251
|
Abstract
Stem cell therapy provides immense hope for regenerating the pathological heart, yet has been marred by issues surrounding the effectiveness, unclear mechanisms, and survival of the donated cell population in the ischemic myocardial milieu. Poor survival and engraftment coupled to inadequate cardiac commitment of the adoptively transferred stem cells compromises the improvement in cardiac function. Various alternative approaches to enhance the efficacy of stem cell therapies and to overcome issues with cell therapy have been used with varied success. Cell-free components, such as exosomes enriched in proteins, messenger RNAs, and miRs characteristic of parental stem cells, represent a potential approach for treating cardiovascular diseases. Recently, exosomes from different kinds of stem cells have been effectively used to promote cardiac function in the pathological heart. The aim of this review is to summarize current research efforts on stem cell exosomes, including their potential benefits and limitations to develop a potentially viable therapy for cardiovascular problems.
Collapse
Affiliation(s)
- Raj Kishore
- From the Center for Translational Medicine (R.K., M.K.) and Department of Pharmacology (R.K.), Temple University School of Medicine, Philadelphia, PA
| | - Mohsin Khan
- From the Center for Translational Medicine (R.K., M.K.) and Department of Pharmacology (R.K.), Temple University School of Medicine, Philadelphia, PA.
| |
Collapse
|
252
|
Miyoshi T, Ito K, Murakami R, Uchiumi T. Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute. Nat Commun 2016; 7:11846. [PMID: 27325485 PMCID: PMC4919518 DOI: 10.1038/ncomms11846] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/05/2016] [Indexed: 01/05/2023] Open
Abstract
Argonaute proteins are key players in the gene silencing mechanisms mediated by small nucleic acids in all domains of life from bacteria to eukaryotes. However, little is known about the Argonaute protein that recognizes guide RNA/target DNA. Here, we determine the 2 Å crystal structure of Rhodobacter sphaeroides Argonaute (RsAgo) in a complex with 18-nucleotide guide RNA and its complementary target DNA. The heteroduplex maintains Watson-Crick base-pairing even in the 3'-region of the guide RNA between the N-terminal and PIWI domains, suggesting a recognition mode by RsAgo for stable interaction with the target strand. In addition, the MID/PIWI interface of RsAgo has a system that specifically recognizes the 5' base-U of the guide RNA, and the duplex-recognition loop of the PAZ domain is important for the DNA silencing activity. Furthermore, we show that Argonaute discriminates the nucleic acid type (RNA/DNA) by recognition of the duplex structure of the seed region.
Collapse
Affiliation(s)
- Tomohiro Miyoshi
- Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Ryo Murakami
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
253
|
Roden C, Mastriano S, Wang N, Lu J. microRNA Expression Profiling: Technologies, Insights, and Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 888:409-21. [PMID: 26663195 DOI: 10.1007/978-3-319-22671-2_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms.
Collapse
Affiliation(s)
- Christine Roden
- Department of Genetics, Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, 10 Amistad Street, Rm 237C, New Haven, CT, 06520-8005, USA
| | - Stephen Mastriano
- Department of Genetics, Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, 10 Amistad Street, Rm 237C, New Haven, CT, 06520-8005, USA
| | - Nayi Wang
- The Biomedical Engineering Graduate Program, New Haven, CT, 06520, USA
| | - Jun Lu
- Department of Genetics, Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, 10 Amistad Street, Rm 237C, New Haven, CT, 06520-8005, USA. .,Yale Center for RNA Science and Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
254
|
Nakanishi K. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:637-60. [PMID: 27184117 PMCID: PMC5084781 DOI: 10.1002/wrna.1356] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
RNA silencing is a eukaryote‐specific phenomenon in which microRNAs and small interfering RNAs degrade messenger RNAs containing a complementary sequence. To this end, these small RNAs need to be loaded onto an Argonaute protein (AGO protein) to form the effector complex referred to as RNA‐induced silencing complex (RISC). RISC assembly undergoes multiple and sequential steps with the aid of Hsc70/Hsp90 chaperone machinery. The molecular mechanisms for this assembly process remain unclear, despite their significance for the development of gene silencing techniques and RNA interference‐based therapeutics. This review dissects the currently available structures of AGO proteins and proposes models and hypotheses for RISC assembly, covering the conformation of unloaded AGO proteins, the chaperone‐assisted duplex loading, and the slicer‐dependent and slicer‐independent duplex separation. The differences in the properties of RISC between prokaryotes and eukaryotes will also be clarified. WIREs RNA 2016, 7:637–660. doi: 10.1002/wrna.1356 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
255
|
Abstract
MicroRNAs (miRNAs) are short (~22 nucleotides) single-stranded RNA molecules that primarily function to negatively regulate gene expression at the post-transcriptional level. miRNAs have thus been implicated in the regulation of a wide variety of normal cell functions and pathophysiological conditions. The miRNA machinery consists of a series of protein complexes which act to: (1) cleave the precursor-miRNA hairpin from its primary transcript (i.e. DROSHA and DGCR8); (2) traffic the miRNA hairpin between nucleus and cytoplasm (i.e. XPO5); (3) remove the loop sequence of the hairpin by a second nucleolytic cleavage reaction (i.e. DICER1); (4) facilitate loading of the mature miRNA sequence into an Argonaute protein (typically AGO2) as part of the RNA-Induced Silencing Complex (RISC); (5) guide the loaded RISC complex to complementary, or semi-complementary, target transcripts and (6) facilitate gene silencing via one of several possible mechanisms.
Collapse
|
256
|
Lee H, Lee S, Bae H, Kang HS, Kim SJ. Genome-wide identification of target genes for miR-204 and miR-211 identifies their proliferation stimulatory role in breast cancer cells. Sci Rep 2016; 6:25287. [PMID: 27121770 PMCID: PMC4848534 DOI: 10.1038/srep25287] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/14/2016] [Indexed: 12/15/2022] Open
Abstract
MiR-204 and miR-211 (miR-204/211) share the same seed site sequence, targeting many of the same genes. Their role in cancer development remains controversial, as both cell proliferative and suppressive effects have been identified. This study aimed to address the relationship between the two structurally similar microRNAs (miRs) by examining their target genes in depth as well as to reveal their contribution in breast cancer cells. Genome-wide pathway analysis with the dysregulated genes after overexpression of either of the two miRs in MCF-7 breast cancer cell identified the “Cancer”- and “Cell signaling”-related pathway as the top pathway for miR-204 and miR-211, respectively. The majority of the target genes for both miRs notably comprised ones that have been characterized to drive cells anti-tumorigenic. Accordingly, the miRs induced the proliferation of MCF-7 and MDA-MB-231 cells, judged by cell proliferation as well as colony forming assay. Tumor suppressors, MX1 and TXNIP, were proven to be direct targets of the miRs. In addition, a high association was observed between miR-204 and miR-211 expression in breast cancer tissue. Our results indicate that miR-204/211 serve to increase cell proliferation at least in MCF-7 and MDA-MB-231 breast cancer cells by downregulating tumor suppressor genes.
Collapse
Affiliation(s)
- Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hansol Bae
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Han-Sung Kang
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
257
|
Momose F, Seo N, Akahori Y, Sawada SI, Harada N, Ogura T, Akiyoshi K, Shiku H. Guanine-Rich Sequences Are a Dominant Feature of Exosomal microRNAs across the Mammalian Species and Cell Types. PLoS One 2016; 11:e0154134. [PMID: 27101102 PMCID: PMC4839687 DOI: 10.1371/journal.pone.0154134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022] Open
Abstract
Exosome is an extracellular vesicle released from multivesicular endosomes and contains micro (mi) RNAs and functional proteins derived from the donor cells. Exosomal miRNAs act as an effector during communication with appropriate recipient cells, this can aid in the utilization of the exosomes in a drug delivery system for various disorders including malignancies. Differences in the miRNA distribution pattern between exosomes and donor cells indicate the active translocation of miRNAs into the exosome cargos in a miRNA sequence-dependent manner, although the molecular mechanism is little known. In this study, we statistically analyzed the miRNA microarray data and revealed that the guanine (G)-rich sequence is a dominant feature of exosome-dominant miRNAs, across the mammalian species-specificity and the cell types. Our results provide important information regarding the potential use of exosome cargos to develop miRNA-based drugs for the treatment of human diseases.
Collapse
Affiliation(s)
- Fumiyasu Momose
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie 514–8507, Japan
- ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo 102–0076, Japan
| | - Naohiro Seo
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie 514–8507, Japan
- ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo 102–0076, Japan
- * E-mail: (NS); (HS)
| | - Yasushi Akahori
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie 514–8507, Japan
- ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo 102–0076, Japan
| | - Shin-ichi Sawada
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615–8510, Japan
- ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo 102–0076, Japan
| | - Naozumi Harada
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie 514–8507, Japan
- ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo 102–0076, Japan
| | - Toru Ogura
- Clinical Research Support Center, Mie University Hospital, Tsu Mie 514–8507, Japan
| | - Kazunari Akiyoshi
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615–8510, Japan
- ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo 102–0076, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie 514–8507, Japan
- ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Tokyo 102–0076, Japan
- * E-mail: (NS); (HS)
| |
Collapse
|
258
|
Zlatev I, Foster DJ, Liu J, Charisse K, Brigham B, Parmar RG, Jadhav V, Maier MA, Rajeev KG, Egli M, Manoharan M. 5'-C-Malonyl RNA: Small Interfering RNAs Modified with 5'-Monophosphate Bioisostere Demonstrate Gene Silencing Activity. ACS Chem Biol 2016; 11:953-60. [PMID: 26675211 DOI: 10.1021/acschembio.5b00654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
5'-Phosphorylation is a critical step in the cascade of events that leads to loading of small interfering RNAs (siRNAs) into the RNA-induced silencing complex (RISC) to elicit gene silencing. 5'-Phosphorylation of exogenous siRNAs is generally accomplished by a cytosolic Clp1 kinase, and in most cases, the presence of a 5'-monophosphate on synthetic siRNAs is not a prerequisite for activity. Chemically introduced, metabolically stable 5'-phosphate mimics can lead to higher metabolic stability, increased RISC loading, and higher gene silencing activities of chemically modified siRNAs. In this study, we report the synthesis of 5'-C-malonyl RNA, a 5'-monophosphate bioisostere. A 5'-C-malonyl-modified nucleotide was incorporated at the 5'-terminus of chemically modified RNA oligonucleotides using solid-phase synthesis. In vitro silencing activity, in vitro metabolic stability, and in vitro RISC loading of 5'-C-malonyl siRNA was compared to corresponding 5'-phosphorylated and 5'-nonphosphorylated siRNAs. The 5'-C-malonyl siRNAs showed sustained or improved in vitro gene silencing and high levels of Ago2 loading and conferred dramatically improved metabolic stability to the antisense strand of the siRNA duplexes. In silico modeling studies indicate a favorable fit of the 5'-C-malonyl group within the 5'-phosphate binding pocket of human Ago2MID domain.
Collapse
Affiliation(s)
- Ivan Zlatev
- Alnylam Pharmaceuticals, 300
Third Street, Cambridge, Massachusetts 02142, United States
| | - Donald J. Foster
- Alnylam Pharmaceuticals, 300
Third Street, Cambridge, Massachusetts 02142, United States
| | - Jingxuan Liu
- Alnylam Pharmaceuticals, 300
Third Street, Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals, 300
Third Street, Cambridge, Massachusetts 02142, United States
| | - Benjamin Brigham
- Alnylam Pharmaceuticals, 300
Third Street, Cambridge, Massachusetts 02142, United States
| | - Rubina G. Parmar
- Alnylam Pharmaceuticals, 300
Third Street, Cambridge, Massachusetts 02142, United States
| | - Vasant Jadhav
- Alnylam Pharmaceuticals, 300
Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin A. Maier
- Alnylam Pharmaceuticals, 300
Third Street, Cambridge, Massachusetts 02142, United States
| | | | - Martin Egli
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 300
Third Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
259
|
Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA. A bacterial Argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci U S A 2016; 113:4057-62. [PMID: 27035975 PMCID: PMC4839417 DOI: 10.1073/pnas.1524385113] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Eukaryotic Argonaute proteins induce gene silencing by small RNA-guided recognition and cleavage of mRNA targets. Although structural similarities between human and prokaryotic Argonautes are consistent with shared mechanistic properties, sequence and structure-based alignments suggested that Argonautes encoded within CRISPR-cas [clustered regularly interspaced short palindromic repeats (CRISPR)-associated] bacterial immunity operons have divergent activities. We show here that the CRISPR-associated Marinitoga piezophila Argonaute (MpAgo) protein cleaves single-stranded target sequences using 5'-hydroxylated guide RNAs rather than the 5'-phosphorylated guides used by all known Argonautes. The 2.0-Å resolution crystal structure of an MpAgo-RNA complex reveals a guide strand binding site comprising residues that block 5' phosphate interactions. Using structure-based sequence alignment, we were able to identify other putative MpAgo-like proteins, all of which are encoded within CRISPR-cas loci. Taken together, our data suggest the evolution of an Argonaute subclass with noncanonical specificity for a 5'-hydroxylated guide.
Collapse
Affiliation(s)
- Emine Kaya
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kevin W Doxzen
- Biophysics Graduate Group, University of California, Berkeley, CA 94720
| | - Kilian R Knoll
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Ross C Wilson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Steven C Strutt
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Philip J Kranzusch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; Biophysics Graduate Group, University of California, Berkeley, CA 94720; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; Center for RNA Systems Biology, University of California, Berkeley, CA 94720; Innovative Genomics Initiative, University of California, Berkeley, CA 94720; Department of Chemistry, University of California, Berkeley, CA 94720
| |
Collapse
|
260
|
Shum EY, Jones SH, Shao A, Chousal JN, Krause MD, Chan WK, Lou CH, Espinoza JL, Song HW, Phan MH, Ramaiah M, Huang L, McCarrey JR, Peterson KJ, De Rooij DG, Cook-Andersen H, Wilkinson MF. The Antagonistic Gene Paralogs Upf3a and Upf3b Govern Nonsense-Mediated RNA Decay. Cell 2016; 165:382-95. [PMID: 27040500 PMCID: PMC4826573 DOI: 10.1016/j.cell.2016.02.046] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/02/2016] [Accepted: 02/20/2016] [Indexed: 01/11/2023]
Abstract
Gene duplication is a major evolutionary force driving adaptation and speciation, as it allows for the acquisition of new functions and can augment or diversify existing functions. Here, we report a gene duplication event that yielded another outcome--the generation of antagonistic functions. One product of this duplication event--UPF3B--is critical for the nonsense-mediated RNA decay (NMD) pathway, while its autosomal counterpart--UPF3A--encodes an enigmatic protein previously shown to have trace NMD activity. Using loss-of-function approaches in vitro and in vivo, we discovered that UPF3A acts primarily as a potent NMD inhibitor that stabilizes hundreds of transcripts. Evidence suggests that UPF3A acquired repressor activity through simple impairment of a critical domain, a rapid mechanism that may have been widely used in evolution. Mice conditionally lacking UPF3A exhibit "hyper" NMD and display defects in embryogenesis and gametogenesis. Our results support a model in which UPF3A serves as a molecular rheostat that directs developmental events.
Collapse
Affiliation(s)
- Eleen Y. Shum
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Samantha H. Jones
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Ada Shao
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Jennifer N. Chousal
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Matthew D. Krause
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Wai-Kin Chan
- Department of Bioinformatics and Computational Biology, University
of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Chih-Hong Lou
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Josh L. Espinoza
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Hye-Won Song
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Mimi H. Phan
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Madhuvanthi Ramaiah
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Lulu Huang
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - John R. McCarrey
- Department of Biology, University of Texas at San Antonio, San
Antonio, Texas, USA
| | - Kevin J. Peterson
- Department of Biology, Dartmouth College, Hanover, New Hampshire,
USA
| | - Dirk G. De Rooij
- Reproductive Biology Group, Division of Developmental Biology,
Department of Biology, Faculty of Science, Utrecht University, Utrecht, The
Netherlands
| | - Heidi Cook-Andersen
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Miles F. Wilkinson
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA,Institute of Genomic Medicine, University of California, San Diego,
La Jolla, California, USA
| |
Collapse
|
261
|
Galka-Marciniak P, Olejniczak M, Starega-Roslan J, Szczesniak MW, Makalowska I, Krzyzosiak WJ. siRNA release from pri-miRNA scaffolds is controlled by the sequence and structure of RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:639-49. [DOI: 10.1016/j.bbagrm.2016.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 01/17/2023]
|
262
|
Russell SJ, Stalker L, Gilchrist G, Backx A, Molledo G, Foster RA, LaMarre J. Identification of PIWIL1 Isoforms and Their Expression in Bovine Testes, Oocytes, and Early Embryos. Biol Reprod 2016; 94:75. [PMID: 26911426 DOI: 10.1095/biolreprod.115.136721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
PIWI proteins are members of the larger Argonaute family and bind to specific 24-32 nucleotide RNAs called PIWI-interacting RNAs (piRNAs). PIWI-interacting RNAs direct PIWI-mediated suppression of retrotransposon expression in the male germline in humans and mice, but their roles in bovine reproduction and embryogenesis are unknown. Although the majority of research in mammals has focused on the functions of PIWI proteins during spermatogenesis, this family of proteins and their associated piRNAs have recently been identified in early embryos. The goals of this study were to characterize the expression of PIWIL1 in bovine testis, oocytes, and early embryos. A full-lengthPIWIL1transcript and protein was found in the testis, specifically in the germs cells of mature seminiferous tubules. RNA-immunoprecipitation demonstrated the presence of putative piRNAs with a mean length of 30 nucleotides bound to PIWIL1 in testes. 3'-Rapid amplification of cDNA ends analysis ofPIWIL1transcripts in testes and oocytes revealed two shorter isoforms in addition to the full-length transcript that was only present in testes. TruncatedPIWIL1isoforms in oocytes and testes were confirmed through amplification of their unique intronic fragments. Expression profiling ofPIWIL1through early embryogenesis demonstrated peak mRNA expression at the 2-cell stage with decreasing levels through to the blastocyst. PIWIL1-YFP fusion plasmids were produced for each isoform and expressed in HEK 293 cells, demonstrating nuclear exclusion and size-specific banding of the different isoforms. These data represent the first comprehensive characterization of PIWIL1 in bovine, revealing functional similarities with PIWIL1 in other species and suggest tissue-specific expression of several isoforms.
Collapse
Affiliation(s)
- Stewart J Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Leanne Stalker
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Graham Gilchrist
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Alanna Backx
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Gonzalo Molledo
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
263
|
Alagia A, Eritja R. siRNA and RNAi optimization. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:316-29. [PMID: 26840434 DOI: 10.1002/wrna.1337] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
The discovery and examination of the posttranscriptional gene regulatory mechanism known as RNA interference (RNAi) contributed to the identification of small interfering RNA (siRNA) and the comprehension of its enormous potential for clinical purposes. Theoretically, the ability of specific target gene downregulation makes the RNAi pathway an appealing solution for several diseases. Despite numerous hurdles resulting from the inherent properties of siRNA molecule and proper delivery to the target tissue, more than 50 RNA-based drugs are currently under clinical testing. In this work, we analyze the recent literature in the optimization of siRNA molecules. In detail, we focused on describing the most recent advances of siRNA field aimed at optimize siRNA pharmacokinetic properties. Special attention has been given in describing the impact of RNA modifications in the potential off-target effects (OTEs) such as saturation of the RNAi machinery, passenger strand-mediated silencing, immunostimulation, and miRNA-like OTEs as well as to recent developments on the delivery issue. The novel delivery systems and modified siRNA provide significant steps toward the development of reliable siRNA molecules for therapeutic use. WIREs RNA 2016, 7:316-329. doi: 10.1002/wrna.1337 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Adele Alagia
- Chemical and Biomolecular Nanotechnology, CIBER-BBN, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Ramon Eritja
- Chemical and Biomolecular Nanotechnology, CIBER-BBN, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| |
Collapse
|
264
|
Fang X, Qi Y. RNAi in Plants: An Argonaute-Centered View. THE PLANT CELL 2016; 28:272-85. [PMID: 26869699 PMCID: PMC4790879 DOI: 10.1105/tpc.15.00920] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/29/2015] [Accepted: 02/10/2016] [Indexed: 05/18/2023]
Abstract
Argonaute (AGO) family proteins are effectors of RNAi in eukaryotes. AGOs bind small RNAs and use them as guides to silence target genes or transposable elements at the transcriptional or posttranscriptional level. Eukaryotic AGO proteins share common structural and biochemical properties and function through conserved core mechanisms in RNAi pathways, yet plant AGOs have evolved specialized and diversified functions. This Review covers the general features of AGO proteins and highlights recent progress toward our understanding of the mechanisms and functions of plant AGOs.
Collapse
Affiliation(s)
- Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
265
|
van den Berg FT, Rossi JJ, Arbuthnot P, Weinberg MS. Design of Effective Primary MicroRNA Mimics With Different Basal Stem Conformations. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e278. [PMID: 26756196 PMCID: PMC5012551 DOI: 10.1038/mtna.2015.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/30/2015] [Indexed: 12/03/2022]
Abstract
Primary microRNA (pri-miRNA) mimics are important mediators of effective gene silencing and are well suited for sustained therapeutic applications. Pri-miRNA mimics are processed in the endogenous miRNA biogenesis pathway, where elements of the secondary RNA structure are crucial for efficient miRNA production. Cleavage of the pri-miRNA to a precursor miRNA (pre-miRNA) by Drosha-DGCR8 typically occurs adjacent to a basal stem of ~11 bp. However, a number of pri-miRNA structures are expected to contain slightly shorter or longer basal stems, which may be further disrupted in predicted folding of the expressed pri-miRNA sequence. We investigated the function and processing of natural and exogenous RNA guides from pri-miRNAs with various basal stems (9–13 bp), where a canonical hairpin was predicted to be well or poorly maintained in predicted structures of the expressed sequence. We have shown that RNA guides can be effectively derived from pri-miRNAs with various basal stem conformations, while predicted guide region stability can explain the function of pri-miRNA mimics, in agreement with previously proposed design principles. This study provides insight for the design of effective mimics based on naturally occurring pri-miRNAs and has identified several novel scaffolds suitable for use in gene silencing applications.
Collapse
Affiliation(s)
- Fiona T van den Berg
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Marc S Weinberg
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.,HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
266
|
Herrera-Carrillo E, Harwig A, Berkhout B. Toward optimization of AgoshRNA molecules that use a non-canonical RNAi pathway: variations in the top and bottom base pairs. RNA Biol 2016; 12:447-56. [PMID: 25747107 DOI: 10.1080/15476286.2015.1022024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Short hairpin RNAs (shRNAs) are widely used for gene knockdown by inducing the RNA interference (RNAi) mechanism. The shRNA precursor is processed by Dicer into small interfering RNAs (siRNAs) and subsequently programs the RNAi-induced silencing complex (RISC) to find a complementary target mRNA (mRNA) for post-transcriptional gene silencing. Recent evidence indicates that shRNAs with a relatively short basepaired stem bypass Dicer to be processed directly by the Ago2 nuclease of the RISC complex. We named this design AgoshRNA as these molecules depend on Ago2 both for processing and subsequent silencing activity. This alternative AgoshRNA processing route yields only a single active RNA strand, an important feature to restrict off-target effects induced by the passenger strand of regular shRNAs. It is therefore important to understand this novel AgoshRNA processing route in mechanistic detail such that one can design the most effective and selective RNA reagents. We performed a systematic analysis of the optimal base pair (bp) composition at the top and bottom of AgoshRNA molecules. In this study, we document the importance of the 5' end nucleotide (nt) and a bottom mismatch. The optimized AgoshRNA design exhibits improved RNAi activity across cell types. These results have important implications for the future design of more specific RNAi therapeutics.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- a Laboratory of Experimental Virology; Department of Medical Microbiology; Center for Infection and Immunity Amsterdam (CINIMA); Academic Medical Center ; University of Amsterdam ; Amsterdam , The Netherlands
| | | | | |
Collapse
|
267
|
Zhang L, Jiang H, Sheong F, Pardo-Avila F, Cheung PH, Huang X. Constructing Kinetic Network Models to Elucidate Mechanisms of Functional Conformational Changes of Enzymes and Their Recognition with Ligands. Methods Enzymol 2016; 578:343-71. [DOI: 10.1016/bs.mie.2016.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
268
|
RNA Binding Proteins in the miRNA Pathway. Int J Mol Sci 2015; 17:ijms17010031. [PMID: 26712751 PMCID: PMC4730277 DOI: 10.3390/ijms17010031] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/13/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets.
Collapse
|
269
|
Kalia M, Willkomm S, Claussen JC, Restle T, Bonvin AMJJ. Novel Insights into Guide RNA 5'-Nucleoside/Tide Binding by Human Argonaute 2. Int J Mol Sci 2015; 17:E22. [PMID: 26712743 PMCID: PMC4730269 DOI: 10.3390/ijms17010022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022] Open
Abstract
The human Argonaute 2 (hAgo2) protein is a key player of RNA interference (RNAi). Upon complex formation with small non-coding RNAs, the protein initially interacts with the 5'-end of a given guide RNA through multiple interactions within the MID domain. This interaction has been reported to show a strong bias for U and A over C and G at the 5'-position. Performing molecular dynamics simulations of binary hAgo2/OH-guide-RNA complexes, we show that hAgo2 is a highly flexible protein capable of binding to guide strands with all four possible 5'-bases. Especially, in the case of C and G this is associated with rather large individual conformational rearrangements affecting the MID, PAZ and even the N-terminal domains to different degrees. Moreover, a 5'-G induces domain motions in the protein, which trigger a previously unreported interaction between the 5'-base and the L2 linker domain. Combining our in silico analyses with biochemical studies of recombinant hAgo2, we find that, contrary to previous observations, hAgo2 is capable of functionally accommodating guide strands regardless of the 5'-base.
Collapse
Affiliation(s)
- Munishikha Kalia
- Institute of Molecular Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
- Institute for Neuro- and Bioinformatics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Sarah Willkomm
- Institute of Molecular Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Jens Christian Claussen
- Institute for Neuro- and Bioinformatics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Tobias Restle
- Institute of Molecular Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Alexandre M J J Bonvin
- Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
270
|
Kamola PJ, Nakano Y, Takahashi T, Wilson PA, Ui-Tei K. The siRNA Non-seed Region and Its Target Sequences Are Auxiliary Determinants of Off-Target Effects. PLoS Comput Biol 2015; 11:e1004656. [PMID: 26657993 PMCID: PMC4676691 DOI: 10.1371/journal.pcbi.1004656] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023] Open
Abstract
RNA interference (RNAi) is a powerful tool for post-transcriptional gene silencing. However, the siRNA guide strand may bind unintended off-target transcripts via partial sequence complementarity by a mechanism closely mirroring micro RNA (miRNA) silencing. To better understand these off-target effects, we investigated the correlation between sequence features within various subsections of siRNA guide strands, and its corresponding target sequences, with off-target activities. Our results confirm previous reports that strength of base-pairing in the siRNA seed region is the primary factor determining the efficiency of off-target silencing. However, the degree of downregulation of off-target transcripts with shared seed sequence is not necessarily similar, suggesting that there are additional auxiliary factors that influence the silencing potential. Here, we demonstrate that both the melting temperature (Tm) in a subsection of siRNA non-seed region, and the GC contents of its corresponding target sequences, are negatively correlated with the efficiency of off-target effect. Analysis of experimentally validated miRNA targets demonstrated a similar trend, indicating a putative conserved mechanistic feature of seed region-dependent targeting mechanism. These observations may prove useful as parameters for off-target prediction algorithms and improve siRNA ‘specificity’ design rules. Small interfering RNAs (siRNAs) are double stranded RNA molecules designed to perfectly match the sequence of a target gene and silence its expression. The function is exerted through the RNA interference (RNAi) pathway and has revolutionised biological research due to its ease-of-use and high potency. While siRNAs were initially believed to be highly specific, they have subsequently been observed to interact with other, unintended messenger RNAs. However, the mechanistic details of this process remain poorly understood, and there is a paucity of strategies and guidelines directed toward mitigating this issue. To address this potential safety liability, we performed a comprehensive analysis of sequence characteristics of siRNA duplexes and their target regions. Results from luciferase-reporter assays and global expression data confirmed previous observations that the siRNA seed region is the primary determinant for off-target gene recognition and binding. Furthermore, our analysis revealed the important contribution of siRNA non-seed region, and its corresponding target sequences, to the potency of off-target knockdown. Similar results were observed in an equivalent evaluation of the miRNA-targeting mechanism, suggesting that the correlating features arise through an evolutionary conserved mechanistic factor.
Collapse
Affiliation(s)
- Piotr J. Kamola
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Safety Assessment, GlaxoSmithKline R&D, Ware, Hertfordshire, United Kingdom
- Computational Biology, GlaxoSmithKline R&D, Stevenage, Hertfordshire, United Kingdom
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Science and Innovation Campus, United Kingdom
| | - Yuko Nakano
- Department of Biological Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tomoko Takahashi
- Department of Biological Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Paul A. Wilson
- Computational Biology, GlaxoSmithKline R&D, Stevenage, Hertfordshire, United Kingdom
| | - Kumiko Ui-Tei
- Department of Biological Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, University of Tokyo, Kashiwa, Chiba, Japan
- * E-mail:
| |
Collapse
|
271
|
Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E, Peterson KJ. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. Annu Rev Genet 2015; 49:213-42. [PMID: 26473382 DOI: 10.1146/annurev-genet-120213-092023] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although microRNAs (miRNAs) are among the most intensively studied molecules of the past 20 years, determining what is and what is not a miRNA has not been straightforward. Here, we present a uniform system for the annotation and nomenclature of miRNA genes. We show that less than a third of the 1,881 human miRBase entries, and only approximately 16% of the 7,095 metazoan miRBase entries, are robustly supported as miRNA genes. Furthermore, we show that the human repertoire of miRNAs has been shaped by periods of intense miRNA innovation and that mature gene products show a very different tempo and mode of sequence evolution than star products. We establish a new open access database--MirGeneDB ( http://mirgenedb.org )--to catalog this set of miRNAs, which complements the efforts of miRBase but differs from it by annotating the mature versus star products and by imposing an evolutionary hierarchy upon this curated and consistently named repertoire.
Collapse
Affiliation(s)
- Bastian Fromm
- Department of Tumor Biology, Institute for Cancer Research
| | - Tyler Billipp
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| | - Liam E Peck
- Department of Biology and Health Sciences, New England College, Henniker, New Hampshire 03242
| | | | - James E Tarver
- Department of Biology, The National University of Ireland, Maynooth, Kildare, Ireland.,School of Earth Sciences, University of Bristol, BS8 1TQ Bristol, United Kingdom
| | - Benjamin L King
- Kathryn W. Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672
| | - James M Newcomb
- Department of Biology and Health Sciences, New England College, Henniker, New Hampshire 03242
| | - Lorenzo F Sempere
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research.,Department of Gastroenterological Surgery.,Institute of Clinical Medicine
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research.,Institute of Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, N-0424 Oslo, Norway.,Department of Informatics, University of Oslo, Blindern, N-0318 Oslo, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| |
Collapse
|
272
|
Shang R, Zhang F, Xu B, Xi H, Zhang X, Wang W, Wu L. Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects. Nat Commun 2015; 6:8430. [PMID: 26455506 PMCID: PMC4633630 DOI: 10.1038/ncomms9430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
Short-hairpin RNAs (shRNAs) are widely used to produce small-interfering RNAs (siRNAs) for gene silencing. Here we design an alternative siRNA precursor, named single-stranded, Argonaute 2 (Ago2)-processed interfering RNA (saiRNA), containing a 16-18 bp stem and a loop complementary to the target transcript. The introduction of a self-cleaving ribozyme derived from hepatitis delta virus to the 3' end of the transcribed saiRNA dramatically improves its silencing activity by generating a short 3' overhang that facilitates the efficient binding of saiRNA to Ago2. The same ribozyme also enhances the activity of Dicer-dependent shRNAs. Unlike a classical shRNA, the strand-specific cleavage of saiRNA by Ago2 during processing eliminates the passenger strand and prevents the association of siRNA with non-nucleolytic Ago proteins. As a result, off-target effects are reduced. In addition, saiRNA exhibits less competition with the biogenesis of endogenous miRNAs. Therefore, ribozyme-enhanced saiRNA provides a reliable tool for RNA interference applications.
Collapse
Affiliation(s)
- Renfu Shang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fengjuan Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Beiying Xu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hairui Xi
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xue Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weihua Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ligang Wu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
273
|
Starega-Roslan J, Galka-Marciniak P, Krzyzosiak WJ. Nucleotide sequence of miRNA precursor contributes to cleavage site selection by Dicer. Nucleic Acids Res 2015; 43:10939-51. [PMID: 26424848 PMCID: PMC4678860 DOI: 10.1093/nar/gkv968] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/15/2015] [Indexed: 12/21/2022] Open
Abstract
The ribonuclease Dicer excises mature miRNAs from a diverse group of precursors (pre-miRNAs), most of which contain various secondary structure motifs in their hairpin stem. In this study, we analyzed Dicer cleavage in hairpin substrates deprived of such motifs. We searched for the factors other than the secondary structure, which may influence the length diversity and heterogeneity of miRNAs. We found that the nucleotide sequence at the Dicer cleavage site influences both of these miRNA characteristics. With regard to cleavage mechanism, we demonstrate that the Dicer RNase IIIA domain that cleaves within the 3′ arm of the pre-miRNA is more sensitive to the nucleotide sequence of its substrate than is the RNase IIIB domain. The RNase IIIA domain avoids releasing miRNAs with G nucleotide and prefers to generate miRNAs with a U nucleotide at the 5′ end. We also propose that the sequence restrictions at the Dicer cleavage site might be the factor that contributes to the generation of miRNA duplexes with 3′ overhangs of atypical lengths. This finding implies that the two RNase III domains forming the single processing center of Dicer may exhibit some degree of flexibility, which allows for the formation of these non-standard 3′ overhangs.
Collapse
Affiliation(s)
- Julia Starega-Roslan
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | - Paulina Galka-Marciniak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| |
Collapse
|
274
|
Jagannathan R, Thapa D, Nichols CE, Shepherd DL, Stricker JC, Croston TL, Baseler WA, Lewis SE, Martinez I, Hollander JM. Translational Regulation of the Mitochondrial Genome Following Redistribution of Mitochondrial MicroRNA in the Diabetic Heart. ACTA ACUST UNITED AC 2015; 8:785-802. [PMID: 26377859 DOI: 10.1161/circgenetics.115.001067] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/01/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cardiomyocytes are rich in mitochondria which are situated in spatially distinct subcellular regions, including those under the plasma membrane, subsarcolemmal mitochondria, and those between the myofibrils, interfibrillar mitochondria. We previously observed subpopulation-specific differences in mitochondrial proteomes following diabetic insult. The objective of this study was to determine whether mitochondrial genome-encoded proteins are regulated by microRNAs inside the mitochondrion and whether subcellular spatial location or diabetes mellitus influences the dynamics. METHODS AND RESULTS Using microarray technology coupled with cross-linking immunoprecipitation and next generation sequencing, we identified a pool of mitochondrial microRNAs, termed mitomiRs, that are redistributed in spatially distinct mitochondrial subpopulations in an inverse manner following diabetic insult. Redistributed mitomiRs displayed distinct interactions with the mitochondrial genome requiring specific stoichiometric associations with RNA-induced silencing complex constituents argonaute-2 (Ago2) and fragile X mental retardation-related protein 1 (FXR1) for translational regulation. In the presence of Ago2 and FXR1, redistribution of mitomiR-378 to the interfibrillar mitochondria following diabetic insult led to downregulation of mitochondrially encoded F0 component ATP6. Next generation sequencing analyses identified specific transcriptome and mitomiR sequences associated with ATP6 regulation. Overexpression of mitomiR-378 in HL-1 cells resulted in its accumulation in the mitochondrion and downregulation of functional ATP6 protein, whereas antagomir blockade restored functional ATP6 protein and cardiac pump function. CONCLUSIONS We propose mitomiRs can translationally regulate mitochondrially encoded proteins in spatially distinct mitochondrial subpopulations during diabetes mellitus. The results reveal the requirement of RNA-induced silencing complex constituents in the mitochondrion for functional mitomiR translational regulation and provide a connecting link between diabetic insult and ATP synthase function.
Collapse
Affiliation(s)
- Rajaganapathi Jagannathan
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Dharendra Thapa
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Cody E Nichols
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Danielle L Shepherd
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Janelle C Stricker
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Tara L Croston
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Walter A Baseler
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Sara E Lewis
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - Ivan Martinez
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown
| | - John M Hollander
- From the Department of Human Performances, Division of Exercise Physiology (R.J., D.T., C.E.N., D.L.S., J.C.S., T.L.C., W.A.B., S.E.L., J.M.H.), Center for Cardiovascular and Respiratory Sciences (R.J., D.T., C.E.N., D.L.S., T.L.C., W.A.B., S.E.L., J.M.H.), Department of Microbiology, Immunology and Cell Biology (I.M.), and Mary Babb Randolph Cancer Center (I.M.), West Virginia University School of Medicine, Morgantown.
| |
Collapse
|
275
|
Caenorhabditis elegans ALG-1 antimorphic mutations uncover functions for Argonaute in microRNA guide strand selection and passenger strand disposal. Proc Natl Acad Sci U S A 2015; 112:E5271-80. [PMID: 26351692 DOI: 10.1073/pnas.1506576112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)]. alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA and protein populations associated with ALG-1(anti) complexes in vivo. We extensively characterized proteins associated with wild-type and mutant ALG-1 and found that the mutant ALG-1(anti) protein fails to interact with numerous miRISC cofactors, including proteins known to be necessary for target repression. In addition, alg-1(anti) mutants dramatically overaccumulated microRNA* (passenger) strands, and immunoprecipitated ALG-1(anti) complexes contained nonstoichiometric yields of mature microRNA and microRNA* strands, with some microRNA* strands present in the ALG-1(anti) Argonaute far in excess of the corresponding mature microRNAs. We show complex and microRNA-specific defects in microRNA strand selection and microRNA* strand disposal. For certain microRNAs (for example mir-58), microRNA guide strand selection by ALG-1(anti) appeared normal, but microRNA* strand release was inefficient. For other microRNAs (such as mir-2), both the microRNA and microRNA* strands were selected as guide by ALG-1(anti), indicating a defect in normal specificity of the strand choice. Our results suggest that wild-type ALG-1 complexes recognize structural features of particular microRNAs in the context of conducting the strand selection and microRNA* ejection steps of miRISC maturation.
Collapse
|
276
|
Analysis of Nearly One Thousand Mammalian Mirtrons Reveals Novel Features of Dicer Substrates. PLoS Comput Biol 2015; 11:e1004441. [PMID: 26325366 PMCID: PMC4556696 DOI: 10.1371/journal.pcbi.1004441] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022] Open
Abstract
Mirtrons are microRNA (miRNA) substrates that utilize the splicing machinery to bypass the necessity of Drosha cleavage for their biogenesis. Expanding our recent efforts for mammalian mirtron annotation, we use meta-analysis of aggregate datasets to identify ~500 novel mouse and human introns that confidently generate diced small RNA duplexes. These comprise nearly 1000 total loci distributed in four splicing-mediated biogenesis subclasses, with 5'-tailed mirtrons as, by far, the dominant subtype. Thus, mirtrons surprisingly comprise a substantial fraction of endogenous Dicer substrates in mammalian genomes. Although mirtron-derived small RNAs exhibit overall expression correlation with their host mRNAs, we observe a subset with substantial differences that suggest regulated processing or accumulation. We identify characteristic sequence, length, and structural features of mirtron loci that distinguish them from bulk introns, and find that mirtrons preferentially emerge from genes with larger numbers of introns. While mirtrons generate miRNA-class regulatory RNAs, we also find that mirtrons exhibit many features that distinguish them from canonical miRNAs. We observe that conventional mirtron hairpins are substantially longer than Drosha-generated pre-miRNAs, indicating that the characteristic length of canonical pre-miRNAs is not a general feature of Dicer substrate hairpins. In addition, mammalian mirtrons exhibit unique patterns of ordered 5' and 3' heterogeneity, which reveal hidden complexity in miRNA processing pathways. These include broad 3'-uridylation of mirtron hairpins, atypically heterogeneous 5' termini that may result from exonucleolytic processing, and occasionally robust decapitation of the 5' guanine (G) of mirtron-5p species defined by splicing. Altogether, this study reveals that this extensive class of non-canonical miRNA bears a multitude of characteristic properties, many of which raise general mechanistic questions regarding the processing of endogenous hairpin transcripts.
Collapse
|
277
|
MicroRNA Processing and Human Cancer. J Clin Med 2015; 4:1651-67. [PMID: 26308063 PMCID: PMC4555082 DOI: 10.3390/jcm4081651] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs of 20 to 25 nucleotides that regulate gene expression post-transcriptionally mainly by binding to a specific sequence of the 3′ end of the untranslated region (3′UTR) of target genes. Since the first report on the clinical relevance of miRNAs in cancer, many miRNAs have been demonstrated to act as oncogenes, whereas others function as tumor suppressors. Furthermore, global miRNA dysregulation, due to alterations in miRNA processing factors, has been observed in a large variety of human cancer types. As previous studies have shown, the sequential miRNA processing can be divided into three steps: processing by RNAse in the nucleus; transportation by Exportin-5 (XPO5) from the nucleus; and processing by the RNA-induced silencing complex (RISC) in the cytoplasm. Alteration in miRNA processing genes, by genomic mutations, aberrant expression or other means, could significantly affect cancer initiation, progression and metastasis. In this review, we focus on the biogenesis of miRNAs with emphasis on the potential of miRNA processing factors in human cancers.
Collapse
|
278
|
Conformational Dynamics of Ago-Mediated Silencing Processes. Int J Mol Sci 2015; 16:14769-85. [PMID: 26140373 PMCID: PMC4519871 DOI: 10.3390/ijms160714769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/15/2022] Open
Abstract
Argonaute (Ago) proteins are key players of nucleic acid-based interference mechanisms. Their domains and structural organization are widely conserved in all three domains of life. However, different Ago proteins display various substrate preferences. While some Ago proteins are able to use several substrates, others are limited to a single one. Thereby, they were demonstrated to act specifically on their preferred substrates. Here, we discuss mechanisms of Ago-mediated silencing in relation to structural and biochemical insights. The combination of biochemical and structural information enables detailed analyses of the complex dynamic interplay between Ago proteins and their substrates. Especially, transient binding data allow precise investigations of structural transitions taking place upon Ago-mediated guide and target binding.
Collapse
|
279
|
Suzuki HI, Katsura A, Yasuda T, Ueno T, Mano H, Sugimoto K, Miyazono K. Small-RNA asymmetry is directly driven by mammalian Argonautes. Nat Struct Mol Biol 2015; 22:512-21. [PMID: 26098316 DOI: 10.1038/nsmb.3050] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/26/2015] [Indexed: 12/17/2022]
Abstract
Asymmetric selection of single-stranded guide RNAs from double-stranded RNA precursors is crucial in RNA silencing-mediated gene regulation. However, the precise mechanisms of small-RNA asymmetry are unclear, especially because asymmetric selection can still occur when the putative asymmetry sensors Drosophila R2D2 and mammalian Dicer are depleted. Here we report a direct contribution of mammalian Argonaute 2 (Ago2) to microRNA (miRNA) asymmetry. Ago2 selects strands with 5'-uridine or 5'-adenosine and thermodynamically unstable 5' ends in parallel through its two sensor regions, which contact the 5' nucleobases and 5'-phosphates of prospective guide strands. Hence, miRNA asymmetry shows superposed patterns reflecting 5'-end nucleotide identity ('digital' pattern) and thermodynamic stability ('analog' pattern). Furthermore, we demonstrate that cancer-associated miRNA variations reprogram asymmetric selection. Finally, our study presents a model of this universal principle, to aid in comprehensive understanding of miRNA function and development of new RNA-silencing therapies in precision medicine.
Collapse
Affiliation(s)
- Hiroshi I Suzuki
- 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2] Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akihiro Katsura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiko Yasuda
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihide Ueno
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koichi Sugimoto
- Department of Hematology and Oncology, JR Tokyo General Hospital, Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
280
|
Guda S, Brendel C, Renella R, Du P, Bauer DE, Canver MC, Grenier JK, Grimson AW, Kamran SC, Thornton J, de Boer H, Root DE, Milsom MD, Orkin SH, Gregory RI, Williams DA. miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction. Mol Ther 2015; 23:1465-74. [PMID: 26080908 DOI: 10.1038/mt.2015.113] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
RNA interference (RNAi) technology using short hairpin RNAs (shRNAs) expressed via RNA polymerase (pol) III promoters has been widely exploited to modulate gene expression in a variety of mammalian cell types. For certain applications, such as lineage-specific knockdown, embedding targeting sequences into pol II-driven microRNA (miRNA) architecture is required. Here, using the potential therapeutic target BCL11A, we demonstrate that pol III-driven shRNAs lead to significantly increased knockdown but also increased cytotoxcity in comparison to pol II-driven miRNA adapted shRNAs (shRNA(miR)) in multiple hematopoietic cell lines. We show that the two expression systems yield mature guide strand sequences that differ by a 4 bp shift. This results in alternate seed sequences and consequently influences the efficacy of target gene knockdown. Incorporating a corresponding 4 bp shift into the guide strand of shRNA(miR)s resulted in improved knockdown efficiency of BCL11A. This was associated with a significant de-repression of the hemoglobin target of BCL11A, human γ-globin or the murine homolog Hbb-y. Our results suggest the requirement for optimization of shRNA sequences upon incorporation into a miRNA backbone. These findings have important implications in future design of shRNA(miR)s for RNAi-based therapy in hemoglobinopathies and other diseases requiring lineage-specific expression of gene silencing sequences.
Collapse
Affiliation(s)
- Swaroopa Guda
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Raffaele Renella
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Peng Du
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Stem Cell Program, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Jennifer K Grenier
- Genetic Perturbation Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Andrew W Grimson
- Department of Molecular Biology & Genetics, College of Arts and Sciences, Cornell University, Ithaca, New York, USA
| | - Sophia C Kamran
- Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - James Thornton
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Stem Cell Program, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Helen de Boer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David E Root
- Genetic Perturbation Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Michael D Milsom
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Richard I Gregory
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Stem Cell Program, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
281
|
Yi T, Arthanari H, Akabayov B, Song H, Papadopoulos E, Qi HH, Jedrychowski M, Güttler T, Guo C, Luna RE, Gygi SP, Huang SA, Wagner G. eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference. Nat Commun 2015; 6:7194. [PMID: 26018492 PMCID: PMC4448125 DOI: 10.1038/ncomms8194] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/15/2015] [Indexed: 01/31/2023] Open
Abstract
MicroRNA (miRNA) biogenesis and miRNA-guided RNA interference (RNAi) are essential for gene expression in eukaryotes. Here we report that translation initiation factor eIF1A directly interacts with Ago2 and promotes Ago2 activities in RNAi and miR-451 biogenesis. Biochemical and NMR analyses demonstrate that eIF1A binds to the MID-domain of Ago2 and this interaction does not impair translation initiation. Alanine mutation of the Ago2-facing Lys56 in eIF1A impairs RNAi activities in human cells and zebrafish. The eIF1A-Ago2 assembly facilitates Dicer-independent biogenesis of miR-451, which mediates erythrocyte maturation. Human eIF1A (heIF1A), but not heIF1A(K56A), rescues the erythrocyte maturation delay in eif1axb knockdown zebrafish. Consistently, miR-451 partly compensates erythrocyte maturation defects in zebrafish with eif1axb knockdown and eIF1A(K56A) expression, supporting a role of eIF1A in miRNA-451 biogenesis in this model. Our results suggest that eIF1A is a novel component of the Ago2-centered RNA induced silencing complexes (RISCs) and augments Ago2-dependent RNAi and miRNA biogenesis.
Collapse
Affiliation(s)
- Tingfang Yi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Barak Akabayov
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.,Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | - Huaidong Song
- Department of Pediatrics, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | - Evangelos Papadopoulos
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Hank H Qi
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Mark Jedrychowski
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Thomas Güttler
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Cuicui Guo
- Department of Pediatrics, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | - Rafael E Luna
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Stephen A Huang
- Department of Pediatrics, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
282
|
Park JH, Shin C. MicroRNA-directed cleavage of targets: mechanism and experimental approaches. BMB Rep 2015; 47:417-23. [PMID: 24856832 PMCID: PMC4206712 DOI: 10.5483/bmbrep.2014.47.8.109] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) are a large family of post-transcriptional regulators, which are 21-24 nt in length and play a role in a wide variety of biological processes in eukaryotes. The past few years have seen rapid progress in our understanding of miRNA biogenesis and the mechanism of action, which commonly entails a combination of target degradation and translational repression. The target degradation mediated by Argonaute-catalyzed endonucleolytic cleavage exerts a significant repressive effect on target mRNA expression, particularly during rapid developmental transitions. This review outlines the current understanding of the mechanistic aspects of this important process and discusses several different experimental approaches to identify miRNA cleavage targets. [BMB Reports 2014; 47(8): 417-423]
Collapse
Affiliation(s)
- June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology; Research Institute of Agriculture and Life Sciences; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
283
|
Abstract
Forward genetic screens are powerful tools for the discovery and functional annotation of genetic elements. Recently, the RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has been combined with genome-scale guide RNA libraries for unbiased, phenotypic screening. In this Review, we describe recent advances using Cas9 for genome-scale screens, including knockout approaches that inactivate genomic loci and strategies that modulate transcriptional activity. We discuss practical aspects of screen design, provide comparisons with RNA interference (RNAi) screening, and outline future applications and challenges.
Collapse
Affiliation(s)
- Ophir Shalem
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Neville E Sanjana
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
284
|
Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, Terns RM, Terns MP, van der Oost J. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res 2015; 43:5120-9. [PMID: 25925567 PMCID: PMC4446448 DOI: 10.1093/nar/gkv415] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/16/2015] [Indexed: 11/13/2022] Open
Abstract
Functions of prokaryotic Argonautes (pAgo) have long remained elusive. Recently, Argonautes of the bacteria Rhodobacter sphaeroides and Thermus thermophilus were demonstrated to be involved in host defense. The Argonaute of the archaeon Pyrococcus furiosus (PfAgo) belongs to a different branch in the phylogenetic tree, which is most closely related to that of RNA interference-mediating eukaryotic Argonautes. Here we describe a functional and mechanistic characterization of PfAgo. Like the bacterial counterparts, archaeal PfAgo contributes to host defense by interfering with the uptake of plasmid DNA. PfAgo utilizes small 5′-phosphorylated DNA guides to cleave both single stranded and double stranded DNA targets, and does not utilize RNA as guide or target. Thus, with respect to function and specificity, the archaeal PfAgo resembles bacterial Argonautes much more than eukaryotic Argonautes. These findings demonstrate that the role of Argonautes is conserved through the bacterial and archaeal domains of life and suggests that eukaryotic Argonautes are derived from DNA-guided DNA-interfering host defense systems.
Collapse
Affiliation(s)
- Daan C Swarts
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, The Netherlands
| | - Jorrit W Hegge
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, The Netherlands
| | - Ismael Hinojo
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, The Netherlands
| | - Masami Shiimori
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Michael A Ellis
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Justin Dumrongkulraksa
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Rebecca M Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
285
|
Ogata A, Ueno Y. Incorporation of an acyclic alkynyl nucleoside analog into siRNA improves silencing activity and nuclease resistance. Bioorg Med Chem Lett 2015; 25:2574-8. [PMID: 25956414 DOI: 10.1016/j.bmcl.2015.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/06/2015] [Accepted: 04/11/2015] [Indexed: 01/04/2023]
Abstract
In order to improve the silencing activity and nuclease resistance of small interfering RNA (siRNA), we designed and synthesized an acyclic thymidine analog containing 4-pentyne-1,2-diol instead of d-ribofuranose. The incorporation of this analog into siRNAs at specific positions in the strands was found to enhance the silencing activity of siRNAs and to increase the resistance of the siRNA to hydrolytic degradation by a 3' exonuclease.
Collapse
Affiliation(s)
- Aya Ogata
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshihito Ueno
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
286
|
Sequence features of Drosha and Dicer cleavage sites affect the complexity of isomiRs. Int J Mol Sci 2015; 16:8110-27. [PMID: 25867481 PMCID: PMC4425070 DOI: 10.3390/ijms16048110] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/16/2022] Open
Abstract
The deep-sequencing of small RNAs has revealed that different numbers and proportions of miRNA variants called isomiRs are formed from single miRNA genes and that this effect is attributable mainly to imprecise cleavage by Drosha and Dicer. Factors that influence the degree of cleavage precision of Drosha and Dicer are under investigation, and their identification may improve our understanding of the mechanisms by which cells modulate the regulatory potential of miRNAs. In this study, we focused on the sequences and structural determinants of Drosha and Dicer cleavage sites, which may explain the generation of homogeneous miRNAs (in which a single isomiR strongly predominates) as well as the generation of heterogeneous miRNAs. Using deep-sequencing data for small RNAs, we demonstrate that the generation of homogeneous miRNAs requires more sequence constraints at the cleavage sites than the formation of heterogeneous miRNAs. Additionally, our results indicate that specific Drosha cleavage sites have more sequence determinants in miRNA precursors than specific cleavage sites for Dicer and that secondary structural motifs in the miRNA precursors influence the precision of Dicer cleavage. Together, we present the sequence and structural features of Drosha and Dicer cleavage sites that influence the heterogeneity of the released miRNAs.
Collapse
|
287
|
Abstract
Endogenously produced small interfering RNAs (endo-siRNAs, 18-30 nucleotides) play a key role in gene regulatory pathways, guiding Argonaute effector proteins as a part of a functional ribonucleoprotein complex called the RISC (RNA induced silencing complex) to complementarily target nucleic acid. Enabled by the advent of high throughput sequencing, there has been an explosion in the identification of endo-siRNAs in all three kingdoms of life since the discovery of the first microRNA in 1993. Concurrently, our knowledge of the variety of cellular processes in which small RNA pathways related to RNA interference (RNAi) play key regulatory roles has also expanded dramatically. Building on the strong foundation of RNAi established over the past fifteen years, this review uses a historical context to highlight exciting recent developments in endo-siRNA pathways. Specifically, my focus will be on recent insights regarding the Argonaute effectors, their endo-siRNA guides and the functional outputs of these pathways in several model systems that have been longstanding champions of small RNA research. I will also touch on newly discovered roles for bacterial Argonautes, which have been integral in deciphering Argonaute structure and demonstrate key functions of these conserved pathways in genome defense.
Collapse
Affiliation(s)
- Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, 4366 Medical Sciences Building, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
288
|
Identification of AGO3-associated miRNAs and computational prediction of their targets in the green alga Chlamydomonas reinhardtii. Genetics 2015; 200:105-21. [PMID: 25769981 DOI: 10.1534/genetics.115.174797] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii harbors many types of small RNAs (sRNAs) but little is known about their role(s) in the regulation of endogenous genes and cellular processes. To define functional microRNAs (miRNAs) in Chlamydomonas, we characterized sRNAs associated with an argonaute protein, AGO3, by affinity purification and deep sequencing. Using a stringent set of criteria for canonical miRNA annotation, we identified 39 precursor miRNAs, which produce 45 unique, AGO3-associated miRNA sequences including 13 previously reported miRNAs and 32 novel ones. Potential miRNA targets were identified based on the complementarity of miRNAs with candidate binding sites on transcripts and classified, depending on the extent of complementarity, as being likely to be regulated through cleavage or translational repression. The search for cleavage targets identified 74 transcripts. However, only 6 of them showed an increase in messenger RNA (mRNA) levels in a mutant strain almost devoid of sRNAs. The search for translational repression targets, which used complementarity criteria more stringent than those empirically required for a reduction in target protein levels, identified 488 transcripts. However, unlike observations in metazoans, most predicted translation repression targets did not show appreciable changes in transcript abundance in the absence of sRNAs. Additionally, of three candidate targets examined at the protein level, only one showed a moderate variation in polypeptide amount in the mutant strain. Our results emphasize the difficulty in identifying genuine miRNA targets in Chlamydomonas and suggest that miRNAs, under standard laboratory conditions, might have mainly a modulatory role in endogenous gene regulation in this alga.
Collapse
|
289
|
Small-RNA loading licenses Argonaute for assembly into a transcriptional silencing complex. Nat Struct Mol Biol 2015; 22:328-35. [PMID: 25730778 DOI: 10.1038/nsmb.2979] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 01/31/2015] [Indexed: 12/29/2022]
Abstract
Argonautes and their small-RNA cofactors form the core effectors of ancient and diverse gene-silencing mechanisms whose roles include regulation of gene expression and defense against foreign genetic elements. Although Argonautes generally act within multisubunit complexes, what governs their assembly into these machineries is not well defined. Here, we show that loading of small RNAs onto Argonaute is a checkpoint for Argonaute's association with conserved GW-protein components of silencing complexes. We demonstrate that the Argonaute small interfering RNA chaperone (ARC) complex mediates loading of small RNAs onto Ago1 in Schizosaccharomyces pombe and that deletion of its subunits, or mutations in Ago1 that prevent small-RNA loading, abolish the assembly of the GW protein-containing RNA-induced transcriptional silencing (RITS) complex. Our studies uncover a mechanism that ensures that Argonaute loading precedes RITS assembly and thereby averts the formation of inert and potentially deleterious complexes.
Collapse
|
290
|
Castellano L, Rizzi E, Krell J, Di Cristina M, Galizi R, Mori A, Tam J, De Bellis G, Stebbing J, Crisanti A, Nolan T. The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs. BMC Genomics 2015; 16:100. [PMID: 25766668 PMCID: PMC4345017 DOI: 10.1186/s12864-015-1257-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/19/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Small RNAs include different classes essential for endogenous gene regulation and cellular defence against genomic parasites. However, a comprehensive analysis of the small RNA pathways in the germline of the mosquito Anopheles gambiae has never been performed despite their potential relevance to reproductive capacity in this malaria vector. RESULTS We performed small RNA deep sequencing during larval and adult gonadogenesis and find that they predominantly express four classes of regulatory small RNAs. We identified 45 novel miRNA precursors some of which were sex-biased and gonad-enriched , nearly doubling the number of previously known miRNA loci. We also determine multiple genomic clusters of 24-30 nt Piwi-interacting RNAs (piRNAs) that map to transposable elements (TEs) and 3'UTR of protein coding genes. Unusually, many TEs and the 3'UTR of some endogenous genes produce an abundant peak of 29-nt small RNAs with piRNA-like characteristics. Moreover, both sense and antisense piRNAs from TEs in both Anopheles gambiae and Drosophila melanogaster reveal novel features of piRNA sequence bias. We also discovered endogenous small interfering RNAs (endo-siRNAs) that map to overlapping transcripts and TEs. CONCLUSIONS This is the first description of the germline miRNome in a mosquito species and should prove a valuable resource for understanding gene regulation that underlies gametogenesis and reproductive capacity. We also provide the first evidence of a piRNA pathway that is active against transposons in the germline and our findings suggest novel piRNA sequence bias. The contribution of small RNA pathways to germline TE regulation and genome defence in general is an important finding for approaches aimed at manipulating mosquito populations through the use of selfish genetic elements.
Collapse
Affiliation(s)
- Leandro Castellano
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, London, UK.
| | - Ermanno Rizzi
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate, Milan, Italy.
| | - Jonathan Krell
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, London, UK.
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| | - Roberto Galizi
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Ayako Mori
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Janis Tam
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Gianluca De Bellis
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate, Milan, Italy.
| | - Justin Stebbing
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, London, UK.
| | - Andrea Crisanti
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom.
- Dipartimento di Medicina Sperimentale Via Gambuli, Centro di Genomica Funzionale, University of Perugia, 06132, Perugia, Italy.
| | - Tony Nolan
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
291
|
Wu J, Yang Z, Wang Y, Zheng L, Ye R, Ji Y, Zhao S, Ji S, Liu R, Xu L, Zheng H, Zhou Y, Zhang X, Cao X, Xie L, Wu Z, Qi Y, Li Y. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife 2015; 4. [PMID: 25688565 PMCID: PMC4358150 DOI: 10.7554/elife.05733] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
Viral pathogens are a major threat to rice production worldwide. Although RNA interference (RNAi) is known to mediate antiviral immunity in plant and animal models, the mechanism of antiviral RNAi in rice and other economically important crops is poorly understood. Here, we report that rice resistance to evolutionarily diverse viruses requires Argonaute18 (AGO18). Genetic studies reveal that the antiviral function of AGO18 depends on its activity to sequester microRNA168 (miR168) to alleviate repression of rice AGO1 essential for antiviral RNAi. Expression of miR168-resistant AGO1a in ago18 background rescues or increases rice antiviral activity. Notably, stable transgenic expression of AGO18 confers broad-spectrum virus resistance in rice. Our findings uncover a novel cooperative antiviral activity of two distinct AGO proteins and suggest a new strategy for the control of viral diseases in rice. DOI:http://dx.doi.org/10.7554/eLife.05733.001 Rice is a major food crop, providing over a fifth of all calories consumed by people around the world. As such, it is important to find ways to prevent the diseases that affect rice plants. Many of the viruses that infect rice are transferred between plants by insects and many insects carry more than one virus at a time; this means it can be difficult to predict where a disease will next emerge. As a result, there is a pressing need to develop new and effective strategies that boost the ability of rice plants to fight off harmful viruses. One way that plants defend themselves from viruses involves using a system called RNA interference to identify and destroy the RNA molecules that viruses produce. This process depends on the Argonaute (AGO) family of proteins, although the roles of many of its members are not well understood. One of the better-studied AGO proteins is called AGO1 and is known to be important for defending plants against viruses. Unfortunately, a small RNA molecule called miR168 acts to limit the amount of AGO1 in a cell, and the levels of miR168 increase in virus-infected rice plants. Wu, Yang et al. exposed rice plants to two species of insect that each carried a different plant virus. Rice plants infected with these viruses increased their levels of both AGO1 and another AGO protein called AGO18. Modifying the ability of rice plants to produce AGO18 revealed that the anti-viral activity of AGO1 is abolished in plants lacking AGO18. However, plants that over-produce AGO18 are better able to fight off viral infections. Wu, Yang et al. further showed that AGO18 binds to miR168 and so prevents this small RNA from reducing AGO1 levels. Therefore, AGO1 and AGO18 work together to defend rice plants from viruses. Wu, Yang et al. suggest that engineering rice plants to make more AGO18 could make them more resistant to viruses. Further work will be needed to confirm whether AGO1 and AGO18 also work together to defend rice against viruses other than the two tested so far and to investigate whether these proteins also perform similar roles in other crops. DOI:http://dx.doi.org/10.7554/eLife.05733.002
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Zhirui Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Yu Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Lijia Zheng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Ruiqiang Ye
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing, China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shanshan Zhao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Shaoyi Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Ruofei Liu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Le Xu
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing, China
| | - Hong Zheng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Beijing, China
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijun Qi
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
292
|
Abstract
Argonaute proteins can be found in all three domains of life. In eukaryotic organisms, Argonaute is, as the functional core of the RNA-silencing machinery, critically involved in the regulation of gene expression. Despite the mechanistic and structural similarities between archaeal, bacterial and eukaryotic Argonaute proteins, the biological function of bacterial and archaeal Argonautes has remained elusive. This review discusses new findings in the field that shed light on the structure and function of Argonaute. We especially focus on archaeal Argonautes when discussing the details of the structural and dynamic features in Argonaute that promote substrate recognition and cleavage, thereby revealing differences and similarities in Argonaute biology.
Collapse
|
293
|
Corduan A, Plé H, Laffont B, Wallon T, Plante I, Landry P, Provost P. Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation. Thromb Haemost 2015; 113:1046-59. [PMID: 25673011 DOI: 10.1160/th14-07-0622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/26/2014] [Indexed: 11/05/2022]
Abstract
Platelets play an important role in haemostasis, as well as in thrombosis and coagulation processes. They harbour a wide variety of messenger RNAs (mRNAs), that can template de novo protein synthesis, and an abundant array of microRNAs, which are known to mediate mRNA translational repression through proteins of the Argonaute (Ago) family. The relationship between platelet microRNAs and proteins capable of mediating translational repression, however, remains unclear. Here, we report that half of platelet microRNAs is associated to mRNA-regulatory Ago2 protein complexes, in various proportions. Associated to these Ago2 complexes are platelet mRNAs known to support de novo protein synthesis. Reporter gene activity assays confirmed the capacity of the platelet microRNAs, found to be associated to Ago2 complexes, to regulate translation of these platelet mRNAs through their 3'UTR. Neither the microRNA repertoire nor the microRNA composition of Ago2 complexes of human platelets changed upon activation with thrombin. However, under conditions favoring de novo synthesis of Plasminogen Activator Inhibitor-1 (PAI-1) protein, we documented a rapid dissociation of the encoding platelet SERPINE1 mRNA from Ago2 protein complexes as well as from the translational repressor protein T-cell-restricted intracellular antigen-1 (TIA-1). These findings are consistent with a scenario by which lifting of the repressive effects of Ago2 and TIA-1 protein complexes, involving a rearrangement of proteinmRNA complexes rather than disassembly of Ago2microRNA complexes, would allow translation of SERPINE1 mRNA into PAI-1 in response to platelet activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Patrick Provost
- Dr. Patrick Provost, CHUQ Research Center/CHUL, 2705 Blvd Laurier, Room T1-65, Quebec, QC G1V 4G2, Canada, Tel.: +1 418 525 4444 (ext. 48842), E-mail:
| |
Collapse
|
294
|
Guo Y, Liu J, Elfenbein SJ, Ma Y, Zhong M, Qiu C, Ding Y, Lu J. Characterization of the mammalian miRNA turnover landscape. Nucleic Acids Res 2015; 43:2326-41. [PMID: 25653157 PMCID: PMC4344502 DOI: 10.1093/nar/gkv057] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Steady state cellular microRNA (miRNA) levels represent the balance between miRNA biogenesis and turnover. The kinetics and sequence determinants of mammalian miRNA turnover during and after miRNA maturation are not fully understood. Through a large-scale study on mammalian miRNA turnover, we report the co-existence of multiple cellular miRNA pools with distinct turnover kinetics and biogenesis properties and reveal previously unrecognized sequence features for fast turnover miRNAs. We measured miRNA turnover rates in eight mammalian cell types with a combination of expression profiling and deep sequencing. While most miRNAs are stable, a subset of miRNAs, mostly miRNA*s, turnovers quickly, many of which display a two-step turnover kinetics. Moreover, different sequence isoforms of the same miRNA can possess vastly different turnover rates. Fast turnover miRNA isoforms are enriched for 5′ nucleotide bias against Argonaute-(AGO)-loading, but also additional 3′ and central sequence features. Modeling based on two fast turnover miRNA*s miR-222-5p and miR-125b-1-3p, we unexpectedly found that while both miRNA*s are associated with AGO, they strongly differ in HSP90 association and sensitivity to HSP90 inhibition. Our data characterize the landscape of genome-wide miRNA turnover in cultured mammalian cells and reveal differential HSP90 requirements for different miRNA*s. Our findings also implicate rules for designing stable small RNAs, such as siRNAs.
Collapse
Affiliation(s)
- Yanwen Guo
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA Yale Stem Cell Center, Yale Cancer Center, New Haven, CT 06520, USA Graduate Program in Biological and Biomedical Sciences, Yale University, New Haven, CT 06510, USA
| | - Jun Liu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA Yale Stem Cell Center, Yale Cancer Center, New Haven, CT 06520, USA
| | - Sarah J Elfenbein
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT 06520, USA Computational Biology and Bioinformatics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yinghong Ma
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT 06520, USA
| | - Mei Zhong
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT 06520, USA
| | - Caihong Qiu
- Yale Stem Cell Center, Yale Cancer Center, New Haven, CT 06520, USA
| | - Ye Ding
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA Yale Stem Cell Center, Yale Cancer Center, New Haven, CT 06520, USA Yale Center for RNA Science and Medicine, New Haven, CT 06520, USA
| |
Collapse
|
295
|
Leebonoi W, Sukthaworn S, Panyim S, Udomkit A. A novel gonad-specific Argonaute 4 serves as a defense against transposons in the black tiger shrimp Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2015; 42:280-288. [PMID: 25463288 DOI: 10.1016/j.fsi.2014.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
Argonaute is a key protein of the small-RNA guided gene regulation process. The Argonaute family is generally divided into two subfamilies; AGO and PIWI. In this study, a cDNA encoding a novel type of Argonaute (PmAgo4) in the black tiger shrimp Penaeus monodon was identified and characterized. PmAgo4 cDNA contained an open reading frame of 2433 nucleotides that can be translated into a deduced amino acid with the conserved PAZ and PIWI domains. PmAgo4 was phylogenetically clustered with the AGO subfamily while exhibited a gonad-specific expression pattern similar to that of proteins in the PIWI subfamily. The expression of PmAgo4 did not change significantly in response to either double-stranded RNA or yellow head virus injection suggesting that PmAgo4 may not be the main AGO proteins that play a role in dsRNA-mediated gene silencing or antiviral defense. Interestingly, PmAgo4 appeared to participate in the control of transposons since the activation of both DNA transposon and retrotransposon was detected in the testis of PmAgo4-knockdown shrimp. Our study thus provided the first evidence for an unusual type of the AGO proteins that was predominantly expressed in shrimp gonad and implication of its role in protecting the shrimp genome against an invasion of transposons.
Collapse
Affiliation(s)
- Wantana Leebonoi
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Suchitraporn Sukthaworn
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand; Department of Biochemistry, Faculty of Sciences, Mahidol University, Rama VI Road, Phayathai, Bangkok, 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
296
|
Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. Exosome and exosomal microRNA: trafficking, sorting, and function. GENOMICS, PROTEOMICS & BIOINFORMATICS 2015; 13:17-24. [PMID: 25724326 PMCID: PMC4411500 DOI: 10.1016/j.gpb.2015.02.001] [Citation(s) in RCA: 1398] [Impact Index Per Article: 155.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/13/2022]
Abstract
Exosomes are 40-100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently, mRNAs and microRNAs (miRNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal miRNAs, since the miRNA profiles of exosomes may differ from those of the parent cells. Exosomal miRNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal miRNAs, and briefly describe how exosomes and their miRNAs function in recipient cells. Finally, we will discuss the potential applications of these miRNA-containing vesicles in clinical settings.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sha Li
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Li
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Shandong University, Shandong 250013, China
| | - Meng Li
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chongye Guo
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Yao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuangli Mi
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
297
|
Sun G, Yeh SY, Yuan CWY, Chiu MJY, Yung BSH, Yen Y. Molecular Properties, Functional Mechanisms, and Applications of Sliced siRNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e221. [PMID: 25602583 PMCID: PMC4345305 DOI: 10.1038/mtna.2014.73] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/06/2014] [Indexed: 11/09/2022]
Abstract
Using pre-miR-451 as a model molecule, we have characterized the general molecular properties of small hairpin RNAs that are processed into potent small interfering RNAs (siRNA) by Argonaute2 (Ago2). The Ago2-sliced siRNAs (sli-siRNAs) have the same silencing potency as the classical Dicer diced siRNAs (di-siRNAs) but have dramatically reduced unwanted sense strand activities. We have built vectors with the constitutive or inducible U6 promoter that can express sli-siRNAs in mammalian cells, in which the sli-siRNAs can be correctly processed to repress target genes. As a proof of principle for potential applications of sli-siRNAs in vivo, we show that the expression of one Ago2 shRNA-1148 in HCT-116 colon cancer cells knocked down RRM2 expression and reduced the proliferation and invasiveness of the cells. The defined sli-siRNA model molecules and the expression systems established in this study will facilitate the design and application of sli-siRNAs as novel potent RNAi triggers with reduced off-target effects.
Collapse
Affiliation(s)
- Guihua Sun
- Department of Molecular Pharmacology, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Spencer Yele Yeh
- Summer Interns, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | | | | | - Bryan Shing Hei Yung
- Summer Interns, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Yun Yen
- Department of Molecular Pharmacology, Beckman Research Institute of the City of Hope, Duarte, California, USA
| |
Collapse
|
298
|
Small RNAs: Their Possible Roles in Reproductive Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:49-79. [PMID: 26178845 DOI: 10.1007/978-3-319-18881-2_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Posttranscriptional gene regulation is a regulatory mechanism which occurs "above the genome" and confers different phenotypes and functions within a cell. Transcript and protein abundance above the level of transcription can be regulated via noncoding ribonucleic acid (ncRNA) molecules, which potentially play substantial roles in the regulation of reproductive function. MicroRNA (miRNA), endogenous small interfering RNA (endo-siRNA), and PIWI-interacting RNA (piRNA) are three primary classes of small ncRNA. Similarities and distinctions between their biogenesis and in the interacting protein machinery that facilitate their function distinguish these three classes. Characterization of the expression and importance of the critical components for the biogenesis of each class in different tissues contributes a clearer understanding of their contributions in specific reproductive tissues and their ability to influence fertility in both males and females. This chapter discusses the expression and potential roles of miRNA, endo-siRNA, and piRNA in the regulation of reproductive function. Additionally, this chapter elaborates on investigations aimed to address and characterize specific mechanisms through which miRNA may influence infertility and the use of miRNA as biomarkers associated with several reproductive calamities such as defective spermatogenesis in males, polycystic ovarian failure, endometriosis and obesity, and chemical-induced subfertility.
Collapse
|
299
|
Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell 2014; 57:397-407. [PMID: 25557550 DOI: 10.1016/j.molcel.2014.11.030] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/24/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022]
Abstract
RNA-mediated gene silencing in human cells requires the accurate generation of ∼22 nt microRNAs (miRNAs) from double-stranded RNA substrates by the endonuclease Dicer. Although the phylogenetically conserved RNA-binding proteins TRBP and PACT are known to contribute to this process, their mode of Dicer binding and their genome-wide effects on miRNA processing have not been determined. We solved the crystal structure of the human Dicer-TRBP interface, revealing the structural basis of the interaction. Interface residues conserved between TRBP and PACT show that the proteins bind to Dicer in a similar manner and by mutual exclusion. Based on the structure, a catalytically active Dicer that cannot bind TRBP or PACT was designed and introduced into Dicer-deficient mammalian cells, revealing selective defects in guide strand selection. These results demonstrate the role of Dicer-associated RNA binding proteins in maintenance of gene silencing fidelity.
Collapse
Affiliation(s)
- Ross C Wilson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Akshay Tambe
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Mary Anne Kidwell
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Cameron L Noland
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Catherine P Schneider
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
300
|
Duan CG, Zhang H, Tang K, Zhu X, Qian W, Hou YJ, Wang B, Lang Z, Zhao Y, Wang X, Wang P, Zhou J, Liang G, Liu N, Wang C, Zhu JK. Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation. EMBO J 2014; 34:581-92. [PMID: 25527293 DOI: 10.15252/embj.201489453] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Argonaute (AGO) family proteins are conserved key components of small RNA-induced silencing pathways. In the RNA-directed DNA methylation (RdDM) pathway in Arabidopsis, AGO6 is generally considered to be redundant with AGO4. In this report, our comprehensive, genomewide analyses of AGO4- and AGO6-dependent DNA methylation revealed that redundancy is unexpectedly negligible in the genetic interactions between AGO4 and AGO6. Immunofluorescence revealed that AGO4 and AGO6 differ in their subnuclear co-localization with RNA polymerases required for RdDM. Pol II and AGO6 are absent from perinucleolar foci, where Pol V and AGO4 are co-localized. In the nucleoplasm, AGO4 displays a strong co-localization with Pol II, whereas AGO6 co-localizes with Pol V. These patterns suggest that RdDM is mediated by distinct, spatially regulated combinations of AGO proteins and RNA polymerases. Consistently, Pol II physically interacts with AGO4 but not AGO6, and the levels of Pol V-dependent scaffold RNAs and Pol V chromatin occupancy are strongly correlated with AGO6 but not AGO4. Our results suggest that AGO4 and AGO6 mainly act sequentially in mediating small RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Cheng-Guo Duan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Huiming Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Xiaohong Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Weiqiang Qian
- Shanghai Center for Plant Stress Biology, Shanghai Institute of Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Yueh-Ju Hou
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Bangshing Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Zhaobo Lang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Yang Zhao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA Shanghai Center for Plant Stress Biology, Shanghai Institute of Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Xingang Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Pengcheng Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Jianping Zhou
- School of Life Science and Technology University of Electronic Science and Technology of China, Chengdu Sichuan, China
| | - Gaimei Liang
- Dryland Agriculture Research Center, Shanxi Academy of Agricultural Sciences, Taiyuan Shanxi, China
| | - Na Liu
- Department of Horticulture, Laboratory of Genetics Resources & Functional Improvement for Horticultural Plant Zhejiang University, Hangzhou Zhejiang, China
| | - Chunguo Wang
- College of Life Sciences Nankai University, Tianjin, China
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA Shanghai Center for Plant Stress Biology, Shanghai Institute of Biological Sciences Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|