251
|
Zhu G, Hu J, Xi R. The cellular niche for intestinal stem cells: a team effort. CELL REGENERATION 2021; 10:1. [PMID: 33385259 PMCID: PMC7775856 DOI: 10.1186/s13619-020-00061-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
The rapidly self-renewing epithelium in the mammalian intestine is maintained by multipotent intestinal stem cells (ISCs) located at the bottom of the intestinal crypt that are interspersed with Paneth cells in the small intestine and Paneth-like cells in the colon. The ISC compartment is also closely associated with a sub-epithelial compartment that contains multiple types of mesenchymal stromal cells. With the advances in single cell and gene editing technologies, rapid progress has been made for the identification and characterization of the cellular components of the niche microenvironment that is essential for self-renewal and differentiation of ISCs. It has become increasingly clear that a heterogeneous population of mesenchymal cells as well as the Paneth cells collectively provide multiple secreted niche signals to promote ISC self-renewal. Here we review and summarize recent advances in the regulation of ISCs with a main focus on the definition of niche cells that sustain ISCs.
Collapse
Affiliation(s)
- Guoli Zhu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Jiulong Hu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
252
|
Gomart A, Vallée A, Lecarpentier Y. Necrotizing Enterocolitis: LPS/TLR4-Induced Crosstalk Between Canonical TGF-β/Wnt/β-Catenin Pathways and PPARγ. Front Pediatr 2021; 9:713344. [PMID: 34712628 PMCID: PMC8547806 DOI: 10.3389/fped.2021.713344] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Necrotizing enterocolitis (NEC) represents one of the major causes of morbidity and mortality in premature infants. Several recent studies, however, have contributed to a better understanding of the pathophysiology of this dreadful disease. Numerous intracellular pathways play a key role in NEC, namely: bacterial lipopolysaccharide (LPS), LPS toll-like receptor 4 (TLR4), canonical Wnt/β-catenin signaling and PPARγ. In a large number of pathologies, canonical Wnt/β-catenin signaling and PPARγ operate in opposition to one another, so that when one of the two pathways is overexpressed the other is downregulated and vice-versa. In NEC, activation of TLR4 by LPS leads to downregulation of the canonical Wnt/β-catenin signaling and upregulation of PPARγ. This review aims to shed light on the complex intracellular mechanisms involved in this pathophysiological profile by examining additional pathways such as the GSK-3β, NF-κB, TGF-β/Smads, and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Alexia Gomart
- Département de Pédiatrie et Médecine de l'adolescent, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, Suresnes, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| |
Collapse
|
253
|
Sprangers J, Zaalberg IC, Maurice MM. Organoid-based modeling of intestinal development, regeneration, and repair. Cell Death Differ 2021; 28:95-107. [PMID: 33208888 PMCID: PMC7852609 DOI: 10.1038/s41418-020-00665-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium harbors a remarkable adaptability to undergo injury-induced repair. A key part of the regenerative response is the transient reprogramming of epithelial cells into a fetal-like state, which drives uniform proliferation, tissue remodeling, and subsequent restoration of the homeostatic state. In this review, we discuss how Wnt and YAP signaling pathways control the intestinal repair response and the transitioning of cell states, in comparison with the process of intestinal development. Furthermore, we highlight how organoid-based applications have contributed to the characterization of the mechanistic principles and key players that guide these developmental and regenerative events.
Collapse
Affiliation(s)
- Joep Sprangers
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Irene C Zaalberg
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Madelon M Maurice
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
254
|
Tan SH, Phuah P, Tan LT, Yada S, Goh J, Tomaz LB, Chua M, Wong E, Lee B, Barker N. A constant pool of Lgr5 + intestinal stem cells is required for intestinal homeostasis. Cell Rep 2021; 34:108633. [PMID: 33503423 DOI: 10.1016/j.celrep.2020.108633] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/09/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Lgr5+ crypt base columnar cells, the operational intestinal stem cells (ISCs), are thought to be dispensable for small intestinal (SI) homeostasis. Using a Lgr5-2A-DTR (diphtheria toxin receptor) model, which ablates Lgr5+ cells with near-complete efficiency and retains endogenous levels of Lgr5 expression, we show that persistent depletion of Lgr5+ ISCs in fact compromises SI epithelial integrity and reduces epithelial turnover in vivo. In vitro, Lgr5-2A-DTR SI organoids are unable to establish or survive when Lgr5+ ISCs are continuously eliminated by adding DT to the media. However, transient exposure to DT at the start of culture allows organoids to form, and the rate of outgrowth reduces with the increasing length of DT presence. Our results indicate that intestinal homeostasis requires a constant pool of Lgr5+ ISCs, which is supplied by rapidly reprogrammed non-Lgr5+ crypt populations when preexisting Lgr5+ ISCs are ablated.
Collapse
Affiliation(s)
- Si Hui Tan
- A(∗)STAR Institute of Medical Biology, Singapore, Singapore; A(∗)STAR Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Phyllis Phuah
- A(∗)STAR Institute of Medical Biology, Singapore, Singapore; Section of Endocrinology & Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Liang Thing Tan
- A(∗)STAR Institute of Medical Biology, Singapore, Singapore; A(∗)STAR Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Swathi Yada
- A(∗)STAR Institute of Medical Biology, Singapore, Singapore; A(∗)STAR Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Jasmine Goh
- A(∗)STAR Institute of Medical Biology, Singapore, Singapore; Cancer Science Institute, Singapore, Singapore
| | - Lucian B Tomaz
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Magdalene Chua
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Esther Wong
- A(∗)STAR Institute of Medical Biology, Singapore, Singapore; A(∗)STAR Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Bernett Lee
- A(∗)STAR Singapore Immunology Network, Singapore, Singapore
| | - Nick Barker
- A(∗)STAR Institute of Medical Biology, Singapore, Singapore; A(∗)STAR Institute of Molecular and Cell Biology, Singapore, Singapore; Division of Epithelial Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
255
|
Kurokawa K, Hayakawa Y, Koike K. Plasticity of Intestinal Epithelium: Stem Cell Niches and Regulatory Signals. Int J Mol Sci 2020; 22:ijms22010357. [PMID: 33396437 PMCID: PMC7795504 DOI: 10.3390/ijms22010357] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of Lgr5+ intestinal stem cells (ISCs) triggered a breakthrough in the field of ISC research. Lgr5+ ISCs maintain the homeostasis of the intestinal epithelium in the steady state, while these cells are susceptible to epithelial damage induced by chemicals, pathogens, or irradiation. During the regeneration process of the intestinal epithelium, more quiescent +4 stem cells and short-lived transit-amplifying (TA) progenitor cells residing above Lgr5+ ISCs undergo dedifferentiation and act as stem-like cells. In addition, several recent reports have shown that a subset of terminally differentiated cells, including Paneth cells, tuft cells, or enteroendocrine cells, may also have some degree of plasticity in specific situations. The function of ISCs is maintained by the neighboring stem cell niches, which strictly regulate the key signal pathways in ISCs. In addition, various inflammatory cytokines play critical roles in intestinal regeneration and stem cell functions following epithelial injury. Here, we summarize the current understanding of ISCs and their niches, review recent findings regarding cellular plasticity and its regulatory mechanism, and discuss how inflammatory cytokines contribute to epithelial regeneration.
Collapse
Affiliation(s)
| | - Yoku Hayakawa
- Correspondence: ; Tel.: +81-3-3815-5411; Fax: +81-3-5800-8812
| | | |
Collapse
|
256
|
Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci Rep 2020; 10:21600. [PMID: 33303827 PMCID: PMC7728763 DOI: 10.1038/s41598-020-78017-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 11/11/2020] [Indexed: 01/19/2023] Open
Abstract
Radiation therapy is the most effective cytotoxic therapy for localized tumors. However, normal tissue toxicity limits the radiation dose and the curative potential of radiation therapy when treating larger target volumes. In particular, the highly radiosensitive intestine limits the use of radiation for patients with intra-abdominal tumors. In metastatic ovarian cancer, total abdominal irradiation (TAI) was used as an effective postsurgical adjuvant therapy in the management of abdominal metastases. However, TAI fell out of favor due to high toxicity of the intestine. Here we utilized an innovative preclinical irradiation platform to compare the safety and efficacy of TAI ultra-high dose rate FLASH irradiation to conventional dose rate (CONV) irradiation in mice. We demonstrate that single high dose TAI-FLASH produced less mortality from gastrointestinal syndrome, spared gut function and epithelial integrity, and spared cell death in crypt base columnar cells compared to TAI-CONV irradiation. Importantly, TAI-FLASH and TAI-CONV irradiation had similar efficacy in reducing tumor burden while improving intestinal function in a preclinical model of ovarian cancer metastasis. These findings suggest that FLASH irradiation may be an effective strategy to enhance the therapeutic index of abdominal radiotherapy, with potential application to metastatic ovarian cancer.
Collapse
|
257
|
Barthez M, Song Z, Wang CL, Chen D. Stem Cell Metabolism and Diet. CURRENT STEM CELL REPORTS 2020; 6:119-125. [PMID: 33777658 PMCID: PMC7992378 DOI: 10.1007/s40778-020-00180-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW Diet has profound impacts on health and longevity. Evidence is emerging to suggest that diet impinges upon the metabolic pathways in tissue-specific stem cells to influence health and disease. Here, we review the similarities and differences in the metabolism of stem cells from several tissues, and highlight the mitochondrial metabolic checkpoint in stem cell maintenance and aging. We discuss how diet engages the nutrient sensing metabolic pathways and impacts stem cell maintenance. Finally, we explore the therapeutic implications of dietary and metabolic regulation of stem cells. RECENT FINDINGS Stem Cell transition from quiescence to proliferation is associated with a metabolic switch from glycolysis to mitochondrial OXPHOS and the mitochondrial metabolic checkpoint is critically controlled by the nutrient sensors SIRT2, SIRT3, and SIRT7 in hematopoietic stem cells. Intestine stem cell homeostasis during aging and in response to diet is critically dependent on fatty acid metabolism and ketone bodies and is influenced by the niche mediated by the nutrient sensor mTOR. SUMMARY Nutrient sensing metabolic pathways critically regulate stem cell maintenance during aging and in response to diet. Elucidating the molecular mechanisms underlying dietary and metabolic regulation of stem cells provides novel insights for stem cell biology and may be targeted therapeutically to reverse stem cell aging and tissue degeneration.
Collapse
Affiliation(s)
- Marine Barthez
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720
| | - Zehan Song
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720
| | - Chih Ling Wang
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, 119 Morgan Hall, University of California, Berkeley, CA 94720
| |
Collapse
|
258
|
Seo Y, Park SY, Kim HS, Nam JS. The Hippo-YAP Signaling as Guardian in the Pool of Intestinal Stem Cells. Biomedicines 2020; 8:biomedicines8120560. [PMID: 33271948 PMCID: PMC7760694 DOI: 10.3390/biomedicines8120560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
Despite endogenous insults such as mechanical stress and danger signals derived from the microbiome, the intestine can maintain its homeostatic condition through continuous self-renewal of the crypt–villus axis. This extraordinarily rapid turnover of intestinal epithelium, known to be 3 to 5 days, can be achieved by dynamic regulation of intestinal stem cells (ISCs). The crypt base-located leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5+) ISCs maintain intestinal integrity in the steady state. Under severe damage leading to the loss of conventional ISCs, quiescent stem cells and even differentiated cells can be reactivated into stem-cell-like cells with multi-potency and contribute to the reconstruction of the intestinal epithelium. This process requires fine-tuning of the various signaling pathways, including the Hippo–YAP system. In this review, we summarize recent advances in understanding the correlation between Hippo–YAP signaling and intestinal homeostasis, repair, and tumorigenesis, focusing specifically on ISC regulation.
Collapse
Affiliation(s)
- Yoojin Seo
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea;
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - So-Yeon Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea;
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Correspondence: (H.-S.K.); (J.-S.N.); Tel.: +82-51-510-8231 (H.-S.K.); +82-62-715-2893 (J.-S.N.)
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
- Correspondence: (H.-S.K.); (J.-S.N.); Tel.: +82-51-510-8231 (H.-S.K.); +82-62-715-2893 (J.-S.N.)
| |
Collapse
|
259
|
Katano T, Bialkowska AB, Yang VW. KLF4 Regulates Goblet Cell Differentiation in BMI1 + Reserve Intestinal Stem Cell Lineage during Homeostasis. Int J Stem Cells 2020; 13:424-431. [PMID: 32840226 PMCID: PMC7691855 DOI: 10.15283/ijsc20048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor, expressed in villus cells of the intestinal epithelium, that promotes cellular differentiation and tissue homeostasis. Previous studies suggest that BMI1+ cells represent secretory progenitors with reserve intestinal stem cell (rISC) activity. However, it has not been elucidated how KLF4 contributes to crypt regeneration originated from BMI1+ rISC lineage during homeostasis. In this study, Bmi1-CreER;Rosa26eYFP (Bmi1Ctrl) and Bmi1-CreER;Rosa26eYFP;Klf4fl/fl (Bmi1ΔKlf4) mice were injected with tamoxifen to label BMI1+ cells and their lineage and to delete Klf4. During homeostasis, MUC2+ goblet cells appeared in the BMI1+ cell lineage 2, 3 and 7 days after tamoxifen administration. After Klf4 deletion in BMI1+ cells, the number of KLF4+ and MUC2+ cells in eYFP+ cells decreased in Bmi1ΔKlf4 mice compared with Bmi1Ctrl mice. Thus, KLF4 was positively correlated with goblet cell differentiation in BMI1+ cell derived lineage. In ex-vivo analysis, organoids derived from single eYFP+ cells of Bmi1Ctrl mice contained MUC2-expressing cells that co-expressed KLF4. On the other hand, organoids derived from Klf4-deleted eYFP+ cells from Bmi1ΔKlf4 mice showed reduced number of MUC2-expressing cells. In conclusion, these results suggest that KLF4 regulates goblet cell differentiation in BMI1+ ISC-derived lineage during homeostasis.
Collapse
Affiliation(s)
- Takahito Katano
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.,Department of Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
260
|
Abstract
The cardinal properties of adult tissue stem cells are self-renewal and the ability to generate diverse resident cell types. The daily losses of terminally differentiated intestinal, skin, and blood cells require "professional" stem cells to produce replacements. This occurs by continuous expansion of stem cells and their immediate progeny, followed by coordinated activation of divergent transcriptional programs to generate stable cells with diverse functions. Other tissues turn over slowly, if at all, and vary widely in strategies for facultative stem cell activity or interconversion among mature resident cell types (transdifferentiation). Cell fate potential is programmed in tissue-specific configurations of chromatin, which restrict the complement of available genes and cis-regulatory elements, hence allowing specific cell types to arise. Using as a model the transcriptional and chromatin basis of cell differentiation and dedifferentiation in intestinal crypts, we discuss here how self-renewing and other tissues execute homeostatic and injury-responsive stem cell activity.
Collapse
Affiliation(s)
- Madhurima Saxena
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts 02215, USA.,Current affiliation: Translational Medicine, Bristol-Myers-Squibb, Cambridge, Massachusetts 02142, USA;
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
261
|
Goyal S, Tsang DKL, Maisonneuve C, Girardin SE. Sending signals - The microbiota's contribution to intestinal epithelial homeostasis. Microbes Infect 2020; 23:104774. [PMID: 33189870 DOI: 10.1016/j.micinf.2020.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
The intestine is inhabited by a diverse range of microorganisms, which requires the host to employ numerous barrier measures to prevent bacterial invasion. However, the intestinal microbiota additionally acts symbiotically with host cells to maintain epithelial barrier function, and perturbation to this interaction plays a pivotal role in intestinal pathogenesis. In this review, we highlight current findings of how the intestinal microbiota influences host intestinal epithelial cells. In particular, we review the roles of numerous microbial-derived products as well as mechanisms by which these microbial products influence the regulation of intestinal epithelial population dynamics and barrier function.
Collapse
Affiliation(s)
- Shawn Goyal
- Department of Laboratory Medicine and Pathobiology, Canada
| | - Derek K L Tsang
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
262
|
Ludikhuize MC, Meerlo M, Gallego MP, Xanthakis D, Burgaya Julià M, Nguyen NTB, Brombacher EC, Liv N, Maurice MM, Paik JH, Burgering BMT, Rodriguez Colman MJ. Mitochondria Define Intestinal Stem Cell Differentiation Downstream of a FOXO/Notch Axis. Cell Metab 2020; 32:889-900.e7. [PMID: 33147486 DOI: 10.1016/j.cmet.2020.10.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Differential WNT and Notch signaling regulates differentiation of Lgr5+ crypt-based columnar cells (CBCs) into intestinal cell lineages. Recently we showed that mitochondrial activity supports CBCs, while adjacent Paneth cells (PCs) show reduced mitochondrial activity. This implies that CBC differentiation into PCs involves a metabolic transition toward downregulation of mitochondrial dependency. Here we show that Forkhead box O (FoxO) transcription factors and Notch signaling interact in determining CBC fate. In agreement with the organoid data, Foxo1/3/4 deletion in mouse intestine induces secretory cell differentiation. Importantly, we show that FOXO and Notch signaling converge on regulation of mitochondrial fission, which in turn provokes stem cell differentiation into goblet cells and PCs. Finally, scRNA-seq-based reconstruction of CBC differentiation trajectories supports the role of FOXO, Notch, and mitochondria in secretory differentiation. Together, this points at a new signaling-metabolic axis in CBC differentiation and highlights the importance of mitochondria in determining stem cell fate.
Collapse
Affiliation(s)
- Marlies C Ludikhuize
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Maaike Meerlo
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Marc Pages Gallego
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Despina Xanthakis
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Mar Burgaya Julià
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Nguyen T B Nguyen
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Eline C Brombacher
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Leids Universitair Medisch Centrum, Department of Parasitology, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Nalan Liv
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Madelon M Maurice
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute
| | - Ji-Hye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute
| | - Maria J Rodriguez Colman
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
263
|
Endo H, Kondo J, Onuma K, Ohue M, Inoue M. Small subset of Wnt-activated cells is an initiator of regrowth in colorectal cancer organoids after irradiation. Cancer Sci 2020; 111:4429-4441. [PMID: 33043499 PMCID: PMC7734167 DOI: 10.1111/cas.14683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
Most colorectal cancers (CRCs) are differentiated adenocarcinomas, which maintain expression of both stemness and differentiation markers. This observation suggests that CRC cells could retain a regeneration system of normal cells upon injury. However, the role of stemness in cancer cell regeneration after irradiation is poorly understood. Here, we examined the effect of radiation on growth, stemness, and differentiation in organoids derived from differentiated adenocarcinomas. Following a sublethal dose of irradiation, proliferation and stemness markers, including Wnt target genes, were drastically reduced, but differentiation markers remained. After a static growth phase after high dose of radiation, regrowth foci appeared; these consisted of highly proliferating cells that expressed stem cell markers. Radiosensitivity and the ability to form foci differed among the cancer tissue‐originated spheroid (CTOS) lines examined and showed good correlation with in vivo radiation sensitivity. Pre‐treating organoids with histone deacetylase inhibitors increased radiation sensitivity; this increase was accompanied by the suppression of Wnt signal‐related gene expression. Accordingly, Wnt inhibitors increased organoid radiosensitivity. These results suggested that only a small subset of, but not all, cancer cells with high Wnt activity at the time of irradiation could give rise to foci formation. In conclusion, we established a radiation sensitivity assay using CRC organoids that could provide a novel platform for evaluating the effects of radiosensitizers on differentiated adenocarcinomas in CRC.
Collapse
Affiliation(s)
- Hiroko Endo
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Jumpei Kondo
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan.,Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Ohue
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiro Inoue
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan.,Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
264
|
Khaloian S, Rath E, Hammoudi N, Gleisinger E, Blutke A, Giesbertz P, Berger E, Metwaly A, Waldschmitt N, Allez M, Haller D. Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn's disease recurrence. Gut 2020; 69:1939-1951. [PMID: 32111634 PMCID: PMC7569388 DOI: 10.1136/gutjnl-2019-319514] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Reduced Paneth cell (PC) numbers are observed in inflammatory bowel diseases and impaired PC function contributes to the ileal pathogenesis of Crohn's disease (CD). PCs reside in proximity to Lgr5+ intestinal stem cells (ISC) and mitochondria are critical for ISC-renewal and differentiation. Here, we characterise ISC and PC appearance under inflammatory conditions and describe the role of mitochondrial function for ISC niche-maintenance. DESIGN Ileal tissue samples from patients with CD, mouse models for mitochondrial dysfunction (Hsp60Δ/ΔISC) and CD-like ileitis (TNFΔARE), and intestinal organoids were used to characterise PCs and ISCs in relation to mitochondrial function. RESULTS In patients with CD and TNFΔARE mice, inflammation correlated with reduced numbers of Lysozyme-positive granules in PCs and decreased Lgr5 expression in crypt regions. Disease-associated changes in PC and ISC appearance persisted in non-inflamed tissue regions of patients with CD and predicted the risk of disease recurrence after surgical resection. ISC-specific deletion of Hsp60 and inhibition of mitochondrial respiration linked mitochondrial function to the aberrant PC phenotype. Consistent with reduced stemness in vivo, crypts from inflamed TNFΔARE mice fail to grow into organoids ex vivo. Dichloroacetate-mediated inhibition of glycolysis, forcing cells to shift to mitochondrial respiration, improved ISC niche function and rescued the ability of TNFΔARE mice-derived crypts to form organoids. CONCLUSION We provide evidence that inflammation-associated mitochondrial dysfunction in the intestinal epithelium triggers a metabolic imbalance, causing reduced stemness and acquisition of a dysfunctional PC phenotype. Blocking glycolysis might be a novel drug target to antagonise PC dysfunction in the pathogenesis of CD.
Collapse
Affiliation(s)
- Sevana Khaloian
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Nassim Hammoudi
- Department of Gastroenterology, Hôpital Saint-Louis, APHP, INSERM U1160, Université de Paris 1, Paris, Île-de-France, France
| | - Elisabeth Gleisinger
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Pieter Giesbertz
- Chair of Nutrition Physiology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Emanuel Berger
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Nadine Waldschmitt
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Matthieu Allez
- Department of Gastroenterology, Hôpital Saint-Louis, APHP, INSERM U1160, Université de Paris 1, Paris, Île-de-France, France
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany .,ZIEL Institute for Food & Health, Technische Universität München, München, Germany
| |
Collapse
|
265
|
Orzechowska EJ, Katano T, Bialkowska AB, Yang VW. Interplay among p21 Waf1/Cip1, MUSASHI-1 and Krüppel-like factor 4 in activation of Bmi1-Cre ER reserve intestinal stem cells after gamma radiation-induced injury. Sci Rep 2020; 10:18300. [PMID: 33110120 PMCID: PMC7591575 DOI: 10.1038/s41598-020-75171-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Gamma radiation is a commonly used adjuvant treatment for abdominally localized cancer. Since its therapeutic potential is limited due to gastrointestinal (GI) syndrome, elucidation of the regenerative response following radiation-induced gut injury is needed to develop a preventive treatment. Previously, we showed that Krüppel-like factor 4 (KLF4) activates certain quiescent intestinal stem cells (ISCs) marked by Bmi1-CreER to give rise to regenerating crypts following γ irradiation. In the current study, we showed that γ radiation-induced expression of p21Waf1/Cip1 in Bmi1-CreER cells is likely mitigated by MUSASHI-1 (MSI1) acting as a negative regulator of p21Waf1/Cip1 mRNA translation, which promotes exit of the Bmi1-CreER cells from a quiescent state. Additionally, Bmi1-specific Klf4 deletion resulted in decreased numbers of MSI1+ cells in regenerating crypts compared to those of control mice. We showed that KLF4 binds to the Msi1 promoter and activates its expression in vitro. Since MSI1 has been shown to be crucial for crypt regeneration, this finding elucidates a pro-proliferative role of KLF4 during the postirradiation regenerative response. Taken together, our data suggest that the interplay among p21Waf1/Cip1, MSI1 and KLF4 regulates Bmi1-CreER cell survival, exit from quiescence and regenerative potential upon γ radiation-induced injury.
Collapse
Affiliation(s)
- Emilia J Orzechowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Takahito Katano
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA. .,Department of Physiology and Biophysics, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY, USA.
| |
Collapse
|
266
|
Exogenous L-arginine increases intestinal stem cell function through CD90+ stromal cells producing mTORC1-induced Wnt2b. Commun Biol 2020; 3:611. [PMID: 33097830 PMCID: PMC7584578 DOI: 10.1038/s42003-020-01347-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/02/2020] [Indexed: 01/02/2023] Open
Abstract
The renewal and repair of intestinal epithelium depend on the self-renewal of intestinal stem cells (ISCs) under physiological and pathological conditions. Although previous work has established that exogenous nutrients regulate adult stem cell activity, little is known about the regulatory effect of L-arginine on ISCs. In this study we utilize mice and small intestinal (SI) organoid models to clarify the role of L-arginine on epithelial differentiation of ISCs. We show that L-arginine increases expansion of ISCs in mice. Furthermore, CD90+ intestinal stromal cells augment stem-cell function in response to L-arginine in co-culture experiments. Mechanistically, we find that L-arginine stimulates Wnt2b secretion by CD90+ stromal cells through the mammalian target of rapamycin complex 1 (mTORC1) and that blocking Wnt2b production prevents L-arginine-induced ISC expansion. Finally, we show that L-arginine treatment protects the gut in response to injury. Our findings highlight an important role for CD90+ stromal cells in L-arginine-stimulated ISC expansion.
Collapse
|
267
|
López I, Chalatsi E, Ellenbroek SIJ, Andrieux A, Roux PF, Cerapio JP, Jouvion G, van Rheenen J, Seeler JS, Dejean A. An unanticipated tumor-suppressive role of the SUMO pathway in the intestine unveiled by Ubc9 haploinsufficiency. Oncogene 2020; 39:6692-6703. [PMID: 32948837 PMCID: PMC7581512 DOI: 10.1038/s41388-020-01457-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Sumoylation is an essential posttranslational modification in eukaryotes that has emerged as an important pathway in oncogenic processes. Most human cancers display hyperactivated sumoylation and many cancer cells are remarkably sensitive to its inhibition, thus supporting application of chemical sumoylation inhibitors in cancer treatment. Here we show, first, that transformed embryonic fibroblasts derived from mice haploinsufficient for Ubc9, the essential and unique gene encoding the SUMO E2 conjugating enzyme, exhibit enhanced proliferation and transformed phenotypes in vitro and as xenografts ex vivo. To then evaluate the possible impact of loss of one Ubc9 allele in vivo, we used a mouse model of intestinal tumorigenesis. We crossed Ubc9+/- mice with mice harboring a conditional ablation of Apc either all along the crypt-villus axis or only in Lgr5+ crypt-based columnar (CBC) cells, the cell compartment that includes the intestinal stem cells proposed as cells-of-origin of intestinal cancer. While Ubc9+/- mice display no overt phenotypes and no globally visible hyposumoylation in cells of the small intestine, we found, strikingly, that, upon loss of Apc in both models, Ubc9+/- mice develop more (>2-fold) intestinal adenomas and show significantly shortened survival. This is accompanied by reduced global sumoylation levels in the polyps, indicating that Ubc9 levels become critical upon oncogenic stress. Moreover, we found that, in normal conditions, Ubc9+/- mice show a moderate but robust (15%) increase in the number of Lgr5+ CBC cells when compared to their wild-type littermates, and further, that these cells display higher degree of stemness and cancer-related and inflammatory gene expression signatures that, altogether, may contribute to enhanced intestinal tumorigenesis. The phenotypes of Ubc9 haploinsufficiency discovered here indicate an unanticipated tumor-suppressive role of sumoylation, one that may have important implications for optimal use of sumoylation inhibitors in the clinic.
Collapse
Affiliation(s)
- Ignacio López
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France
| | - Eleftheria Chalatsi
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France
- Collège Doctoral, Sorbonne Université, 75005, Paris, France
- Bio-Rad Laboratories, Marnes-la-Coquette, France
| | - Saskia I J Ellenbroek
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alexandra Andrieux
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France
| | - Pierre-François Roux
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France
| | - Juan P Cerapio
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Toulouse, France
| | - Grégory Jouvion
- Experimental Neuropathology Unit, Institut Pasteur, 75015, Paris, France
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacob-S Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France.
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
268
|
Alison MR. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int J Exp Pathol 2020; 101:132-151. [PMID: 32794627 PMCID: PMC7495846 DOI: 10.1111/iep.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cells or their closely related committed progenitor cells are the likely founder cells of most neoplasms. In the continually renewing and hierarchically organized epithelia of the oesophagus, stomach and intestine, homeostatic stem cells are located at the beginning of the cell flux, in the basal layer of the oesophagus, the isthmic region of gastric oxyntic glands and at the bottom of gastric pyloric-antral glands and colonic crypts. The introduction of mutant oncogenes such as KrasG12D or loss of Tp53 or Apc to specific cell types expressing the likes of Lgr5 and Mist1 can be readily accomplished in genetically engineered mouse models to initiate tumorigenesis. Other origins of cancer are discussed including 'reserve' stem cells that may be activated by damage or through disruption of morphogen gradients along the crypt axis. In the liver and pancreas, with little cell turnover and no obvious stem cell markers, the importance of regenerative hyperplasia associated with chronic inflammation to tumour initiation is vividly apparent, though inflammatory conditions in the renewing populations are also permissive for tumour induction. In the liver, hepatocytes, biliary epithelial cells and hepatic progenitor cells are embryologically related, and all can give rise to hepatocellular carcinoma and cholangiocarcinoma. In the exocrine pancreas, both acinar and ductal cells can give rise to pancreatic ductal adenocarcinoma (PDAC), although the preceding preneoplastic states are quite different: acinar-ductal metaplasia gives rise to pancreatic intraepithelial neoplasia culminating in PDAC, while ducts give rise to PDAC via. mucinous cell metaplasia that may have a polyclonal origin.
Collapse
Affiliation(s)
- Malcolm R. Alison
- Centre for Tumour BiologyBarts Cancer Institute, Charterhouse SquareBarts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|
269
|
Sei Y, Feng J, Zhao X, Wank SA. Role of an active reserve stem cell subset of enteroendocrine cells in intestinal stem cell dynamics and the genesis of small intestinal neuroendocrine tumors. Am J Physiol Gastrointest Liver Physiol 2020; 319:G494-G501. [PMID: 32845170 PMCID: PMC7654644 DOI: 10.1152/ajpgi.00278.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Small intestinal neuroendocrine tumors (SI-NET) are serotonin-secreting well-differentiated neuroendocrine tumors of putative enterochromaffin (EC) cell origin. Recent studies recognize a subset of EC cells that is label-retaining at the +4 position in the crypt and functions as a reserve intestinal stem cell. Importantly, this +4 reserve EC cell subset not only contributes to regeneration of the intestinal epithelium during injury and inflammation but also to basal crypt homeostasis at a constant rate. The latter function suggests that the +4 EC cell subset serves as an active reserve stem cell via a constant rate of dedifferentiation. Characterization of early tumor formation of SI-NET, observed as crypt-based EC cell clusters in many cases of familial SI-NETs, suggests that the +4 active reserve EC cell subset is the cell of origin. This newly discovered active reserve stem cell property of EC cells can account for unique biological mechanisms and processes associated with the genesis and development of SI-NETs. The recognition of this property of the +4 active reserve EC cell subset may provide novel opportunities to explore NETs in the gastrointestinal tract and other organs.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jianying Feng
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Xilin Zhao
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Stephen A. Wank
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
270
|
The role of stem cell niche in intestinal aging. Mech Ageing Dev 2020; 191:111330. [DOI: 10.1016/j.mad.2020.111330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
|
271
|
Wang M, Dong Y, Wu J, Li H, Zhang Y, Fan S, Li D. Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosis. Life Sci 2020; 261:118463. [PMID: 32950576 DOI: 10.1016/j.lfs.2020.118463] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/05/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022]
Abstract
AIMS Ionizing radiation (IR) induces injuries to the hematopoietic and intestinal systems, which are the leading cause of death. Baicalein, a plant-derived flavonoid, shows anti-oxidative stress, anti-apoptosis, anti-inflammation effects in many diseases. In this study, we evaluated the effects and mechanism of baicalein on IR induced intestinal and hematopoietic injuries. MAIN METHODS Mice were divided into three groups: Control, IR and IR + Baicalein. All of mice were intraperitoneally administered with 100 mg/kg baicalein or normal saline for 1 h before IR, and then a day post-IR. The changes in intestinal structure, function and molecular expression were observed by pathological experiments and western blot. 16S rRNA gene sequencing was performed to analyze gut microbiota and further predicted metabolic pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Hematopoietic function was evaluated by peripheral blood cells count and by flow cytometry analysis of hematopoietic cells composition. KEY FINDINGS Baicalein improved intestinal structure and the ability of proliferation and regeneration after mice exposed to IR, in which the rebalance of gut microbial composition played an important role. KEGG results showed that p53-related apoptotic pathways played important roles in the composition changes of gut microbiota. Then we observed that baicalein inhibited the activation of p53 and p53 mediated mitochondrial apoptosis and death receptor apoptosis in the intestine. In addition, IR induced injuries to hematopoietic system also could be ameliorated by baicalein. SIGNIFICANCE These results provide new insights into the mechanism of baicalein and support the potential of baicalein as a radioprotective medicine.
Collapse
Affiliation(s)
- Meifang Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jing Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Hongyan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yuanyang Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
272
|
Hu DJK, Jasper H. Control of Intestinal Cell Fate by Dynamic Mitotic Spindle Repositioning Influences Epithelial Homeostasis and Longevity. Cell Rep 2020; 28:2807-2823.e5. [PMID: 31509744 DOI: 10.1016/j.celrep.2019.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 07/09/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023] Open
Abstract
Tissue homeostasis depends on precise yet plastic regulation of stem cell daughter fates. During growth, Drosophila intestinal stem cells (ISCs) adjust fates by switching from asymmetric to symmetric lineages to scale the size of the ISC population. Using a combination of long-term live imaging, lineage tracing, and genetic perturbations, we demonstrate that this switch is executed through the control of mitotic spindle orientation by Jun-N-terminal kinase (JNK) signaling. JNK interacts with the WD40-repeat protein Wdr62 at the spindle and transcriptionally represses the kinesin Kif1a to promote planar spindle orientation. In stress conditions, this function becomes deleterious, resulting in overabundance of symmetric fates and contributing to the loss of tissue homeostasis in the aging animal. Restoring normal ISC spindle orientation by perturbing the JNK/Wdr62/Kif1a axis is sufficient to improve intestinal physiology and extend lifespan. Our findings reveal a critical role for the dynamic control of SC spindle orientation in epithelial maintenance.
Collapse
Affiliation(s)
| | - Heinrich Jasper
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
273
|
Joly A, Rousset R. Tissue Adaptation to Environmental Cues by Symmetric and Asymmetric Division Modes of Intestinal Stem Cells. Int J Mol Sci 2020; 21:ijms21176362. [PMID: 32887329 PMCID: PMC7504256 DOI: 10.3390/ijms21176362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/20/2022] Open
Abstract
Tissues must adapt to the different external stimuli so that organisms can survive in their environments. The intestine is a vital organ involved in food processing and absorption, as well as in innate immune response. Its adaptation to environmental cues such as diet and biotic/abiotic stress involves regulation of the proliferative rate and a switch of division mode (asymmetric versus symmetric) of intestinal stem cells (ISC). In this review, we outline the current comprehension of the physiological and molecular mechanisms implicated in stem cell division modes in the adult Drosophila midgut. We present the signaling pathways and polarity cues that control the mitotic spindle orientation, which is the terminal determinant ensuring execution of the division mode. We review these events during gut homeostasis, as well as during its response to nutrient availability, bacterial infection, chemical damage, and aging. JNK signaling acts as a central player, being involved in each of these conditions as a direct regulator of spindle orientation. The studies of the mechanisms regulating ISC divisions allow a better understanding of how adult stem cells integrate different signals to control tissue plasticity, and of how various diseases, notably cancers, arise from their alterations.
Collapse
|
274
|
Shenoy S. Cell plasticity in cancer: A complex interplay of genetic, epigenetic mechanisms and tumor micro-environment. Surg Oncol 2020; 34:154-162. [PMID: 32891322 DOI: 10.1016/j.suronc.2020.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/13/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Cell plasticity, also known as lineage plasticity is defined as the ability of a cell to reprogram and change its phenotype identity. Cell plasticity is context dependent and occurs during the development of an embryo, tissue regeneration, wound healing. However when deregulated and aberrant it also contributes to cancer initiation, progression, metastases and resistance to therapies. Tumors cells exhibit varying forms of cell plasticity in each stage of the disease to evade normal regulation as would have occurred in normal cell division and homeostasis. Current evidence demonstrates complex interplay between the genes, epigenes, tumor microenvironment and the EMT in cell reprogramming and cancer cell plasticity. Herein we present experimental evidence and evolving new developments in cell plasticity in cancer cells. Additionally "Deregulated/aberrant/hijacked cell plasticity" could be considered as an additional hallmark of a cancer. In the future, combining the advances in next generation sequencing and single cell RNA techniques with evolving AI (artificial intelligence) technologies such as deep learning techniques may predict the trajectories of cancer cells and assist in navigating through the complex intricacies of the cancers. A durable, precise, personalized oncologic treatment could be a reality.
Collapse
Affiliation(s)
- Santosh Shenoy
- Clinical Associate Professor of Surgery, Department of Surgery, Kansas City VA Medical Center, University of Missouri Kansas City, USA; Cancer Biology and Therapeutics, HMS High-Impact Cancer Research (HI-CR) Program, Harvard Medical School 2018-2019, USA.
| |
Collapse
|
275
|
Liu Y, Chen YG. Intestinal epithelial plasticity and regeneration via cell dedifferentiation. CELL REGENERATION 2020; 9:14. [PMID: 32869114 PMCID: PMC7459029 DOI: 10.1186/s13619-020-00053-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022]
Abstract
The intestinal epithelium possesses a great capacity of self-renewal under normal homeostatic conditions and of regeneration upon damages. The renewal and regenerative processes are driven by intestinal stem cells (ISCs), which reside at the base of crypts and are marked by Lgr5. As Lgr5+ ISCs undergo fast cycling and are vulnerable to damages, there must be other types of cells that can replenish the lost Lgr5+ ISCs and then regenerate the damage epithelium. In addition to Lgr5+ ISCs, quiescent ISCs at the + 4 position in the crypt have been proposed to convert to Lgr5+ ISCs during regeneration. However, this “reserve stem cell” model still remains controversial. Different from the traditional view of a hierarchical organization of the intestinal epithelium, recent works support the dynamic “dedifferentiation” model, in which various cell types within the epithelium can de-differentiate to revert to the stem cell state and then regenerate the epithelium upon tissue injury. Here, we provide an overview of the cell identity and features of two distinct models and discuss the possible mechanisms underlying the intestinal epithelial plasticity.
Collapse
Affiliation(s)
- Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
276
|
Defining Adult Stem Cell Function at Its Simplest: The Ability to Replace Lost Cells through Mitosis. Cell Stem Cell 2020; 25:174-183. [PMID: 31374197 DOI: 10.1016/j.stem.2019.07.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Classic studies on hematopoiesis indicate that blood cell numbers are maintained by rare, hard-wired, transplantable stem cells (SCs). Subsequent studies in other organs have implicitly assumed that all SC hierarchies follow the design of the hematopoietic system. Lineage tracing techniques have revolutionized the study of solid tissue SCs. It thus appears that key characteristics of the hematopoietic SC hierarchy (rarity of SCs, specific marker expression, quiescence, asymmetric division, and unidirectional differentiation) are not generalizable to other tissues. In light of these insights, we offer a revised, generalizable definition of SC function: the ability to replace lost tissue through cell division.
Collapse
|
277
|
Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc Natl Acad Sci U S A 2020; 117:20015-20026. [PMID: 32759216 PMCID: PMC7443898 DOI: 10.1073/pnas.2005570117] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This paper improves knowledge of the somatic and germ cells of the developing mouse ovary that assemble into ovarian follicles, by determining cellular gene expression, and tracing lineage relationships. The study covers the last week of fetal development through the first five days of postnatal development. During this time, many critically important processes take place, including sex determination, follicle assembly, and the initial events of meiosis. We report expression differences between pregranulosa cells of wave 1 follicles that function at puberty and wave 2 follicles that sustain fertility. These studies illuminate ovarian somatic cells and provide a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicle formation. We sequenced more than 52,500 single cells from embryonic day 11.5 (E11.5) postembryonic day 5 (P5) gonads and performed lineage tracing to analyze primordial follicles and wave 1 medullar follicles during mouse fetal and perinatal oogenesis. Germ cells clustered into six meiotic substages, as well as dying/nurse cells. Wnt-expressing bipotential precursors already present at E11.5 are followed at each developmental stage by two groups of ovarian pregranulosa (PG) cells. One PG group, bipotential pregranulosa (BPG) cells, derives directly from bipotential precursors, expresses Foxl2 early, and associates with cysts throughout the ovary by E12.5. A second PG group, epithelial pregranulosa (EPG) cells, arises in the ovarian surface epithelium, ingresses cortically by E12.5 or earlier, expresses Lgr5, but delays robust Foxl2 expression until after birth. By E19.5, EPG cells predominate in the cortex and differentiate into granulosa cells of quiescent primordial follicles. In contrast, medullar BPG cells differentiate along a distinct pathway to become wave 1 granulosa cells. Reflecting their separate somatic cellular lineages, second wave follicles were ablated by diptheria toxin treatment of Lgr5-DTR-EGFP mice at E16.5 while first wave follicles developed normally and supported fertility. These studies provide insights into ovarian somatic cells and a resource to study the development, physiology, and evolutionary conservation of mammalian ovarian follicles.
Collapse
|
278
|
Baulies A, Angelis N, Li VSW. Hallmarks of intestinal stem cells. Development 2020; 147:147/15/dev182675. [PMID: 32747330 DOI: 10.1242/dev.182675] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intestinal stem cells (ISCs) are highly proliferative cells that fuel the continuous renewal of the intestinal epithelium. Understanding their regulatory mechanisms during tissue homeostasis is key to delineating their roles in development and regeneration, as well as diseases such as bowel cancer and inflammatory bowel disease. Previous studies of ISCs focused mainly on the position of these cells along the intestinal crypt and their capacity for multipotency. However, evidence increasingly suggests that ISCs also exist in distinct cellular states, which can be an acquired rather than a hardwired intrinsic property. In this Review, we summarise the recent findings into how ISC identity can be defined by proliferation state, signalling crosstalk, epigenetics and metabolism, and propose an update on the hallmarks of ISCs. We further discuss how these properties contribute to intestinal development and the dynamics of injury-induced regeneration.
Collapse
Affiliation(s)
- Anna Baulies
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nikolaos Angelis
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
279
|
Lo YH, Karlsson K, Kuo CJ. Applications of Organoids for Cancer Biology and Precision Medicine. NATURE CANCER 2020; 1:761-773. [PMID: 34142093 PMCID: PMC8208643 DOI: 10.1038/s43018-020-0102-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Organoid technologies enable the creation of in vitro physiologic systems that model tissues of origin more accurately than classical culture approaches. Seminal characteristics, including three-dimensional structure and recapitulation of self-renewal, differentiation, and disease pathology, render organoids eminently suited as hybrids that combine the experimental tractability of traditional 2D cell lines with cellular attributes of in vivo model systems. Here, we describe recent advances in this rapidly evolving field and their applications in cancer biology, clinical translation and precision medicine.
Collapse
Affiliation(s)
- Yuan-Hung Lo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Kasper Karlsson
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Calvin J. Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
280
|
Bandekar M, Maurya DK, Sharma D, Checker R, Gota V, Mishra N, Sandur SK. Xenogeneic transplantation of human WJ-MSCs rescues mice from acute radiation syndrome via Nrf-2-dependent regeneration of damaged tissues. Am J Transplant 2020; 20:2044-2057. [PMID: 32040239 DOI: 10.1111/ajt.15819] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/25/2023]
Abstract
There is an unmet medical need for radiation countermeasures that can be deployed for treatment of exposed individuals during ionizing radiation (IR) accidents or terrorism. Wharton's jelly mesenchymal stem cells (WJ-MSCs) from human umbilical cord have been shown to avoid allorecognition and induce a tissue-regenerating microenvironment, which makes them an attractive candidate for mitigating IR injury. We found that WJ-MSCs protected mice from a lethal dose of IR even when transplanted up to 24 hours after irradiation, and a combination of WJ-MSCs and antibiotic (tetracycline) could further expand the window of protection offered by WJ-MSCs. This combinatorial approach mitigated IR-induced damage to the hematopoietic and gastrointestinal system. WJ-MSCs increased the serum concentration of the cytoprotective cytokines granulocyte colony-stimulating factor (G-CSF) and IL-6 in mice. Knockdown of G-CSF and IL-6 in WJ-MSCs before injection to lethally irradiated mice or transplantation of WJ-MSCs to lethally irradiated Nrf-2 knockout mice significantly nullified the therapeutic protective efficacy. Hence, WJ-MSCs could be a potential cell-based therapy for individuals accidentally exposed to radiation.
Collapse
Affiliation(s)
- Mayuri Bandekar
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India.,University of Mumbai, Kalina, Mumbai, India
| | - Dharmendra K Maurya
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Rahul Checker
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Vikram Gota
- Clinical Pharmacology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | | | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
281
|
Verzi MP, Shivdasani RA. Epigenetic regulation of intestinal stem cell differentiation. Am J Physiol Gastrointest Liver Physiol 2020; 319:G189-G196. [PMID: 32628072 PMCID: PMC7500269 DOI: 10.1152/ajpgi.00084.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To fulfill the lifelong need to supply diverse epithelial cells, intestinal stem cells (ISCs) rely on executing accurate transcriptional programs. This review addresses the mechanisms that control those programs. Genes that define cell behaviors and identities are regulated principally through thousands of dispersed enhancers, each individually <1 kb long and positioned from a few to hundreds of kilobases away from transcription start sites, upstream or downstream from coding genes or within introns. Wnt, Notch, and other epithelial control signals feed into these cis-regulatory DNA elements, which are also common loci of polymorphisms and mutations that confer disease risk. Cell-specific gene activity requires promoters to interact with the correct combination of signal-responsive enhancers. We review the current state of knowledge in ISCs regarding active enhancers, the nucleosome modifications that may enable appropriate and hinder inappropriate enhancer-promoter contacts, and the roles of lineage-restricted transcription factors.
Collapse
Affiliation(s)
- Michael P. Verzi
- 1Department of Genetics, Rutgers, State University of New Jersey, Piscataway, New Jersey,2Cancer Institute of New Jersey and Human Genetics Institute of New Jersey, Piscataway, New Jersey
| | - Ramesh A. Shivdasani
- 3Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts,4Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts,5Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
282
|
Autophagy Detection in Intestinal Stem Cells. Methods Mol Biol 2020. [PMID: 32705638 DOI: 10.1007/978-1-0716-0747-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Autophagy is a lysosomal degradation pathway with important roles in physiological homeostasis and disease. We previously showed that intrinsic autophagy in intestinal stem cells (ISCs) is important for ISC homeostasis. Here we describe the detailed methods for detecting autophagy in ISCs by observing autophagosomes in GFP-LC3 transgenic mice and quantifying the p62 protein levels. We also describe methods for detecting mitophagy in these cells, by analyzing the mitochondrial transmembrane potential and reactive oxygen species (ROS) level by MitoTracker and CellROX solution, respectively.
Collapse
|
283
|
Jardé T, Chan WH, Rossello FJ, Kaur Kahlon T, Theocharous M, Kurian Arackal T, Flores T, Giraud M, Richards E, Chan E, Kerr G, Engel RM, Prasko M, Donoghue JF, Abe SI, Phesse TJ, Nefzger CM, McMurrick PJ, Powell DR, Daly RJ, Polo JM, Abud HE. Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. Cell Stem Cell 2020; 27:646-662.e7. [PMID: 32693086 DOI: 10.1016/j.stem.2020.06.021] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor (EGF) maintains intestinal stem cell (ISC) proliferation and is a key component of organoid growth media yet is dispensable for intestinal homeostasis, suggesting roles for multiple EGF family ligands in ISC function. Here, we identified neuregulin 1 (NRG1) as a key EGF family ligand that drives tissue repair following injury. NRG1, but not EGF, is upregulated upon damage and is expressed in mesenchymal stromal cells, macrophages, and Paneth cells. NRG1 deletion reduces proliferation in intestinal crypts and compromises regeneration capacity. NRG1 robustly stimulates proliferation in crypts and induces budding in organoids, in part through elevated and sustained activation of mitogen-activated protein kinase (MAPK) and AKT. Consistently, NRG1 treatment induces a proliferative gene signature and promotes organoid formation from progenitor cells and enhances regeneration following injury. These data suggest mesenchymal-derived NRG1 is a potent mediator of tissue regeneration and may inform the development of therapies for enhancing intestinal repair after injury.
Collapse
Affiliation(s)
- Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
| | - Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Tanvir Kaur Kahlon
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Mandy Theocharous
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Teni Kurian Arackal
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Tracey Flores
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Mégane Giraud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Elizabeth Richards
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Eva Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Rebekah M Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, VIC 3144, Australia
| | - Mirsada Prasko
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jacqueline F Donoghue
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Royal Women's Hospital, Melbourne University, Melbourne, VIC 3052, Australia
| | - Shin-Ichi Abe
- Center for Education, Kumamoto Health Science University, Kumamoto 861-5598, Japan
| | - Toby J Phesse
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Paul J McMurrick
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, VIC 3144, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC 3800, Australia
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia.
| |
Collapse
|
284
|
Bohin N, Keeley TM, Carulli AJ, Walker EM, Carlson EA, Gao J, Aifantis I, Siebel CW, Rajala MW, Myers MG, Jones JC, Brindley CD, Dempsey PJ, Samuelson LC. Rapid Crypt Cell Remodeling Regenerates the Intestinal Stem Cell Niche after Notch Inhibition. Stem Cell Reports 2020; 15:156-170. [PMID: 32531190 PMCID: PMC7363878 DOI: 10.1016/j.stemcr.2020.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Intestinal crypts have great capacity for repair and regeneration after intestinal stem cell (ISC) injury. Here, we define the cellular remodeling process resulting from ISC niche interruption by transient Notch pathway inhibition in adult mice. Although ISCs were retained, lineage tracing demonstrated a marked reduction in ISC function after Notch disruption. Surprisingly, Notch ligand-expressing Paneth cells were rapidly lost by apoptotic cell death. The ISC-Paneth cell changes were followed by a regenerative response, characterized by expansion of cells expressing Notch ligands Dll1 and Dll4, enhanced Notch signaling, and a proliferative surge. Lineage tracing and organoid studies showed that Dll1-expressing cells were activated to function as multipotential progenitors, generating both absorptive and secretory cells and replenishing the vacant Paneth cell pool. Our analysis uncovered a dynamic, multicellular remodeling response to acute Notch inhibition to repair the niche and restore homeostasis. Notably, this crypt regenerative response did not require ISC loss.
Collapse
Affiliation(s)
- Natacha Bohin
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Theresa M Keeley
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexis J Carulli
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily M Walker
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth A Carlson
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Gao
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA 94080, USA
| | - Michael W Rajala
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martin G Myers
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer C Jones
- Department of Pediatrics, University of Colorado Medical School, Aurora, CO 80045, USA
| | - Constance D Brindley
- Department of Pediatrics, University of Colorado Medical School, Aurora, CO 80045, USA
| | - Peter J Dempsey
- Department of Pediatrics, University of Colorado Medical School, Aurora, CO 80045, USA
| | - Linda C Samuelson
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
285
|
Pan J, Zhang L, Shao X, Huang J. Acetylcholine From Tuft Cells: The Updated Insights Beyond Its Immune and Chemosensory Functions. Front Cell Dev Biol 2020; 8:606. [PMID: 32733896 PMCID: PMC7359717 DOI: 10.3389/fcell.2020.00606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Tuft cells, rare solitary chemosensory cells, are distributed in mucosal epithelium throughout mammalian organs. Their nomenclatures are various in different organs and may be confused with other similar cells. Current studies mainly focus on their chemosensory ability and immune functions in type 2 inflammation. Several state-of-the-art reviews have already systematically discussed their role in immune responses. However, given that tuft cells are one of the crucial components of non-neuronal cholinergic system, the functions of tuft cell derived acetylcholine (ACh) and the underlying mechanisms remain intricate. Existing evidence demonstrated that tuft cell derived ACh participates in maintaining epithelial homeostasis, modulating airway remodeling, regulating reflexes, promoting muscle constriction, inducing neurogenic inflammation, initiating carcinogenesis and producing ATP. In this review, the ACh biosynthesis pathways and potential clinical applications of tuft cells have been proposed. More importantly, the main pathophysiological roles and the underlying mechanisms of tuft cell derived ACh are summarized and discussed.
Collapse
Affiliation(s)
- Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Shao
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
286
|
Chen F, Zhang Y, Hu S, Shi X, Wang Z, Deng Z, Lin L, Zhang J, Pan Y, Bai Y, Liu F, Zhang H, Shao C. TIGAR/AP-1 axis accelerates the division of Lgr5 - reserve intestinal stem cells to reestablish intestinal architecture after lethal radiation. Cell Death Dis 2020; 11:501. [PMID: 32632140 PMCID: PMC7338449 DOI: 10.1038/s41419-020-2715-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022]
Abstract
During radiologic or nuclear accidents, high-dose ionizing radiation (IR) can cause gastrointestinal syndrome (GIS), a deadly disorder that urgently needs effective therapy. Unfortunately, current treatments based on natural products and antioxidants have shown very limited effects in alleviating deadly GIS. Reserve intestinal stem cells (ISCs) and secretory progenitor cells are both reported to replenish damaged cells and contribute to crypt regeneration. However, the suppressed β-catenin/c-MYC axis within these slow-cycling cells leads to limited regenerative response to restore intestinal integrity during fatal accidental injury. Current study demonstrates that post-IR overexpression of TIGAR, a critical downstream target of c-MYC in mouse intestine, mounts a hyperplastic response in Bmi1-creERT+ reserve ISCs, and thus rescues mice from lethal IR exposure. Critically, by eliminating damaging reactive oxygen species (ROS) yet retaining the proliferative ROS signals, TIGAR-overexpression enhances the activity of activator protein 1, which is indispensable for initiating reserve-ISC division after lethal radiation. In addition, it is identified that TIGAR-induction exclusively gears the Lgr5− subpopulation of reserve ISCs to regenerate crypts, and intestinal TIGAR-overexpression displays equivalent intestinal reconstruction to reserve-ISC-restricted TIGAR-induction. Our findings imply that precise administrations toward Lgr5− reserve ISCs are promising strategies for unpredictable lethal injury, and TIGAR can be employed as a therapeutic target for unexpected radiation-induced GIS.
Collapse
Affiliation(s)
- Fei Chen
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Yushuo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Songling Hu
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China
| | - Xiaolin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Interventional Radiology, The Third Affiliated Hospital of the Medical College of Shihezi University, Xinjiang, 832008, China
| | - Zicheng Deng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Longxin Lin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China
| | - Fenju Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Haowen Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
287
|
Fernandez Vallone V, Leprovots M, Ribatallada‐Soriano D, Gerbier R, Lefort A, Libert F, Vassart G, Garcia M. LGR5 controls extracellular matrix production by stem cells in the developing intestine. EMBO Rep 2020; 21:e49224. [PMID: 32468660 PMCID: PMC7332981 DOI: 10.15252/embr.201949224] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
The Lgr5 receptor is a marker of intestinal stem cells (ISCs) that regulates Wnt/b-catenin signaling. In this study, phenotype analysis of knockin/knockout Lgr5-eGFP-IRES-Cre and Lgr5-DTReGFP embryos reveals that Lgr5 deficiency during Wnt-mediated cytodifferentiation results in amplification of ISCs and early differentiation into Paneth cells, which can be counteracted by in utero treatment with the Wnt inhibitor LGK974. Conditional ablation of Lgr5 postnatally, but not in adults, alters stem cell fate toward the Paneth lineage. Together, these in vivo studies suggest that Lgr5 is part of a feedback loop to adjust the Wnt tone in ISCs. Moreover, transcriptome analyses reveal that Lgr5 controls fetal ISC maturation associated with acquisition of a definitive stable epithelial phenotype, as well as the capacity of ISCs to generate their own extracellular matrix. Finally, using the ex vivo culture system, evidences are provided that Lgr5 antagonizes the Rspondin 2-Wnt-mediated response in ISCs in organoids, revealing a sophisticated regulatory process for Wnt signaling in ISCs.
Collapse
Affiliation(s)
- Valeria Fernandez Vallone
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
- Present address:
1 Charité – Universitätsmedizin Berlin, Berlin Institute of Health (BIH)BerlinGermany
| | - Morgane Leprovots
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Didac Ribatallada‐Soriano
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Romain Gerbier
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Anne Lefort
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Frédérick Libert
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Gilbert Vassart
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| | - Marie‐Isabelle Garcia
- Faculty of MedicineInstitut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de Bruxelles ULBBrusselsBelgium
| |
Collapse
|
288
|
Liu CY, Polk DB. Cellular maps of gastrointestinal organs: getting the most from tissue clearing. Am J Physiol Gastrointest Liver Physiol 2020; 319:G1-G10. [PMID: 32421359 PMCID: PMC7468759 DOI: 10.1152/ajpgi.00075.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of modern methods to induce optical transparency ("clearing") in biological tissues has enabled the three-dimensional (3D) reconstruction of intact organs at cellular resolution. New capabilities in visualization of rare cellular events, long-range interactions, and irregular structures will facilitate novel studies in the alimentary tract and gastrointestinal systems. The tubular geometry of the alimentary tract facilitates large-scale cellular reconstruction of cleared tissue without specialized microscopy setups. However, with the rapid pace of development of clearing agents and current relative paucity of research groups in the gastrointestinal field using these techniques, it can be daunting to incorporate tissue clearing into experimental workflows. Here, we give some advice and describe our own experience bringing tissue clearing and whole mount reconstruction into our laboratory's investigations. We present a brief overview of the chemical concepts that underpin tissue clearing, what sorts of questions whole mount imaging can answer, how to choose a clearing agent, an example of how to clear and image alimentary tissue, and what to do after obtaining the image. This short review will encourage other gastrointestinal researchers to consider how utilizing tissue clearing and creating 3D "maps" of tissue might deepen the impact of their studies.
Collapse
Affiliation(s)
- Cambrian Y. Liu
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Saban Research Institute Children’s Hospital Los Angeles, Los Angeles, California
| | - D. Brent Polk
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Saban Research Institute Children’s Hospital Los Angeles, Los Angeles, California,2Department of Pediatrics, Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California Los Angeles, California
| |
Collapse
|
289
|
Fritsch SD, Weichhart T. Metabolic and immunologic control of intestinal cell function by mTOR. Int Immunol 2020; 32:455-465. [PMID: 32140726 PMCID: PMC7617511 DOI: 10.1093/intimm/dxaa015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium is one of the most quickly dividing tissues in our body, combining the absorptive advantages of a single layer with the protection of a constantly renewing barrier. It is continuously exposed to nutrients and commensal bacteria as well as microbial and host-derived metabolites, but also to hazards such as pathogenic bacteria and toxins. These environmental cues are sensed by the mucosa and a vast repertory of immune cells, especially macrophages. A disruption of intestinal homeostasis in terms of barrier interruption can lead to inflammatory bowel diseases and colorectal cancer, and macrophages have an important role in restoring epithelial function following injury. The mammalian/mechanistic target of rapamycin (mTOR) signalling pathway senses environmental cues and integrates metabolic responses. It has emerged as an important regulator of intestinal functions in homeostasis and disease. In this review, we are going to discuss intestinal mTOR signalling and metabolic regulation in different intestinal cell populations with a special focus on immune cells and their actions on intestinal function.
Collapse
Affiliation(s)
- Stephanie D Fritsch
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Straße, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Straße, Vienna, Austria
| |
Collapse
|
290
|
Volume-dependent dose-response of the intestinal stem cell niche and lymphoid tissue. Radiother Oncol 2020; 150:51-56. [PMID: 32534012 DOI: 10.1016/j.radonc.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE Plasticity of the intestinal stem cell compartment in response to radiation injury is regulated by a stem cell niche. We present here the first experimental observations of a dose-volume effect of the intestinal stem cell niche and of the solitary intestinal lymphoid tissues (SILT). MATERIALS AND METHODS Regeneration of intestinal crypts in mice was studied following irradiation of millimetre-size jejunal sections with single doses of 6 to 24 Gy and compared to total body irradiation (TBI). The statistical distribution of cells per crypt was scored and regressed to a biomathematical model. The number of SILTs was scored for different doses and field sizes and crypt regeneration was correlated with SILT proximity. RESULTS We observed a differential dose-response of the intestinal stem cell niche at the centres of the irradiated sections, but only for field sizes below 10 mm. Irradiation of 5 mm jejunum results in an increase in crypt survival by up to an order of magnitude, compared to TBI. Distributions of cell-per-crypt numbers and comparison to biomathematical modelling suggest that these observations stem from a field size-dependent regeneration rate. The density of SILTs also exhibits a volume-dependent dose-response and increased crypt survival correlates with a proximity to SILTs. CONCLUSION Our findings present the first observation of a field-size dependent dose-response of the intestinal stem cell niche. Its regeneration process does apparently not rely on distant radiation-sensitive resources of the organism, such as the bone marrow. Yet, our observations suggest that the niche interacts with intact tissue in millimetres distance, leading to faster crypt regeneration. The field-size dependent dose-response of SILTs posits a role of the immune system on the dose-volume effect.
Collapse
|
291
|
Lin CC, Yao CY, Hsu YC, Hou HA, Yuan CT, Li YH, Kao CJ, Chuang PH, Chiu YC, Chen Y, Chou WC, Tien HF. Knock-out of Hopx disrupts stemness and quiescence of hematopoietic stem cells in mice. Oncogene 2020; 39:5112-5123. [PMID: 32533098 DOI: 10.1038/s41388-020-1340-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
HOPX is a stem cell marker in hair follicles and intestines. It was shown critical for primitive hematopoiesis. We previously showed an association between higher HOPX expression and clinical characteristics related to stemness and quiescence of leukemic cells in acute myeloid leukemia (AML) patients. To further explore its physiologic functions in hematopoietic system, we generated a mouse model with hematopoietic cell-specific knockout of Hopx (Hopx-/-). In young Hopx-/- mice, the hematopoietic stem cells (HSC) showed decreased reconstitution ability after serial transplantation. Further transcriptomic study revealed decreased HSC signatures in long-term HSCs from the Hopx-/- mice. At 18 months of age, half of the Hopx-/- mice developed cytopenia and splenomegaly. Bone marrow (BM) from the sick mice showed myeloid hyperplasia with predominant mature neutrophils, and decreased progenitor cells and lymphocytes. These phenotypes suggested critical functions of Hopx in maintaining HSC quiescence. Transcriptomic study of the Hopx-/- marrow cells showed significant downregulation of the Cxcl12-Cxcr4 axis, which is critical for maintenance of HSC quiescence. We next examined the role of Hopx in AML by using the MN1 overexpression murine leukemia model. Mice transplanted with MN1-overexpressed Hopx-/- BM cells developed AML with more aggressive phenotypes compared with those transplanted with MN1-overexpressed Hopx-wild cells. Hopx-/- MN1-overexpressed leukemia cells showed higher proliferation rate and downregulation of Cxcl12 and Cxcr4. Furthermore, in human AML, BM plasma CXCL12 levels were lower in patients with lower HOPX expression. In conclusion, our study highlights the roles of Hopx in maintenance of quiescence of the hematopoietic stem cells through CXCL12 pathway in vivo and provides implication of this protein in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Chien-Chin Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Yuan Yao
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yueh-Chwen Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Tsu Yuan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pathology, Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hung Li
- Department of Animal Science, Chinese Culture University, Taipei, Taiwan
| | - Chein-Jun Kao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Han Chuang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chiao Chiu
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Wen-Chien Chou
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
292
|
Jiang Y, Zhuo X, Mao C. G Protein-coupled Receptors in Cancer Stem Cells. Curr Pharm Des 2020; 26:1952-1963. [DOI: 10.2174/1381612826666200305130009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly expressed on a variety of tumour tissues while several
GPCR exogenous ligands become marketed pharmaceuticals. In recent decades, cancer stem cells (CSCs) become
widely investigated drug targets for cancer therapy but the underlying mechanism is still not fully elucidated.
There are vigorous participations of GPCRs in CSCs-related signalling and functions, such as biomarkers for
CSCs, activation of Wnt, Hedgehog (HH) and other signalling to facilitate CSCs progressions. This relationship
can not only uncover a novel molecular mechanism for GPCR-mediated cancer cell functions but also assist our
understanding of maintaining and modulating CSCs. Moreover, GPCR antagonists and monoclonal antibodies
could be applied to impair CSCs functions and consequently attenuate tumour growth, some of which have been
undergoing clinical studies and are anticipated to turn into marketed anticancer drugs. Therefore, this review
summarizes and provides sufficient evidences on the regulation of GPCR signalling in the maintenance, differentiation
and pluripotency of CSCs, suggesting that targeting GPCRs on the surface of CSCs could be potential
therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Zhuo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Canquan Mao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
293
|
Plasticity in Ovarian Cancer: The Molecular Underpinnings and Phenotypic Heterogeneity. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
294
|
Bohin N, McGowan KP, Keeley TM, Carlson EA, Yan KS, Samuelson LC. Insulin-like Growth Factor-1 and mTORC1 Signaling Promote the Intestinal Regenerative Response After Irradiation Injury. Cell Mol Gastroenterol Hepatol 2020; 10:797-810. [PMID: 32502530 PMCID: PMC7502577 DOI: 10.1016/j.jcmgh.2020.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Intestinal crypts have a remarkable capacity to regenerate after injury from loss of crypt base columnar (CBC) stem cells. After injury, facultative stem cells (FSCs) are activated to replenish the epithelium and replace lost CBCs. Our aim was to assess the role of insulin-like growth factor-1 (IGF-1) to activate FSCs for crypt repair. METHODS The intestinal regenerative response was measured after whole body 12-Gy γ-irradiation of adult mice. IGF-1 signaling or its downstream effector mammalian target of rapamycin complex 1 (mTORC1) was inhibited by administering BMS-754807 or rapamycin, respectively. Mice with inducible Rptor gene deletion were studied to test the role of mTORC1 signaling in the intestinal epithelium. FSC activation post-irradiation was measured by lineage tracing. RESULTS We observed a coordinate increase in growth factor expression, including IGF-1, at 2 days post-irradiation, followed by a surge in mTORC1 activity during the regenerative phase of crypt repair at day 4. IGF-1 was localized to pericryptal mesenchymal cells, and IGF-1 receptor was broadly expressed in crypt progenitor cells. Inhibition of IGF-1 signaling via BMS-754807 treatment impaired crypt regeneration after 12-Gy irradiation, with no effect on homeostasis. Similarly, rapamycin inhibition of mTORC1 during the growth factor surge blunted the regenerative response. Analysis of Villin-CreERT2;Rptorfl/fl mice showed that epithelial mTORC1 signaling was essential for crypt regeneration. Lineage tracing from Bmi1-marked cells showed that rapamycin blocked FSC activation post-irradiation. CONCLUSIONS Our study shows that IGF-1 signaling through mTORC1 drives crypt regeneration. We propose that IGF-1 release from pericryptal cells stimulates mTORC1 in FSCs to regenerate lost CBCs.
Collapse
Affiliation(s)
- Natacha Bohin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Kevin P McGowan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Theresa M Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Elizabeth A Carlson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Kelley S Yan
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Departments of Medicine and Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
295
|
Seyed-Safi AG, Daniels JT. A validated porcine corneal organ culture model to study the limbal response to corneal epithelial injury. Exp Eye Res 2020; 197:108063. [PMID: 32417262 DOI: 10.1016/j.exer.2020.108063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/03/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Limbal epithelial stem cells are required for the maintenance and repair of the corneal epithelial surface. The difficulty in obtaining human corneal tissue for research purposes means that animal models for studying the corneal and limbal epithelium are extremely useful. Porcine corneal tissue represents an attractive experimental model, however, functional analysis of the limbal epithelial cell population is needed to validate the use of this tissue. Single cell clonal analysis revealed that holoclone-generating cells were enriched in the limbus as compared with the central cornea (38.3% vs 8.3%) and that label-retaining cells were also enriched in the limbus and compared with the central cornea (44.7 ± 6.4 vs 4.7 ± 1.5). Furthermore, it was demonstrated that in a 3D-printed organ culture system, porcine tissue was capable of maintaining and healing the corneal epithelium. Ki67 staining of corneal sections revealed that in response to central epithelial wounding, a greater proportion of progenitors in the basal limbal epithelium enter an actively dividing state. The authors present a comprehensively validated model system for studying the interactions between limbal niche factors and limbal epithelial stem cell fate.
Collapse
|
296
|
Li W, Zimmerman SE, Peregrina K, Houston M, Mayoral J, Zhang J, Maqbool S, Zhang Z, Cai Y, Ye K, Augenlicht LH. The nutritional environment determines which and how intestinal stem cells contribute to homeostasis and tumorigenesis. Carcinogenesis 2020; 40:937-946. [PMID: 31169292 DOI: 10.1093/carcin/bgz106] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Sporadic colon cancer accounts for approximately 80% of colorectal cancer (CRC) with high incidence in Western societies strongly linked to long-term dietary patterns. A unique mouse model for sporadic CRC results from feeding a purified rodent Western-style diet (NWD1) recapitulating intake for the mouse of common nutrient risk factors each at its level consumed in higher risk Western populations. This causes sporadic large and small intestinal tumors in wild-type mice at an incidence and frequency similar to that in humans. NWD1 perturbs intestinal cell maturation and Wnt signaling throughout villi and colonic crypts and decreases mouse Lgr5hi intestinal stem cell contribution to homeostasis and tumor development. Here we establish that NWD1 transcriptionally reprograms Lgr5hi cells, and that nutrients are interactive in reprogramming. Furthermore, the DNA mismatch repair pathway is elevated in Lgr5hi cells by lower vitamin D3 and/or calcium in NWD1, paralleled by reduced accumulation of relevant somatic mutations detected by single-cell exome sequencing. In compensation, NWD1 also reprograms Bmi1+ cells to function and persist as stem-like cells in mucosal homeostasis and tumor development. The data establish the key role of the nutrient environment in defining the contribution of two different stem cell populations to both mucosal homeostasis and tumorigenesis. This raises important questions regarding impact of variable human diets on which and how stem cell populations function in the human mucosa and give rise to tumors. Moreover, major differences reported in turnover of human and mouse crypt base stem cells may be linked to their very different nutrient exposures.
Collapse
Affiliation(s)
- Wenge Li
- Department of Medicine, Albert Einstein College of Medicine, Ullmann, Bronx, NY, USA
| | - Samuel E Zimmerman
- Systems and Computational Biology, Albert Einstein College of Medicine, Ullmann, Bronx, NY, USA
| | - Karina Peregrina
- Department of Medicine, Albert Einstein College of Medicine, Ullmann, Bronx, NY, USA
| | - Michele Houston
- Department of Medicine, Albert Einstein College of Medicine, Ullmann, Bronx, NY, USA
| | - Joshua Mayoral
- Pathology, Albert Einstein College of Medicine, Ullmann, Bronx, NY, USA
| | - Jinghang Zhang
- Microbiology and Immunology, Albert Einstein College of Medicine, Ullmann, Bronx, NY, USA
| | - Shahina Maqbool
- Genetics, Albert Einstein College of Medicine, Ullmann, Bronx, NY, USA
| | - Zhengdong Zhang
- Genetics, Albert Einstein College of Medicine, Ullmann, Bronx, NY, USA
| | - Ying Cai
- Genetics, Albert Einstein College of Medicine, Ullmann, Bronx, NY, USA
| | - Kenny Ye
- Epidemiology and Population Health, Albert Einstein College of Medicine, Ullmann, Bronx, NY, USA
| | - Leonard H Augenlicht
- Department of Medicine, Albert Einstein College of Medicine, Ullmann, Bronx, NY, USA.,Cell Biology, Albert Einstein College of Medicine, Ullmann, Bronx, NY, USA
| |
Collapse
|
297
|
McKinley KL, Castillo-Azofeifa D, Klein OD. Tools and Concepts for Interrogating and Defining Cellular Identity. Cell Stem Cell 2020; 26:632-656. [PMID: 32386555 PMCID: PMC7250495 DOI: 10.1016/j.stem.2020.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Defining the mechanisms that generate specialized cell types and coordinate their functions is critical for understanding organ development and renewal. New tools and discoveries are challenging and refining our definitions of a cell type. A rapidly growing toolkit for single-cell analyses has expanded the number of markers that can be assigned to a cell simultaneously, revealing heterogeneity within cell types that were previously regarded as homogeneous populations. Additionally, cell types defined by specific molecular markers can exhibit distinct, context-dependent functions; for example, between tissues in homeostasis and those responding to damage. Here we review the current technologies used to identify and characterize cells, and we discuss how experimental and pathological perturbations are adding increasing complexity to our definitions of cell identity.
Collapse
Affiliation(s)
- Kara L McKinley
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - David Castillo-Azofeifa
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
298
|
Hata M, Kinoshita H, Hayakawa Y, Konishi M, Tsuboi M, Oya Y, Kurokawa K, Hayata Y, Nakagawa H, Tateishi K, Fujiwara H, Hirata Y, Worthley DL, Muranishi Y, Furukawa T, Kon S, Tomita H, Wang TC, Koike K. GPR30-Expressing Gastric Chief Cells Do Not Dedifferentiate But Are Eliminated via PDK-Dependent Cell Competition During Development of Metaplasia. Gastroenterology 2020; 158:1650-1666.e15. [PMID: 32032583 PMCID: PMC8796250 DOI: 10.1053/j.gastro.2020.01.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Gastric chief cells, a mature cell type that secretes digestive enzymes, have been proposed to be the origin of metaplasia and cancer through dedifferentiation or transdifferentiation. However, studies supporting this claim have had technical limitations, including issues with the specificity of chief cell markers and the toxicity of drugs used. We therefore sought to identify genes expressed specifically in chief cells and establish a model to trace these cells. METHODS We performed transcriptome analysis of Mist1-CreERT-traced cells, with or without chief cell depletion. Gpr30-rtTA mice were generated and crossed to TetO-Cre mice, and lineage tracing was performed after crosses to R26-TdTomato mice. Additional lineage tracing experiments were performed using Mist1-CreERT, Kitl-CreERT, Tff1-Cre, and Tff2-Cre mice crossed to reporter mice. Mice were given high-dose tamoxifen or DMP-777 or were infected with Helicobacter pylori to induce gastric metaplasia. We studied mice that expressed mutant forms of Ras in gastric cells, using TetO-KrasG12D, LSL-KrasG12D, and LSL-HrasG12V mice. We analyzed stomach tissues from GPR30-knockout mice. Mice were given dichloroacetate to inhibit pyruvate dehydrogenase kinase (PDK)-dependent cell competition. RESULTS We identified GPR30, the G-protein-coupled form of the estrogen receptor, as a cell-specific marker of chief cells in gastric epithelium of mice. Gpr30-rtTA mice crossed to TetO-Cre;R26-TdTomato mice had specific expression of GPR30 in chief cells, with no expression noted in isthmus stem cells or lineage tracing of glands. Expression of mutant Kras in GPR30+ chief cells did not lead to the development of metaplasia or dysplasia but, instead, led to a reduction in labeled numbers of chief cells and a compensatory expansion of neck lineage, which was derived from upper Kitl+ clones. Administration of high-dose tamoxifen, DMP-777, or H pylori decreased the number of labeled chief cells. Chief cells were eliminated from epithelia via GPR30- and PDK-dependent cell competition after metaplastic stimuli, whereas loss of GRP30 or inhibition of PDK activity preserved chief cell numbers and attenuated neck lineage cell expansion. CONCLUSIONS In tracing studies of mice, we found that most chief cells are lost during metaplasia and therefore are unlikely to contribute to gastric carcinogenesis. Expansion of cells that coexpress neck and chief lineage markers, known as spasmolytic polypeptide-expressing metaplasia, does not occur via dedifferentiation from chief cells but, rather, through a compensatory response from neck progenitors to replace the eliminated chief cells.
Collapse
Affiliation(s)
- Masahiro Hata
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan,Co-first authors
| | - Hiroto Kinoshita
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan,Department of Gastroenterology, The Institute for Adult Diseases, Asahi-life Foundation, Tokyo, 103-0002, Japan,Co-first authors
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, Japan.
| | - Mitsuru Konishi
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Yukiko Oya
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Ken Kurokawa
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Yuki Hayata
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, The Institute for Adult Diseases, Asahi-life Foundation, Tokyo, 103-0002, Japan
| | - Yoshihiro Hirata
- Division of Advanced Genome Medicine, The Institute of Medical Science, the University of Tokyo, Tokyo, 108-8639, Japan
| | | | - Yuki Muranishi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Shunsuke Kon
- Tokyo University of Science, Division of Development and Aging, Research Institute for Biomedical Sciences, Chiba, 278-0022, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194, JAPAN
| | - Timothy C. Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate school of Medicine, the University of Tokyo, Tokyo, 1138655, Japan
| |
Collapse
|
299
|
Dekoninck S, Hannezo E, Sifrim A, Miroshnikova YA, Aragona M, Malfait M, Gargouri S, de Neunheuser C, Dubois C, Voet T, Wickström SA, Simons BD, Blanpain C. Defining the Design Principles of Skin Epidermis Postnatal Growth. Cell 2020; 181:604-620.e22. [PMID: 32259486 PMCID: PMC7198979 DOI: 10.1016/j.cell.2020.03.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/10/2020] [Accepted: 03/05/2020] [Indexed: 11/20/2022]
Abstract
During embryonic and postnatal development, organs and tissues grow steadily to achieve their final size at the end of puberty. However, little is known about the cellular dynamics that mediate postnatal growth. By combining in vivo clonal lineage tracing, proliferation kinetics, single-cell transcriptomics, and in vitro micro-pattern experiments, we resolved the cellular dynamics taking place during postnatal skin epidermis expansion. Our data revealed that harmonious growth is engineered by a single population of developmental progenitors presenting a fixed fate imbalance of self-renewing divisions with an ever-decreasing proliferation rate. Single-cell RNA sequencing revealed that epidermal developmental progenitors form a more uniform population compared with adult stem and progenitor cells. Finally, we found that the spatial pattern of cell division orientation is dictated locally by the underlying collagen fiber orientation. Our results uncover a simple design principle of organ growth where progenitors and differentiated cells expand in harmony with their surrounding tissues.
Collapse
Affiliation(s)
- Sophie Dekoninck
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Alejandro Sifrim
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium; Wellcome Sanger Institute, Sanger Institute - EBI Single-Cell Genomics Centre, Hinxton, UK
| | - Yekaterina A Miroshnikova
- Helsinki Institute of Life Science, University of Helsinki, Biomedicum, Haartmaninkatu 8, 00290 Helsinki, Finland; Wihuri Research Institute, Biomedicum, Haartmaninkatu 8, 00290 Helsinki, Finland; Max Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9b, 50931 Cologne, Germany
| | - Mariaceleste Aragona
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium
| | - Milan Malfait
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium
| | - Souhir Gargouri
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium
| | | | - Christine Dubois
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium
| | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium; Wellcome Sanger Institute, Sanger Institute - EBI Single-Cell Genomics Centre, Hinxton, UK
| | - Sara A Wickström
- Helsinki Institute of Life Science, University of Helsinki, Biomedicum, Haartmaninkatu 8, 00290 Helsinki, Finland; Wihuri Research Institute, Biomedicum, Haartmaninkatu 8, 00290 Helsinki, Finland; Max Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9b, 50931 Cologne, Germany
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, UK
| | - Cédric Blanpain
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium; WELBIO, Université Libre de Bruxelles, Brussels 1070, Belgium.
| |
Collapse
|
300
|
LGR5 marks targetable tumor-initiating cells in mouse liver cancer. Nat Commun 2020; 11:1961. [PMID: 32327656 PMCID: PMC7181628 DOI: 10.1038/s41467-020-15846-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer stem cells (CSCs) or tumor-initiating cells (TICs) are thought to be the main drivers for disease progression and treatment resistance across various cancer types. Identifying and targeting these rare cancer cells, however, remains challenging with respect to therapeutic benefit. Here, we report the enrichment of LGR5 expressing cells, a well-recognized stem cell marker, in mouse liver tumors, and the upregulation of LGR5 expression in human hepatocellular carcinoma. Isolated LGR5 expressing cells from mouse liver tumors are superior in initiating organoids and forming tumors upon engraftment, featuring candidate TICs. These cells are resistant to conventional treatment including sorafenib and 5-FU. Importantly, LGR5 lineage ablation significantly inhibits organoid initiation and tumor growth. The combination of LGR5 ablation with 5-FU, but not sorafenib, further augments the therapeutic efficacy in vivo. Thus, we have identified the LGR5+ compartment as an important TIC population, representing a viable therapeutic target for combating liver cancer.
Collapse
|