPP dosing. Kidney safety was gauged by serial measurements of BUN, creatinine, eGFR, albuminuria, and four urinary AKI biomarkers (kidney injury molecule 1, neutrophil gelatinase-associated lipocalin, cystatin C, and N-acetyl glucosaminidase). RESULTS Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (r=-0.85 to -0.95). All four proteins manifested statistically significant dose- and time-dependent elevations after SnPP injection. However, marked intersubject differences were observed. p21 responses to high-dose SnPP and HO-1 responses to low-dose SnPP were significantly suppressed in participants with CKD versus healthy volunteers. SnPP was well tolerated by all participants, and no evidence of nephrotoxicity was observed. CONCLUSIONS SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.
Collapse
Affiliation(s)
- Richard A Zager
- Clinical Research Division, The Fred Hutchinson Cancer Research Center, Seattle, Washington .,Department of Medicine, The University of Washington, Seattle, Washington
| | - Ali C M Johnson
- Clinical Research Division, The Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Bhupinder Singh
- Renibus Therapeutics, Southlake, Texas.,Department of Medicine, The University of California, Irvine, California
| |
Collapse
|
274
|
Uremia-Associated Ageing of the Thymus and Adaptive Immune Responses. Toxins (Basel) 2020; 12:toxins12040224. [PMID: 32260178 PMCID: PMC7232426 DOI: 10.3390/toxins12040224] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Progressive loss of renal function is associated with a series of changes of the adaptive immune system which collectively constitute premature immunological ageing. This phenomenon contributes significantly to the mortality and morbidity of end-stage renal disease (ESRD) patients. In this review, the effect of ESRD on the T cell part of the adaptive immune system is highlighted. Naïve T cell lymphopenia, in combination with the expansion of highly differentiated memory T cells, are the hallmarks of immunological ageing. The decreased production of newly formed T cells by the thymus is critically involved. This affects both the CD4 and CD8 T cell compartment and may contribute to the expansion of memory T cells. The expanding populations of memory T cells have a pro-inflammatory phenotype, add to low-grade inflammation already present in ESRD patients and destabilize atherosclerotic plaques. The effect of loss of renal function on the thymus is not reversed after restoring renal function by kidney transplantation and constitutes a long-term mortality risk factor. Promising results from animal experiments have shown that rejuvenation of the thymus is a possibility, although not yet applicable in humans.
Collapse
|
275
|
Guo K, Zhang Y, Fang X, Fan P, Shang S, Fan F, Wu H, Man M, Xie Y, Lu X. Effects of acute exposure to ultra-wideband pulsed electromagnetic fields on the liver and kidneys of mice. Electromagn Biol Med 2020; 39:109-122. [PMID: 32164469 DOI: 10.1080/15368378.2020.1737806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The biosafety of ultra-wideband (UWB) pulses, which are characterized by simultaneously high power and a high bandwidth ratio, has gained increasing attention. Although there is substantial prior literature on the biological effects of UWB pulses on both cells and animals, an explicit, unequivocal and definite pattern of the corresponding biological responses remains elusive, and the systemic secondary consequences are also still not fully understood. In this study, we found that exposing mice to UWB pulses resulted in the alteration of several biochemical blood parameters, which further prompted us to investigate changes in the liver and kidneys of mice exposed to UWB pulses with different field intensities and different durations. The data demonstrated that exposure to UWB pulses significantly increased the levels of ALT and AST, increased oxidative stress, and could even induce the accumulation of lipid droplets in hepatocytes. The total number of pulses under the tested acute exposure regiment contributed most to the observed hepatic and rental dysfunction. Notably, the physiological and molecular changes recovered approximately 72 hours after exposure. These results imply the potential risk of acute exposure to UWB pulses, and highlight the meaningful targets for further long-term study of chronic exposure.
Collapse
Affiliation(s)
- Kaihong Guo
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an, China.,Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of the National Centre for the Genetic Improvement of Oil Crops, Xi'an, China
| | - Yali Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xinlei Fang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peiyao Fan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sen Shang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fan Fan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hongyan Wu
- Xi'an Jiaotong University Hospital, Xi'an, China
| | - Menghua Man
- Key Laboratory on Electromagnetic Effects, Shijiazhuang Campus of Army Engineering University, Shijiazhuang, China
| | - Yanzhao Xie
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
276
|
Wang W, Ma BL, Xu CG, Zhou XJ. Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153185. [PMID: 32120244 DOI: 10.1016/j.phymed.2020.153185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Dihydroquercetin (DHQ) is an antifibrotic agent. However, whether DHQ can prevent renal fibrosis remains unknown. PURPOSE This study aimed to investigate the effects of DHQ on tubulointerstitial fibrosis and its underlying mechanisms in unilateral ureteral obstruction (UUO) mice in vivo and NRK-49F cells in vitro. METHODS In vivo, UUO mice received vehicle or DHQ treatment. In vitro, NRK-49F cells were pretreated with DHQ and exposed to transforming growth factor-β1 (TGF-β1). Changes in fibroblast activation, collagen synthesis, oxidative stress, and related signaling pathways were assessed by immunohistochemical staining, Western blot analysis, real-time reverse transcription-PCR, and fluorescence microscopy. RESULTS UUO induced tubular atrophy, inflammation, fibroblast differentiation into myofibroblast, and collagen deposition, whereas DHQ ameliorated these effects. UUO also resulted in decreased levels of nuclear factor-erythroid-2-related factor 2 (Nrf2), catalase, and heme oxygenase-1, but increased H2O2 and malondialdehyde levels. DHQ treatment corrected these changes. In vitro, the intracellular Nrf2 level of NRK-49F exposed to TGF-β1 decreased. However, DHQ rescued intracellular Nrf2 level and promoted nuclear translocation of Nrf2. DHQ scavenged TGF-β1-induced accumulation of reactive oxygen species, inhibited TGF-β1-induced Smad3 phosphorylation, and prevented TGF-β1-induced fibroblast activation and collagen synthesis in NRK-49F. Nrf2 knockdown could suppress the DHQ-mediated inhibitory effects on oxidative stress, Smad3 phosphorylation, fibroblast activation, and collagen deposition. Furthermore, DHQ ameliorated established renal fibrosis in UUO mice. CONCLUSIONS DHQ posed remarkable preventive and therapeutic effects on UUO-induced renal fibrosis and suppressed fibroblast activation by reducing oxidative stress and Smad3 phosphorylation via Nrf2 signaling. This study provided a mechanistic basis for the clinical application of DHQ in renal fibrosis treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 23022, China
| | - Bei-Lei Ma
- Department of Clinical Laboratory, Qilu Hospital of Shangdong University, Qingdao 266035, China
| | - Chang-Geng Xu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26th Shengli Street, Wuhan 430014, China.
| | - Xiang-Jun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
277
|
Xia M, Liu D, Liu Y, Liu H. The Therapeutic Effect of Artemisinin and Its Derivatives in Kidney Disease. Front Pharmacol 2020; 11:380. [PMID: 32296335 PMCID: PMC7136752 DOI: 10.3389/fphar.2020.00380] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Artemisinin (ARS) and its derivatives (ARSs) are recommended as the first-line antimalarial drugs for the treatment of malaria. Besides antimalarial function, its potent anti-inflammatory and immunoregulatory properties, as well as the ability to regulate oxidative stress have brought them to a prominent position. As researchers around the world are continually exploring the unknown biological activities of ARS derivatives, experimental studies have shown much progress in renal therapy. This review aims to give a brief overview of the current research on ARSs applications for kidney treatment with the evaluation of therapeutic properties and potential molecular mechanisms.
Collapse
Affiliation(s)
- Ming Xia
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
278
|
Potential Protective and Therapeutic Roles of the Nrf2 Pathway in Ocular Diseases: An Update. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9410952. [PMID: 32273949 PMCID: PMC7125500 DOI: 10.1155/2020/9410952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
Nuclear factor- (erythroid-derived 2-) like 2 (Nrf2) is a regulator of many processes of life, and it plays an important role in antioxidant, anti-inflammatory, and antifibrotic responses and in cancer. This review is focused on the potential mechanism of Nrf2 in the occurrence and development of ocular diseases. Also, several Nrf2 inducers, including noncoding RNAs and exogenous compounds, which control the expression of Nrf2 through different pathways, are discussed in ocular disease models and ocular cells, protecting them from dysfunctional changes. Therefore, Nrf2 might be a potential target of protecting ocular cells from various stresses and preventing ocular diseases.
Collapse
|
279
|
Zhang ZH, He JQ, Zhao YY, Chen HC, Tan NH. Asiatic acid prevents renal fibrosis in UUO rats via promoting the production of 15d-PGJ2, an endogenous ligand of PPAR-γ. Acta Pharmacol Sin 2020; 41:373-382. [PMID: 31705123 PMCID: PMC7471452 DOI: 10.1038/s41401-019-0319-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022]
Abstract
Renal fibrosis is an inevitable outcome of all kinds of progressive chronic kidney disease (CKD). Recently, asiatic acid (AA), a triterpenoid compound from Chinese medicine Centella asiatica, has been found to attenuate renal fibrosis. In the current study, we explored the mechanisms underlying antifibrotic effect of AA on UUO model. SD rats and ICR mice were subjected to unilateral ureteral occlusion (UUO) surgery. Prior the surgery, rats were administered AA (10 mg·kg-1 per day, ig) for 7 days, whereas the mice received AA (15 mg·kg-1 per day, ig) for 3 days. UUO group displayed significant degree of renal dysfunction, interstitial fibrosis, oxidative stress, and activation of the TGF-β/Smad and Wnt/β-catenin signaling pathway in the kidney, these pathological changes were greatly ameliorated by pretreatment with AA. In addition, we found that co-treatment with GW9662, a selective PPAR-γ antagonist (1 mg·kg-1 per day, ip) for 7 days, abolished the protective effects of AA. We further revealed that AA pretreatment did not significantly change the expression levels of PPAR-γ in the kidney, but markedly increase the plasma levels of 15d-PGJ2, an endogenous ligand of PPAR-γ. In UUO mice, pretreatment with 15d-PGJ2 (24 μg·kg-1 per day, ip, for 7 days) produced similar protective effect as AA. Moreover, AA pretreatment upregulated the expression levels of active, nuclear-localized SREBP-1 (nSREBP-1), whereas fatostatin, a specific inhibitor of SREBP-1, decreased the expression of nSREBP-1, as well as the level of 15d-PGJ2. These results provide new insight into the antifibrotic mechanism of AA and endogenous metabolites might become a new clue for investigation of drug mechanism.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Jun-Qiu He
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hua-Chao Chen
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
280
|
Kiapidou S, Liava C, Kalogirou M, Akriviadis E, Sinakos E. Chronic kidney disease in patients with non-alcoholic fatty liver disease: What the Hepatologist should know? Ann Hepatol 2020; 19:134-144. [PMID: 31606352 DOI: 10.1016/j.aohep.2019.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 02/04/2023]
Abstract
The association of non-alcoholic fatty liver disease (NAFLD) with several other diseases has gained increased interest during the recent years. Among them, the association with chronic kidney disease (CKD) has emerged as an important one regarding both its prevalence and significance. The early recognition of this association is important for the prognosis of patients with NAFLD and CKD. Apart from early diagnosis, the accurate assessment of renal function is also crucial in the clinical practice of hepatologists. Several methods have been used in the literature for the evaluation of kidney function in patients with NAFLD up to now. In this respect, calculators (or formulas) for the estimation of Glomerular Filtration Rate (eGFR) and Albumin to Creatinine Ratio (ACR) are simple, practical and easily available methods for this purpose. The aim of this review is to report on the epidemiology and pathophysiology of the relationship between NAFLD and CKD and to describe the different methods of kidney function assessment in patients with NAFLD. The collection of all relevant data regarding this association will provide hepatologists with pertinent knowledge on this topic and allow them to use the most accurate methods for the assessment of kidney function in these patients in their clinical practice.
Collapse
Affiliation(s)
- Stefania Kiapidou
- 4th Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Konstantinoupoleos, Thessaloniki, Greece
| | - Christina Liava
- 4th Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Konstantinoupoleos, Thessaloniki, Greece
| | - Maria Kalogirou
- 4th Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Konstantinoupoleos, Thessaloniki, Greece
| | - Evangelos Akriviadis
- 4th Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Konstantinoupoleos, Thessaloniki, Greece
| | - Emmanouil Sinakos
- 4th Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, Konstantinoupoleos, Thessaloniki, Greece.
| |
Collapse
|
281
|
Schmidlin CJ, Dodson MB, Zhang DD. Filtering through the role of NRF2 in kidney disease. Arch Pharm Res 2020; 43:361-369. [PMID: 31372933 PMCID: PMC6994339 DOI: 10.1007/s12272-019-01177-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
Kidney disease affects ~ 10% of the population worldwide, resulting in millions of deaths each year. Mechanistically, oxidative stress is a major driver of various kidney diseases, and promotes the progression from acute to chronic injury, as well as renal cancer development. NRF2, the master regulator of redox balance, has been shown to protect against kidney disease through its negation of reactive oxygen species (ROS). However, many kidney diseases exhibit high levels of ROS as a result of decreased NRF2 protein levels and transcriptional activity. Many studies have tested the strategy of using NRF2 inducing compounds to alleviate ROS to prevent or slow down the progression of kidney diseases. Oppositely, in specific subsets of renal cancer, NRF2 is constitutively activated and contributes to tumor burden and overall poor prognosis; therefore, there has been a recent interest in studies investigating the benefits of NRF2 inhibition. In this review, we summarize recent literature investigating the role of NRF2 and oxidative stress in various kidney diseases, and how pharmacological modification of NRF2 signaling could play a protective role.
Collapse
Affiliation(s)
- Cody J Schmidlin
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Matthew B Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
282
|
Khan AM, Khan AU, Ali H, Islam SU, Seo EK, Khan S. Continentalic acid exhibited nephroprotective activity against the LPS and E. coli-induced kidney injury through inhibition of the oxidative stress and inflammation. Int Immunopharmacol 2020; 80:106209. [PMID: 32004924 DOI: 10.1016/j.intimp.2020.106209] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/25/2022]
Abstract
The present study investigated the effect of the continentalic acid (CNT) isolated from the Aralia Continentalis against the LPS and E. coli-induced nephrotoxicity. The LPS and E. coli administration markedly altered the behavioral parameters including spontaneous pain, tail suspension and survival rate. However, the treatment with CNT dose dependently improved the behavioral parameters. The CNT treatment significantly improved the renal functions test (RFTs) and hematological parameters following LPS and E. coli-induced kidney injury. Furthermore, the LPS and E. coli administration markedly compromised the anti-oxidant enzymes and enhanced the oxidative stress markers. However, the CNT treatment markedly enhanced the anti-oxidants enzymes such as GSH, GST, Catalase and SOD, while attenuated the oxidative stress markers such as MDA and POD. The MPO enzyme is widely used marker for the neutrophilic infiltration, the LPS and E. coli administration markedly increased the MPO activity. However, the CNT treatment markedly attenuated the MPO activity in both LPS and E. coli-induced kidney injury. Furthermore, the CNT treatment markedly attenuated the NO production compared to the LPS and E. coli-induced kidney injury group. Additionally, the CNT treatment improved the histological parameters markedly (H and E, PAS and Masson's trichome staining) and protect the kidney from the inflammatory insult of the LPS and E. coli evidently. The comet assay revealed marked DNA damage, however, the CNT treatment markedly prevented the LPS and E. coli-induced kidney damage. The CNT treatment markedly enhanced the expression of Nrf2, while attenuated the iNOS expression in both models of kidney injury.
Collapse
Affiliation(s)
- Amir Muhammad Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ashraf Ullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, South Korea
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
283
|
Leehey DJ. Targeting Inflammation in Diabetic Kidney Disease: Is There a Role for Pentoxifylline? ACTA ACUST UNITED AC 2020; 1:292-299. [DOI: 10.34067/kid.0001252019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Diabetic kidney disease (DKD) is the most common cause of ESKD in the United States and worldwide. Current treatment for DKD includes strict glycemic control and normalization of BP with renin-angiotensin-aldosterone system (RAAS) blockade. Although RAAS blockers slow progression of disease, they do not generally prevent ESKD and none of the studies with these agents in DKD included patients who were nonproteinuric, which make up an increasingly large percentage of patients with diabetes now seen in clinical practice. Recent studies with glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 (SGLT2) inhibitors have shown beneficial renal effects, and the benefits of SGLT2 inhibitors likely extend to patients who are nonproteinuric. However, there remains a need to develop new therapies for DKD, particularly in those patients with advanced disease. A role of chronic low-grade inflammation in microvascular complications in patients with diabetes has now been widely accepted. Large clinical trials are being carried out with experimental agents such as bardoxolone and selonsertib that target inflammation and oxidative stress. The Food and Drug Administration–approved, nonspecific phosphodiesterase inhibitor pentoxifylline (PTX) has been shown to have anti-inflammatory effects in both animal and human studies by inhibiting the production of proinflammatory cytokines. Small randomized clinical trials and meta-analyses indicate that PTX may have therapeutic benefits in DKD, raising the possibility that a clinically available drug may be able to be repurposed to treat this disease. A large, multicenter, randomized clinical trial to determine whether this agent can decrease time to ESKD or death is currently being conducted, but results will not be available for several years. At this time, the combination of RAAS blockade plus SGLT2 inhibition is considered standard of care for DKD, but it may be reasonable for clinicians to consider addition of PTX in patients whose disease continues to progress despite optimization of current standard-of-care therapies.
Collapse
|
284
|
Arefin S, Buchanan S, Hobson S, Steinmetz J, Alsalhi S, Shiels PG, Kublickiene K, Stenvinkel P. Nrf2 in early vascular ageing: Calcification, senescence and therapy. Clin Chim Acta 2020; 505:108-118. [PMID: 32097628 DOI: 10.1016/j.cca.2020.02.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022]
Abstract
Under normal physiological conditions, free radical generation and antioxidant defences are balanced, and reactive oxygen species (ROS) usually act as secondary messengers in a plethora of biological processes. However, when this balance is impaired, oxidative stress develops due to imbalanced redox homeostasis resulting in cellular damage. Oxidative stress is now recognized as a trigger of cellular senescence, which is associated with multiple chronic 'burden of lifestyle' diseases, including atherosclerosis, type-2 diabetes, chronic kidney disease and vascular calcification; all of which possess signs of early vascular ageing. Nuclear factor erythroid 2-related factor 2 (Nrf2), termed the master regulator of antioxidant responses, is a transcription factor found to be frequently dysregulated in conditions characterized by oxidative stress and inflammation. Recent evidence suggests that activation of Nrf2 may be beneficial in protecting against vascular senescence and calcification. Both natural and synthetic Nrf2 agonists have been introduced as promising drug classes in different phases of clinical trials. However, overexpression of the Nrf2 pathway has also been linked to tumorigenesis, which highlights the requirement for further understanding of pathways involving Nrf2 activity, especially in the context of cellular senescence and vascular calcification. Therefore, comprehensive translational pre-clinical and clinical studies addressing the targeting capabilities of Nrf2 agonists are urgently required. The present review discusses the impact of Nrf2 in senescence and calcification in early vascular ageing, with focus on the potential clinical implications of Nrf2 agonists and non-pharmacological Nrf2 therapeutics.
Collapse
Affiliation(s)
- Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Sarah Buchanan
- Institute of Cancer Sciences, Wolfson Wohl CRC, ICS, MVLS, University of Glasgow, Glasgow, UK
| | - Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Julia Steinmetz
- Rheumatology Unit, Dep. of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Shno Alsalhi
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden; Research Center, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region, Iraq
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl CRC, ICS, MVLS, University of Glasgow, Glasgow, UK
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden.
| |
Collapse
|
285
|
Wei T, Shu Q, Ning J, Wang S, Li C, Zhao L, Zheng H, Gao H. The Protective Effect of Basic Fibroblast Growth Factor on Diabetic Nephropathy Through Remodeling Metabolic Phenotype and Suppressing Oxidative Stress in Mice. Front Pharmacol 2020; 11:66. [PMID: 32153399 PMCID: PMC7046551 DOI: 10.3389/fphar.2020.00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy is a common complication in diabetes, but still lack of effective therapeutic strategies. This study aimed to investigate the therapeutic effect of basic fibroblast growth factor (bFGF) in db/db mice with diabetic nephropathy and explore its possible metabolic mechanisms using a nuclear magnetic resonance-based metabolomic approach. We found that bFGF treatment significantly alleviate urinary albumin to creatinine ratio and renal fibrosis in db/db mice, suggesting a potential renal protective effect. Metabolomics results reveal that bFGF remodeled metabolic phenotypes of the kidney and urine in db/db mice, mainly involving energy metabolism, methylamine metabolism, osmoregulation, and oxidative stress. Furthermore, the results show that bFGF-induced reductions of oxidative stress and apoptosis in db/db mice might be mediated by NOX-ROS-Nrf2 signaling. Therefore, our study suggests that the protective effect of bFGF on diabetic nephropathy could be mediated by remodeling metabolic phenotype and suppressing oxidative stress.
Collapse
Affiliation(s)
- Tingting Wei
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Qi Shu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Ning
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuaijie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
286
|
Zhang R, Saredy J, Shao Y, Yao T, Liu L, Saaoud F, Yang WY, Sun Y, Johnson C, Drummer C, Fu H, Lu Y, Xu K, Liu M, Wang J, Cutler E, Yu D, Jiang X, Li Y, Li R, Wang L, Choi ET, Wang H, Yang X. End-stage renal disease is different from chronic kidney disease in upregulating ROS-modulated proinflammatory secretome in PBMCs - A novel multiple-hit model for disease progression. Redox Biol 2020; 34:101460. [PMID: 32179051 PMCID: PMC7327976 DOI: 10.1016/j.redox.2020.101460] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background The molecular mechanisms underlying chronic kidney disease (CKD) transition to end-stage renal disease (ESRD) and CKD acceleration of cardiovascular and other tissue inflammations remain poorly determined. Methods We conducted a comprehensive data analyses on 7 microarray datasets in peripheral blood mononuclear cells (PBMCs) from patients with CKD and ESRD from NCBI-GEO databases, where we examined the expressions of 2641 secretome genes (SG). Results 1) 86.7% middle class (molecular weight >500 Daltons) uremic toxins (UTs) were encoded by SGs; 2) Upregulation of SGs in PBMCs in patients with ESRD (121 SGs) were significantly higher than that of CKD (44 SGs); 3) Transcriptomic analyses of PBMC secretome had advantages to identify more comprehensive secretome than conventional secretomic analyses; 4) ESRD-induced SGs had strong proinflammatory pathways; 5) Proinflammatory cytokines-based UTs such as IL-1β and IL-18 promoted ESRD modulation of SGs; 6) ESRD-upregulated co-stimulation receptors CD48 and CD58 increased secretomic upregulation in the PBMCs, which were magnified enormously in tissues; 7) M1-, and M2-macrophage polarization signals contributed to ESRD- and CKD-upregulated SGs; 8) ESRD- and CKD-upregulated SGs contained senescence-promoting regulators by upregulating proinflammatory IGFBP7 and downregulating anti-inflammatory TGF-β1 and telomere stabilizer SERPINE1/PAI-1; 9) ROS pathways played bigger roles in mediating ESRD-upregulated SGs (11.6%) than that in CKD-upregulated SGs (6.8%), and half of ESRD-upregulated SGs were ROS-independent. Conclusions Our analysis suggests novel secretomic upregulation in PBMCs of patients with CKD and ESRD, act synergistically with uremic toxins, to promote inflammation and potential disease progression. Our findings have provided novel insights on PBMC secretome upregulation to promote disease progression and may lead to the identification of new therapeutic targets for novel regimens for CKD, ESRD and their accelerated cardiovascular disease, other inflammations and cancers. (Total words: 279).
Collapse
Affiliation(s)
- Ruijing Zhang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China; Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Jason Saredy
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Tian Yao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Lu Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fatma Saaoud
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | | | - Yu Sun
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Charles Drummer
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hangfei Fu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yifan Lu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Keman Xu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ming Liu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jirong Wang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Elizabeth Cutler
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yafeng Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Rongshan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Lihua Wang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Eric T Choi
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
287
|
Zhang JH, Yang X, Chen YP, Zhang JF, Li CQ. Nrf2 Activator RTA-408 Protects Against Ozone-Induced Acute Asthma Exacerbation by Suppressing ROS and γδT17 Cells. Inflammation 2020; 42:1843-1856. [PMID: 31256292 DOI: 10.1007/s10753-019-01046-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ozone is a strong oxidant in air pollution that exacerbates respiratory disorders and is a major risk factor for acute asthma exacerbation. Ozone can induce reactive oxygen species (ROS) and airway neutrophilic inflammation. In addition, γδT17 cells contribute to IL-17A production upon ozone challenge, resulting in neutrophilic inflammation. It is known, however, that Nrf2 can ameliorate oxidative stress. We therefore investigated whether RTA-408, an Nrf2 activator, can attenuate airway inflammation and inhibit ROS production and whether this effect involves γδT17 cells. Balb/c mice were sensitized/challenged with ovalbumin (OVA) and followed by ozone exposure. We investigated the effect of Nrf2 activator RTA-408 on airway hyperresponsiveness, neutrophilic airway inflammation, cytokine/chemokine production, and OVA-specific IgE level in a mouse model of O3 induced asthma exacerbation. Furthermore, malondialdehyde (MDA) and glutathione (GSH) levels in lung and intracellular ROS were measured. IL-17+ γδT cell percentage by flow cytometer was determined. Nrf2 protein expression by western blot was also examined. We observed that RTA-408 attenuated ROS release during ozone-induced asthma exacerbation and suppressed neutrophil lung infiltration. RTA-408 decreased pro-inflammatory cytokine production and reduced the percentage of IL-17+ γδT cells. Thus, our results suggest that RTA-408 does attenuate airway inflammation in a murine model of ozone-induced asthma exacerbation.
Collapse
Affiliation(s)
- Jing-Hong Zhang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, the Guangxi Talent Highland for Emergency and Rescue Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Xia Yang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, the Guangxi Talent Highland for Emergency and Rescue Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Yi-Ping Chen
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, the Guangxi Talent Highland for Emergency and Rescue Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Jian-Feng Zhang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, the Guangxi Talent Highland for Emergency and Rescue Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Chao-Qian Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, the Guangxi Talent Highland for Emergency and Rescue Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
288
|
Chen Y, He L, Yang Y, Chen Y, Song Y, Lu X, Liang Y. The inhibition of Nrf2 accelerates renal lipid deposition through suppressing the ACSL1 expression in obesity-related nephropathy. Ren Fail 2020; 41:821-831. [PMID: 31488013 PMCID: PMC6735294 DOI: 10.1080/0886022x.2019.1655450] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Obesity has become a worldwide epidemic, and the incidence of obesity is increasing year by year. Obesity-related nephropathy (ORN) is a common kidney complication of obesity. Long-chain acyl-CoA synthetases-1, (ACSL1), is a key enzyme in the oxidative metabolism of fatty acids in mitochondria and ACSL1 may play a direct role in renal lipid deposition and promote the progress of ORN. In this study, we focus on the renoprotective role of ACSL1 in ORN. Methods: Electron microscopy, immunohistochemical (IHC) staining, Western blot, and real-time PCR were used to detect the expression of ACSL1and Nrf2 in ORN patients, ob/ob mice and palmitic acid (PA)-treated HK-2 cells. Oil red staining and Elisa Kit were used to detect the intracellular FFA and TG contents in ob/ob mice and PA-treated HK-2 cells. Dihydroethidium (DHE) staining and the MDA/SOD measurement were used to detect the ROS production. In order to demonstrate the role of ACSL1 and the interaction between ACSL1 and Nrf2 in ORN, related siRNA and plasmid were transfected into HK-2 cells. Results: More ROS production and renal lipid deposition have been found in ORN patients, ob/ob mice and PA-treated HK-2 cells. Compared with control, all the expression of ACSL1and Nrf2 were down-regulated in ORN patients, ob/ob mice and PA-treated HK-2 cells. The Nrf2 could regulate the expression of ACSL1 and the ACSL1 played the direct role in renal lipid deposition. Conclusions: The Nrf2 is inhibited in ORN, resulting more ROS production and oxidative stress. Increased oxidative stress will suppress the expression of ACSL1, which could increase the intracellular FFA and TG contents, ultimately leading to renal lipid deposition in renal tubulars and accelerating the development of ORN.
Collapse
Affiliation(s)
- Yinyin Chen
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Liyu He
- Key Lab of Kidney Disease and Blood Purification in Hunan, Department of Nephrology, The Second Xiangya Hospital Central South University , Changsha , Hunan , People's Republic of China
| | - Yiya Yang
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Ying Chen
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Yanran Song
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Xi Lu
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Yumei Liang
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| |
Collapse
|
289
|
Zheng J, Manabe Y, Sugawara T. Siphonaxanthin, a carotenoid from green algae Codium cylindricum, protects Ob/Ob mice fed on a high-fat diet against lipotoxicity by ameliorating somatic stresses and restoring anti-oxidative capacity. Nutr Res 2020; 77:29-42. [PMID: 32315893 DOI: 10.1016/j.nutres.2020.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022]
Abstract
Oxidative stress is implicated in the pathogenesis of many diseases including obesity, non-alcoholic fatty liver disease, and diabetes mellitus. Previously, we reported that siphonaxanthin, a carotenoid from green algae, elicited a potent inhibitory effect on hepatic de novo lipogenesis, and an anti-obesity effect in both 3T3L1 cells and KKAy mice. Thus, we hypothesized that consumption of siphonaxanthin could improve metabolic disorders including hepatic steatosis and systemic adiposity, as well as ameliorate somatic stress under obese conditions. Both the hepatocyte cell line HepG2 and a mouse model of severe obesity, produced by feeding Ob/Ob mice on a high-fat diet (HFD), were used to test this hypothesis. In obese mice, siphonaxanthin intake did not improve liver steatosis or systemic adiposity. However, intake did lower plasma glucose and alanine aminotransferase (ALT) levels and diminished hepatic lipid peroxidation products and antioxidant gene expression, which increased significantly in control group obese mice. Renal protein carbonyl content decreased significantly in the siphonaxanthin group, which might also indicate an ameliorated oxidative stress. Siphonaxanthin restored gene expression related to antioxidant signaling, lipid β-oxidation, and endoplasmic-reticulum-associated protein degradation in the kidney, which decreased significantly in obese mice. Liver and kidney responded to obesity-induced somatic stress in a divergent pattern. In addition, we confirmed that siphonaxanthin potently induced Nrf2-regulated antioxidant signaling in HepG2 cells. In conclusion, our results indicated that siphonaxanthin might protect obesity-leading somatic stress through restoration of Nrf2-regulated antioxidant signaling, and might be a promising nutritional supplement.
Collapse
Affiliation(s)
- Jiawen Zheng
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
290
|
Liu M, Deng M, Luo Q, Dou X, Jia Z. High-Salt Loading Downregulates Nrf2 Expression in a Sodium-Dependent Manner in Renal Collecting Duct Cells. Front Physiol 2020; 10:1565. [PMID: 32038274 PMCID: PMC6985211 DOI: 10.3389/fphys.2019.01565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
Background High salt intake is associated with both oxidative stress and chronic kidney disease (CKD) progression. Nuclear factor E2-related factor 2 (Nrf2) is a transcriptional factor regulating the antioxidant and detoxifying genes to potently antagonize oxidative stress. This study examined the effect of high salt loading on the expression of Nrf2 in kidney. Methods Mice were treated with acute salt loading, and Nrf2 expression in the kidney was detected by Western blotting and immunostaining. Reactive oxygen species (ROS) levels in the kidney were measured using dihydroethidium (DHE) staining. In vitro, mpkCCD cells were cultured in high osmolality medium by adding sodium chloride (NaCl), sodium gluconate (Na-Glu), choline chloride (Choline-Cl), or mannitol. Then, Nrf2 and its target genes were measured. Results Nrf2 protein in renal cortex and medulla tissue lysates was significantly downregulated after acute salt loading. Immunofluorescence data showed that Nrf2 was mainly located in collecting duct principal cells evidenced by co-staining of Nrf2 with AQP2. Contrasting to the reduced Nrf2 expression, ROS levels in the kidney were significantly increased after salt loading. In vitro, the Nrf2 protein level was downregulated in mpkCCD cells after NaCl treatment for 24 h. Interestingly, sodium gluconate had a similar effect on downregulating Nrf2 expression as NaCl, whereas neither Choline-Cl nor mannitol changed Nrf2 expression. Meanwhile, the mRNA levels of Nrf2 target genes were downregulated by NaCl and/or sodium gluconate, while some of them were also regulated by Choline-Cl, indicating a more complex regulation of these genes under a high salt condition. Finally, we found that the downregulation of Nrf2 caused by NaCl was not affected by N-acetylcysteine (NAC), spironolactone, or NS-398, suggesting other mechanisms mediating Nrf2 downregulation caused by high salt challenge. Conclusion High salt downregulated Nrf2 mainly via a sodium-dependent manner in kidney collecting duct cells, which might contribute to the excessive renal oxidative stress and CKD progression.
Collapse
Affiliation(s)
- Mi Liu
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mokan Deng
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Qimei Luo
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xianrui Dou
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
291
|
Wang M, Li J, Zheng Y. The Potential Role of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) in Glaucoma: A Review. Med Sci Monit 2020; 26:e921514. [PMID: 31949124 PMCID: PMC6986212 DOI: 10.12659/msm.921514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) acts as a regulator of many biological processes and plays an essential role in preventing oxidation, inflammation, and fibrosis. In the past 20 years, there has been increasing research on the role of Nrf2 and oxidative stress in human glaucoma, including the roles of inflammation, trabecular meshwork cells, retinal ganglion cells, Tenon's capsule, antioxidants, fibrosis, and noncoding RNAs. Studies have shown that the upregulation of Nrf2 can reduce damage from oxidative stress in the trabecular meshwork cells and the retinal ganglion cells, reduce fibrosis in Tenon's capsule fibroblasts, which may reduce the progression of fibrosis after surgery for glaucoma. The regulatory roles of Nrf2, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and exogenous compounds on trabecular meshwork cells (TMCs) and retinal ganglion cells have also been studied. The use of Nrf2 agonists, including noncoding RNAs, control the expression of Nrf2 through signaling pathways that continue to be investigated to identify effective treatments to improve clinical outcome following surgery for glaucoma. This review of publications between 1999 and 2019 aims to focus on the potential mechanisms of Nrf2 in the occurrence and development of glaucoma and the prognosis following surgical treatment. Also, several factors that induce the expression of Nrf2 in trabecular meshwork cells, retinal ganglion cells, and human Tenon's capsule fibroblasts are discussed.
Collapse
Affiliation(s)
- Mingxuan Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
292
|
Jobbagy S, Vitturi DA, Salvatore SR, Pires MF, Rowart P, Emlet DR, Ross M, Hahn S, St. Croix C, Wendell SG, Subramanya AR, Straub AC, Tan RJ, Schopfer FJ. Nrf2 activation protects against lithium-induced nephrogenic diabetes insipidus. JCI Insight 2020; 5:128578. [PMID: 31941842 PMCID: PMC7030822 DOI: 10.1172/jci.insight.128578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lithium (Li) is the mainstay pharmacotherapeutic mood stabilizer in bipolar disorder. Its efficacious use is complicated by acute and chronic renal side effects, including nephrogenic diabetes insipidus (NDI) and progression to chronic kidney disease (CKD). The nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway senses and coordinates cellular responses to oxidative and electrophilic stress. Here, we identify that graded genetic activation of Nrf2 protects against Li-induced NDI (Li-NDI) and volume wasting via an aquaporin 2-independent mechanism. Renal Nrf2 activity is differentially expressed on functional segments of the nephron, and its activation along the distal tubule and collecting duct directly modulates ion transporter expression, mimicking paradoxical effects of diuretics in mitigating Li-NDI. In addition, Nrf2 reduces cyclooxygenase expression and vasoactive prostaglandin biosynthesis. Pharmacologic activation of Nrf2 confers protective effects, confirming this pathway as a potentially novel druggable target for the prevention of acute and chronic renal sequelae of Li therapy.
Collapse
Affiliation(s)
| | - Dario A. Vitturi
- Department of Pharmacology and Chemical Biology
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | | | | | | | - David R. Emlet
- Center for Critical Care Nephrology, Department of Critical Care Medicine
| | | | - Scott Hahn
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | | | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology
- Health Sciences Metabolomics and Lipidomics Core, and
| | - Arohan R. Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute
| | - Roderick J. Tan
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
293
|
Khan MA, Wang X, Giuliani KT, Nag P, Grivei A, Ungerer J, Hoy W, Healy H, Gobe G, Kassianos AJ. Underlying Histopathology Determines Response to Oxidative Stress in Cultured Human Primary Proximal Tubular Epithelial Cells. Int J Mol Sci 2020; 21:ijms21020560. [PMID: 31952318 PMCID: PMC7014216 DOI: 10.3390/ijms21020560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Proximal tubular epithelial cells (PTEC) are key players in the progression of kidney diseases. PTEC studies to date have primarily used mouse models and transformed human PTEC lines. However, the translatability of these models to human kidney disease has been questioned. In this study, we investigated the phenotypic and functional response of human primary PTEC to oxidative stress, an established driver of kidney disease. Furthermore, we examined the functional contribution of the underlying histopathology of the cortical tissue used to generate our PTEC. We demonstrated that human primary PTEC from both histologically ‘normal’ and ‘diseased’ cortical tissue responded to H2O2-induced oxidative stress with significantly elevated mitochondrial superoxide levels, DNA damage, and significantly decreased proliferation. The functional response of ‘normal’ PTEC to oxidative stress mirrored the reported pathogenesis of human kidney disease, with significantly attenuated mitochondrial function and increased cell death. In contrast, ‘diseased’ PTEC were functionally resistant to oxidative stress, with maintenance of mitochondrial function and cell viability. This selective survival of ‘diseased’ PTEC under oxidizing conditions is reminiscent of the in vivo persistence of maladaptive PTEC following kidney injury. We are now exploring the impact that these differential PTEC responses have in the therapeutic targeting of oxidative stress pathways.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- NHMRC CKD CRE (CKD.QLD), University of Queensland, Brisbane 4029, Queensland, Australia; (M.A.K.); (W.H.); (H.H.); (G.G.)
- Faculty of Medicine, University of Queensland, Brisbane 4006, Queensland, Australia (J.U.)
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane 4029, Queensland, Australia; (X.W.); (P.N.); (A.G.)
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane 4029, Queensland, Australia
- Kidney Disease Research Collaborative, Princess Alexandra Hospital and University of Queensland, Translational Research Institute, Brisbane 4102, Queensland, Australia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Dhaka, Bangladesh
| | - Xiangju Wang
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane 4029, Queensland, Australia; (X.W.); (P.N.); (A.G.)
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane 4029, Queensland, Australia
| | - Kurt T.K. Giuliani
- Faculty of Medicine, University of Queensland, Brisbane 4006, Queensland, Australia (J.U.)
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane 4029, Queensland, Australia; (X.W.); (P.N.); (A.G.)
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane 4029, Queensland, Australia
| | - Purba Nag
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane 4029, Queensland, Australia; (X.W.); (P.N.); (A.G.)
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane 4029, Queensland, Australia
| | - Anca Grivei
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane 4029, Queensland, Australia; (X.W.); (P.N.); (A.G.)
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane 4029, Queensland, Australia
| | - Jacobus Ungerer
- Faculty of Medicine, University of Queensland, Brisbane 4006, Queensland, Australia (J.U.)
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane 4029, Queensland, Australia; (X.W.); (P.N.); (A.G.)
| | - Wendy Hoy
- NHMRC CKD CRE (CKD.QLD), University of Queensland, Brisbane 4029, Queensland, Australia; (M.A.K.); (W.H.); (H.H.); (G.G.)
- Centre for Chronic Disease, Faculty of Medicine, University of Queensland, Brisbane 4029, Queensland, Australia
| | - Helen Healy
- NHMRC CKD CRE (CKD.QLD), University of Queensland, Brisbane 4029, Queensland, Australia; (M.A.K.); (W.H.); (H.H.); (G.G.)
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane 4029, Queensland, Australia; (X.W.); (P.N.); (A.G.)
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane 4029, Queensland, Australia
- Centre for Chronic Disease, Faculty of Medicine, University of Queensland, Brisbane 4029, Queensland, Australia
| | - Glenda Gobe
- NHMRC CKD CRE (CKD.QLD), University of Queensland, Brisbane 4029, Queensland, Australia; (M.A.K.); (W.H.); (H.H.); (G.G.)
- Faculty of Medicine, University of Queensland, Brisbane 4006, Queensland, Australia (J.U.)
- Kidney Disease Research Collaborative, Princess Alexandra Hospital and University of Queensland, Translational Research Institute, Brisbane 4102, Queensland, Australia
- Centre for Chronic Disease, Faculty of Medicine, University of Queensland, Brisbane 4029, Queensland, Australia
| | - Andrew J. Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane 4029, Queensland, Australia; (X.W.); (P.N.); (A.G.)
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane 4029, Queensland, Australia
- Centre for Chronic Disease, Faculty of Medicine, University of Queensland, Brisbane 4029, Queensland, Australia
- Correspondence: ; Tel.: +61-7-3362-0488
| |
Collapse
|
294
|
Moorthi RN, Doshi S, Fried LF, Moe SM, Sarnak MJ, Satterfield S, Schwartz AV, Shlipak M, Lange-Maia BS, Harris TB, Newman AB, Strotmeyer ES. Chronic kidney disease and peripheral nerve function in the Health, Aging and Body Composition Study. Nephrol Dial Transplant 2020; 34:625-632. [PMID: 29757410 DOI: 10.1093/ndt/gfy102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with poor mobility. Peripheral nerve function alterations play a significant role in low mobility. We tested the hypothesis that early CKD is associated with altered sensory, motor and autonomic nerve function. METHODS Participants in the Health, Aging and Body Composition cohort who had kidney function measures in Year 3 (1999-2000) and nerve function measurements at Year 4 (2000-01) were analyzed (n = 2290). Sensory (vibration threshold, monofilament insensitivity to light and standard touch), motor [compound motor action potentials (CMAPs), nerve conduction velocities (NCVs)] and autonomic (heart rate response and recovery after a 400-m walk test) nerve function as well as participant characteristics were compared across cystatin C- and creatinine-based estimated glomerular filtration rate categorized as ≤60 (CKD) or >60 mL/min/1.73 m2 (non-CKD). The association between CKD and nerve function was examined with logistic regression adjusted for covariates. RESULTS Participants with CKD (n = 476) were older (77 ± 3 versus 75 ± 3 years; P < 0.05) and had a higher prevalence of diabetes (20.6% versus 13.1%; P < 0.001). CKD was associated with higher odds for vibration detection threshold {odds ratio [OR] 1.7 [95% confidence interval (CI) 1.1-2.7]} and light touch insensitivity [OR 1.4 (95% CI 1.1-1.7)]. CMAPs and NCVs were not significantly different between CKD and non-CKD patients. In adjusted analyses, participants with CKD had higher odds of an abnormal heart rate response [OR 1.6 (95% CI 1.1-2.2)] and poor heart rate recovery [OR 1.5 (95% CI 1.1-2.0)]. CONCLUSIONS CKD is associated with changes in sensory and autonomic nerve function, even after adjustment for demographics and comorbidities, including diabetes. Longitudinal studies in CKD are needed to determine the contribution of nerve impairments to clinically important outcomes.
Collapse
Affiliation(s)
- Ranjani N Moorthi
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Simit Doshi
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Linda F Fried
- Renal Section, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - Sharon M Moe
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA.,Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Mark J Sarnak
- Department of Medicine, Division of Nephrology, Tufts Medical Center, Boston, MA, USA
| | - Suzanne Satterfield
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Michael Shlipak
- Division of Nephrology, Department of Medicine, San Francisco VA Medical Center, San Francisco, CA; Kidney Health Research Collaborative, San Francisco VA Medical Center and University of California, San Francisco, CA, USA
| | - Brittney S Lange-Maia
- Department of Preventive Medicine and Center for Community Health Equity, Rush University Medical Center, Chicago, IL, USA
| | - Tamara B Harris
- Intramural Research Program, Laboratory of Epidemiology, and Population Sciences, National Institute on Aging, National Institutes of Health, Laboratory of Epidemiology, Demography, and Biometry, Bethesda, MD, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elsa S Strotmeyer
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
295
|
Anjos JSD, Cardozo LFMDF, Black AP, Santos da Silva G, Vargas Reis DCMD, Salarolli R, Carraro-Eduardo JC, Mafra D. Effects of Low Protein Diet on Nuclear Factor Erythroid 2–Related Factor 2 Gene Expression in Nondialysis Chronic Kidney Disease Patients. J Ren Nutr 2020; 30:46-52. [DOI: 10.1053/j.jrn.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Accepted: 01/13/2019] [Indexed: 11/11/2022] Open
|
296
|
Li H, Lv L, Wu C, Qi J, Shi B. Methyl Jasmonate Protects Microglial Cells Against β-Amyloid-Induced Oxidative Stress and Inflammation via Nrf2-Dependent HO-1 Pathway. Neuropsychiatr Dis Treat 2020; 16:1399-1410. [PMID: 32606694 PMCID: PMC7283234 DOI: 10.2147/ndt.s241142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND β-Amyloid (Aβ) induces oxidative stress and inflammation of microglial cells, thus leading to Alzheimer's disease. Methyl jasmonate (MeJA) is reported to have anti-inflammatory and anti-oxidant effects. However, the potential roles of MeJA in Aβ-induced cell activities and the underlying mechanism are unclear. METHODS Microglial cell line BV-2 was stimulated by 20 μM Aβ and/or 20 μM MeJA and then divided into four groups (control, Aβ, MeJA, and Aβ+MeJA). Cell viability was detected by MTT assay. MDA, SOD activity, and ROS were detected by fluorescence spectrophotometry and immunofluorescence assay. Nrf2 and HO-1 were detected by qRT-PCR and Western blot. Furthermore, inflammatory cytokines (p-NFκB, TLR4, TNF-α, IL-1β, and IL-6) and apoptosis factors (Bcl-2, Bax, and cl-casp-3) were detected by Western blot. TUNEL assay was applied to investigate apoptosis rate. Moreover, the mechanism of how MeJA played anti-oxidative stress and anti-inflammatory roles was investigated by silencing of Nrf2 via siRNA. RESULTS The result of MTT assay showed that MeJA improved the decreased viability of BV-2 cells induced by Aβ. The detection of MDA, SOD activity, and ROS showed the oxidative stress levels were decreased in Aβ+MeJA group compared with Aβ group. Nrf2, HO-1, and SOD were significantly up-regulated in Aβ+MeJA group compared with Aβ group (p<0.01). In contrast, inflammatory cytokines were significantly down-regulated in Aβ+MeJA group compared with Aβ group (p<0.05). Similarly, the expressions of apoptosis cytokines and TUNEL assay suggested a decreased apoptosis rate in Aβ+MeJA group compared to Aβ group (p<0.01). Finally, results of Nrf2 knockdown experiment showed down-regulations of anti-oxidative stress factors (Nrf2, HO-1 and SOD), up-regulations of inflammatory cytokines, and increased ratio of Bax to Bcl in Aβ+MeJA+si-Nrf2 group compared with Aβ+MeJA group (p<0.01). CONCLUSION MeJA could relieve Aβ-induced oxidative stress and inflammatory response in microglial cells by activating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hua Li
- Department of Neurology, Anqiu People's Hospital, Anqiu 262100, Shandong, People's Republic of China
| | - Limei Lv
- Department of Neurology, Traditional Chinese Medical Hospital of Anqiu, Anqiu 262100, People's Republic of China
| | - Chunyan Wu
- Department of Neurology, Affiliated Hospital of Weifang Medical College, Weifang 261031, Shandong, People's Republic of China
| | - Jisheng Qi
- Department of Rehabilitation Medicine, Shandong Rongjun General Hospital, Jinan 250000, Shandong, People's Republic of China
| | - Baolin Shi
- Department of Neurology, Weifang People's Hospital, Weifang 261031, Shandong, People's Republic of China
| |
Collapse
|
297
|
Hui Q, Karlstetter M, Xu Z, Yang J, Zhou L, Eilken HM, Terjung C, Cho H, Gong J, Lai MJ, Nassar K, Duh EJ. Inhibition of the Keap1-Nrf2 protein-protein interaction protects retinal cells and ameliorates retinal ischemia-reperfusion injury. Free Radic Biol Med 2020; 146:181-188. [PMID: 31669760 PMCID: PMC6942228 DOI: 10.1016/j.freeradbiomed.2019.10.414] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
Abstract
The Nrf2-Keap1 pathway regulates transcription of a wide array of antioxidant and cytoprotective genes and offers critical protection against oxidative stress. This pathway has demonstrated benefit for a variety of retinal conditions. Retinal ischemia plays a pivotal role in many vision threatening diseases. Retinal vascular endothelial cells are an important participant in ischemic injury. In this setting, Nrf2 provides a protective pathway via amelioration of oxidative stress and inflammation. In this study, we investigated a potent small molecule inhibitor of the Nrf2-Keap1 protein-protein interaction (PPI), CPUY192018, for its therapeutic potential in retinal cells and retinal ischemia-reperfusion injury. In human retinal endothelial cells (HREC), treatment with CPUY192018 increased Nrf2 protein levels and nuclear translocation, stimulated Nrf2-ARE-induced transcriptional capacity, and induced Nrf2 target gene expression. Furthermore, CPUY192018 protected HREC against oxidative stress and inflammatory activation. CPUY192018 also activated Nrf2 and suppressed inflammatory response in macrophages. In the retinal ischemia-reperfusion (I/R) model, administration of CPUY192018 induced Nrf2 target gene activation in the retina. Both systemic and topical treatment with CPUY192018 rescued visual function after ischemia-reperfusion injury. Taken together, these findings indicate that small molecule Keap1-Nrf2 PPI inhibitors can activate the Nrf2 pathway in the retina and provide protection against retinal ischemic and inflammatory injury, suggesting Keap1-Nrf2 PPI inhibition in the treatment of retinal conditions.
Collapse
Affiliation(s)
- Qiaoyan Hui
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | - Zhenhua Xu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jing Yang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lingli Zhou
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Hongkwan Cho
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Junsong Gong
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J Lai
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Elia J Duh
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
298
|
Chen Z, Sun X, Chen Q, Lan T, Huang K, Xiao H, Lin Z, Yang Y, Liu P, Huang H. Connexin32 ameliorates renal fibrosis in diabetic mice by promoting K48-linked NADPH oxidase 4 polyubiquitination and degradation. Br J Pharmacol 2020; 177:145-160. [PMID: 31465542 PMCID: PMC6976783 DOI: 10.1111/bph.14853] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/25/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Nox4 is the major isoform of NADPH oxidase found in the kidney and contributes to the pathogenesis of diabetic nephropathy. However, the molecular mechanisms of increased Nox4 expression induced by hyperglycaemia remain to be elucidated. Here, the role of the connexin32-Nox4 signalling axis in diabetic nephropathy and its related mechanisms were investigated. EXPERIMENTAL APPROACH Diabetes was induced in mice by low-dose streptozotocin (STZ) combined with a high-fat diet. Effects of connexin32 on Nox4 expression and on renal function and fibrosis in STZ-induced diabetic mice were investigated using adenovirus-overexpressing connexin32 and connexin32-deficient mice. Interactions between connexin32 and Nox4 were analysed by co-immunoprecipitation and immunofluorescence assays. KEY RESULTS Connexin32 was down-regulated in the kidneys of STZ-induced diabetic mice. Overexpression of connexin32 reduced expression of Nox4 and improved renal function and fibrosis in diabetic mice, whereas connexin32 deficiency had opposite effects. Down-regulation of fibronectin expression by connexin32 was not dependent on gap junctional intercellular communication involving connexin32. Connexin32 interacted with Nox4 and reduced the generation of hydrogen peroxide, leading to the down-regulation of fibronectin expression. Mechanistically, connexin32 decreased Nox4 expression by promoting its K48-linked polyubiquitination. Interestingly, Smurf1 overexpression inhibited K48-linked polyubiquitination of Nox4. Furthermore, connexin32 interacted with Smurf1 and inhibited its expression. CONCLUSION AND IMPLICATIONS Connexin32 ameliorated renal fibrosis in diabetic mice by promoting K48-linked Nox4 polyubiquitination and degradation via inhibition of Smurf1 expression. Targeting the connexin32-Nox4 signalling axis may contribute to the development of novel treatments for diabetic nephropathy.
Collapse
Affiliation(s)
- Zhiquan Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
- Department of Pharmacology, School of PharmacyGuangxi Medical UniversityNanningChina
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhouChina
| | - Xiaohong Sun
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhouChina
| | - Qiuhong Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Tian Lan
- Department of Pharmacology, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Kaipeng Huang
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Haiming Xiao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zeyuan Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yan Yang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
299
|
Inflammation and Oxidative Stress in Chronic Kidney Disease-Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int J Mol Sci 2019; 21:ijms21010263. [PMID: 31906008 PMCID: PMC6981831 DOI: 10.3390/ijms21010263] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a debilitating pathology with various causal factors, culminating in end stage renal disease (ESRD) requiring dialysis or kidney transplantation. The progression of CKD is closely associated with systemic inflammation and oxidative stress, which are responsible for the manifestation of numerous complications such as malnutrition, atherosclerosis, coronary artery calcification, heart failure, anemia and mineral and bone disorders, as well as enhanced cardiovascular mortality. In addition to conventional therapy with anti-inflammatory and antioxidative agents, growing evidence has indicated that certain minerals, vitamins and plant-derived metabolites exhibit beneficial effects in these disturbances. In the current work, we review the anti-inflammatory and antioxidant properties of various agents which could be of potential benefit in CKD/ESRD. However, the related studies were limited due to small sample sizes and short-term follow-up in many trials. Therefore, studies of several anti-inflammatory and antioxidant agents with long-term follow-ups are necessary.
Collapse
|
300
|
α-Lipoic acid prevents against cisplatin cytotoxicity via activation of the NRF2/HO-1 antioxidant pathway. PLoS One 2019; 14:e0226769. [PMID: 31877176 PMCID: PMC6932784 DOI: 10.1371/journal.pone.0226769] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/03/2019] [Indexed: 12/30/2022] Open
Abstract
The production of reactive oxygen species (ROS) by cisplatin is one of the major mechanisms of cisplatin-induced cytotoxicity. We examined the preventive effect of α-lipoic acid (LA) on cisplatin-induced toxicity via its antioxidant effects on in vitro and ex vivo culture systems. To elucidate the mechanism of the antioxidant activity of LA, NRF2 was inhibited using NRF2 siRNA, and the change in antioxidant activity of LA was characterized. MTT assays showed that LA was safe at concentrations up to 0.5 mM in HEI-OC1 cells and had a protective effect against cisplatin-induced cytotoxicity. Intracellular ROS production in HEI-OC1 cells was rapidly increased by cisplatin for up to 48 h. However, treatment with LA significantly reduced the production of ROS and increased the expression of the antioxidant proteins HO-1 and SOD1. Ex vivo, the organs of Corti of the group pretreated with LA exhibited better preservation than the group that received cisplatin alone. We also confirmed the nuclear translocation of NRF2 after LA administration, and that NRF2 inhibition decreased the antioxidant activity of LA. Together, these results indicate that the antioxidant activity of LA was through the activation of the NRF2/HO-1 antioxidant pathway.
Collapse
|