251
|
Chan SP, Slack FJ. Ribosomal protein RPS-14 modulates let-7 microRNA function in Caenorhabditis elegans. Dev Biol 2009; 334:152-60. [PMID: 19627982 PMCID: PMC2753218 DOI: 10.1016/j.ydbio.2009.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 07/10/2009] [Accepted: 07/12/2009] [Indexed: 12/11/2022]
Abstract
The let-7 microRNA (miRNA) regulates developmental timing at the larval-to-adult transition in Caenorhabditis elegans. Dysregulation of let-7 results in irregular hypodermal and vulval development. Disrupted let-7 function is also a feature of human lung cancer. However, little is known about the mechanism and co-factors of let-7. Here we demonstrate that ribosomal protein RPS-14 is able to modulate let-7 function in C. elegans. The RPS-14 protein co-immunoprecipitated with the nematode Argonaute homolog, ALG-1. Reduction of rps-14 gene expression by RNAi suppressed the aberrant vulva and hypodermis development phenotypes of let-7(n2853) mutant animals and the mis-regulation of a reporter bearing the lin-41 3'UTR, a well established let-7 target. Our results indicate an interactive relationship between let-7 miRNA function and ribosomal protein RPS-14 in regulation of terminal differentiation that may help in understanding the mechanism of translational control by miRNAs.
Collapse
Affiliation(s)
- Shih-Peng Chan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
252
|
De Marco N, Iannone L, Carotenuto R, Biffo S, Vitale A, Campanella C. p27BBP/eIF6 acts as an anti-apoptotic factor upstream of Bcl-2 during Xenopus laevis development. Cell Death Differ 2009; 17:360-72. [DOI: 10.1038/cdd.2009.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
253
|
Thiébeauld O, Schepetilnikov M, Park HS, Geldreich A, Kobayashi K, Keller M, Hohn T, Ryabova LA. A new plant protein interacts with eIF3 and 60S to enhance virus-activated translation re-initiation. EMBO J 2009; 28:3171-84. [PMID: 19745810 DOI: 10.1038/emboj.2009.256] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 08/06/2009] [Indexed: 12/31/2022] Open
Abstract
The plant viral re-initiation factor transactivator viroplasmin (TAV) activates translation of polycistronic mRNA by a re-initiation mechanism involving translation initiation factor 3 (eIF3) and the 60S ribosomal subunit (60S). QJ;Here, we report a new plant factor-re-initiation supporting protein (RISP)-that enhances TAV function in re-initiation. RISP interacts physically with TAV in vitro and in vivo. Mutants defective in interaction are less active, or inactive, in transactivation and viral amplification. RISP alone can serve as a scaffold protein, which is able to interact with eIF3 subunits a/c and 60S, apparently through the C-terminus of ribosomal protein L24. RISP pre-bound to eIF3 binds 40S, suggesting that RISP enters the translational machinery at the 43S formation step. RISP, TAV and 60S co-localize in epidermal cells of infected plants, and eIF3-TAV-RISP-L24 complex formation can be shown in vitro. These results suggest that RISP and TAV bridge interactions between eIF3-bound 40S and L24 of 60S after translation termination to ensure 60S recruitment during repetitive initiation events on polycistronic mRNA; RISP can thus be considered as a new component of the cell translation machinery.
Collapse
Affiliation(s)
- Odon Thiébeauld
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
254
|
Weinlich S, Hüttelmaier S, Schierhorn A, Behrens SE, Ostareck-Lederer A, Ostareck DH. IGF2BP1 enhances HCV IRES-mediated translation initiation via the 3'UTR. RNA (NEW YORK, N.Y.) 2009; 15:1528-42. [PMID: 19541769 PMCID: PMC2714754 DOI: 10.1261/rna.1578409] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The positive-strand RNA genome of the Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) in the 5'untranslated region (5'UTR) and structured sequence elements within the 3'UTR, but no poly(A) tail. Employing a limited set of initiation factors, the HCV IRES coordinates the 5'cap-independent assembly of the 43S pre-initiation complex at an internal initiation codon located in the IRES sequence. We have established a Huh7 cell-derived in vitro translation system that shows a 3'UTR-dependent enhancement of 43S pre-initiation complex formation at the HCV IRES. Through the use of tobramycin (Tob)-aptamer affinity chromatography, we identified the Insulin-like growth factor-II mRNA-binding protein 1 (IGF2BP1) as a factor that interacts with both, the HCV 5'UTR and 3'UTR. We report that IGF2BP1 specifically enhances translation at the HCV IRES, but it does not affect 5'cap-dependent translation. RNA interference against IGF2BP1 in HCV replicon RNA-containing Huh7 cells reduces HCV IRES-mediated translation, whereas replication remains unaffected. Interestingly, we found that endogenous IGF2BP1 specifically co-immunoprecipitates with HCV replicon RNA, the ribosomal 40S subunit, and eIF3. Furthermore eIF3 comigrates with IGF2BP1 in 80S ribosomal complexes when a reporter mRNA bearing both the HCV 5'UTR and HCV 3'UTR is translated. Our data suggest that IGF2BP1, by binding to the HCV 5'UTR and/or HCV 3'UTR, recruits eIF3 and enhances HCV IRES-mediated translation.
Collapse
Affiliation(s)
- Susan Weinlich
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
255
|
Ball HL, Zhang B, Riches JJ, Gandhi R, Li J, Rommens JM, Myers JS. Shwachman-Bodian Diamond syndrome is a multi-functional protein implicated in cellular stress responses. Hum Mol Genet 2009; 18:3684-95. [PMID: 19602484 DOI: 10.1093/hmg/ddp316] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS; OMIM 260400) results from loss-of-function mutations in the Shwachman-Bodian Diamond syndrome (SBDS) gene. It is a multi-system disorder with clinical features of exocrine pancreatic dysfunction, skeletal abnormalities, bone marrow failure and predisposition to leukemic transformation. Although the cellular functions of SBDS are still unclear, its yeast ortholog has been implicated in ribosome biogenesis. Using affinity capture and mass spectrometry, we have developed an SBDS-interactome and report SBDS binding partners with diverse molecular functions, notably components of the large ribosomal subunit and proteins involved in DNA metabolism. Reciprocal co-immunoprecipitation confirmed the interaction of SBDS with the large ribosomal subunit protein RPL4 and with DNA-PK and RPA70, two proteins with critical roles in DNA repair. Function for SBDS in response to cellular stresses was implicated by demonstrating that SBDS-depleted HEK293 cells are hypersensitive to multiple types of DNA damage as well as chemically induced endoplasmic reticulum stress. Furthermore, using multiple routes to impair translation and mimic the effect of SBDS-depletion, we show that SBDS-dependent hypersensitivity of HEK293 cells to UV irradiation can be distinguished from a role of SBDS in translation. These results indicate functions of SBDS beyond ribosome biogenesis and may provide insight into the poorly understood cancer predisposition of SDS patients.
Collapse
Affiliation(s)
- Heather L Ball
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
256
|
Kasinath BS, Feliers D, Sataranatarajan K, Ghosh Choudhury G, Lee MJ, Mariappan MM. Regulation of mRNA translation in renal physiology and disease. Am J Physiol Renal Physiol 2009; 297:F1153-65. [PMID: 19535566 DOI: 10.1152/ajprenal.90748.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Translation, a process of generating a peptide from the codons present in messenger RNA, can be a site of independent regulation of protein synthesis; it has not been well studied in the kidney. Translation occurs in three stages (initiation, elongation, and termination), each with its own set of regulatory factors. Mechanisms controlling translation include small inhibitory RNAs such as microRNAs, binding proteins, and signaling reactions. Role of translation in renal injury in diabetes, endoplasmic reticulum stress, acute kidney injury, and, in physiological adaptation to loss of nephrons is reviewed here. Contribution of mRNA translation to physiology and disease is not well understood. Because it is involved in such diverse areas as development and cancer, it should prove a fertile field for investigation in renal science.
Collapse
Affiliation(s)
- Balakuntalam S Kasinath
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
257
|
Miluzio A, Beugnet A, Volta V, Biffo S. Eukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation. EMBO Rep 2009; 10:459-65. [PMID: 19373251 PMCID: PMC2680881 DOI: 10.1038/embor.2009.70] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/24/2009] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic ribosome biogenesis and translation are linked processes that limit the rate of cell growth. Although ribosome biogenesis and translation are mainly controlled by distinct factors, eukaryotic initiation factor 6 (eIF6) has been found to regulate both processes. eIF6 is a necessary protein with a unique anti-association activity, which prevents the interaction of 40S ribosomal subunits with 60S subunits through its binding to 60S ribosomes. In the nucleolus, eIF6 is a component of the pre-ribosomal particles and is required for the biogenesis of 60S subunits, whereas in the cytoplasm it mediates translation downstream from growth factors. The translational activity of eIF6 could be due to its anti-association properties, which are regulated by post-translational modifications; whether this anti-association activity is required for the biogenesis and nuclear export of ribosomes is unknown. eIF6 is necessary for tissue-specific growth and oncogene-driven transformation, and could be a new rate-limiting step for the initiation of translation.
Collapse
Affiliation(s)
- Annarita Miluzio
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Anne Beugnet
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Viviana Volta
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Via Bellini 15G, 15100 Alessandria, Italy
| | - Stefano Biffo
- Laboratory of Molecular Histology and Cell Growth, Division of Oncology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
- Environmental and Life Science Department (DISAV), University of Eastern Piedmont, Via Bellini 15G, 15100 Alessandria, Italy
| |
Collapse
|
258
|
WANG JIACHEN, DASGUPTA INDRANI, FOX GEORGEE. Many nonuniversal archaeal ribosomal proteins are found in conserved gene clusters. ARCHAEA (VANCOUVER, B.C.) 2009; 2:241-51. [PMID: 19478915 PMCID: PMC2686390 DOI: 10.1155/2009/971494] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 03/31/2009] [Indexed: 01/08/2023]
Abstract
The genomic associations of the archaeal ribosomal proteins, (r-proteins), were examined in detail. The archaeal versions of the universal r-protein genes are typically in clusters similar or identical and to those found in bacteria. Of the 35 nonuniversal archaeal r-protein genes examined, the gene encoding L18e was found to be associated with the conserved L13 cluster, whereas the genes for S4e, L32e and L19e were found in the archaeal version of the spc operon. Eleven nonuniversal protein genes were not associated with any common genomic context. Of the remaining 19 protein genes, 17 were convincingly assigned to one of 10 previously unrecognized gene clusters. Examination of the gene content of these clusters revealed multiple associations with genes involved in the initiation of protein synthesis, transcription or other cellular processes. The lack of such associations in the universal clusters suggests that initially the ribosome evolved largely independently of other processes. More recently it likely has evolved in concert with other cellular systems. It was also verified that a second copy of the gene encoding L7ae found in some bacteria is actually a homolog of the gene encoding L30e and should be annotated as such.
Collapse
Affiliation(s)
- JIACHEN WANG
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | - INDRANI DASGUPTA
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | - GEORGE E. FOX
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| |
Collapse
|
259
|
Wang S, Liu N, Chen AJ, Zhao XF, Wang JX. TRBP Homolog Interacts with Eukaryotic Initiation Factor 6 (eIF6) inFenneropenaeus chinensis. THE JOURNAL OF IMMUNOLOGY 2009; 182:5250-8. [DOI: 10.4049/jimmunol.0802970] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
260
|
Burroughs L, Woolfrey A, Shimamura A. Shwachman-Diamond syndrome: a review of the clinical presentation, molecular pathogenesis, diagnosis, and treatment. Hematol Oncol Clin North Am 2009; 23:233-48. [PMID: 19327581 PMCID: PMC2754297 DOI: 10.1016/j.hoc.2009.01.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Shwachman-Diamond syndrome is a rare autosomal-recessive, multisystem disease characterized by exocrine pancreatic insufficiency, impaired hematopoiesis, and leukemia predisposition. Other clinical features include skeletal, immunologic, hepatic, and cardiac disorders. This article focuses on the clinical presentation, diagnostic work-up, clinical management, and treatment of patients with Shwachman-Diamond syndrome.
Collapse
Affiliation(s)
- Lauri Burroughs
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D1-100, PO Box 19024, Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|
261
|
Translational control from head to tail. Curr Opin Cell Biol 2009; 21:444-51. [PMID: 19285851 DOI: 10.1016/j.ceb.2009.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 01/12/2009] [Indexed: 11/20/2022]
Abstract
mRNA translation, a highly coordinated affair involving many proteins and RNAs, is generally divided into three steps: initiation, elongation, and termination. Each of these steps serves as a point of regulation to control the amount of protein that is produced. The protein 4E-HP has recently been shown to disrupt recruitment of the translation initiation complex by directly binding the 5' cap of cellular mRNAs. Recent work has shown elongation rates are probably altered during mitosis and certain types of synaptic transmission. Other work has shown premature termination of mRNAs lacking stop codons appears to repress their translation. Together, these studies highlight the importance of translational control in diverse processes such as development, cancer, and synaptic plasticity.
Collapse
|
262
|
Abstract
The receptor for activated C-kinase (RACK1), a conserved protein implicated in numerous signaling pathways, is a stoichiometric component of eukaryotic ribosomes located on the head of the 40S ribosomal subunit. To test the hypothesis that ribosome association is central to the function of RACK1 in vivo, we determined the 2.1-A crystal structure of RACK1 from Saccharomyces cerevisiae (Asc1p) and used it to design eight mutant versions of RACK1 to assess roles in ribosome binding and in vivo function. Conserved charged amino acids on one side of the beta-propeller structure were found to confer most of the 40S subunit binding affinity, whereas an adjacent conserved and structured loop had little effect on RACK1-ribosome association. Yeast mutations that confer moderate to strong defects in ribosome binding mimic some phenotypes of a RACK1 deletion strain, including increased sensitivity to drugs affecting cell wall biosynthesis and translation elongation. Furthermore, disruption of RACK1's position at the 40S ribosomal subunit results in the failure of the mRNA binding protein Scp160 to associate with actively translating ribosomes. These results provide the first direct evidence that RACK1 functions from the ribosome, implying a physical link between the eukaryotic ribosome and cell signaling pathways in vivo.
Collapse
|
263
|
Kasinath BS, Mariappan MM, Sataranatarajan K, Lee MJ, Ghosh Choudhury G, Feliers D. Novel mechanisms of protein synthesis in diabetic nephropathy--role of mRNA translation. Rev Endocr Metab Disord 2008; 9:255-66. [PMID: 18654857 PMCID: PMC5886780 DOI: 10.1007/s11154-008-9091-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ambient protein levels are affected by both synthesis and degradation. Synthesis of a protein is regulated by transcription and messenger RNA (mRNA) translation. Translation has emerged as an important site of regulation of protein expression during development and disease. It is under the control of distinct factors that regulate initiation, elongation and termination phases. Regulation of translation occurs via signaling reactions, guanosine diphosphate-guanosine triphosphate binding and by participation of non-coding RNA species such as microRNA. Recent work has revealed an important role for translation in hypertrophy, matrix protein synthesis, elaboration of growth factors in in vivo and in vitro models of diabetic nephropathy. Studies of translation dysregulation in diabetic nephropathy have enabled identification of novel therapeutic targets. Translation of mRNA is a fertile field for exploration in investigation of kidney disease.
Collapse
Affiliation(s)
- B S Kasinath
- O'Brien Kidney Research Center, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
264
|
Benelli D, Marzi S, Mancone C, Alonzi T, la Teana A, Londei P. Function and ribosomal localization of aIF6, a translational regulator shared by archaea and eukarya. Nucleic Acids Res 2008; 37:256-67. [PMID: 19036786 PMCID: PMC2615626 DOI: 10.1093/nar/gkn959] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The translation factor IF6 is shared by the Archaea and the Eukarya, but is not found in Bacteria. The properties of eukaryal IF6 (eIF6) have been extensively studied, but remain somewhat elusive. eIF6 behaves as a ribosome-anti-association factor and is involved in miRNA-mediated gene silencing; however, it also seems to participate in ribosome synthesis and export. Here we have determined the function and ribosomal localization of the archaeal (Sulfolobus solfataricus) IF6 homologue (aIF6). We find that aIF6 binds specifically to the 50S ribosomal subunits, hindering the formation of 70S ribosomes and strongly inhibiting translation. aIF6 is uniformly expressed along the cell cycle, but it is upregulated following both cold- and heat shock. The aIF6 ribosomal binding site lies in the middle of the 30-S interacting surface of the 50S subunit, including a number of critical RNA and protein determinants involved in subunit association. The data suggest that the IF6 protein evolved in the archaeal–eukaryal lineage to modulate translational efficiency under unfavourable environmental conditions, perhaps acquiring additional functions during eukaryotic evolution.
Collapse
Affiliation(s)
- Dario Benelli
- Dipartimento Biotecnologie Cellulari ed Ematologia, Policlinico Umberto I, Università di Roma Sapienza, Roma, Italy
| | | | | | | | | | | |
Collapse
|
265
|
Grosso S, Volta V, Vietri M, Gorrini C, Marchisio PC, Biffo S. Eukaryotic ribosomes host PKC activity. Biochem Biophys Res Commun 2008; 376:65-9. [PMID: 18768137 DOI: 10.1016/j.bbrc.2008.08.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
PKC isoform betaII modulates translation and can be recruited on ribosomes via its scaffold RACK1 (receptor for activated protein kinase C 1), which resides on the 40S ribosomal subunit. However, whether a PKC activity exists on the ribosome is not yet demonstrated. We purified native ribosomes by two different techniques, which avoid stripping of initiation factors and other associated proteins. In both cases, purified ribosomes are able to phosphorylate a specific PKC substrate, MARCKS (Myristoylated Alanine-Rich C-Kinase Substrate). MARCKS phosphorylation is switched on by treatment with PKC agonist PMA (Phorbol 12-Myristate 13-Acetate). Consistently, the broad PKC inhibitor BMI (Bisindolyl Maleimide I) abrogates MARCKS phosphorylation. These data show that native ribosomes host active PKC and hence allow the phosphorylation of ribosome-associated substrates like initiation factors and mRNA binding proteins.
Collapse
Affiliation(s)
- Stefano Grosso
- Laboratory of Molecular Histology and Cell Growth, DIBIT, Via Olgettina 58, HSR, 20132 Milano, Italy
| | | | | | | | | | | |
Collapse
|
266
|
van den Berg A, Mols J, Han J. RISC-target interaction: cleavage and translational suppression. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:668-77. [PMID: 18692607 PMCID: PMC2646505 DOI: 10.1016/j.bbagrm.2008.07.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 06/27/2008] [Accepted: 07/15/2008] [Indexed: 12/31/2022]
Abstract
Small RNA molecules have been known and utilized to suppress gene expression for more than a decade. The discovery that these small RNA molecules are endogenously expressed in many organisms and have a critical role in controlling gene expression has led to the arising of a whole new field of research. Termed small interfering RNA (siRNA) or microRNA (miRNA) these approximately 22 nt RNA molecules have the capability to suppress gene expression through various mechanisms once they are incorporated in the multi-protein RNA-Induced Silencing Complex (RISC) and interact with their target mRNA. This review introduces siRNAs and microRNAs in a historical perspective and focuses on the key molecules in RISC, structural properties and mechanisms underlying the process of small RNA regulated post-transcriptional suppression of gene expression.
Collapse
Affiliation(s)
- Arjen van den Berg
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Johann Mols
- Viral Development Unit, R&D Department, GlaxoSmithKline Biologicals, 15, rue de l'institut, B-1340 Rixensart, Belgium
| | - Jiahuai Han
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
267
|
Regmi S, Rothberg KG, Hubbard JG, Ruben L. The RACK1 signal anchor protein from Trypanosoma brucei associates with eukaryotic elongation factor 1A: a role for translational control in cytokinesis. Mol Microbiol 2008; 70:724-45. [PMID: 18786142 PMCID: PMC2581647 DOI: 10.1111/j.1365-2958.2008.06443.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2008] [Indexed: 01/05/2023]
Abstract
RACK1 is a WD-repeat protein that forms signal complexes at appropriate locations in the cell. RACK1 homologues are core components of ribosomes from yeast, plants and mammals. In contrast, a cryo-EM analysis of trypanosome ribosomes failed to detect RACK1, thus eliminating an important translational regulatory mechanism. Here we report that TbRACK1 from Trypanosoma brucei associates with eukaryotic translation elongation factor-1a (eEF1A) as determined by tandem MS of TAP-TbRACK1 affinity eluates, co-sedimentation in a sucrose gradient, and co-precipitation assays. Consistent with these observations, sucrose gradient purified 80S monosomes and translating polysomes each contained TbRACK1. When RNAi was used to deplete cells of TbRACK1, a shift in the polysome profile was observed, while the phosphorylation of a ribosomal protein increased. Under these conditions, cell growth became hypersensitive to the translational inhibitor anisomycin. The kinetoplasts and nuclei were misaligned in the postmitotic cells, resulting in partial cleavage furrow ingression during cytokinesis. Overall, these findings identify eEF1A as a novel TbRACK1 binding partner and establish TbRACK1 as a component of the trypanosome translational apparatus. The synergy between anisomycin and TbRACK1 RNAi suggests that continued translation is required for complete ingression of the cleavage furrow.
Collapse
Affiliation(s)
- Sandesh Regmi
- Department of Biological Sciences, Southern Methodist UniversityDallas, TX 75275, USA
| | - Karen G Rothberg
- Department of Biological Sciences, Southern Methodist UniversityDallas, TX 75275, USA
| | - James G Hubbard
- Department of Biological Sciences, Southern Methodist UniversityDallas, TX 75275, USA
| | - Larry Ruben
- Department of Biological Sciences, Southern Methodist UniversityDallas, TX 75275, USA
| |
Collapse
|
268
|
Gandin V, Miluzio A, Barbieri AM, Beugnet A, Kiyokawa H, Marchisio PC, Biffo S. Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature 2008; 455:684-8. [PMID: 18784653 PMCID: PMC2753212 DOI: 10.1038/nature07267] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 07/15/2008] [Indexed: 12/17/2022]
Abstract
Cell growth and proliferation require coordinated ribosomal biogenesis and translation. Eukaryotic initiation factors (eIFs) control translation at the rate-limiting step of initiation. So far, only two eIFs connect extracellular stimuli to global translation rates: eIF4E acts in the eIF4F complex and regulates binding of capped messenger RNA to 40S subunits, downstream of growth factors, and eIF2 controls loading of the ternary complex on the 40S subunit and is inhibited on stress stimuli. No eIFs have been found to link extracellular stimuli to the activity of the large 60S ribosomal subunit. eIF6 binds 60S ribosomes precluding ribosome joining in vitro. However, studies in yeasts showed that eIF6 is required for ribosome biogenesis rather than translation. Here we show that mammalian eIF6 is required for efficient initiation of translation, in vivo. eIF6 null embryos are lethal at preimplantation. Heterozygous mice have 50% reduction of eIF6 levels in all tissues, and show reduced mass of hepatic and adipose tissues due to a lower number of cells and to impaired G1/S cell cycle progression. eIF6(+/-) cells retain sufficient nucleolar eIF6 and normal ribosome biogenesis. The liver of eIF6(+/-) mice displays an increase of 80S in polysomal profiles, indicating a defect in initiation of translation. Consistently, isolated hepatocytes have impaired insulin-stimulated translation. Heterozygous mouse embryonic fibroblasts recapitulate the organism phenotype and have normal ribosome biogenesis, reduced insulin-stimulated translation, and delayed G1/S phase progression. Furthermore, eIF6(+/-) cells are resistant to oncogene-induced transformation. Thus, eIF6 is the first eIF associated with the large 60S subunit that regulates translation in response to extracellular signals.
Collapse
Affiliation(s)
- Valentina Gandin
- Molecular Histology and Cell Growth Laboratory, San Raffaele Science Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
269
|
Grosso S, Volta V, Sala LA, Vietri M, Marchisio PC, Ron D, Biffo S. PKCbetaII modulates translation independently from mTOR and through RACK1. Biochem J 2008; 415:77-85. [PMID: 18557705 DOI: 10.1042/bj20080463] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RACK1 (receptor for activated C kinase 1) is an abundant scaffolding protein, which binds active PKCbetaII (protein kinase C betaII) increasing its activity in vitro. RACK1 has also been described as a component of the small ribosomal subunit, in proximity to the mRNA exit channel. In the present study we tested the hypothesis that PKCbetaII plays a specific role in translational control and verified whether it may associate with the ribosomal machinery. We find that specific inhibition of PKCbetaI/II reduces translation as well as global PKC inhibition, but without affecting phosphorylation of mTOR (mammalian target of rapamycin) targets. These results suggest that PKCbetaII acts as a specific PKC isoform affecting translation in an mTOR-independent fashion, possibly close to the ribosomal machinery. Using far-Western analysis, we found that PKCbetaII binds ribosomes in vitro. Co-immunoprecipitation studies indicate that a small but reproducible pool of PKCbetaII is associated with membranes containing ribosomes, suggesting that in vivo PKCbetaII may also physically interact with the ribosomal machinery. Polysomal profiles show that stimulation of PKC results in an increased polysomes/80S ratio, associated with a shift of PKCbetaII to the heavier part of the gradient. A RACK1-derived peptide that inhibits the binding of active PKCbetaII to RACK1 reduces the polysomes/80S ratio and methionine incorporation, suggesting that binding of PKCbetaII to RACK1 is important for PKC-mediated translational control. Finally, down-regulation of RACK1 by siRNA (small interfering RNA) impairs the PKC-mediated increase of translation. Taken together the results of the present study show that PKCbetaII can act as a specific PKC isoform regulating translation, in an mTOR-independent fashion, possibly close to the ribosomal machinery.
Collapse
Affiliation(s)
- Stefano Grosso
- Molecular Histology and Cell Growth, HSR, 20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
270
|
Ullah H, Scappini EL, Moon AF, Williams LV, Armstrong DL, Pedersen LC. Structure of a signal transduction regulator, RACK1, from Arabidopsis thaliana. Protein Sci 2008; 17:1771-80. [PMID: 18715992 PMCID: PMC2548356 DOI: 10.1110/ps.035121.108] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/20/2008] [Accepted: 06/25/2008] [Indexed: 01/09/2023]
Abstract
The receptor for activated C-kinase 1 (RACK1) is a highly conserved WD40 repeat scaffold protein found in a wide range of eukaryotic species from Chlamydymonas to plants and humans. In tissues of higher mammals, RACK1 is ubiquitously expressed and has been implicated in diverse signaling pathways involving neuropathology, cellular stress, protein translation, and developmental processes. RACK1 has established itself as a scaffold protein through physical interaction with a myriad of signaling proteins ranging from kinases, phosphatases, ion channels, membrane receptors, G proteins, IP3 receptor, and with widely conserved structural proteins associated with the ribosome. In the plant Arabidopsis thaliana, RACK1A is implicated in diverse developmental and environmental stress pathways. Despite the functional conservation of RACK1-mediated protein-protein interaction-regulated signaling modes, the structural basis of such interactions is largely unknown. Here we present the first crystal structure of a RACK1 protein, RACK1 isoform A from Arabidopsis thaliana, at 2.4 A resolution, as a C-terminal fusion of the maltose binding protein. The structure implicates highly conserved surface residues that could play critical roles in protein-protein interactions and reveals the surface location of proposed post-transcriptionally modified residues. The availability of this structure provides a structural basis for dissecting RACK1-mediated cellular signaling mechanisms in both plants and animals.
Collapse
Affiliation(s)
- Hemayet Ullah
- Department of Biology, Howard University, Washington, DC 20059, USA
| | | | | | | | | | | |
Collapse
|
271
|
Sánchez-Carbente MDR, Desgroseillers L. Understanding the importance of mRNA transport in memory. PROGRESS IN BRAIN RESEARCH 2008; 169:41-58. [PMID: 18394467 DOI: 10.1016/s0079-6123(07)00003-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RNA localization is an important mechanism to sort proteins to specific subcellular domains. In neurons, several mRNAs are localized in dendrites and their presence allows autonomous control of local translation in response to stimulation of specific synapses. Active constitutive and activity-induced mechanisms of mRNA transport have been described that represent critical steps in the establishment and maintenance of synaptic plasticity. In recent years, the molecular composition of different transporting units has been reported and the identification of proteins and mRNAs in these RNA granules contributes to our understanding of the key steps that regulate mRNA transport and translation. Although RNA granules are heterogeneous, several proteins are common to different RNA granule populations, suggesting that they play important roles in the formation of the granules and/or their regulation during transport and translation. About 1-4% of the neuron transcriptome is found in RNA granules and the characterization of bound mRNAs reveal that they encode proteins of the cytoskeleton, the translation machinery, vesicle trafficking, and/or proteins involved in synaptic plasticity. Non-coding RNAs and microRNAs are also found in dendrites and likely regulate RNA translation. These mechanisms of mRNA transport and local translation are critical for synaptic plasticity mediated by activity or experience and memory.
Collapse
|
272
|
Nakashima A, Chen L, Thao NP, Fujiwara M, Wong HL, Kuwano M, Umemura K, Shirasu K, Kawasaki T, Shimamoto K. RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex. THE PLANT CELL 2008; 20:2265-79. [PMID: 18723578 PMCID: PMC2553611 DOI: 10.1105/tpc.107.054395] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A small GTPase, Rac1, plays a key role in rice (Oryza sativa) innate immunity as part of a complex of regulatory proteins. Here, we used affinity column chromatography to identify rice RACK1 (for Receptor for Activated C-Kinase 1) as an interactor with Rac1. RACK1 functions in various mammalian signaling pathways and is involved in hormone signaling and development in plants. Rice contains two RACK1 genes, RACK1A and RACK1B, and the RACK1A protein interacts with the GTP form of Rac1. Rac1 positively regulates RACK1A at both the transcriptional and posttranscriptional levels. RACK1A transcription was also induced by a fungal elicitor and by abscisic acid, jasmonate, and auxin. Analysis of transgenic rice plants and cell cultures indicates that RACK1A plays a role in the production of reactive oxygen species (ROS) and in resistance against rice blast infection. Overexpression of RACK1A enhances ROS production in rice seedlings. RACK1A was shown to interact with the N terminus of NADPH oxidase, RAR1, and SGT1, key regulators of plant disease resistance. These results suggest that RACK1A functions in rice innate immunity by interacting with multiple proteins in the Rac1 immune complex.
Collapse
Affiliation(s)
- Ayako Nakashima
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Kozak M. Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene 2008; 423:108-15. [PMID: 18692553 DOI: 10.1016/j.gene.2008.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/07/2008] [Accepted: 07/15/2008] [Indexed: 12/14/2022]
Abstract
Despite a recent surge of reports about how microRNAs might regulate translation, the question has not been answered. The proposed mechanisms contradict one another, and none is supported by strong evidence. This review explains some deficiencies in the experiments with microRNAs. Some of the problems are traceable to bad habits carried over from older studies of translational regulation, here illustrated by discussing two models involving mRNA binding proteins. One widely-accepted model, called into doubt by recent findings, is the maskin hypothesis for translational repression of cyclin B1 in Xenopus oocytes. The second dubious model postulates repression of translation of ceruloplasmin by mRNA binding proteins. A big fault in the latter case is reconstructing the imagined mechanism before looking carefully at the real thing--a criticism that applies also to studies with microRNAs. Experiments with microRNAs often employ internal ribosome entry sequences (IRESs) as tools, necessitating brief discussion of that topic. A sensitive new assay reveals that many putative IRESs promote expression of downstream cistrons via splicing rather than internal initiation of translation. Recent claims about the biological importance of IRES-binding proteins--including suggestions that these proteins might serve as targets for cancer therapy--are not supported by any meaningful evidence. The bottom line is that older studies of mRNA binding proteins and putative IRESs have created a confusing picture of translational regulation which is not helpful when trying to understand how microRNAs might work. The obvious biological importance of microRNAs makes it essential to understand how they do what they do. Fresh ways of thinking and looking are needed.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
274
|
Abstract
Impairment of ribosome biogenesis or function characterizes several of the inherited bone marrow failure syndromes: Diamond-Blackfan anaemia, dyskeratosis congenita (DC), Shwachman-Diamond syndrome and cartilage-hair hypoplasia. These syndromes exhibit overlapping but distinct clinical phenotypes and each disorder involves different aspects of ribosomal biogenesis. The clinical characteristics of each syndrome are briefly reviewed. Molecular studies of ribosome biogenesis and function in each of these syndromes are discussed. Models of how impairment of ribosomal pathways might affect haematopoiesis and tumorigenesis are explored.
Collapse
Affiliation(s)
- Karthik A Ganapathi
- Department of Haematology/Oncology, Children's Hospital/Dana Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
275
|
Altered eIF6 and Dicer expression is associated with clinicopathological features in ovarian serous carcinoma patients. Mod Pathol 2008; 21:676-84. [PMID: 18327211 DOI: 10.1038/modpathol.2008.33] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MicroRNAs are a group of small non-coding RNAs approximately 22 nucleotides in length. Recent work has shown differential expression of mature microRNAs in human cancers. Production and function of microRNAs require coordinated processing by proteins of the microRNA machinery. Dicer and Drosha (RNase III endonucleases) are essential components of the microRNA machinery. Recently, the ribosome anti-association factor eIF6 has also been found to have a role in microRNA-mediated post-transcriptional silencing. We characterized the alterations in the expression of genes encoding proteins of microRNA machinery in ovarian serous carcinoma. Protein expression of eIF6 and Dicer was quantified in a tissue microarray of 66 ovarian serous carcinomas. Dicer, Drosha and eIF6 mRNA expression was analysed using quantitative reverse transcription-PCR on an independent set of 50 formalin-fixed, paraffin-embedded ovarian serous carcinoma samples. Expression profiles of eIF6 and Dicer were correlated with clinicopathological and patient survival data. We provide definitive evidence that eIF6 and Dicer are both upregulated in a significant proportion of ovarian serous carcinomas and are associated with specific clinicopathological features, most notably low eIF6 expression being associated with reduced disease-free survival. The status of eIF6 and proteins of the microRNA machinery may help predict toxicity and susceptibility to future interfering RNA-based therapy.
Collapse
|
276
|
Zhang W, Cheng GZ, Gong J, Hermanto U, Zong CS, Chan J, Cheng JQ, Wang LH. RACK1 and CIS mediate the degradation of BimEL in cancer cells. J Biol Chem 2008; 283:16416-26. [PMID: 18420585 DOI: 10.1074/jbc.m802360200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RACK1 is a 7-WD motif-containing protein with numerous downstream effectors regulating various cellular functions. Using a yeast two-hybrid screen, we identified dynein light chain 1 as a novel interacting partner of RACK1. Additionally, we demonstrated that RACK1 formed a complex with DLC1 and Bim, specifically BimEL, in the presence of apoptotic agents. Upon paclitaxel treatment, RACK1, DLC1, and CIS mediated the degradation of BimEL through the ElonginB/C-Cullin2-CIS ubiquitin-protein isopeptide ligase complex. We further showed that RACK1 conferred paclitaxel resistance to breast cancer cells in vitro and in vivo. Finally, we observed an inverse correlation between CIS and BimEL levels in both ovarian and breast cancer cell lines and specimens. Our study suggests a role of RACK1 in protecting cancer cells from apoptosis by regulating the degradation of BimEL, which together with CIS could play an important role of drug resistance in chemotherapy.
Collapse
Affiliation(s)
- Weizhou Zhang
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
277
|
MicroRNA-repressed mRNAs contain 40S but not 60S components. Proc Natl Acad Sci U S A 2008; 105:5343-8. [PMID: 18390669 DOI: 10.1073/pnas.0801102105] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that may target more than one-third of human genes, yet the mechanisms used by miRNAs to repress translation of target mRNAs are obscure. Using a recently described cell-free assay of miRNA function, we observe that miRNA-targeted mRNAs are enriched for 40S but not 60S ribosome components. Additionally, toeprinting analysis of miRNA-targeted mRNAs demonstrates that approximately 18 nt 3' relative to the initiating AUG are protected, consistent with 40S ribosome subunits positioned at the AUG codon. Our results suggest that miRNAs repress translation initiation by preventing 60S subunit joining to miRNA-targeted mRNAs.
Collapse
|
278
|
Chandramouli P, Topf M, Ménétret JF, Eswar N, Gutell RR, Sali A, Akey CW. Structure of the mammalian 80S ribosome at 8.7 A resolution. Structure 2008; 16:535-48. [PMID: 18400176 PMCID: PMC2775484 DOI: 10.1016/j.str.2008.01.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/03/2008] [Accepted: 01/26/2008] [Indexed: 01/12/2023]
Abstract
In this paper, we present a structure of the mammalian ribosome determined at approximately 8.7 A resolution by electron cryomicroscopy and single-particle methods. A model of the ribosome was created by docking homology models of subunit rRNAs and conserved proteins into the density map. We then modeled expansion segments in the subunit rRNAs and found unclaimed density for approximately 20 proteins. In general, many conserved proteins and novel proteins interact with expansion segments to form an integrated framework that may stabilize the mature ribosome. Our structure provides a snapshot of the mammalian ribosome at the beginning of translation and lends support to current models in which large movements of the small subunit and L1 stalk occur during tRNA translocation. Finally, details are presented for intersubunit bridges that are specific to the eukaryotic ribosome. We suggest that these bridges may help reset the conformation of the ribosome to prepare for the next cycle of chain elongation.
Collapse
Affiliation(s)
- Preethi Chandramouli
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, Massachusetts 02118, USA
| | - Maya Topf
- School of Crystallography, Birkbeck, University of London, Malet Street, London WC1E 7HX
| | - Jean-François Ménétret
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, Massachusetts 02118, USA
| | - Narayanan Eswar
- Department of Biopharmaceutical Sciences, California Institute for Quantitative Biomedical Research, QB3 at Mission Bay, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | - Robin R. Gutell
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA
| | - Andrej Sali
- Department of Biopharmaceutical Sciences, California Institute for Quantitative Biomedical Research, QB3 at Mission Bay, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | - Christopher W. Akey
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, Massachusetts 02118, USA
| |
Collapse
|
279
|
|
280
|
Abstract
The downregulation of gene expression by miRNAs and siRNAs is a complex process involving both translational repression and accelerated mRNA turnover, each of which appears to occur by multiple mechanisms. Moreover, under certain conditions, miRNAs are also capable of activating translation. A variety of cellular proteins have been implicated in these regulatory mechanisms, yet their exact roles remain largely unresolved.
Collapse
Affiliation(s)
- Ligang Wu
- Kimmel Center for Biology and Medicine, Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
281
|
Eulalio A, Huntzinger E, Izaurralde E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol 2008; 15:346-53. [PMID: 18345015 DOI: 10.1038/nsmb.1405] [Citation(s) in RCA: 314] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 02/20/2008] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) silence gene expression by binding 3' untranslated regions of target mRNAs. Recent studies suggested silencing is achieved through either recruitment of eIF6, which prevents ribosome assembly, or displacement of eIF4E from the mRNA 5' cap structure. Using Drosophila melanogaster cells, we show that eIF6 is not required for silencing. In contrast, silencing is abolished by mutating Argonaute 1 (AGO1) at two conserved phenylalanine residues predicted to mediate binding to the cap structure. Notably, we found these mutations also prevented AGO1 from interacting with GW182 and miRNAs, indicating that the essential role of these residues is unrelated to cap binding. Consistently, depleting GW182 or overexpressing its AGO1 binding domain relieved silencing of all reporters tested, including those lacking a poly(A) tail. Together, our findings show that miRNA function is effected by AGO1-GW182 complexes and the role of GW182 in silencing goes beyond promoting deadenylation.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
282
|
Nagy J. Alcohol related changes in regulation of NMDA receptor functions. Curr Neuropharmacol 2008; 6:39-54. [PMID: 19305787 PMCID: PMC2645546 DOI: 10.2174/157015908783769662] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/19/2007] [Accepted: 10/20/2007] [Indexed: 12/25/2022] Open
Abstract
Long-term alcohol exposure may lead to development of alcohol dependence in consequence of altered neurotransmitter functions. Accumulating evidence suggests that the N-methyl-D-aspartate (NMDA) type of glutamate receptors is a particularly important site of ethanol's action. Several studies showed that ethanol potently inhibits NMDA receptors (NMDARs) and prolonged ethanol exposition leads to a compensatory "up-regulation" of NMDAR mediated functions. Therefore, alterations in NMDAR function are supposed to contribute to the development of ethanol tolerance, dependence as well as to the acute and late signs of ethanol withdrawal.A number of publications report alterations in the expression and phosphorylation states of NMDAR subunits, in their interaction with scaffolding proteins or other receptors in consequence of chronic ethanol treatment. Our knowledge on the regulatory processes, which modulate NMDAR functions including factors altering transcription, protein expression and post-translational modifications of NMDAR subunits, as well as those influencing their interactions with different regulatory proteins or other downstream signaling elements are incessantly increasing. The aim of this review is to summarize the complex chain of events supposedly playing a role in the up-regulation of NMDAR functions in consequence of chronic ethanol exposure.
Collapse
Affiliation(s)
- József Nagy
- Gedeon Richter Plc., Pharmacological and Drug Safety Research, Laboratory for Molecular Cell Biology, Budapest 10. P.O. Box 27, H-1475 Hungary.
| |
Collapse
|
283
|
Tang Z, Li Y, Wan P, Li X, Zhao S, Liu B, Fan B, Zhu M, Yu M, Li K. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol 2008; 8:R115. [PMID: 17573972 PMCID: PMC2394763 DOI: 10.1186/gb-2007-8-6-r115] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/30/2007] [Accepted: 06/16/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obese and lean pig breeds show obvious differences in muscle growth; however, the molecular mechanism underlying phenotype variation remains unknown. Prenatal muscle development programs postnatal performance. Here, we describe a genome-wide analysis of differences in prenatal skeletal muscle between Tongcheng (a typical indigenous Chinese breed) and Landrace (a leaner Western breed) pigs. RESULTS We generated transcriptome profiles of skeletal muscle from Tongcheng and Landrace pigs at 33, 65 and 90 days post coitus (dpc), using long serial analysis of gene expression (LongSAGE). We sequenced 317,115 LongSAGE tags and identified 1,400 and 1,201 differentially expressed transcripts during myogenesis in Tongcheng and Landrace pigs, respectively. From these, the Gene Ontology processes and expression patterns of these differentially expressed genes were constructed. Most of the genes showed different expression patterns in the two breeds. We also identified 532, 653 and 459 transcripts at 33, 65 and 90 dpc, respectively, that were differentially expressed between the two breeds. Growth factors, anti-apoptotic factors and genes involved in the regulation of protein synthesis were up-regulated in Landrace pigs. Finally, 12 differentially expressed genes were validated by quantitative PCR. CONCLUSION Our data show that gene expression phenotypes differ significantly between the two breeds. In particular, a slower muscle growth rate and more complicated molecular changes were found in Tongcheng pigs, while genes responsible for increased cellular growth and myoblast survival were up-regulated in Landrace pigs. Our analyses will assist in the identification of candidate genes for meat production traits and elucidation of the development of prenatal skeletal muscle in mammals.
Collapse
Affiliation(s)
- Zhonglin Tang
- Department of Gene and Cell Engineering, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yong Li
- Department of Gene and Cell Engineering, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ping Wan
- Shanghai Huaguan Biochip Co. Ltd, Shanghai, 201203, PR China
- Life and Environment Science College, Shanghai Normal University, Shanghai, 200234, PR China
| | - Xiaoping Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuhong Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bin Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mengjin Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mei Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kui Li
- Department of Gene and Cell Engineering, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
284
|
Liu YV, Hubbi ME, Pan F, McDonald KR, Mansharamani M, Cole RN, Liu JO, Semenza GL. Calcineurin promotes hypoxia-inducible factor 1alpha expression by dephosphorylating RACK1 and blocking RACK1 dimerization. J Biol Chem 2007; 282:37064-73. [PMID: 17965024 PMCID: PMC3754800 DOI: 10.1074/jbc.m705015200] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxygen homeostasis represents an essential organizing principle of metazoan evolution and biology. Hypoxia-inducible factor 1 (HIF-1) is a master regulator of transcriptional responses to changes in O2 concentration. HIF-1 is a heterodimer of HIF-1alpha and HIF-1beta subunits. O2-dependent degradation of the HIF-1alpha subunit is mediated by prolyl hydroxylase, von Hippel-Lindau protein (VHL)/Elongin-C E3 ubiquitin ligase, and the proteasome. O2-independent degradation of HIF-1alpha is regulated by the competition of RACK1 and HSP90 for binding to HIF-1alpha. RACK1 binding results in the recruitment of the Elongin-C E3 ubiquitin ligase, leading to VHL-independent ubiquitination and degradation of HIF-1alpha. In this report, we show that calcineurin inhibits the ubiquitination and proteasomal degradation of HIF-1alpha. Calcineurin is a serine/threonine phosphatase that is activated by calcium and calmodulin. The phosphatase activity of calcineurin is required for its regulation of HIF-1alpha. RACK1 binds to the catalytic domain of calcineurin and is required for HIF-1alpha degradation induced by the calcineurin inhibitor cyclosporine A. Elongin-C and HIF-1alpha each bind to RACK1 and dimerization of RACK1 is required to recruit Elongin-C to HIF-1alpha. Phosphorylation of RACK1 promotes its dimerization and dephosphorylation by calcineurin inhibits dimerization. Serine 146 within the dimerization domain is phosphorylated and mutation of serine 146 impairs RACK1 dimerization and HIF-1alpha degradation. These results indicate that intracellular calcium levels can regulate HIF-1alpha expression by modulating calcineurin activity and RACK1 dimerization.
Collapse
Affiliation(s)
- Ye V. Liu
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Maimon E. Hubbi
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Graduate Training Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Fan Pan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Karin R. McDonald
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Malini Mansharamani
- Mass Spectrometry/Proteomics Facility, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert N. Cole
- Mass Spectrometry/Proteomics Facility, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Gregg L. Semenza
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Departments of Pediatrics, Medicine, Oncology, and Radiation Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
285
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is a second messenger that induces the release of Ca(2+) from the endoplasmic reticulum (ER). The IP(3) receptor (IP(3)R) was discovered as a developmentally regulated glyco-phosphoprotein, P400, that was missing in strains of mutant mice. IP(3)R can allosterically and dynamically change its form in a reversible manner. The crystal structures of the IP(3)-binding core and N-terminal suppressor sequence of IP(3)R have been identified. An IP(3) indicator (known as IP(3)R-based IP(3) sensor) was developed from the IP(3)-binding core. The IP(3)-binding core's affinity to IP(3) is very similar among the three isoforms of IP(3)R; instead, the N-terminal IP(3) binding suppressor region is responsible for isoform-specific IP(3)-binding affinity tuning. Various pathways for the trafficking of IP(3)R have been identified; for example, the ER forms a meshwork upon which IP(3)R moves by lateral diffusion, and vesicular ER subcompartments containing IP(3)R move rapidly along microtubles using a kinesin motor. Furthermore, IP(3)R mRNA within mRNA granules also moves along microtubules. IP(3)Rs are involved in exocrine secretion. ERp44 works as a redox sensor in the ER and regulates IP(3)R1 activity. IP(3) has been found to release Ca(2+), but it also releases IRBIT (IP(3)R-binding protein released with IP(3)). IRBIT is a pseudo-ligand for IP(3) that regulates the frequency and amplitude of Ca(2+) oscillations through IP(3)R. IRBIT binds to pancreas-type Na, bicarbonate co-transporter 1, which is important for acid-base balance. The presence of many kinds of binding partners, like homer, protein 4.1N, huntingtin-associated protein-1A, protein phosphatases (PPI and PP2A), RACK1, ankyrin, chromogranin, carbonic anhydrase-related protein, IRBIT, Na,K-ATPase, and ERp44, suggest that IP(3)Rs form a macro signal complex and function as a center for signaling cascades. The structure of IP(3)R1, as revealed by cryoelectron microscopy, fits closely with these molecules.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute and Calcium Oscillation Project, ICORP-SORST, Hirosawa, Wako-shi, Saitama, Japan
| |
Collapse
|
286
|
Valerius O, Kleinschmidt M, Rachfall N, Schulze F, López Marín S, Hoppert M, Streckfuss-Bömeke K, Fischer C, Braus GH. The Saccharomyces Homolog of Mammalian RACK1, Cpc2/Asc1p, Is Required for FLO11-dependent Adhesive Growth and Dimorphism. Mol Cell Proteomics 2007; 6:1968-79. [PMID: 17704055 DOI: 10.1074/mcp.m700184-mcp200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nutrient starvation results in the interaction of Saccharomyces cerevisiae cells with each other and with surfaces. Adhesive growth requires the expression of the FLO11 gene regulated by the Ras/cAMP/cAMP-dependent protein kinase, the Kss1p/MAPK, and the Gcn4p/general amino acid control pathway, respectively. Proteomics two-dimensional DIGE experiments revealed post-transcriptionally regulated proteins in response to amino acid starvation including the ribosomal protein Cpc2p/Asc1p. This putative translational regulator is highly conserved throughout the eukaryotic kingdom and orthologous to mammalian RACK1. Deletion of CPC2/ASC1 abolished amino acid starvation-induced adhesive growth and impaired basal expression of FLO11 and its activation upon starvation in haploid cells. In addition, the diploid Flo11p-dependent pseudohyphal growth during nitrogen limitation was CPC2/ASC1-dependent. A more detailed analysis revealed that a CPC2/ASC1 deletion caused increased sensitivity to cell wall drugs suggesting that the gene is required for general cell wall integrity. Phosphoproteome and Western hybridization data indicate that Cpc2p/Asc1p affected the phosphorylation of the translational initiation factors eIF2 alpha and eIF4A and the ribosome-associated complex RAC. A crucial role of Cpc2p/Asc1p at the ribosomal interface coordinating signal transduction, translation initiation, and transcription factor formation was corroborated.
Collapse
Affiliation(s)
- Oliver Valerius
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Eulalio A, Rehwinkel J, Stricker M, Huntzinger E, Yang SF, Doerks T, Dorner S, Bork P, Boutros M, Izaurralde E. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 2007; 21:2558-70. [PMID: 17901217 PMCID: PMC2000321 DOI: 10.1101/gad.443107] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
microRNAs (miRNAs) silence gene expression by suppressing protein production and/or by promoting mRNA decay. To elucidate how silencing is accomplished, we screened an RNA interference library for suppressors of miRNA-mediated regulation in Drosophila melanogaster cells. In addition to proteins known to be required for miRNA biogenesis and function (i.e., Drosha, Pasha, Dicer-1, AGO1, and GW182), the screen identified the decapping activator Ge-1 as being required for silencing by miRNAs. Depleting Ge-1 alone and/or in combination with other decapping activators (e.g., DCP1, EDC3, HPat, or Me31B) suppresses silencing of several miRNA targets, indicating that miRNAs elicit mRNA decapping. A comparison of gene expression profiles in cells depleted of AGO1 or of individual decapping activators shows that approximately 15% of AGO1-targets are also regulated by Ge-1, DCP1, and HPat, whereas 5% are dependent on EDC3 and LSm1-7. These percentages are underestimated because decapping activators are partially redundant. Furthermore, in the absence of active translation, some miRNA targets are stabilized, whereas others continue to be degraded in a miRNA-dependent manner. These findings suggest that miRNAs mediate post-transcriptional gene silencing by more than one mechanism.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Jan Rehwinkel
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Mona Stricker
- German Cancer Research Center (DKFZ), Boveri-Group Signaling and Functional Genomics, D-69120 Heidelberg, Germany
| | - Eric Huntzinger
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Schu-Fee Yang
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Tobias Doerks
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Silke Dorner
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Peer Bork
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Boveri-Group Signaling and Functional Genomics, D-69120 Heidelberg, Germany
| | - Elisa Izaurralde
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
- Corresponding author.E-MAIL ; FAX 49-7071-601-1353
| |
Collapse
|
288
|
Affiliation(s)
- Tingting Du
- University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | |
Collapse
|
289
|
Ji Y, Shah S, Soanes K, Islam MN, Hoxter B, Biffo S, Heslip T, Byers S. Eukaryotic initiation factor 6 selectively regulates Wnt signaling and beta-catenin protein synthesis. Oncogene 2007; 27:755-62. [PMID: 17667944 DOI: 10.1038/sj.onc.1210667] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic initiation factor 6 (eIF6), an essential protein important in ribosome biosynthesis and assembly, was identified as an interacting partner of the beta-catenin C terminus in the yeast two-hybrid assay. Independent studies identified Drosophila eIF6 (DeIF6) in a genetic screen designed to detect new genes involved in the regulation of the Wnt/Wg (wingless) pathway. Ectopic expression of DeIF6 in wing discs results in a Wg phenotype. Expression of eIF6 in adenomatous polyposis coli (APC)-mutant colon cancer cells, which express high levels of active beta-catenin, showed that eIF6 selectively inhibits the Wnt pathway at the level of beta-catenin protein independently of proteasomal degradation. Incorporation of radiolabeled amino acids into beta-catenin was selectively decreased in cells that overexpressed eIF6. A similar inverse relationship of the two proteins was observed in the APC(min/+) mouse intestine, in which beta-catenin levels are very high. Taken together these data reveal a link between eIF6 and Wnt signaling, perhaps at the level of ribosome recycling on beta-catenin mRNA.
Collapse
Affiliation(s)
- Y Ji
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, USA
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Auerbach M, Liedtke CM. Role of the scaffold protein RACK1 in apical expression of CFTR. Am J Physiol Cell Physiol 2007; 293:C294-304. [PMID: 17409124 DOI: 10.1152/ajpcell.00413.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies from this laboratory demonstrated a role for protein kinase C (PKC)ε in the regulation of cAMP-dependent cystic fibrosis transmembrane regulator (CFTR) Cl channel function via binding of PKCε to RACK1, a receptor for activated C kinase, and of RACK1 to human Na+/H+ exchanger regulatory factor (NHERF1). In the present study, we investigated the role of RACK1 in regulating CFTR function in a Calu-3 airway epithelial cell line. Confocal microscopy and biotinylation of apical surface proteins demonstrate apical localization of RACK1 independent of actin. Mass spectrometric analysis of NHERF1 revealed copurification of tubulin, which, in in vitro binding assays, selectively binds to NHERF1, but not RACK1, via a PDZ1 domain. In binding and pulldown assays, we show direct binding of a PDZ2 domain to NHERF1, pulldown of endogenous NHERF1 by a PDZ2 domain, and inhibition of NHERF1-tubulin binding by a PDZ1 domain. Downregulation of RACK1 using double-stranded silencing RNA reduced the amount of RACK1 by 77.5% and apical expression of biotinylated CFTR by 87.4%. Expression of CFTR, NHERF1, and actin were not altered by treatment with siRACK1 or by nontargeting control silencing RNA, which, in addition, did not affect RACK1 expression. On the basis of these results, we model a RACK1 proteome consisting of PKCε-RACK1-NHERF1-NHERF1-tubulin with a role in stable expression of CFTR in the apical plasma membrane of epithelial cells.
Collapse
Affiliation(s)
- Michael Auerbach
- Department of Pediatrics, Rainbow Babies & children Hospital, Case Western Reserve University, BRB, Rm. 824, 2109 Adelbert Rd., Cleveland, OH 44106-4948, USA
| | | |
Collapse
|
291
|
Dorner S, Eulalio A, Huntzinger E, Izaurralde E. Delving into the diversity of silencing pathways. Symposium on MicroRNAs and siRNAs: biological functions and mechanisms. EMBO Rep 2007; 8:723-9. [PMID: 17599087 PMCID: PMC1978081 DOI: 10.1038/sj.embor.7401015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 05/22/2007] [Indexed: 01/09/2023] Open
Affiliation(s)
- Silke Dorner
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | - Ana Eulalio
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | - Eric Huntzinger
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
- Tel: +49 70 71 601 1350; Fax: +49 70 71 601 1353;
| |
Collapse
|
292
|
Demeshkina N, Hirokawa G, Kaji A, Kaji H. Novel activity of eukaryotic translocase, eEF2: dissociation of the 80S ribosome into subunits with ATP but not with GTP. Nucleic Acids Res 2007; 35:4597-607. [PMID: 17586816 PMCID: PMC1950535 DOI: 10.1093/nar/gkm468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ribosomes must dissociate into subunits in order to begin protein biosynthesis. The enzymes that catalyze this fundamental process in eukaryotes remained unknown. Here, we demonstrate that eukaryotic translocase, eEF2, which catalyzes peptide elongation in the presence of GTP, dissociates yeast 80S ribosomes into subunits in the presence of ATP but not GTP or other nucleoside triphosphates. Dissociation was detected by light scattering or ultracentrifugation after the split subunits were stabilized. ATP was hydrolyzed during the eEF2-dependent dissociation, while a non-hydrolyzable analog of ATP was inactive in ribosome splitting by eEF2. GTP inhibited not only ATP hydrolysis but also dissociation. Sordarin, a fungal eEF2 inhibitor, averted the splitting but stimulated ATP hydrolysis. Another elongation inhibitor, cycloheximide, also prevented eEF2/ATP-dependent splitting, while the inhibitory effect of fusidic acid on the splitting was nominal. Upon dissociation of the 80S ribosome, eEF2 was found on the subunits. We propose that the dissociation activity of eEF2/ATP plays a role in mobilizing 80S ribosomes for protein synthesis during the shift up of physiological conditions.
Collapse
Affiliation(s)
- Natalia Demeshkina
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Go Hirokawa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akira Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- *To whom correspondence should be addressed.+1 215 503 6547+1 215 923 7343
| |
Collapse
|
293
|
Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R. MicroRNA silencing through RISC recruitment of eIF6. Nature 2007; 447:823-8. [PMID: 17507929 DOI: 10.1038/nature05841] [Citation(s) in RCA: 352] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 04/13/2007] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a class of small RNAs that act post-transcriptionally to regulate messenger RNA stability and translation. To elucidate how miRNAs mediate their repressive effects, we performed biochemical and functional assays to identify new factors in the miRNA pathway. Here we show that human RISC (RNA-induced silencing complex) associates with a multiprotein complex containing MOV10--which is the homologue of Drosophila translational repressor Armitage--and proteins of the 60S ribosome subunit. Notably, this complex contains the anti-association factor eIF6 (also called ITGB4BP or p27BBP), a ribosome inhibitory protein known to prevent productive assembly of the 80S ribosome. Depletion of eIF6 in human cells specifically abrogates miRNA-mediated regulation of target protein and mRNA levels. Similarly, depletion of eIF6 in Caenorhabditis elegans diminishes lin-4 miRNA-mediated repression of the endogenous LIN-14 and LIN-28 target protein and mRNA levels. These results uncover an evolutionarily conserved function of the ribosome anti-association factor eIF6 in miRNA-mediated post-transcriptional silencing.
Collapse
|
294
|
Zemp I, Kutay U. Nuclear export and cytoplasmic maturation of ribosomal subunits. FEBS Lett 2007; 581:2783-93. [PMID: 17509569 DOI: 10.1016/j.febslet.2007.05.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/06/2007] [Indexed: 01/20/2023]
Abstract
Based on the characterization of ribosome precursor particles and associated trans-acting factors, a biogenesis pathway for the 40S and 60S subunits has emerged. After nuclear synthesis and assembly steps, pre-ribosomal subunits are exported through the nuclear pore complex in a Crm1- and RanGTP-dependent manner. Subsequent cytoplasmic biogenesis steps of pre-60S particles include the facilitated release of several non-ribosomal proteins, yielding fully functional 60S subunits. Cytoplasmic maturation of 40S subunit precursors includes rRNA dimethylation and pre-rRNA cleavage, allowing 40S subunits to achieve translation competence. We review current knowledge of nuclear export and cytoplasmic maturation of ribosomal subunits.
Collapse
Affiliation(s)
- Ivo Zemp
- Institute of Biochemistry, HPM F11.1, Schafmattstr. 18, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
295
|
Ganapathi KA, Austin KM, Lee CS, Dias A, Malsch MM, Reed R, Shimamura A. The human Shwachman-Diamond syndrome protein, SBDS, associates with ribosomal RNA. Blood 2007; 110:1458-65. [PMID: 17475909 PMCID: PMC1975835 DOI: 10.1182/blood-2007-02-075184] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic dysfunction, and leukemia predisposition. Mutations in the SBDS gene are identified in most patients with SDS. SBDS encodes a highly conserved protein of unknown function. Data from SBDS orthologs suggest that SBDS may play a role in ribosome biogenesis or RNA processing. Human SBDS is enriched in the nucleolus, the major cellular site of ribosome biogenesis. Here we report that SBDS nucleolar localization is dependent on active rRNA transcription. Cells from patients with SDS or Diamond-Blackfan anemia are hypersensitive to low doses of actinomycin D, an inhibitor of rRNA transcription. The addition of wild-type SBDS complements the actinomycin D hypersensitivity of SDS patient cells. SBDS migrates together with the 60S large ribosomal subunit in sucrose gradients and coprecipitates with 28S ribosomal RNA (rRNA). Loss of SBDS is not associated with a discrete block in rRNA maturation or with decreased levels of the 60S ribosomal subunit. SBDS forms a protein complex with nucleophosmin, a multifunctional protein implicated in ribosome biogenesis and leukemogenesis. Our studies support the addition of SDS to the growing list of human bone marrow failure syndromes involving the ribosome.
Collapse
Affiliation(s)
- Karthik A Ganapathi
- Department of Pediatric Hematology, Children's Hospital Boston, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
296
|
Menne TF, Goyenechea B, Sánchez-Puig N, Wong CC, Tonkin LM, Ancliff PJ, Brost RL, Costanzo M, Boone C, Warren AJ. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat Genet 2007; 39:486-95. [PMID: 17353896 DOI: 10.1038/ng1994] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 02/05/2007] [Indexed: 12/15/2022]
Abstract
The autosomal recessive disorder Shwachman-Diamond syndrome, characterized by bone marrow failure and leukemia predisposition, is caused by deficiency of the highly conserved Shwachman-Bodian-Diamond syndrome (SBDS) protein. Here, we identify the function of the yeast SBDS ortholog Sdo1, showing that it is critical for the release and recycling of the nucleolar shuttling factor Tif6 from pre-60S ribosomes, a key step in 60S maturation and translational activation of ribosomes. Using genome-wide synthetic genetic array mapping, we identified multiple TIF6 gain-of-function alleles that suppressed the pre-60S nuclear export defects and cytoplasmic mislocalization of Tif6 observed in sdo1Delta cells. Sdo1 appears to function within a pathway containing elongation factor-like 1, and together they control translational activation of ribosomes. Thus, our data link defective late 60S ribosomal subunit maturation to an inherited bone marrow failure syndrome associated with leukemia predisposition.
Collapse
Affiliation(s)
- Tobias F Menne
- Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Sunnerhagen P. Cytoplasmatic post-transcriptional regulation and intracellular signalling. Mol Genet Genomics 2007; 277:341-55. [PMID: 17333280 DOI: 10.1007/s00438-007-0221-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/06/2007] [Indexed: 02/05/2023]
Abstract
Studies of intracellular signalling have traditionally focused on regulation at the levels of initiation of transcription on one hand, and post-translational regulation on the other. More recently, it is becoming apparent that the post-transcriptional level of gene expression is also subject to regulation by signalling pathways. The emphasis in this review is on short-term regulation of mRNAs at the levels of degradation and frequency of translation. Interplay between the mRNA translation and degradation machineries and mainly the TOR, stress-induced MAP kinase (SAPK), and DNA damage checkpoint pathways is discussed. Since a large fraction of the molecular mechanisms has been dissected using molecular genetics methods in yeast, most of the examples in this review are from budding and fission yeast. Some parallels are drawn to plant and animal cells. This review is intended for those more familiar with intracellular signalling, and who realise that post-transcriptional regulation may be an underemphasised level of signalling output.
Collapse
Affiliation(s)
- Per Sunnerhagen
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, P.O. Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
298
|
Meng X, Krokhin O, Cheng K, Ens W, Wilkins JA. Characterization of IQGAP1-containing complexes in NK-like cells: evidence for Rac 2 and RACK1 association during homotypic adhesion. J Proteome Res 2007; 6:744-50. [PMID: 17269730 DOI: 10.1021/pr060382t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
IQGAP1 is a scaffolding protein that binds to a diverse array of signaling and structural molecules that are often associated with cell polarization and adhesion. Through interaction with its target proteins, IQGAP1 participates in multiple cellular functions, including Ca2+-calmodulin signaling, definition of cytoskeletal architecture, regulation of Cdc42 and Rac1 dependent cytoskeletal changes, and control of E-cadherin mediated intercellular adhesion. These analysis have been largely restricted to cells of epithelial and fibroblast origin. The present studies were initiated to examine the role of IQGAP1 in cellular interactions involving the lymphoid cells. A mass spectrometric based analysis of IQGAP1 containing complexes isolated from the human NK-like cell line, YTS, identified several known and new potential IQGAP1 interaction partners including receptor of activated C kinase 1 (RACK1) and the small GTPase, Rac2. Immunofluorescence analysis of YTS cells indicated that a minor component of IQGAP1 was localized at the cell membrane with the remainder diffusely distributed through out the cytoplasm. However, at sites of cellular contact, there was a marked accumulation of IQGAP1. Staining for RACK1 and Rac2 revealed that both of these proteins accumulated these contact sites. Antibody-based studies suggested that a subset of RACK1 was associated in an IQGAP1-containing complex, which prevented recognition of RACK1 by monoclonal antibody. These results suggest that RACK1, Rac2, and IQGAP1 are components of complexes involved in NK cell homotypic adhesion.
Collapse
Affiliation(s)
- Xiaobo Meng
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, Winnipeg, MB, Canada R3E 3P4
| | | | | | | | | |
Collapse
|
299
|
Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL. RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell 2007; 25:207-17. [PMID: 17244529 PMCID: PMC2563152 DOI: 10.1016/j.molcel.2007.01.001] [Citation(s) in RCA: 390] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/26/2006] [Accepted: 01/02/2007] [Indexed: 11/17/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) regulates transcription in response to changes in O(2) concentration. O(2)-dependent degradation of the HIF-1alpha subunit is mediated by prolyl hydroxylase (PHD), the von Hippel-Lindau (VHL)/Elongin-C/Elongin-B E3 ubiquitin ligase complex, and the proteasome. Inhibition of heat-shock protein 90 (HSP90) leads to O(2)/PHD/VHL-independent degradation of HIF-1alpha. We have identified the receptor of activated protein kinase C (RACK1) as a HIF-1alpha-interacting protein that promotes PHD/VHL-independent proteasomal degradation of HIF-1alpha. RACK1 competes with HSP90 for binding to the PAS-A domain of HIF-1alpha in vitro and in human cells. HIF-1alpha degradation induced by the HSP90 inhibitor 17-allylaminogeldanamycin is abolished by RACK1 loss of function. RACK1 binds to Elongin-C and promotes ubiquitination of HIF-1alpha. Elongin-C-binding sites in RACK1 and VHL show significant sequence similarity. Thus, RACK1 is an essential component of an O(2)/PHD/VHL-independent mechanism for regulating HIF-1alpha stability through competition with HSP90 and recruitment of the Elongin-C/B ubiquitin ligase complex.
Collapse
Affiliation(s)
- Ye V. Liu
- Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine Baltimore, Maryland 21205
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine Baltimore, Maryland 21205
| | - Jin H. Baek
- Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine Baltimore, Maryland 21205
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine Baltimore, Maryland 21205
| | - Huafeng Zhang
- Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine Baltimore, Maryland 21205
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine Baltimore, Maryland 21205
| | - Roberto Diez
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine Baltimore, Maryland 21205
| | - Robert N. Cole
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine Baltimore, Maryland 21205
| | - Gregg L. Semenza
- Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine Baltimore, Maryland 21205
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine Baltimore, Maryland 21205
- Departments of Pediatrics, Medicine, Oncology, and Radiation Oncology, The Johns Hopkins University School of Medicine Baltimore, Maryland 21205
| |
Collapse
|
300
|
Fraser CS, Doudna JA. Structural and mechanistic insights into hepatitis C viral translation initiation. Nat Rev Microbiol 2006; 5:29-38. [PMID: 17128284 DOI: 10.1038/nrmicro1558] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus uses an internal ribosome entry site (IRES) to control viral protein synthesis by directly recruiting ribosomes to the translation-start site in the viral mRNA. Structural insights coupled with biochemical studies have revealed that the IRES substitutes for the activities of translation-initiation factors by binding and inducing conformational changes in the 40S ribosomal subunit. Direct interactions of the IRES with initiation factor eIF3 are also crucial for efficient translation initiation, providing clues to the role of eIF3 in protein synthesis.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|