251
|
Skalska L, Stojnic R, Li J, Fischer B, Cerda-Moya G, Sakai H, Tajbakhsh S, Russell S, Adryan B, Bray SJ. Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation. EMBO J 2015; 34:1889-904. [PMID: 26069324 DOI: 10.15252/embj.201489923] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/13/2015] [Indexed: 12/23/2022] Open
Abstract
The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation.
Collapse
Affiliation(s)
- Lenka Skalska
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Robert Stojnic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Jinghua Li
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bettina Fischer
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Gustavo Cerda-Moya
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hiroshi Sakai
- Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Steven Russell
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Boris Adryan
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
252
|
Kim JD, Kim E, Koun S, Ham HJ, Rhee M, Kim MJ, Huh TL. Proper Activity of Histone H3 Lysine 4 (H3K4) Methyltransferase Is Required for Morphogenesis during Zebrafish Cardiogenesis. Mol Cells 2015; 38:580-6. [PMID: 25997738 PMCID: PMC4469916 DOI: 10.14348/molcells.2015.0053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/16/2015] [Indexed: 11/27/2022] Open
Abstract
While increasing evidence indicates the important function of histone methylation during development, how this process influences cardiac development in vertebrates has not been explored. Here, we elucidate the functions of two histone H3 lysine 4 (H3K4) methylation enzymes, SMYD3 and SETD7, during zebrafish heart morphogenesis using gene expression profiling by whole mount in situ hybridization and antisense morpholino oligonucleotide (MO)-based gene knockdown. We find both smyd3 and setd7 are highly expressed within developing zebrafish heart and knock-down of these genes led to severe defects in cardiac morphogenesis without altering the expressions pattern of heart markers, including cmlc2, vmhc, and amhc. Furthermore, double knock-down by coinjection of smyd3 and setd7 MOs caused the synergistic defects in heart development. As similar to knock-down effect, overexpression of these genes also caused the heart morphogenesis defect in zebrafish. These results indicate that histone modifying enzymes, SMYD3 and SETD7, appear to function synergistically during heart development and their proper functioning is essential for normal heart morphogenesis during development.
Collapse
Affiliation(s)
- Jun-Dae Kim
- School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701,
Korea
| | - Eunmi Kim
- School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701,
Korea
| | - Soonil Koun
- School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701,
Korea
| | - Hyung-Jin Ham
- School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701,
Korea
| | - Myungchull Rhee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Myoung-Jin Kim
- School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701,
Korea
| | - Tae-Lin Huh
- School of Life Science and Biotechnology (BK 21 plus program), Kyungpook National University, Daegu 702-701,
Korea
- Korea Basic Science Institute Daegu Center, Daegu 702-701,
Korea
| |
Collapse
|
253
|
Finley A, Copeland RA. Small molecule control of chromatin remodeling. ACTA ACUST UNITED AC 2015; 21:1196-210. [PMID: 25237863 DOI: 10.1016/j.chembiol.2014.07.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/26/2014] [Accepted: 07/21/2014] [Indexed: 01/16/2023]
Abstract
Control of cellular transcriptional programs is based on reversible changes in chromatin conformation that affect access of the transcriptional machinery to specific gene promoters. Chromatin conformation is in turn controlled by the concerted effects of reversible, covalent modification of the DNA and histone components of chromatin, along with topographical changes in DNA-histone interactions; all of these chromatin-modifying reactions are catalyzed by specific enzymes and are communicated to the transcriptional machinery by proteins that recognize and bind to unique, covalent modifications at specific chromatin sites (so-called reader proteins). Over the past decade, considerable progress has been made in the discovery of potent and selective small molecule modulators of specific chromatin-modifying proteins. Here we review the progress that has been made toward small molecule control of these mechanisms and the potential clinical applications of such small molecule modulators of chromatin remodeling.
Collapse
Affiliation(s)
- Aidan Finley
- Epizyme, Inc., 400 Technology Square, 4th Floor, Cambridge, MA 02139, USA
| | - Robert A Copeland
- Epizyme, Inc., 400 Technology Square, 4th Floor, Cambridge, MA 02139, USA.
| |
Collapse
|
254
|
Cacabelos R. Epigenomic networking in drug development: from pathogenic mechanisms to pharmacogenomics. Drug Dev Res 2015; 75:348-65. [PMID: 25195579 DOI: 10.1002/ddr.21219] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Different epigenetic alterations (DNA methylation, histone modifications, chromatin remodeling, noncoding RNA dysregulation) are associated with the phenotypic expression of complex disorders in which genomic, epigenomic, proteomic, and metabolomic changes, in conjunction with environmental factors, are involved. As epigenetic modifications are reversible and can be potentially targeted by pharmacological and dietary interventions, a series of epigenetic drugs have been developed, including DNA methyltransferase inhibitors (nucleoside analogs, small molecules, bioproducts, antisense oligonucleotides, miRNAs), histone deacetylase inhibitors (short-chain fatty acids, hydroxamic acids, cyclic peptides, benzamides, ketones, sirtuin inhibitors, sirtuin activators), histone acetyltransferase modulators, histone methyltransferase inhibitors, histone demethylase inhibitors, and noncoding RNAs (miRNAs), with potential effects against myelodysplastic syndromes, different types of cancer, and neurodegenerative disorders. Pharmacogenetic and pharmacoepigenetic studies are required for the proper evaluation of efficacy and safety issues in clinical trials with epigenetic drugs.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Genomic Medicine, Camilo José Cela University, Madrid, 28692, Spain; EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, 15165, Spain
| |
Collapse
|
255
|
Bomsztyk K, Mar D, An D, Sharifian R, Mikula M, Gharib SA, Altemeier WA, Liles WC, Denisenko O. Experimental acute lung injury induces multi-organ epigenetic modifications in key angiogenic genes implicated in sepsis-associated endothelial dysfunction. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:225. [PMID: 25959381 PMCID: PMC4449602 DOI: 10.1186/s13054-015-0943-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/01/2015] [Indexed: 01/15/2023]
Abstract
Introduction The Tie2/angiopoietin (Tie2/Ang) and vascular endothelial growth factor receptor-ligand systems (VEGFR/VEGF) are recognized to play important roles in the regulation of microvascular endothelial function. Downregulation of these genes during sepsis has been implicated in the pathogenesis of sepsis-related microvascular leak and multiple organ dysfunction syndrome. Mechanisms responsible for dysregulation of angiogenic genes in sepsis are poorly defined. Methods Western blot, reverse transcription-polymerase chain reaction, and multiplex chromatin immunoprecipitation platform (Matrix ChIP) were used to investigate serum albumin leak, changes in gene expression, and associated epigenetic alterations in a murine model of acute lung injury-induced sepsis (ALI-sepsis). Results Experimental ALI-sepsis induced microvascular leak and downregulation of expression of Angpt1 (Ang1), Tek (Tie2), and Kdr (Vegfr2 or Flk-1) genes in the lung, kidney, and liver. These changes correlate with a decrease in RNA polymerase II density at these genes, and the greatest response was observed in the lung. ALI-sepsis reduced levels of transcription-permissive histone H3 lysine acetylation (H3KAc) at these loci in all examined tissues. Decreases in permissive H3K4m3 and H3Km2 marks were detected only in the lung. In contrast, only minimal alterations in transcription-repressive histone modifications (H3K27m3, H3K9m2, H3K9m3, and H4K20m3) were observed in all tissues. Conclusions Our results demonstrate that decreases in transcription-permissive, but not increases in transcription-repressive, histone modifications at Angpt1, Tek, and Kdr are a systemic, rather than a lung-restricted, response, involving key end-organs in experimental ALI-sepsis. Given that ventilator-associated pneumonia is a major cause of sepsis in critically ill patients, elucidation of mechanisms mediating epigenetic alterations during sepsis provides fundamental new insights into the pathogenesis of sepsis-induced microvascular leak and subsequent end-organ injury/dysfunction. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-0943-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, 850 Republican Street, 98109, Seattle, WA, USA. .,Department of Medicine, University of Washington, 850 Republican Street, 98195, Seattle, WA, USA.
| | - Daniel Mar
- UW Medicine South Lake Union, University of Washington, 850 Republican Street, 98109, Seattle, WA, USA.
| | - Dowon An
- UW Medicine South Lake Union, University of Washington, 850 Republican Street, 98109, Seattle, WA, USA.
| | - Roya Sharifian
- UW Medicine South Lake Union, University of Washington, 850 Republican Street, 98109, Seattle, WA, USA.
| | - Michal Mikula
- UW Medicine South Lake Union, University of Washington, 850 Republican Street, 98109, Seattle, WA, USA.
| | - Sina A Gharib
- UW Medicine South Lake Union, University of Washington, 850 Republican Street, 98109, Seattle, WA, USA. .,Department of Medicine, University of Washington, 850 Republican Street, 98195, Seattle, WA, USA. .,Center for Lung Biology, University of Washington, 850 Republican Street, 98109, Seattle, WA, USA.
| | - William A Altemeier
- UW Medicine South Lake Union, University of Washington, 850 Republican Street, 98109, Seattle, WA, USA. .,Department of Medicine, University of Washington, 850 Republican Street, 98195, Seattle, WA, USA. .,Center for Lung Biology, University of Washington, 850 Republican Street, 98109, Seattle, WA, USA.
| | - W Conrad Liles
- UW Medicine South Lake Union, University of Washington, 850 Republican Street, 98109, Seattle, WA, USA. .,Department of Medicine, University of Washington, 850 Republican Street, 98195, Seattle, WA, USA. .,Center for Lung Biology, University of Washington, 850 Republican Street, 98109, Seattle, WA, USA.
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, 850 Republican Street, 98109, Seattle, WA, USA. .,Department of Medicine, University of Washington, 850 Republican Street, 98195, Seattle, WA, USA.
| |
Collapse
|
256
|
Abstract
The multiple lineages and differentiation states that constitute the T-cell compartment all derive from a common thymic precursor. These distinct transcriptional states are maintained both in time and after multiple rounds of cell division by the concerted actions of a small set of lineage-defining transcription factors that act in conjunction with a suite of chromatin-modifying enzymes to activate, repress, and fine-tune gene expression. These chromatin modifications collectively provide an epigenetic code that allows the stable and heritable maintenance of the T-cell phenotype. Recently, it has become apparent that the epigenetic code represents a therapeutic target for a variety of immune cell disorders, including lymphoma and acute and chronic inflammatory diseases. Here, we review the recent advances in epigenetic regulation of gene expression, particularly as it relates to the T-cell differentiation and function.
Collapse
Affiliation(s)
- Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia; Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | | |
Collapse
|
257
|
Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut 2015; 64:830-41. [PMID: 25681399 PMCID: PMC4477794 DOI: 10.1136/gutjnl-2014-306842] [Citation(s) in RCA: 651] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022]
Abstract
Reversibility of hepatic fibrosis and cirrhosis following antiviral therapy for hepatitis B or C has advanced the prospect of developing antifibrotic therapies for patients with chronic liver diseases, especially non-alcoholic steatohepatitis. Mechanisms of fibrosis have focused on hepatic stellate cells, which become fibrogenic myofibroblasts during injury through 'activation', and are at the nexus of efforts to define novel drug targets. Recent studies have clarified pathways of stellate cell gene regulation and epigenetics, emerging pathways of fibrosis regression through the recruitment and amplification of fibrolytic macrophages, nuanced responses of discrete inflammatory cell subsets and the identification of the 'ductular reaction' as a marker of severe injury and repair. Based on our expanded knowledge of fibrosis pathogenesis, attention is now directed towards strategies for antifibrotic therapies and regulatory challenges for conducting clinical trials with these agents. New therapies are attempting to: 1) Control or cure the primary disease or reduce tissue injury; 2) Target receptor-ligand interactions and intracellular signaling; 3) Inhibit fibrogenesis; and 4) Promote resolution of fibrosis. Progress is urgently needed in validating non-invasive markers of fibrosis progression and regression that can supplant biopsy and shorten the duration of clinical trials. Both scientific and clinical challenges remain, however the past three decades of steady progress in understanding liver fibrosis have contributed to an emerging translational success story, with realistic hopes for antifibrotic therapies to treat patients with chronic liver disease in the near future.
Collapse
Affiliation(s)
- Youngmin A Lee
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael C Wallace
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
258
|
Abstract
The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles of the polycomb repressive complexes, PRC1 and PRC2, and the HDAC1- and HDAC2-containing complexes, NuRD, Sin3, and CoREST, in stem cells, development, and cancer, as well as the ongoing efforts to develop therapies targeting these complexes in human cancer. Furthermore, we discuss the role of repressive complexes in modulating thresholds for gene activation and their importance for specification and maintenance of cell fate.
Collapse
Affiliation(s)
- Anne Laugesen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; The Danish Stem Cell Center (DanStem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; The Danish Stem Cell Center (DanStem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
259
|
Gibaja V, Shen F, Harari J, Korn J, Ruddy D, Saenz-Vash V, Zhai H, Rejtar T, Paris CG, Yu Z, Lira M, King D, Qi W, Keen N, Hassan AQ, Chan HM. Development of secondary mutations in wild-type and mutant EZH2 alleles cooperates to confer resistance to EZH2 inhibitors. Oncogene 2015; 35:558-66. [PMID: 25893294 PMCID: PMC4744243 DOI: 10.1038/onc.2015.114] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/27/2015] [Accepted: 03/06/2015] [Indexed: 12/22/2022]
Abstract
The histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2) is frequently dysregulated in cancers, and gain-of-function (GOF) EZH2 mutations have been identified in non-Hodgkin lymphomas. Small-molecule inhibitors against EZH2 demonstrated anti-tumor activity in EZH2-mutated lymphomas and entered clinical trials. Here, we developed models of acquired resistance to EZH2 inhibitor EI1 with EZH2-mutated lymphoma cells. Resistance was generated by secondary mutations in both wild-type (WT) and GOF Y641N EZH2 alleles. These EZH2 mutants retained the substrate specificity of their predecessor complexes but became refractory to biochemical inhibition by EZH2 inhibitors. Resistant cells were able to maintain a high level of H3K27Me3 in the presence of inhibitors. Interestingly, mutation of EZH2 WT alone generated an intermediate resistance phenotype, which is consistent with a previously proposed model of cooperation between EZH2 WT and Y641N mutants to promote tumorigenesis. In addition, the findings presented here have implications for the clinical translation of EZH2 inhibitors and underscore the need to develop novel EZH2 inhibitors to target potential resistance emerging in clinical settings.
Collapse
Affiliation(s)
- V Gibaja
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - F Shen
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - J Harari
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - J Korn
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - D Ruddy
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - V Saenz-Vash
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - H Zhai
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - T Rejtar
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - C G Paris
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Z Yu
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - M Lira
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - D King
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - W Qi
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | - N Keen
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - A Q Hassan
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - H M Chan
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| |
Collapse
|
260
|
α-Globin as a molecular target in the treatment of β-thalassemia. Blood 2015; 125:3694-701. [PMID: 25869286 DOI: 10.1182/blood-2015-03-633594] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022] Open
Abstract
The thalassemias, together with sickle cell anemia and its variants, are the world's most common form of inherited anemia, and in economically undeveloped countries, they still account for tens of thousands of premature deaths every year. In developed countries, treatment of thalassemia is also still far from ideal, requiring lifelong transfusion or allogeneic bone marrow transplantation. Clinical and molecular genetic studies over the course of the last 50 years have demonstrated how coinheritance of modifier genes, which alter the balance of α-like and β-like globin gene expression, may transform severe, transfusion-dependent thalassemia into relatively mild forms of anemia. Most attention has been paid to pathways that increase γ-globin expression, and hence the production of fetal hemoglobin. Here we review the evidence that reduction of α-globin expression may provide an equally plausible approach to ameliorating clinically severe forms of β-thalassemia, and in particular, the very common subgroup of patients with hemoglobin E β-thalassemia that makes up approximately half of all patients born each year with severe β-thalassemia.
Collapse
|
261
|
Liu K, Liu Y, Lau JL, Min J. Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation. Pharmacol Ther 2015; 151:121-40. [PMID: 25857453 DOI: 10.1016/j.pharmthera.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Chromatin structure is dynamically modulated by various chromatin modifications, such as histone/DNA methylation and demethylation. We have reviewed histone methyltransferases and methyllysine binders in terms of small molecule screening and drug discovery in the first part of this review series. In this part, we will summarize recent progress in chemical probe and drug discovery of histone demethylases and DNA methyltransferases. Histone demethylation and DNA methylation have attracted a lot of attention regarding their biology and disease implications. Correspondingly, many small molecule compounds have been designed to modulate the activity of histone demethylases and DNA methyltransferases, and some of them have been developed into therapeutic drugs or put into clinical trials.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Johnathan L Lau
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
262
|
Nguyen H, Allali-Hassani A, Antonysamy S, Chang S, Chen LH, Curtis C, Emtage S, Fan L, Gheyi T, Li F, Liu S, Martin JR, Mendel D, Olsen JB, Pelletier L, Shatseva T, Wu S, Zhang FF, Arrowsmith CH, Brown PJ, Campbell RM, Garcia BA, Barsyte-Lovejoy D, Mader M, Vedadi M. LLY-507, a Cell-active, Potent, and Selective Inhibitor of Protein-lysine Methyltransferase SMYD2. J Biol Chem 2015; 290:13641-53. [PMID: 25825497 PMCID: PMC4447944 DOI: 10.1074/jbc.m114.626861] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys370 at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.
Collapse
Affiliation(s)
- Hannah Nguyen
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285,
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada
| | - Stephen Antonysamy
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Shawn Chang
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Lisa Hong Chen
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Carmen Curtis
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Spencer Emtage
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Li Fan
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Tarun Gheyi
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada
| | - Shichong Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joseph R Martin
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - David Mendel
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Jonathan B Olsen
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Laura Pelletier
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Tatiana Shatseva
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada
| | - Song Wu
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Feiyu Fred Zhang
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada, Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, 101 College Street, MaRS South Tower, Suite 707, Toronto, Ontario M5G 1L7, Canada, and
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada
| | - Robert M Campbell
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada
| | - Mary Mader
- From the Departments of Oncology Discovery, Structural Biology, Tailored Therapeutics, and Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower, 7th floor, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
263
|
Szarc vel Szic K, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics 2015; 7:33. [PMID: 25861393 PMCID: PMC4389409 DOI: 10.1186/s13148-015-0068-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/09/2015] [Indexed: 01/12/2023] Open
Abstract
The progressively older population in developed countries is reflected in an increase in the number of people suffering from age-related chronic inflammatory diseases such as metabolic syndrome, diabetes, heart and lung diseases, cancer, osteoporosis, arthritis, and dementia. The heterogeneity in biological aging, chronological age, and aging-associated disorders in humans have been ascribed to different genetic and environmental factors (i.e., diet, pollution, stress) that are closely linked to socioeconomic factors. The common denominator of these factors is the inflammatory response. Chronic low-grade systemic inflammation during physiological aging and immunosenescence are intertwined in the pathogenesis of premature aging also defined as ‘inflammaging.’ The latter has been associated with frailty, morbidity, and mortality in elderly subjects. However, it is unknown to what extent inflammaging or longevity is controlled by epigenetic events in early life. Today, human diet is believed to have a major influence on both the development and prevention of age-related diseases. Most plant-derived dietary phytochemicals and macro- and micronutrients modulate oxidative stress and inflammatory signaling and regulate metabolic pathways and bioenergetics that can be translated into stable epigenetic patterns of gene expression. Therefore, diet interventions designed for healthy aging have become a hot topic in nutritional epigenomic research. Increasing evidence has revealed that complex interactions between food components and histone modifications, DNA methylation, non-coding RNA expression, and chromatin remodeling factors influence the inflammaging phenotype and as such may protect or predispose an individual to many age-related diseases. Remarkably, humans present a broad range of responses to similar dietary challenges due to both genetic and epigenetic modulations of the expression of target proteins and key genes involved in the metabolism and distribution of the dietary constituents. Here, we will summarize the epigenetic actions of dietary components, including phytochemicals, and macro- and micronutrients as well as metabolites, that can attenuate inflammaging. We will discuss the challenges facing personalized nutrition to translate highly variable interindividual epigenetic diet responses to potential individual health benefits/risks related to aging disease.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ken Declerck
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Wim Vanden Berghe
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
264
|
Affiliation(s)
- He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shu Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
265
|
Sarma K, Cifuentes-Rojas C, Ergun A, Del Rosario A, Jeon Y, White F, Sadreyev R, Lee JT. ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell 2015; 159:869-83. [PMID: 25417162 DOI: 10.1016/j.cell.2014.10.019] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/22/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022]
Abstract
X chromosome inactivation (XCI) depends on the long noncoding RNA Xist and its recruitment of Polycomb Repressive Complex 2 (PRC2). PRC2 is also targeted to other sites throughout the genome to effect transcriptional repression. Using XCI as a model, we apply an unbiased proteomics approach to isolate Xist and PRC2 regulators and identified ATRX. ATRX unexpectedly functions as a high-affinity RNA-binding protein that directly interacts with RepA/Xist RNA to promote loading of PRC2 in vivo. Without ATRX, PRC2 cannot load onto Xist RNA nor spread in cis along the X chromosome. Moreover, epigenomic profiling reveals that genome-wide targeting of PRC2 depends on ATRX, as loss of ATRX leads to spatial redistribution of PRC2 and derepression of Polycomb responsive genes. Thus, ATRX is a required specificity determinant for PRC2 targeting and function.
Collapse
Affiliation(s)
- Kavitha Sarma
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Catherine Cifuentes-Rojas
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Ayla Ergun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Amanda Del Rosario
- Department of Bioengineering, Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Yesu Jeon
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Forest White
- Department of Bioengineering, Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA.
| |
Collapse
|
266
|
Jiménez-Chillarón JC, Nijland MJ, Ascensão AA, Sardão VA, Magalhães J, Hitchler MJ, Domann FE, Oliveira PJ. Back to the future: transgenerational transmission of xenobiotic-induced epigenetic remodeling. Epigenetics 2015; 10:259-73. [PMID: 25774863 DOI: 10.1080/15592294.2015.1020267] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epigenetics, or regulation of gene expression independent of DNA sequence, is the missing link between genotype and phenotype. Epigenetic memory, mediated by histone and DNA modifications, is controlled by a set of specialized enzymes, metabolite availability, and signaling pathways. A mostly unstudied subject is how sub-toxic exposure to several xenobiotics during specific developmental stages can alter the epigenome and contribute to the development of disease phenotypes later in life. Furthermore, it has been shown that exposure to low-dose xenobiotics can also result in further epigenetic remodeling in the germ line and contribute to increase disease risk in the next generation (multigenerational and transgenerational effects). We here offer a perspective on current but still incomplete knowledge of xenobiotic-induced epigenetic alterations, and their possible transgenerational transmission. We also propose several molecular mechanisms by which the epigenetic landscape may be altered by environmental xenobiotics and hypothesize how diet and physical activity may counteract epigenetic alterations.
Collapse
|
267
|
Gaddis M, Gerrard D, Frietze S, Farnham PJ. Altering cancer transcriptomes using epigenomic inhibitors. Epigenetics Chromatin 2015; 8:9. [PMID: 26191083 PMCID: PMC4506402 DOI: 10.1186/1756-8935-8-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 11/27/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022] Open
Abstract
Background Due to the hyper-activation of WNT signaling in a variety of cancer types, there has been a strong drive to develop pathway-specific inhibitors with the eventual goal of providing a chemotherapeutic antagonist of WNT signaling to cancer patients. A new category of drugs, called epigenetic inhibitors, are being developed that hold high promise for inhibition of the WNT pathway. The canonical WNT signaling pathway initiates when WNT ligands bind to receptors, causing the nuclear localization of the co-activator β-catenin (CTNNB1), which leads to an association of β-catenin with a member of the TCF transcription factor family at regulatory regions of WNT-responsive genes. The TCF/β-catenin complex then recruits CBP (CREBBP) or p300 (EP300), leading to histone acetylation and gene activation. A current model in the field is that CBP-driven expression of WNT target genes supports proliferation whereas p300-driven expression of WNT target genes supports differentiation. The small molecule inhibitor ICG-001 binds to CBP, but not to p300, and competitively inhibits the interaction of CBP with β-catenin. Upon treatment of cancer cells, this should reduce expression of CBP-regulated transcription, leading to reduced tumorigenicity and enhanced differentiation. Results We have compared the genome-wide effects on the transcriptome after treatment with ICG-001 (the specific CBP inhibitor) versus C646, a compound that competes with acetyl-coA for the Lys-coA binding pocket of both CBP and p300. We found that both drugs cause large-scale changes in the transcriptome of HCT116 colon cancer cells and PANC1 pancreatic cancer cells and reverse some tumor-specific changes in gene expression. Interestingly, although the epigenetic inhibitors affect cell cycle pathways in both the colon and pancreatic cancer cell lines, the WNT signaling pathway was affected only in the colon cancer cells. Notably, WNT target genes were similarly downregulated after treatment of HCT116 with C646 as with ICG-001. Conclusion Our results suggest that treatment with a general HAT inhibitor causes similar effects on the transcriptome as does treatment with a CBP-specific inhibitor and that epigenetic inhibition affects the WNT pathway in HCT116 cells and the cholesterol biosynthesis pathway in PANC1 cells. Electronic supplementary material The online version of this article (doi:10.1186/1756-8935-8-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Malaina Gaddis
- USC/Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, NRT 6503, Los Angeles, CA 90089-9601 USA
| | - Diana Gerrard
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639 USA
| | - Seth Frietze
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639 USA
| | - Peggy J Farnham
- USC/Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, NRT 6503, Los Angeles, CA 90089-9601 USA
| |
Collapse
|
268
|
Kristie TM. Dynamic modulation of HSV chromatin drives initiation of infection and provides targets for epigenetic therapies. Virology 2015; 479-480:555-61. [PMID: 25702087 DOI: 10.1016/j.virol.2015.01.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/25/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Upon infection, the genomes of herpesviruses undergo a striking transition from a non-nucleosomal structure to a chromatin structure. The rapid assembly and modulation of nucleosomes during the initial stage of infection results in an overlay of complex regulation that requires interactions of a plethora of chromatin modulation components. For herpes simplex virus, the initial chromatin dynamic is dependent on viral and host cell transcription factors and coactivators that mediate the balance between heterochromatic suppression of the viral genome and the euchromatin transition that allows and promotes the expression of viral immediate early genes. Strikingly similar to lytic infection, in sensory neurons this dynamic transition between heterochromatin and euchromatin governs the establishment, maintenance, and reactivation from the latent state. Chromatin dynamics in both the lytic infection and latency-reactivation cycles provides opportunities to shift the balance using small molecule epigenetic modulators to suppress viral infection, shedding, and reactivation from latency.
Collapse
Affiliation(s)
- Thomas M Kristie
- Molecular Genetics Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bld 33, Rm 3W20B.7 33 North Drive,, Bethesda, MA 20892, USA.
| |
Collapse
|
269
|
Maile TM, Izrael-Tomasevic A, Cheung T, Guler GD, Tindell C, Masselot A, Liang J, Zhao F, Trojer P, Classon M, Arnott D. Mass spectrometric quantification of histone post-translational modifications by a hybrid chemical labeling method. Mol Cell Proteomics 2015; 14:1148-58. [PMID: 25680960 PMCID: PMC4390259 DOI: 10.1074/mcp.o114.046573] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 01/21/2023] Open
Abstract
Mass spectrometry is a powerful alternative to antibody-based methods for the analysis of histone post-translational modifications (marks). A key development in this approach was the deliberate propionylation of histones to improve sequence coverage across the lysine-rich and hydrophilic tails that bear most modifications. Several marks continue to be problematic however, particularly di- and tri-methylated lysine 4 of histone H3 which we found to be subject to substantial and selective losses during sample preparation and liquid chromatography-mass spectrometry. We developed a new method employing a "one-pot" hybrid chemical derivatization of histones, whereby an initial conversion of free lysines to their propionylated forms under mild aqueous conditions is followed by trypsin digestion and labeling of new peptide N termini with phenyl isocyanate. High resolution mass spectrometry was used to collect qualitative and quantitative data, and a novel web-based software application (Fishtones) was developed for viewing and quantifying histone marks in the resulting data sets. Recoveries of 53 methyl, acetyl, and phosphoryl marks on histone H3.1 were improved by an average of threefold overall, and over 50-fold for H3K4 di- and tri-methyl marks. The power of this workflow for epigenetic research and drug discovery was demonstrated by measuring quantitative changes in H3K4 trimethylation induced by small molecule inhibitors of lysine demethylases and siRNA knockdown of epigenetic modifiers ASH2L and WDR5.
Collapse
Affiliation(s)
- Tobias M Maile
- From the ‡Protein Chemistry Department, Genentech Inc., South San Francisco, California 94080
| | - Anita Izrael-Tomasevic
- From the ‡Protein Chemistry Department, Genentech Inc., South San Francisco, California 94080
| | - Tommy Cheung
- From the ‡Protein Chemistry Department, Genentech Inc., South San Francisco, California 94080
| | - Gulfem D Guler
- §Cancer Targets Department, Genentech, Inc., South San Francisco, California 94080
| | - Charles Tindell
- §Cancer Targets Department, Genentech, Inc., South San Francisco, California 94080
| | - Alexandre Masselot
- ¶Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, California 94080
| | - Jun Liang
- ‖Discovery Chemistry Department, Genentech, Inc., South San Francisco, California 94080
| | - Feng Zhao
- **Biology Department, Constellation Pharmaceuticals, Inc., Cambridge, Massachusetts 02142
| | - Patrick Trojer
- **Biology Department, Constellation Pharmaceuticals, Inc., Cambridge, Massachusetts 02142
| | - Marie Classon
- §Cancer Targets Department, Genentech, Inc., South San Francisco, California 94080
| | - David Arnott
- From the ‡Protein Chemistry Department, Genentech Inc., South San Francisco, California 94080;
| |
Collapse
|
270
|
Valente S, Rodriguez V, Mercurio C, Vianello P, Saponara B, Cirilli R, Ciossani G, Labella D, Marrocco B, Ruoppolo G, Botrugno OA, Dessanti P, Minucci S, Mattevi A, Varasi M, Mai A. Pure Diastereomers of a Tranylcypromine-Based LSD1 Inhibitor: Enzyme Selectivity and In-Cell Studies. ACS Med Chem Lett 2015; 6:173-7. [PMID: 25699146 DOI: 10.1021/ml500424z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/08/2014] [Indexed: 12/13/2022] Open
Abstract
The pure four diastereomers (11a-d) of trans-benzyl (1-((4-(2-aminocyclopropyl)phenyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate hydrochloride 11, previously described by us as LSD1 inhibitor, were obtained by enantiospecific synthesis/chiral HPLC separation method. Tested in LSD1 and MAO assays, 11b (S,1S,2R) and 11d (R,1S,2R) were the most potent isomers against LSD1 and were less active against MAO-A and practically inactive against MAO-B. In cells, all the four diastereomers induced Gfi-1b and ITGAM gene expression in NB4 cells, accordingly with their LSD1 inhibition, and 11b and 11d inhibited the colony forming potential in murine promyelocytic blasts.
Collapse
Affiliation(s)
- Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
| | - Veronica Rodriguez
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
| | - Ciro Mercurio
- Genextra
Group, DAC s.r.l., Via Adamello 16, 20139 Milano, Italy
| | - Paola Vianello
- Dipartimento
di Oncologia Sperimentale, IEO−European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Bruna Saponara
- Department
of Therapeutic Research and Medicines Evaluation, Italian National Institute of Health, Via Regina Elena 299, 00161 Roma, Italy
| | - Roberto Cirilli
- Department
of Therapeutic Research and Medicines Evaluation, Italian National Institute of Health, Via Regina Elena 299, 00161 Roma, Italy
| | - Giuseppe Ciossani
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
1, 27100 Pavia, Italy
| | - Donatella Labella
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
| | - Biagina Marrocco
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
| | - Giovanni Ruoppolo
- Department
of Sense Organs, Sapienza University of Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - Oronza A. Botrugno
- Dipartimento
di Oncologia Sperimentale, IEO−European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Paola Dessanti
- Dipartimento
di Oncologia Sperimentale, IEO−European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Saverio Minucci
- Dipartimento
di Oncologia Sperimentale, IEO−European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
- Department
of Biosciences, University of Milan, 20100 Milan, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University of Pavia, Via Ferrata
1, 27100 Pavia, Italy
| | - Mario Varasi
- Dipartimento
di Oncologia Sperimentale, IEO−European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza University of Roma, P.le
A. Moro 5, 00185 Roma, Italy
- Pasteur
Institute−Cenci Bolognetti Foundation, Sapienza University of Roma, P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
271
|
Kumar SVR, Kulkarni OP, Mulay SR, Darisipudi MN, Romoli S, Thomasova D, Scherbaum CR, Hohenstein B, Hugo C, Müller S, Liapis H, Anders HJ. Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN. J Am Soc Nephrol 2015; 26:2399-413. [PMID: 25644111 DOI: 10.1681/asn.2014070673] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/09/2014] [Indexed: 11/03/2022] Open
Abstract
Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN.
Collapse
Affiliation(s)
- Santhosh V R Kumar
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Onkar P Kulkarni
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Shrikant R Mulay
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Murthy N Darisipudi
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Simone Romoli
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Dana Thomasova
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Christina R Scherbaum
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Bernd Hohenstein
- Division of Nephrology, Department of Internal Medicine III, Dresden University of Technology, Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, Dresden University of Technology, Dresden, Germany
| | - Susanna Müller
- Institute of Pathology, University of Munich, Munich, Germany; and
| | - Helen Liapis
- Department of Pathology and Immunology, School of Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany;
| |
Collapse
|
272
|
Zingg D, Debbache J, Schaefer SM, Tuncer E, Frommel SC, Cheng P, Arenas-Ramirez N, Haeusel J, Zhang Y, Bonalli M, McCabe MT, Creasy CL, Levesque MP, Boyman O, Santoro R, Shakhova O, Dummer R, Sommer L. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat Commun 2015; 6:6051. [PMID: 25609585 DOI: 10.1038/ncomms7051] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
Increased activity of the epigenetic modifier EZH2 has been associated with different cancers. However, evidence for a functional role of EZH2 in tumorigenesis in vivo remains poor, in particular in metastasizing solid cancers. Here we reveal central roles of EZH2 in promoting growth and metastasis of cutaneous melanoma. In a melanoma mouse model, conditional Ezh2 ablation as much as treatment with the preclinical EZH2 inhibitor GSK503 stabilizes the disease through inhibition of growth and virtually abolishes metastases formation without affecting normal melanocyte biology. Comparably, in human melanoma cells, EZH2 inactivation impairs proliferation and invasiveness, accompanied by re-expression of tumour suppressors connected to increased patient survival. These EZH2 target genes suppress either melanoma growth or metastasis in vivo, revealing the dual function of EZH2 in promoting tumour progression. Thus, EZH2-mediated epigenetic repression is highly relevant especially during advanced melanoma progression, which makes EZH2 a promising target for novel melanoma therapies.
Collapse
Affiliation(s)
- Daniel Zingg
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Julien Debbache
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Simon M Schaefer
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Eylul Tuncer
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra C Frommel
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zürich, Switzerland
| | - Natalia Arenas-Ramirez
- Department of Immunology, University Hospital Zurich, Gloriastrasse 30, 8091 Zürich, Switzerland
| | - Jessica Haeusel
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Yudong Zhang
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Mario Bonalli
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Michael T McCabe
- Cancer Epigenetics Discovery Performance Unit, Cancer Research, Oncology R&D, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, USA
| | - Caretha L Creasy
- Cancer Epigenetics Discovery Performance Unit, Cancer Research, Oncology R&D, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, USA
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zürich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Gloriastrasse 30, 8091 Zürich, Switzerland
| | - Raffaella Santoro
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Olga Shakhova
- 1] Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland [2] Department of Oncology, University Hospital Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zürich, Switzerland
| | - Lukas Sommer
- Cell and Developmental Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
273
|
Abstract
![]()
Growing
evidence suggests that histone methyltransferases (HMTs,
also known as protein methyltransferases (PMTs)) play an important
role in diverse biological processes and human diseases by regulating
gene expression and the chromatin state. Therefore, HMTs have been
increasingly recognized by the biomedical community as a class of
potential therapeutic targets. High quality chemical probes of HMTs,
as tools for deciphering their physiological functions and roles in
human diseases and testing therapeutic hypotheses, are critical for
advancing this promising field. In this review, we focus on the discovery,
characterization, and biological applications of chemical probes for
HMTs.
Collapse
Affiliation(s)
- H. Ümit Kaniskan
- Department of Structural and Chemical Biology, ‡Department of Oncological Sciences, §Department of Pharmacology
and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, United States
| | - Jian Jin
- Department of Structural and Chemical Biology, ‡Department of Oncological Sciences, §Department of Pharmacology
and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
274
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disorder with no effective treatment and a prognosis worse than that of lung cancer. Despite extensive research efforts, its etiology and pathogenesis still remain largely unknown. Current experimental evidence has shifted the disease paradigm from chronic inflammation towards the premise of abnormal epithelial wound repair in response to repeated epigenetic injurious stimuli in genetically predisposed individuals. Epigenetics is defined as the study of heritable changes in gene function by factors other than an individual's DNA sequence, providing valuable information regarding adaption of genes to environmental changes. Although cancer is the most studied disease with relevance to epigenetic modifications, recent data support the idea that epigenomic alterations may lead to variable disease phenotypes, including fibroproliferative lung disorders such as IPF. This review article summarizes the latest experimental and translational epigenetic studies in the research field of chronic lung disorders, mainly focusing on IPF, highlights current methodology limitations, and underlines future directions and perspectives.
Collapse
Affiliation(s)
- Argyrios Tzouvelekis
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, 300 Cedar St., TAC-441 South, P.O. Box 208057, New Haven, CT 06520, USA
| | | |
Collapse
|
275
|
Layman WS, Zuo J. Epigenetic regulation in the inner ear and its potential roles in development, protection, and regeneration. Front Cell Neurosci 2015; 8:446. [PMID: 25750614 PMCID: PMC4285911 DOI: 10.3389/fncel.2014.00446] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022] Open
Abstract
The burgeoning field of epigenetics is beginning to make a significant impact on our understanding of tissue development, maintenance, and function. Epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues that direct cell-type specific gene networks. The inner ear is comprised of highly specialized cell types with identical genomes that originate from a single totipotent zygote. During inner ear development specific combinations of transcription factors and epigenetic modifiers must function in a coordinated manner to establish and maintain cellular identity. These epigenetic regulatory mechanisms contribute to the maintenance of distinct chromatin states and cell-type specific gene expression patterns. In this review, we highlight emerging paradigms for epigenetic modifications related to inner ear development, and how epigenetics may have a significant role in hearing loss, protection, and regeneration.
Collapse
Affiliation(s)
- Wanda S Layman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital Memphis, TN, USA
| |
Collapse
|
276
|
Mutskov V, Khalyfa A, Wang Y, Carreras A, Nobrega MA, Gozal D. Early-life physical activity reverses metabolic and Foxo1 epigenetic misregulation induced by gestational sleep disturbance. Am J Physiol Regul Integr Comp Physiol 2015; 308:R419-30. [PMID: 25568076 DOI: 10.1152/ajpregu.00426.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sleep disorders are highly prevalent during late pregnancy and can impose adverse effects, such as preeclampsia and diabetes. However, the consequences of sleep fragmentation (SF) on offspring metabolism and epigenomic signatures are unclear. We report that physical activity during early life, but not later, reversed the increased body weight, altered glucose and lipid homeostasis, and increased visceral adipose tissue in offspring of mice subjected to gestational SF (SFo). The reversibility of this phenotype may reflect epigenetic mechanisms induced by SF during gestation. Accordingly, we found that the metabolic master switch Foxo1 was epigenetically misregulated in SFo livers in a temporally regulated fashion. Temporal Foxo1 analysis and its gluconeogenetic targets revealed that the epigenetic abnormalities of Foxo1 precede the metabolic syndrome phenotype. Importantly, regular physical activity early, but not later in life, reversed Foxo1 epigenetic misregulation and altered the metabolic phenotype in gestationally SF-exposed offspring. Thus, we have identified a restricted postnatal period during which lifestyle interventions may reverse the Foxo1 epigenetically mediated risk for metabolic dysfunction later in the life, as induced by gestational sleep disorders.
Collapse
Affiliation(s)
- Vesco Mutskov
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, Illinois; and
| | - Abdelnaby Khalyfa
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, Illinois; and
| | - Yang Wang
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, Illinois; and
| | - Alba Carreras
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, Illinois; and
| | - Marcelo A Nobrega
- Department of Human Genetics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - David Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, Illinois; and
| |
Collapse
|
277
|
Schamberger AC, Mise N, Meiners S, Eickelberg O. Epigenetic mechanisms in COPD: implications for pathogenesis and drug discovery. Expert Opin Drug Discov 2015; 9:609-28. [PMID: 24850530 DOI: 10.1517/17460441.2014.913020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide. The growing burden of COPD is due to continuous tobacco use, which is the most important risk factor of the disease, indoor fumes, occupational exposures and also aging of the world's population. Epigenetic mechanisms significantly contribute to COPD pathophysiology. AREAS COVERED This review focuses on disease-relevant changes in DNA modification, histone modification and non-coding RNA expression in COPD, and provides insight into novel therapeutic approaches modulating epigenetic mechanisms. Recent findings revealed, among others, globally changed DNA methylation patterns, decreased levels of histone deacetylases and reduced microRNAs levels in COPD. The authors also discuss a potential role of the chromatin silencing Polycomb group of proteins in COPD. EXPERT OPINION COPD is a highly complex disease and therapy development is complicated by the fact that many smokers develop both COPD and lung cancer. Of interest, combination therapies involving DNA methyltransferase inhibitors and anti-inflammatory drugs provide a promising approach, as they might be therapeutic for both COPD and cancer. Although the field of epigenetic research has virtually exploded over the last 10 years, particular efforts are required to enhance our knowledge of the COPD epigenome in order to successfully establish epigenetic-based therapies for this widespread disease.
Collapse
Affiliation(s)
- Andrea C Schamberger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, University Hospital and Ludwig-Maximilians-University, Member of the German Center for Lung Research (DZL) , Max-Lebsche-Platz 31, 81377 Munich , Germany
| | | | | | | |
Collapse
|
278
|
de Vries N, Hulsman D, Akhtar W, de Jong J, Miles D, Blom M, van Tellingen O, Jonkers J, van Lohuizen M. Prolonged Ezh2 Depletion in Glioblastoma Causes a Robust Switch in Cell Fate Resulting in Tumor Progression. Cell Rep 2015; 10:383-397. [DOI: 10.1016/j.celrep.2014.12.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/16/2014] [Accepted: 12/13/2014] [Indexed: 01/30/2023] Open
|
279
|
Di Giorgio E, Gagliostro E, Brancolini C. Selective class IIa HDAC inhibitors: myth or reality. Cell Mol Life Sci 2015; 72:73-86. [PMID: 25189628 PMCID: PMC11113455 DOI: 10.1007/s00018-014-1727-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
Abstract
The prospect of intervening, through the use of a specific molecule, with a cellular alteration responsible for a disease, is a fundamental ambition of biomedical science. Epigenetic-based therapies appear as a remarkable opportunity to impact on several disorders, including cancer. Many efforts have been made to develop small molecules acting as inhibitors of histone deacetylases (HDACs). These enzymes are key targets to reset altered genetic programs and thus to restore normal cellular activities, including drug responsiveness. Several classes of HDAC inhibitors (HDACis) have been generated, characterized and, in certain cases, approved for the use in clinic. A new frontier is the generation of subtype-specific inhibitors, to increase selectivity and to manage general toxicity. Here we will discuss about a set of molecules, which can interfere with the activity of a specific subclass of HDACs: the class IIa.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Dipartimento di Scienze Mediche e Biologiche, Università degli Studi di Udine, P.le Kolbe, 4, 33100 Udine, Italy
| | - Enrico Gagliostro
- Dipartimento di Scienze Mediche e Biologiche, Università degli Studi di Udine, P.le Kolbe, 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Dipartimento di Scienze Mediche e Biologiche, Università degli Studi di Udine, P.le Kolbe, 4, 33100 Udine, Italy
| |
Collapse
|
280
|
Schliehe C, Flynn EK, Vilagos B, Richson U, Swaminanthan S, Bosnjak B, Bauer L, Kandasamy RK, Griesshammer IM, Kosack L, Schmitz F, Litvak V, Sissons J, Lercher A, Bhattacharya A, Khamina K, Trivett AL, Tessarollo L, Mesteri I, Hladik A, Merkler D, Kubicek S, Knapp S, Epstein MM, Symer DE, Aderem A, Bergthaler A. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nat Immunol 2015; 16:67-74. [PMID: 25419628 PMCID: PMC4320687 DOI: 10.1038/ni.3046] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/03/2014] [Indexed: 12/12/2022]
Abstract
Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that Setdb2 was the only protein lysine methyltransferase induced during infection with influenza virus. Setdb2 expression depended on signaling via type I interferons, and Setdb2 repressed expression of the gene encoding the neutrophil attractant CXCL1 and other genes that are targets of the transcription factor NF-κB. This coincided with occupancy by Setdb2 at the Cxcl1 promoter, which in the absence of Setdb2 displayed diminished trimethylation of histone H3 Lys9 (H3K9me3). Mice with a hypomorphic gene-trap construct of Setdb2 exhibited increased infiltration of neutrophils during sterile lung inflammation and were less sensitive to bacterial superinfection after infection with influenza virus. This suggested that a Setdb2-mediated regulatory crosstalk between the type I interferons and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection.
Collapse
Affiliation(s)
- Christopher Schliehe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Elizabeth K. Flynn
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bojan Vilagos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Udochuku Richson
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Berislav Bosnjak
- Department of Dermatology, DIAID, Experimental Allergy, Medical University of Vienna, Vienna, Austria
| | - Lisa Bauer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Richard K. Kandasamy
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Isabel M. Griesshammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Frank Schmitz
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | - James Sissons
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anannya Bhattacharya
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kseniya Khamina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna L. Trivett
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Lino Tessarollo
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ildiko Mesteri
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University & University Hospital of Geneva, Geneva, Switzerland
- Department of Neuropathology, Georg-August-University Goettingen, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Michelle M. Epstein
- Department of Dermatology, DIAID, Experimental Allergy, Medical University of Vienna, Vienna, Austria
| | - David E. Symer
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Alan Aderem
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
281
|
Hill JM, Quenelle DC, Cardin RD, Vogel JL, Clement C, Bravo FJ, Foster TP, Bosch-Marce M, Raja P, Lee JS, Bernstein DI, Krause PR, Knipe DM, Kristie TM. Inhibition of LSD1 reduces herpesvirus infection, shedding, and recurrence by promoting epigenetic suppression of viral genomes. Sci Transl Med 2014; 6:265ra169. [PMID: 25473037 PMCID: PMC4416407 DOI: 10.1126/scitranslmed.3010643] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herpesviruses are highly prevalent and maintain lifelong latent reservoirs, thus posing challenges to the control of herpetic disease despite the availability of antiviral pharmaceuticals that target viral DNA replication. The initiation of herpes simplex virus infection and reactivation from latency is dependent on a transcriptional coactivator complex that contains two required histone demethylases, LSD1 (lysine-specific demethylase 1) and a member of the JMJD2 family (Jumonji C domain-containing protein 2). Inhibition of either of these enzymes results in heterochromatic suppression of the viral genome and blocks infection and reactivation in vitro. We demonstrate that viral infection can be epigenetically suppressed in three animal models of herpes simplex virus infection and disease. Treating animals with the monoamine oxidase inhibitor tranylcypromine to inhibit LSD1 suppressed viral lytic infection, subclinical shedding, and reactivation from latency in vivo. This phenotypic suppression was correlated with enhanced epigenetic suppression of the viral genome and suggests that, even during latency, the chromatin state of the virus is dynamic. Therefore, epi-pharmaceuticals may represent a promising approach to treat herpetic diseases.
Collapse
Affiliation(s)
- James M Hill
- Department of Ophthalmology and Department of Microbiology, Immunology, and Parasitology, LSU Eye Center, Louisiana State University Health Science Center School of Medicine, New Orleans, LA 70112, USA
| | - Debra C Quenelle
- Department of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rhonda D Cardin
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jodi L Vogel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Clement
- Department of Ophthalmology and Department of Microbiology, Immunology, and Parasitology, LSU Eye Center, Louisiana State University Health Science Center School of Medicine, New Orleans, LA 70112, USA
| | - Fernando J Bravo
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Timothy P Foster
- Department of Ophthalmology and Department of Microbiology, Immunology, and Parasitology, LSU Eye Center, Louisiana State University Health Science Center School of Medicine, New Orleans, LA 70112, USA
| | - Marta Bosch-Marce
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20852, USA
| | - Priya Raja
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer S Lee
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115, USA. Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - David I Bernstein
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Philip R Krause
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20852, USA
| | - David M Knipe
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115, USA. Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas M Kristie
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
282
|
Abstract
Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Department of Structural and Chemical Biology, ‡Department of Oncological Sciences, §Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | | | | |
Collapse
|
283
|
Gordon JAR, Lisle JW, Alman BA, Lian JB. Disruption of crosstalk between mesenchymal stromal and tumor cells in bone marrow as a therapeutic target to prevent metastatic bone disease. J Cell Physiol 2014; 229:1884-6. [PMID: 24905746 PMCID: PMC4190018 DOI: 10.1002/jcp.24692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 01/12/2023]
Abstract
Skeletal metastasis is a serious complication of many primary cancers. A common feature of tumor cells that metastasize to the bone marrow microenvironment is that they initiate a cascade of events, recruiting and presumably/potentially altering the phenotype of bone marrow mesenchymal stromal cells (MSC) to produce an environment that allows for tumor growth and in some cases, drug-resistant dormancy of latent cancer cells. Consequently the MSC population can contribute to metastatic disease through several distinct mechanisms by differentiating into cancer-associated fibroblasts (CAFs). Understanding the expression and epigenetic changes that occur as normal MSCs become associated with metastatic tumors would reveal possible therapeutic targets for treating skeletal metastasis.
Collapse
Affiliation(s)
- Jonathan A R Gordon
- Vermont Cancer Center and Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | | | | | | |
Collapse
|
284
|
Kudithipudi S, Kusevic D, Weirich S, Jeltsch A. Specificity analysis of protein lysine methyltransferases using SPOT peptide arrays. J Vis Exp 2014:e52203. [PMID: 25489813 DOI: 10.3791/52203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Lysine methylation is an emerging post-translation modification and it has been identified on several histone and non-histone proteins, where it plays crucial roles in cell development and many diseases. Approximately 5,000 lysine methylation sites were identified on different proteins, which are set by few dozens of protein lysine methyltransferases. This suggests that each PKMT methylates multiple proteins, however till now only one or two substrates have been identified for several of these enzymes. To approach this problem, we have introduced peptide array based substrate specificity analyses of PKMTs. Peptide arrays are powerful tools to characterize the specificity of PKMTs because methylation of several substrates with different sequences can be tested on one array. We synthesized peptide arrays on cellulose membrane using an Intavis SPOT synthesizer and analyzed the specificity of various PKMTs. Based on the results, for several of these enzymes, novel substrates could be identified. For example, for NSD1 by employing peptide arrays, we showed that it methylates K44 of H4 instead of the reported H4K20 and in addition H1.5K168 is the highly preferred substrate over the previously known H3K36. Hence, peptide arrays are powerful tools to biochemically characterize the PKMTs.
Collapse
|
285
|
Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood 2014; 125:346-57. [PMID: 25395428 DOI: 10.1182/blood-2014-06-581082] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) and related EZH1 control gene expression and promote tumorigenesis via methylating histone H3 at lysine 27 (H3K27). These methyltransferases are ideal therapeutic targets due to their frequent hyperactive mutations and overexpression found in cancer, including hematopoietic malignancies. Here, we characterized a set of small molecules that allow pharmacologic manipulation of EZH2 and EZH1, which include UNC1999, a selective inhibitor of both enzymes, and UNC2400, an inactive analog compound useful for assessment of off-target effect. UNC1999 suppresses global H3K27 trimethylation/dimethylation (H3K27me3/2) and inhibits growth of mixed lineage leukemia (MLL)-rearranged leukemia cells. UNC1999-induced transcriptome alterations overlap those following knockdown of embryonic ectoderm development, a common cofactor of EZH2 and EZH1, demonstrating UNC1999's on-target inhibition. Mechanistically, UNC1999 preferentially affects distal regulatory elements such as enhancers, leading to derepression of polycomb targets including Cdkn2a. Gene derepression correlates with a decrease in H3K27me3 and concurrent gain in H3K27 acetylation. UNC2400 does not induce such effects. Oral administration of UNC1999 prolongs survival of a well-defined murine leukemia model bearing MLL-AF9. Collectively, our study provides the detailed profiling for a set of chemicals to manipulate EZH2 and EZH1 and establishes specific enzymatic inhibition of polycomb repressive complex 2 (PRC2)-EZH2 and PRC2-EZH1 by small-molecule compounds as a novel therapeutics for MLL-rearranged leukemia.
Collapse
|
286
|
Scelfo A, Piunti A, Pasini D. The controversial role of the Polycomb group proteins in transcription and cancer: how much do we not understand Polycomb proteins? FEBS J 2014; 282:1703-22. [PMID: 25315766 DOI: 10.1111/febs.13112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/03/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022]
Abstract
Polycomb group proteins (PcGs) are a large protein family that includes diverse biochemical features assembled together in two large multiprotein complexes. These complexes maintain gene transcriptional repression in a cell type specific manner by modifying the surrounding chromatin to control development, differentiation and cell proliferation. PcGs are also involved in several diseases. PcGs are often directly or indirectly implicated in cancer development for which they have been proposed as potential targets for cancer therapeutic strategies. However, in the last few years a series of discoveries about the basic properties of PcGs and the identification of specific genetic alterations affecting specific Polycomb proteins in different tumours have converged to challenge old dogmas about PcG biological and molecular functions. In this review, we analyse these new data in the context of the old knowledge, highlighting the controversies and providing new models of interpretation and ideas that will perhaps bring some order among apparently contradicting observations.
Collapse
Affiliation(s)
- Andrea Scelfo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | | |
Collapse
|
287
|
Tam EKW, Nguyen TM, Lim CZH, Lee PL, Li Z, Jiang X, Santhanakrishnan S, Tan TW, Goh YL, Wong SY, Yang H, Ong EHQ, Hill J, Yu Q, Chai CLL. 3-Deazaneplanocin A and neplanocin A analogues and their effects on apoptotic cell death. ChemMedChem 2014; 10:173-82. [PMID: 25319940 DOI: 10.1002/cmdc.201402315] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Indexed: 12/30/2022]
Abstract
3-Deazaneplanocin A (DzNep) is a potential epigenetic drug for the treatment of various cancers. DzNep has been reported to deplete histone methylations, including oncogenic EZH2 complex, giving rise to epigenetic modifications that reactivate many silenced tumor suppressors in cancer cells. Despite its promise as an anticancer drug, little is known about the structure-activity relationships of DzNep in the context of epigenetic modifications and apoptosis induction. In this study, a number of analogues of DzNep were examined for DzNep-like ability to induce synergistic apoptosis in cancer cells in combination with trichostatin A, a known histone deacetylase (HDAC) inhibitor. The structure-activity relationship data thus obtained provide valuable information on the structural requirements for biological activity. The studies identified three compounds that show similar activities to DzNep. Two of these compounds show good pharmacokinetics and safety profiles. Attempts to correlate the observed synergistic apoptotic activities with measured S-adenosylhomocysteine hydrolase (SAHH) inhibitory activities suggest that the apoptotic activity of DzNep might not be directly due to its inhibition of SAHH.
Collapse
Affiliation(s)
- Eric K W Tam
- Institute of Chemical & Engineering Sciences, Agency for Science, Technology & Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665 (Singapore)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Rodriguez R, Miller KM. Unravelling the genomic targets of small molecules using high-throughput sequencing. Nat Rev Genet 2014; 15:783-96. [PMID: 25311424 DOI: 10.1038/nrg3796] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small molecules--including various approved and novel cancer therapeutics--can operate at the genomic level by targeting the DNA and protein components of chromatin. Emerging evidence suggests that functional interactions between small molecules and the genome are non-stochastic and are influenced by a dynamic interplay between DNA sequences and chromatin states. The establishment of genome-wide maps of small-molecule targets using unbiased methodologies can help to characterize and exploit drug responses. In this Review, we discuss how high-throughput sequencing strategies, such as ChIP-seq (chromatin immunoprecipitation followed by sequencing) and Chem-seq (chemical affinity capture and massively parallel DNA sequencing), are enabling the comprehensive identification of small-molecule target sites throughout the genome, thereby providing insights into unanticipated drug effects.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- 1] Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France. [2] Institut Curie Research Center, Organic Synthesis and Cell Biology Group, 26 rue d'Ulm, 75248, Paris Cedex 05, France. [3]
| | - Kyle M Miller
- 1] Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, Texas 78712, USA. [2]
| |
Collapse
|
289
|
Saloura V, Cho HS, Kiyotani K, Alachkar H, Zuo Z, Nakakido M, Tsunoda T, Seiwert T, Lingen M, Licht J, Nakamura Y, Hamamoto R. WHSC1 promotes oncogenesis through regulation of NIMA-related kinase-7 in squamous cell carcinoma of the head and neck. Mol Cancer Res 2014; 13:293-304. [PMID: 25280969 DOI: 10.1158/1541-7786.mcr-14-0292-t] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Squamous cell carcinoma of the head and neck (SCCHN) is a relatively common malignancy with suboptimal long-term prognosis, thus new treatment strategies are urgently needed. Over the last decade, histone methyltransferases (HMT) have been recognized as promising targets for cancer therapy, but their mechanism of action in most solid tumors, including SCCHN, remains to be elucidated. This study investigated the role of Wolf-Hirschhorn syndrome candidate 1 (WHSC1), an NSD family HMT, in SCCHN. Immunohistochemical analysis of locoregionally advanced SCCHN, dysplastic, and normal epithelial tissue specimens revealed that WHSC1 expression and dimethylation of histone H3 lysine 36 (H3K36me2) were significantly higher in SCCHN tissues than in normal epithelium. Both WHSC1 expression and H3K36me2 levels were significantly correlated with histologic grade. WHSC1 knockdown in multiple SCCHN cell lines resulted in significant growth suppression, induction of apoptosis, and delay of the cell-cycle progression. Immunoblot and immunocytochemical analyses in SCCHN cells demonstrated that WHSC1 induced H3K36me2 and H3K36me3. Microarray expression profile analysis revealed NIMA-related kinase-7 (NEK7) to be a downstream target gene of WHSC1, and chromatin immunoprecipitation (ChIP) assays showed that NEK7 was directly regulated by WHSC1 through H3K36me2. Furthermore, similar to WHSC1, NEK7 knockdown significantly reduced cell-cycle progression, indicating that NEK7 is a key player in the molecular pathway regulated by WHSC1. IMPLICATIONS WHSC1 possesses oncogenic functions in SCCHN and represents a potential molecular target for the treatment of SCCHN.
Collapse
Affiliation(s)
- Vassiliki Saloura
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Hyun-Soo Cho
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois. Genomics Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Kazuma Kiyotani
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Houda Alachkar
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Zhixiang Zuo
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Makoto Nakakido
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Tanguy Seiwert
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Mark Lingen
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Jonathan Licht
- Section of Hematology and Oncology, Northwestern University, Chicago, Illinois
| | - Yusuke Nakamura
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois
| | - Ryuji Hamamoto
- Section of Hematology and Oncology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
290
|
Heinemann B, Nielsen JM, Hudlebusch HR, Lees MJ, Larsen DV, Boesen T, Labelle M, Gerlach LO, Birk P, Helin K. Inhibition of demethylases by GSK-J1/J4. Nature 2014; 514:E1-2. [DOI: 10.1038/nature13688] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/25/2014] [Indexed: 12/31/2022]
|
291
|
Affiliation(s)
- Itys Comet
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark, and the Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Helin
- 1] Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark, and the Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark. [2] Danish Stem Cell Center (DanStem), Copenhagen, Denmark
| |
Collapse
|
292
|
Eridani S, Avemaria F, Mosca A. Reactivation of Fetal Hemoglobin in Thalassemia and Sickle Cell Disease. THALASSEMIA REPORTS 2014. [DOI: 10.4081/thal.2014.2196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Considerable attention has been recently devoted to mechanisms involved in the perinatal hemoglobin switch, as it was long ago established that the survival of fetal hemoglobin (HbF) production in significant amount can reduce the severity of the clinical course in severe disorders like β-thalassemia and sickle cell disease (SCD). For instance, when β-thalassemia is associated with hereditary persistence of fetal hemoglobin (HPFH) the disease takes a mild course, labeled as thalassemia intermedia. The same clinical amelioration occurs for the association between HPFH and SCD. As for the mechanism of this effect, some information has been obtained from the study of natural mutations at the human β-globin locus in patients with increased HbF, like the Corfu thalassemia mutations. Important evidence came from the discovery that drugs capable of improving the clinical picture of SCD, like decitabine ad hydroxycarbamide, are acting through the reactivation, to some extent, of HbF synthesis. The study of the mechanism of action of these compounds was followed by the identification of some genetic determinants, which promote this event. In particular, among a few genetic factors involved in this process, the most relevant appears the BCL11A gene, which is now credited to be able to silence γ-globin genes in the perinatal period by interaction with several erythroid-specific transcription factors and is actually considered as a barrier to HbF reactivation by known HbF inducing agents. Epigenetics is also a player in the process, mainly through DNA demethylation. This is certified by the recent demonstration that hypomethylating agents such as 5-azacytidine and decitabine, the first compounds used for HbF induction by pharmacology, act as irreversible inhibitors of demethyltransferase enzymes. Great interest has also been raised by the finding that several micro-RNAs, which act as negative regulators of gene expression, have been implicated in the progression of globin gene expression and, particularly, in the reactivation of γ-globin gene expression associated with increased HbF synthesis. Probably, this reactivation is achieved by post-transcriptional inhibition of BCL11A expression. Finally, attention is presently focused on a recently discovered BCL11A enhancer, essential for erythroid expression of BCL11A, which might become a therapeutic target for genome engineering in the β-hemoglobinopathies as its disruption affects only the erythropoietic lineage, without hurting other cell or tissue compartments.
Collapse
|
293
|
Epigenetics in the treatment of systemic lupus erythematosus: potential clinical application. Clin Immunol 2014; 155:79-90. [PMID: 25218424 DOI: 10.1016/j.clim.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
The current treatments of systemic lupus erythematosus (SLE) have been based on the use of immunosuppressive drugs which are linked to serious side effects. The more effective therapeutic approaches with minimal or no side effects for SLE patients are hard to develop, mainly due to the complexity of the disease. The discovery of pharmacoepigenetics provides a new way to solve this problem. Epigenetic modifications can influence drug efficacy by altering gene expression via changing chromatin structure. Although still in early development, epigenetic studies in SLE are expected to reveal novel therapeutic targets and disease biomarkers in autoimmunity. For example, miRNAs, which have been identified to govern many genes including drug targets, are altered in disease development and after drug administration. This review aims to present an overview of current epigenetic mechanisms involved in the pathogenesis of SLE, and discuss their potential roles in clinical and pharmacological applications.
Collapse
|
294
|
Cabezas-Cruz A, Lancelot J, Caby S, Oliveira G, Pierce RJ. Epigenetic control of gene function in schistosomes: a source of therapeutic targets? Front Genet 2014; 5:317. [PMID: 25309576 PMCID: PMC4159997 DOI: 10.3389/fgene.2014.00317] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/24/2014] [Indexed: 12/31/2022] Open
Abstract
The discovery of the epigenetic regulation of gene expression has revolutionized both our understanding of how genomes function and approaches to the therapy of numerous pathologies. Schistosomes are metazoan parasites and as such utilize most, if not all the epigenetic mechanisms in play in their vertebrate hosts: histone variants, histone tail modifications, non-coding RNA and, perhaps, DNA methylation. Moreover, we are acquiring an increasing understanding of the ways in which these mechanisms come into play during the complex schistosome developmental program. In turn, interest in the actors involved in epigenetic mechanisms, particularly the enzymes that carry out epigenetic modifications of histones or nucleic acid, as therapeutic targets has been stimulated by the finding that their inhibitors exert profound effects, not only on survival, but also on the reproductive function of Schistosoma mansoni. Here, we review our current knowledge, and what we can infer, about the role of epigenetic mechanisms in schistosome development, differentiation and survival. We will consider which epigenetic actors can be targeted for drug discovery and what strategies can be employed to develop potent, selective inhibitors as drugs to cure schistosomiasis.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Institut National de la Santé et de la Recherche Médicale U1019 – Centre National de la Recherche Scientifique UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de LilleLille, France
| | - Julien Lancelot
- Institut National de la Santé et de la Recherche Médicale U1019 – Centre National de la Recherche Scientifique UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de LilleLille, France
| | - Stéphanie Caby
- Institut National de la Santé et de la Recherche Médicale U1019 – Centre National de la Recherche Scientifique UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de LilleLille, France
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, Fundação Oswaldo Cruz, Center for Excellence in Bioinformatics, Centro de Pesquisas René Rachou, National Institute of Science and Technology in Tropical DiseasesBelo Horizonte, Brazil
| | - Raymond J. Pierce
- Institut National de la Santé et de la Recherche Médicale U1019 – Centre National de la Recherche Scientifique UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de LilleLille, France
| |
Collapse
|
295
|
Colón-Bolea P, Crespo P. Lysine methylation in cancer: SMYD3-MAP3K2 teaches us new lessons in the Ras-ERK pathway. Bioessays 2014; 36:1162-9. [PMID: 25382779 DOI: 10.1002/bies.201400120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lysine methylation has been traditionally associated with histones and epigenetics. Recently, lysine methyltransferases and demethylases - which are involved in methylation of non-histone substrates - have been frequently found deregulated in human tumours. In this realm, a new discovery has unveiled the methyltransferase SMYD3 as an enhancer of Ras-driven cancer. SMYD3 is up-regulated in different types of tumours. SMYD3-mediated methylation of MAP3K2 increases mutant K-Ras-induced activation of ERK1/2. Methylation of MAP3K2 prevents it from binding to the phosphatase PP2A, thereby impeding the impact of this negative regulator on Ras-ERK1/2 signals, leading to the formation of lung and pancreatic adenocarcinomas. Furthermore, depletion of SMYD3 synergises with a MEK inhibitor, currently in clinical trials, to block Ras-driven pancreatic neoplasia. These results underscore the importance of lysine methylation in the regulation of signalling pathways relevant for tumourigenesis and endorse the development of drugs targeting unregulated lysine methylation as therapeutic agents in the struggle against cancer.
Collapse
Affiliation(s)
- Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander, Spain
| | | |
Collapse
|
296
|
Affiliation(s)
- Thomas G. Di Salvo
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Nashville TN
| | - Saptarsi M. Haldar
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH
- Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH
| |
Collapse
|
297
|
Structural insights into binding of small molecule inhibitors to Enhancer of Zeste Homolog 2. J Comput Aided Mol Des 2014; 28:1109-28. [DOI: 10.1007/s10822-014-9788-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/07/2014] [Indexed: 11/25/2022]
|
298
|
Cieniewicz AM, Moreland L, Ringel AE, Mackintosh SG, Raman A, Gilbert TM, Wolberger C, Tackett AJ, Taverna SD. The bromodomain of Gcn5 regulates site specificity of lysine acetylation on histone H3. Mol Cell Proteomics 2014; 13:2896-910. [PMID: 25106422 DOI: 10.1074/mcp.m114.038174] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In yeast, the conserved histone acetyltransferase (HAT) Gcn5 associates with Ada2 and Ada3 to form the catalytic module of the ADA and SAGA transcriptional coactivator complexes. Gcn5 also contains an acetyl-lysine binding bromodomain that has been implicated in regulating nucleosomal acetylation in vitro, as well as at gene promoters in cells. However, the contribution of the Gcn5 bromodomain in regulating site specificity of HAT activity remains unclear. Here, we used a combined acid-urea gel and quantitative mass spectrometry approach to compare the HAT activity of wild-type and Gcn5 bromodomain-mutant ADA subcomplexes (Gcn5-Ada2-Ada3). Wild-type ADA subcomplex acetylated H3 lysines with the following specificity; H3K14 > H3K23 > H3K9 ≈ H3K18 > H3K27 > H3K36. However, when the Gcn5 bromodomain was defective in acetyl-lysine binding, the ADA subcomplex demonstrated altered site-specific acetylation on free and nucleosomal H3, with H3K18ac being the most severely diminished. H3K18ac was also severely diminished on H3K14R, but not H3K23R, substrates in wild-type HAT reactions, further suggesting that Gcn5-catalyzed acetylation of H3K14 and bromodomain binding to H3K14ac are important steps preceding H3K18ac. In sum, this work details a previously uncharacterized cross-talk between the Gcn5 bromodomain "reader" function and enzymatic HAT activity that might ultimately affect gene expression. Future studies of how mutations in bromodomains or other histone post-translational modification readers can affect chromatin-templated enzymatic activities will yield unprecedented insight into a potential "histone/epigenetic code." MS data are available via ProteomeXchange with identifier PXD001167.
Collapse
Affiliation(s)
- Anne M Cieniewicz
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Linley Moreland
- ¶Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Alison E Ringel
- ‖Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; **Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Samuel G Mackintosh
- ¶Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ana Raman
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tonya M Gilbert
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Cynthia Wolberger
- §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ‖Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; **Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Alan J Tackett
- ¶Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205;
| | - Sean D Taverna
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
299
|
Gilbert TM, McDaniel SL, Byrum SD, Cades JA, Dancy BCR, Wade H, Tackett AJ, Strahl BD, Taverna SD. A PWWP domain-containing protein targets the NuA3 acetyltransferase complex via histone H3 lysine 36 trimethylation to coordinate transcriptional elongation at coding regions. Mol Cell Proteomics 2014; 13:2883-95. [PMID: 25104842 DOI: 10.1074/mcp.m114.038224] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Post-translational modifications of histones, such as acetylation and methylation, are differentially positioned in chromatin with respect to gene organization. For example, although histone H3 is often trimethylated on lysine 4 (H3K4me3) and acetylated on lysine 14 (H3K14ac) at active promoter regions, histone H3 lysine 36 trimethylation (H3K36me3) occurs throughout the open reading frames of transcriptionally active genes. The conserved yeast histone acetyltransferase complex, NuA3, specifically binds H3K4me3 through a plant homeodomain (PHD) finger in the Yng1 subunit, and subsequently catalyzes the acetylation of H3K14 through the histone acetyltransferase domain of Sas3, leading to transcription initiation at a subset of genes. We previously found that Ylr455w (Pdp3), an uncharacterized proline-tryptophan-tryptophan-proline (PWWP) domain-containing protein, copurifies with stable members of NuA3. Here, we employ mass-spectrometric analysis of affinity purified Pdp3, biophysical binding assays, and genetic analyses to classify NuA3 into two functionally distinct forms: NuA3a and NuA3b. Although NuA3a uses the PHD finger of Yng1 to interact with H3K4me3 at the 5'-end of open reading frames, NuA3b contains the unique member, Pdp3, which regulates an interaction between NuA3b and H3K36me3 at the transcribed regions of genes through its PWWP domain. We find that deletion of PDP3 decreases NuA3-directed transcription and results in growth defects when combined with transcription elongation mutants, suggesting NuA3b acts as a positive elongation factor. Finally, we determine that NuA3a, but not NuA3b, is synthetically lethal in combination with a deletion of the histone acetyltransferase GCN5, indicating NuA3b has a specialized role at coding regions that is independent of Gcn5 activity. Collectively, these studies define a new form of the NuA3 complex that associates with H3K36me3 to effect transcriptional elongation. MS data are available via ProteomeXchange with identifier PXD001156.
Collapse
Affiliation(s)
- Tonya M Gilbert
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Stephen L McDaniel
- ¶Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Stephanie D Byrum
- ‖Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Jessica A Cades
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Blair C R Dancy
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Herschel Wade
- **Department of Biophysics and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Alan J Tackett
- ‖Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Brian D Strahl
- ¶Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599; ‡‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Sean D Taverna
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205;
| |
Collapse
|
300
|
Di Costanzo A, Del Gaudio N, Migliaccio A, Altucci L. Epigenetic drugs against cancer: an evolving landscape. Arch Toxicol 2014; 88:1651-68. [DOI: 10.1007/s00204-014-1315-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/17/2014] [Indexed: 02/08/2023]
|