251
|
Amarzguioui M, Rossi JJ, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett 2005; 579:5974-81. [PMID: 16199038 DOI: 10.1016/j.febslet.2005.08.070] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/26/2005] [Accepted: 08/28/2005] [Indexed: 01/03/2023]
Abstract
Successful applications of RNAi in mammalian cells depend upon effective knockdown of targeted transcripts and efficient intracellular delivery of either preformed si/shRNAs or vector expressed si/shRNAs. We have previously demonstrated that 27 base pair double stranded RNAs which are substrates for Dicer can be up to 100 times more potent than 21mer siRNAs. In this mini-review we elaborate upon the rationale and design strategies for creating Dicer substrate RNAs that provide enhanced knockdown of targeted RNAs and minimize the utilization of the sense strand as RNAi effectors. Expression of shRNAs or siRNAs in mammalian cells can be achieved via transcription from either Pol II or Pol III promoters. There are certain constrictions in designing such vectors, and these are described here. Additionally, we review strategies for inducible shRNA expression and the various viral vectors that can be used to transduce shRNA genes into a variety of cells and tissues. The overall goal of this mini-review is to provide an overview of available approaches for optimizing RNAi mediated down regulation of gene expression in mammalian cells via RNA interference. Although the primary focus is the use of RNAi mediated cleavage of targeted transcripts, it is highly probable that some of the approaches described herein will be applicable to RNAi mediated inhibition of translation and transcriptional gene silencing.
Collapse
Affiliation(s)
- Mohammed Amarzguioui
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010-3011, USA
| | | | | |
Collapse
|
252
|
Stein P, Zeng F, Pan H, Schultz RM. Absence of non-specific effects of RNA interference triggered by long double-stranded RNA in mouse oocytes. Dev Biol 2005; 286:464-71. [PMID: 16154556 DOI: 10.1016/j.ydbio.2005.08.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 11/27/2022]
Abstract
RNA interference (RNAi) is a conserved eukaryotic mechanism by which double-stranded RNA (dsRNA) triggers the sequence-specific degradation of homologous mRNAs. Recent concerns have arisen in mammalian systems about off-target effects of RNAi, as well as an interferon response. Most mammalian cells respond to long dsRNAs by inducing an antiviral response mediated by interferon that leads to general inhibition of protein synthesis and nonspecific degradation of mRNAs. Moreover, recent reports demonstrate that under certain conditions, short interfering RNAs (siRNAs, 21-25 bp) may activate the interferon system. Mouse oocytes and preimplantation embryos apparently lack this response, as potent and specific inhibition of gene expression triggered by long dsRNA is observed in these cells. In the present study, we analyzed the global pattern of gene expression by microarray analysis in transgenic mouse oocytes expressing long dsRNA and find no evidence of off-targeting. We also report that genes involved in the interferon response pathway are not expressed in mouse oocytes, even after exposure for an extended period of time to long dsRNA.
Collapse
Affiliation(s)
- Paula Stein
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104-6018, USA
| | | | | | | |
Collapse
|
253
|
Vascotto F, Visintin M, Cattaneo A, Burrone OR. Design and selection of an intrabody library produced de-novo for the non-structural protein NSP5 of rotavirus. J Immunol Methods 2005; 301:31-40. [PMID: 15907924 DOI: 10.1016/j.jim.2005.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/24/2005] [Accepted: 03/10/2005] [Indexed: 11/22/2022]
Abstract
Intracellular antibodies or intrabodies have great potential in protein knockout strategies for intracellular antigens. We applied the Intracellular Antibody Capture Technology for the direct selection in yeast of a mouse scFv library (V(L)-V(H) format) constructed from animals immunised with recombinant non-structural protein NSP5 of Rotavirus. We selected five different intracellular antibodies (ICAbs), which specifically recognize Delta2, an NSP5 deletion mutant used as bait. The anti-NSP5 ICAbs were well expressed both in yeast and mammalian cells as cytoplasmic or nuclear-tagged forms. By immunofluorescence and co-immunoprecipitation assays we characterised the intracellular interaction of the five anti-NSP5 ICAbs with the co-expressed antigens.
Collapse
Affiliation(s)
- Fulvia Vascotto
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | | | | | |
Collapse
|
254
|
Jenke ACW, Eisenberger T, Baiker A, Stehle IM, Wirth S, Lipps HJ. The nonviral episomal replicating vector pEPI-1 allows long-term inhibition of bcr-abl expression by shRNA. Hum Gene Ther 2005; 16:533-9. [PMID: 15871685 DOI: 10.1089/hum.2005.16.533] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The inhibition of gene expression by RNA interference harbors a high potential for application in the therapy of human diseases. However, while exogenous application of siRNAs efficiently inhibits gene expression, these effects are only transient in mammalian cells. We designed a short hairpin RNA-expression cassette to target the bcr-abl oncogene that was then introduced into the nonviral vector system pEPI-1, which replicates episomally in the absence of selection in the bcr-abl-positive cell line K562. Forty-two days after transfection the bcr-abl- but not the cytokine-dependent growth rate was found to be drastically reduced in K562 cells. Western analysis revealed a more than 90% reduction in the expression of the fusion protein bcr-abl while the expression of the bcr protein remained unaffected. In addition, we show that the level of bcr-abl mRNA was specifically reduced in these cells for more than 90%. These results demonstrate that the vector system pEPI-1 allows specific and efficient long term gene suppression by using a short hairpin RNA transcription unit.
Collapse
Affiliation(s)
- Andreas C W Jenke
- Children's Hospital, Helios Klinikum Wuppertal, 42283 Wuppertal, Germany
| | | | | | | | | | | |
Collapse
|
255
|
Ito M, Kawano K, Miyagishi M, Taira K. Genome-wide application of RNAi to the discovery of potential drug targets. FEBS Lett 2005; 579:5988-95. [PMID: 16153642 DOI: 10.1016/j.febslet.2005.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 08/05/2005] [Accepted: 08/11/2005] [Indexed: 12/23/2022]
Abstract
Progress is being made in the development of RNA interference-based (RNAi-based) strategies for the control of gene expression. It has been demonstrated that small interfering RNAs (siRNAs) can silence the expression of target genes in a sequence-specific manner in mammalian cells. Various groups, including our own, have developed systems for vector-mediated specific RNAi. Vector-based siRNA- (or shRNA) expression libraries directed against the entire human genome and siRNA libraries based on chemically synthesized oligonucleotides now allow the rapid identification of functional genes and potential drug targets. Use of such libraries will enhance our understanding of numerous biological phenomena and contribute to the rational design of drugs against heritable, infectious and malignant diseases.
Collapse
Affiliation(s)
- Masanori Ito
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | |
Collapse
|
256
|
Uprichard SL. The therapeutic potential of RNA interference. FEBS Lett 2005; 579:5996-6007. [PMID: 16115631 PMCID: PMC7094730 DOI: 10.1016/j.febslet.2005.08.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/05/2005] [Accepted: 08/07/2005] [Indexed: 12/23/2022]
Abstract
In recent years, we have witnessed the discovery of a new mechanism of gene regulation called RNA interference (RNAi), which has revitalized interest in the development of nucleic acid‐based technologies for therapeutic gene suppression. This review focuses on the potential therapeutic use of RNAi, discussing the theoretical advantages of RNAi‐based therapeutics over previous technologies as well as the challenges involved in developing RNAi for clinical use. Also reviewed, are the in vivo proof‐of principle experiments that provide the preclinical justification for the continued development of RNAi‐based therapeutics.
Collapse
Affiliation(s)
- Susan L Uprichard
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, SBR10, La Jolla, CA 92037, USA.
| |
Collapse
|
257
|
Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005; 23:165-75. [PMID: 16111635 DOI: 10.1016/j.immuni.2005.06.008] [Citation(s) in RCA: 1524] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 05/26/2005] [Accepted: 06/15/2005] [Indexed: 10/25/2022]
Abstract
DNA and RNA stimulate the mammalian innate immune system through activation of Toll-like receptors (TLRs). DNA containing methylated CpG motifs, however, is not stimulatory. Selected nucleosides in naturally occurring RNA are also methylated or otherwise modified, but the immunomodulatory effects of these alterations remain untested. We show that RNA signals through human TLR3, TLR7, and TLR8, but incorporation of modified nucleosides m5C, m6A, m5U, s2U, or pseudouridine ablates activity. Dendritic cells (DCs) exposed to such modified RNA express significantly less cytokines and activation markers than those treated with unmodified RNA. DCs and TLR-expressing cells are potently activated by bacterial and mitochondrial RNA, but not by mammalian total RNA, which is abundant in modified nucleosides. We conclude that nucleoside modifications suppress the potential of RNA to activate DCs. The innate immune system may therefore detect RNA lacking nucleoside modification as a means of selectively responding to bacteria or necrotic tissue.
Collapse
Affiliation(s)
- Katalin Karikó
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA.
| | | | | | | |
Collapse
|
258
|
Landen CN, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, Sood AK. TherapeuticEphA2Gene TargetingIn vivoUsing Neutral Liposomal Small Interfering RNA Delivery. Cancer Res 2005; 65:6910-8. [PMID: 16061675 DOI: 10.1158/0008-5472.can-05-0530] [Citation(s) in RCA: 501] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inducing destruction of specific mRNA using small interfering RNA (siRNA) is a powerful tool in analysis of protein function, but its use as a therapeutic modality has been limited by inefficient or impractical delivery systems. We have used siRNA incorporated into the neutral liposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) for efficient in vivo siRNA delivery. In nude mice bearing i.p. ovarian tumors, nonsilencing siRNA tagged with the fluorochrome Alexa 555 was encapsulated into DOPC liposomes and shown to be taken up by the tumor as well as many major organs. Furthermore, DOPC-encapsulated siRNA targeting the oncoprotein EphA2 was highly effective in reducing in vivo EphA2 expression 48 hours after a single dose as measured by both Western blot and immunohistochemistry. Therapy experiments in an orthotopic mouse model of ovarian cancer were initiated 1 week after injection of either HeyA8 or SKOV3ip1 cell lines. Three weeks of treatment with EphA2-targeting siRNA-DOPC (150 microg/kg twice weekly) reduced tumor growth when compared with a nonsilencing siRNA (SKOV3ip1: 0.35 versus 0.70 g; P = 0.020; HeyA8: 0.98 versus 1.51 g; P = 0.16). When EphA2-targeting siRNA-DOPC was combined with paclitaxel, tumor growth was dramatically reduced compared with treatment with paclitaxel and a nonsilencing siRNA (SKOV3ip1: 0.04 versus 0.22 g; P < 0.001; HeyA8: 0.21 versus 0.84 g; P = 0.0027). These studies show the feasibility of siRNA as a clinically applicable therapeutic modality.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Down-Regulation
- Female
- Genetic Therapy/methods
- Humans
- Liposomes/administration & dosage
- Liposomes/chemistry
- Mice
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/therapy
- Ovarian Neoplasms/blood supply
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/therapy
- Phosphatidylcholines/administration & dosage
- Phosphatidylcholines/chemistry
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacokinetics
- Receptor, EphA2/antagonists & inhibitors
- Receptor, EphA2/biosynthesis
- Receptor, EphA2/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Charles N Landen
- Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
259
|
Famulok M, Mayer G. Intramers and aptamers: applications in protein-function analyses and potential for drug screening. Chembiochem 2005; 6:19-26. [PMID: 15637667 DOI: 10.1002/cbic.200400299] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Michael Famulok
- Rheinische Friedrich-Wilhelms Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | | |
Collapse
|
260
|
Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005; 23:1002-7. [PMID: 16041363 DOI: 10.1038/nbt1122] [Citation(s) in RCA: 852] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 06/17/2005] [Indexed: 02/07/2023]
Abstract
The efficacy of lipid-encapsulated, chemically modified short interfering RNA (siRNA) targeted to hepatitis B virus (HBV) was examined in an in vivo mouse model of HBV replication. Stabilized siRNA targeted to the HBV RNA was incorporated into a specialized liposome to form a stable nucleic-acid-lipid particle (SNALP) and administered by intravenous injection into mice carrying replicating HBV. The improved efficacy of siRNA-SNALP compared to unformulated siRNA correlates with a longer half-life in plasma and liver. Three daily intravenous injections of 3 mg/kg/day reduced serum HBV DNA >1.0 log(10). The reduction in HBV DNA was specific, dose-dependent and lasted for up to 7 d after dosing. Furthermore, reductions were seen in serum HBV DNA for up to 6 weeks with weekly dosing. The advances demonstrated here, including persistence of in vivo activity, use of lower doses and reduced dosing frequency are important steps in making siRNA a clinically viable therapeutic approach.
Collapse
MESH Headings
- Animals
- Antiviral Agents/administration & dosage
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Coated Materials, Biocompatible/administration & dosage
- Coated Materials, Biocompatible/chemistry
- Drug Delivery Systems/methods
- Female
- Gene Targeting/methods
- Genetic Therapy/methods
- Hepatitis B/genetics
- Hepatitis B/metabolism
- Hepatitis B/therapy
- Hepatitis B/virology
- Hepatitis B virus/drug effects
- Hepatitis B virus/genetics
- Humans
- Liposomes/chemistry
- Liposomes/pharmacokinetics
- Liver/drug effects
- Liver/metabolism
- Male
- Metabolic Clearance Rate
- Mice
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacokinetics
- Tissue Distribution
- Treatment Outcome
Collapse
Affiliation(s)
- David V Morrissey
- Sirna Therapeutics, Inc., 2950 Wilderness Place, Boulder, Colorado 80301, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Barik S. Silence of the transcripts: RNA interference in medicine. J Mol Med (Berl) 2005; 83:764-73. [PMID: 16028076 DOI: 10.1007/s00109-005-0690-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 05/31/2005] [Indexed: 12/11/2022]
Abstract
Silencing of gene expression by ribonucleic acid (RNA), known as RNA interference (RNAi), is now recognized as a major means of gene regulation in biology. In this mechanism, small noncoding double-stranded RNA molecules knock down gene expression through a variety of mechanisms that include messenger RNA (mRNA) degradation, inhibition of mRNA translation, or chromatin remodeling. The posttranscriptional mechanism of RNAi has been embraced by researchers as a powerful tool for generating deficient phenotypes without mutating the gene. In parallel, exciting recent results have promised its application in disease therapy. This review aims to summarize the current knowledge in this area and provide a roadmap that may eventually launch RNAi from the research bench to the medicine chest.
Collapse
Affiliation(s)
- Sailen Barik
- Department of Biochemistry and Molecular Biology, College of Medicine, MSB2370, University of South Alabama, Mobile, 36688-0002, USA.
| |
Collapse
|
262
|
López T, Rojas M, Ayala-Bretón C, López S, Arias CF. Reduced expression of the rotavirus NSP5 gene has a pleiotropic effect on virus replication. J Gen Virol 2005; 86:1609-1617. [PMID: 15914838 DOI: 10.1099/vir.0.80827-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rotavirus RRV gene 11 encodes two non-structural proteins, NSP5 and NSP6. NSP5 is a phosphorylated non-structural protein that binds single- and double-stranded RNA in a non-specific manner. Transient expression of this protein in uninfected cells has provided evidence for its participation in the formation of electron-dense cytoplasmic structures, known as viroplasms, which are thought to be key structures for the replication of the virus. NSP6 is a protein of unknown function that seems not to be essential for virus replication in cell culture. To study the function of NSP5 in the context of a viral infection, the expression of RRV gene 11 was silenced by RNA interference. Reduction in the synthesis of NSP5, as shown by immunoblot and immunofluorescence assays, correlated with a reduction in the number and size of viroplasms and with an altered intracellular distribution of other viroplasm-associated proteins. Silencing of gene 11 also resulted in a reduced synthesis of viral RNA(+) and double-stranded RNA and of all viral proteins, as well as in a decreased production of infectious virus. A similar phenotype was observed when the NSP5 coding gene of the lapine rotavirus strain Alabama was silenced. The fact that the NSP5 gene of rotavirus Alabama lacks the AUG initiator codon for a complete NSP6 protein, suggests that the described phenotype in gene 11-silenced cells is mostly due to the absence of NSP5. The data presented in this work suggest that NSP5 is a key protein during the replication cycle of rotaviruses.
Collapse
Affiliation(s)
- Tomás López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Margarito Rojas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Camilo Ayala-Bretón
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Carlos F Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
263
|
Abstract
There are mainly two types of short RNAs that target complementary messengers in animals: small interfering RNAs and micro-RNAs. Both are produced by the cleavage of double-stranded RNA precursors by Dicer, a member of the Rnase III family of double-stranded specific endonucleases, and both guide the RNA-induced silencing complex to cleave specifically RNAs sharing sequence identity with them. In designing a particular RNA interference (RNAi), it is important to identify the sense/antisense combination that provides the most potent suppression of the target mRNA, and several rules have been established to give >90% gene expression inhibition. RNAi technology can be directed against cancer using a variety of strategies. These include the inhibition of overexpressed oncogenes, blocking cell division by interfering with cyclin E and related genes or promoting apoptosis by suppressing antiapoptotic genes. RNAi against multidrug resistance genes or chemoresistance targets may also provide useful cancer treatments. Studies investigating these approaches in preclinical models are also reviewed.
Collapse
Affiliation(s)
- Marta Izquierdo
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Facultad de Ciencias, Madrid, Spain.
| |
Collapse
|
264
|
Dillon CP, Sandy P, Nencioni A, Kissler S, Rubinson DA, Van Parijs L. Rnai as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu Rev Physiol 2005; 67:147-73. [PMID: 15709955 DOI: 10.1146/annurev.physiol.67.040403.130716] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past four years RNA interference (RNAi) has exploded onto the research scene as a new approach to manipulate gene expression in mammalian systems. More recently, RNAi has garnered much interest as a potential therapeutic strategy. In this review, we briefly summarize the current understanding of RNAi biology and examine how RNAi has been used to study the genetic basis of physiological and disease processes in mammalian systems. We also explore some of the new developments in the use of RNAi for disease therapy and highlight the key challenges that currently limit its application in the laboratory, as well as in the clinical setting.
Collapse
Affiliation(s)
- Christopher P Dillon
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | |
Collapse
|
265
|
Seyhan AA, Vlassov AV, Ilves H, Egry L, Kaspar RL, Kazakov SA, Johnston BH. Complete, gene-specific siRNA libraries: production and expression in mammalian cells. RNA (NEW YORK, N.Y.) 2005; 11:837-46. [PMID: 15840823 PMCID: PMC1370768 DOI: 10.1261/rna.7285805] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 02/08/2005] [Indexed: 05/24/2023]
Abstract
Short interfering RNAs (siRNAs) are widely used to silence the expression of specific genes. Current practice for designing effective siRNAs is to use algorithms based on sequence-efficacy correlations; however, there are many highly effective sequences that these algorithms do not anticipate. To ensure that the best siRNAs are identified, all possible gene-specific siRNA sequences of appropriate lengths should be screened in cell culture. Synthesizing and testing all such sequences individually is costly. A potentially much easier alternative is to prepare a mixture of all these sequences (a gene-specific library), express them in cells, select cells having the desired phenotype, and identify the siRNA contained within the selected cells. Here we describe two new methods for preparing and expressing such libraries. The first uses cloned Dicer or RNase III to digest gene-specific RNA duplexes to siRNAs, which are then converted to the corresponding DNA sequences by attaching RNA primers and performing reverse transcription-PCR. The second method involves partial DNase I digestion of gene-specific DNA, purification of a 20-30-bp fraction, and amplification by attaching DNA adapters followed by PCR. DNA libraries specific for TNF-alpha, DsRed, and part of the hepatitis C virus genome, generated by methods, were inserted into siRNA expression vectors between convergent human U6 and H1 promoters. Randomly selected clones from each library together with vectors expressing the corresponding target genes were cotransfected into 293FT cells and assayed for target gene inhibition. About 10%-20% of siRNAs represented in these libraries show significant inhibition of their target genes. Most of these inhibitory sequences are not predicted by existing algorithms.
Collapse
Affiliation(s)
- Attila A Seyhan
- SomaGenics, Inc., 2161 Delaware Ave., Santa Cruz, CA 95060, USA
| | | | | | | | | | | | | |
Collapse
|
266
|
Sledz CA, Williams BRG. RNA interference and double-stranded-RNA-activated pathways. Biochem Soc Trans 2005; 32:952-6. [PMID: 15506933 DOI: 10.1042/bst0320952] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RNAi (RNA interference) has become a powerful tool to determine gene function. Different methods of expressing the short ds (double-stranded) RNA intermediates required for interference in mammalian systems have been developed, including the introduction of si (short interfering) RNAs by direct transfection or driven from transfected plasmids or lentiviral vectors encoding sh (short hairpin) RNAs. Although RNAi relies upon a high degree of specificity, recent findings suggest that off-target non-specific effects can be encountered. We found that transfection of siRNAs can results in an interferon-mediated activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway and global up-regulation of interferon-stimulated genes. This effect is mediated in part by the dsRNA-dependent protein kinase PKR, as this kinase is activated by the 21 bp siRNA, and is required in response to the siRNAs. However, the transcription factor IRF3 (interferon-regulatory factor 3) is also activated by siRNA as a primary response, resulting in the stimulation of genes independent of an interferon response. In cells deficient in IRF3, this response is blunted, but can be restored by re-introduction of IRF3. Thus siRNAs induce complex signalling responses in target cells, leading to effects beyond the selective silencing of specific genes.
Collapse
Affiliation(s)
- C A Sledz
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
267
|
Abstract
RNA interference (RNAi) is a conserved biologic response to double-stranded RNA that results in the sequence-specific silencing of target gene expression. Over the past 5 years, an intensive research effort has facilitated the rapid movement of RNAi from a relatively obscure biologic phenomenon to a valuable tool used to silence target gene expression and perform large-scale functional genomic screens. In fact, recent studies reported in this journal and others have demonstrated success using RNAi to address the role of oncogene expression in leukemia cell lines and to validate the therapeutic potential of RNAi for treating these blood disorders. In order to advance these applications and gain an appreciation for the future of RNAi both in basic research and in the treatment of diseases caused by aberrant gene expression, it is important to have an understanding of the process of RNAi and its limitations.
Collapse
Affiliation(s)
- Carol A Sledz
- Department of Cancer Biology NB40, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | | |
Collapse
|
268
|
Leng Q, Mixson AJ. Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo. Cancer Gene Ther 2005; 12:682-90. [PMID: 15803144 DOI: 10.1038/sj.cgt.7700831] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Raf-1 is a cytosolic serine-threonine kinase that plays an important role in tumor cell growth, proliferation, and apoptosis. Upregulated Raf-1 activity has also been implicated in tumor angiogenesis and metastasis. In this study, we used a promising new RNA interfering technology that targets Raf-1 mRNA both in vitro and in vivo. We initially found that Raf-1 siRNA markedly reduced Raf-1 mRNA in MDA-MB-435 cells in vitro by approximately 75% compared to control siRNA treatment groups. Raf-1 siRNA also reduced cell number by inducing apoptosis in a number of cell lines including HUVEC, MDA-MB-435, and C6 cells. After screening several histidine-lysine polymers in complex with Raf-1 siRNA to reduce tumor growth, we further evaluated the efficacy of this siRNA in complex with the optimal histidine-lysine carrier to reduce the tumor growth in vivo. MDA-MB-435 xenografts treated by intratumoral injections of Raf-1 siRNA were significantly reduced compared with the control groups. By the fourth measurement, tumor growth was reduced by nearly 60% in the Raf-1 siRNA treatment group compared with the untreated group (P < .02). Taken together, our data provide evidence that Raf-1 siRNA may be an effective strategy for reducing tumor growth.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University of Maryland Baltimore, MSTF Building, 10 South Pine Street, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
269
|
Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 2005; 348:1079-90. [PMID: 15854645 DOI: 10.1016/j.jmb.2005.03.013] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/03/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
The potential induction of inflammatory cytokines and interferon responses by small-interfering RNAs (siRNAs) represents a major obstacle for their use as inhibitors of gene expression. Therapeutic applications of siRNAs will require a better understanding of the mechanisms that trigger such unwanted effects, especially in freshly isolated human cells. Surprisingly, the induction of tumor necrosis factor (TNF-alpha) and interleukin-6 (IL-6) in adherent peripheral blood mononuclear cells (PBMC) was not restricted to double-stranded siRNAs, because induction was also obtained with single-stranded siRNAs (sense or antisense strands). The immunostimulatory effects were sequence-dependent, since only certain sequences are prone to induce inflammatory responses while others are not. The induction of TNF-alpha, IL-6 and interferon alpha (IFN-alpha) was chloroquine-sensitive and dependent more likely on endosomal Toll-like receptor signaling in particular TLR8. Indeed, no significant immunostimulatory effects were detected when either double or single-stranded siRNAs were delivered directly to cytoplasm via electroporation. Both RNA types activated a NF-kappaB promoter-driven luciferase gene in transiently transfected human adherent PBMC. Moreover, culture of immature dendritic cells with either double or single-stranded siRNAs stimulated interleukin-12 production and induced the expression of CD83, an activation marker. Interestingly, several double-stranded siRNAs did not induce TNF-alpha, IL-6 and IFN-alpha production, however, their single-stranded sense or antisense did. Taken together, the present data indicate for the first time that the induction of inflammatory cytokines and IFN-alpha responses by either double-stranded or single-stranded siRNAs in adherent PBMC is sequence-dependent and requires endosomal intracellular signaling. The finding that endosomal localization of self-RNAs (sense strands) can trigger Toll-like receptor signaling in adherent human PBMC is intriguing because it indicates that endosomal self-RNAs can display a molecular pattern capable for activating innate immunity.
Collapse
MESH Headings
- Cells, Cultured
- Cytokines/biosynthesis
- Cytokines/genetics
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Endosomes/chemistry
- Endosomes/physiology
- Gene Expression/drug effects
- Gene Expression/genetics
- Humans
- Interferon-alpha/genetics
- Interferon-alpha/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- NF-kappa B/genetics
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- RNA, Double-Stranded/analysis
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/pharmacology
- RNA, Small Interfering/analysis
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Toll-Like Receptor 8
- Toll-Like Receptors
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Mouldy Sioud
- The Norwegian Radium Hospital, Department of Immunology, Molecular Medicine Group, Montebello, N-0310 Oslo, Norway.
| |
Collapse
|
270
|
Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005; 23:457-62. [PMID: 15778705 DOI: 10.1038/nbt1081] [Citation(s) in RCA: 871] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 02/17/2005] [Indexed: 11/09/2022]
Abstract
Short interfering RNAs (siRNAs) that mediate specific gene silencing through RNA interference (RNAi) are widely used to study gene function and are also being developed for therapeutic applications. Many nucleic acids, including double- (dsRNA) and single-stranded RNA (ssRNA), can stimulate innate cytokine responses in mammals. Despite this, few studies have questioned whether siRNA may have a similar effect on the immune system. This could significantly influence the in vivo application of siRNA owing to off-target effects and toxicities associated with immune stimulation. Here we report that synthetic siRNAs formulated in nonviral delivery vehicles can be potent inducers of interferons and inflammatory cytokines both in vivo in mice and in vitro in human blood. The immunostimulatory activity of formulated siRNAs and the associated toxicities are dependent on the nucleotide sequence. We have identified putative immunostimulatory motifs that have allowed the design of siRNAs that can mediate RNAi but induce minimal immune activation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Culture Techniques
- Cells, Cultured
- Dendritic Cells/immunology
- Enzyme-Linked Immunosorbent Assay
- Humans
- Immunity, Innate/drug effects
- Interferon-alpha/analysis
- Interferon-gamma/analysis
- Interleukin-6/analysis
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Lipopolysaccharide Receptors/immunology
- Liposomes
- Mice
- Mice, Inbred A
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred ICR
- RNA Interference
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Tumor Necrosis Factor-alpha/analysis
Collapse
Affiliation(s)
- Adam D Judge
- Protiva Biotherapeutics, 100-3480 Gilmore Way, Burnaby, British Columbia V5G 4Y1, Canada
| | | | | | | | | | | |
Collapse
|
271
|
|
272
|
Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005; 11:263-70. [PMID: 15723075 DOI: 10.1038/nm1191] [Citation(s) in RCA: 923] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 01/19/2005] [Indexed: 11/09/2022]
Abstract
Short interfering RNA (siRNA) is used in RNA interference technology to avoid non-target-related induction of type I interferon (IFN) typical for long double-stranded RNA. Here we show that in plasmacytoid dendritic cells (PDC), an immune cell subset specialized in the detection of viral nucleic acids and production of type I IFN, some siRNA sequences, independent of their GU content, are potent stimuli of IFN-alpha production. Localization of the immunostimulatory motif on the sense strand of a potent IFN-alpha-inducing siRNA allowed dissection of immunostimulation and target silencing. Injection into mice of immunostimulatory siRNA, when complexed with cationic liposomes, induced systemic immune responses in the same range as the TLR9 ligand CpG, including IFN-alpha in serum and activation of T cells and dendritic cells in spleen. Immunostimulation by siRNA was absent in TLR7-deficient mice. Thus sequence-specific TLR7-dependent immune recognition in PDC needs to be considered as an additional biological activity of siRNA, which then should be termed immunostimulatory RNA (isRNA).
Collapse
Affiliation(s)
- Veit Hornung
- Department of Internal Medicine, Division of Clinical Pharmacology, Ludwig-Maximilians-University of Munich, Ziemssenstr. 1, 80336 München, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Heale BSE, Soifer HS, Bowers C, Rossi JJ. siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res 2005; 33:e30. [PMID: 15722476 PMCID: PMC549425 DOI: 10.1093/nar/gni026] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The crystal structure based model of the catalytic center of Ago2 revealed that the siRNA and the mRNA must be able to form an A-helix for correct positing of the scissile phosphate bond for cleavage in RNAi. This suggests that base pairing of the target mRNA with itself, i.e. secondary structure, must be removed before cleavage. Early on in the siRNA design, GC-rich target sites were avoided because of their potential to be involved in strong secondary structure. It is still unclear how important a factor mRNA secondary structure is in RNAi. However, it has been established that a difference in the thermostability of the ends of an siRNA duplex dictate which strand is loaded into the RNA-induced silencing complex. Here, we use a novel secondary structure prediction method and duplex-end differential calculations to investigate the importance of a secondary structure in the siRNA design. We found that the differential duplex-end stabilities alone account for functional prediction of 60% of the 80 siRNA sites examined, and that secondary structure predictions improve the prediction of site efficacy. A total of 80% of the non-functional sites can be eliminated using secondary structure predictions and duplex-end differential.
Collapse
Affiliation(s)
| | | | | | - John J. Rossi
- To whom correspondence should be addressed. Tel: +1 626 301 8360; Fax: +1 626 301 8271; or
| |
Collapse
|
274
|
Abstract
The availability of complete genome sequences from many organisms has yielded the ability to perform high-throughput, genome-wide screens of gene function. Within the past year, rapid advances have been made towards this goal in many major model systems, including yeast, worms, flies, and mammals. Yeast genome-wide screens have taken advantage of libraries of deletion strains, but RNA-interference has been used in other organisms to knockdown gene function. Examples of recent large-scale functional genetic screens include drug-target identification in yeast, regulators of fat accumulation in worms, growth and viability in flies, and proteasome-mediated degradation in mammalian cells. Within the next five years, such screens are likely to lead to annotation of function of most genes across multiple organisms. Integration of such data with other genomic approaches will extend our understanding of cellular networks.
Collapse
Affiliation(s)
- Adam Friedman
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachussets 02115, USA
| | | |
Collapse
|
275
|
Leonard JN, Schaffer DV. Computational design of antiviral RNA interference strategies that resist human immunodeficiency virus escape. J Virol 2005; 79:1645-54. [PMID: 15650190 PMCID: PMC544124 DOI: 10.1128/jvi.79.3.1645-1654.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recently developed antiviral strategies based upon RNA interference (RNAi), which harnesses an innate cellular system for the targeted down-regulation of gene expression, appear highly promising and offer alternative approaches to conventional highly active antiretroviral therapy or efforts to develop an AIDS vaccine. However, RNAi is faced with several challenges that must be overcome to fully realize its promise. Specifically, it degrades target RNA in a highly sequence-specific manner and is thus susceptible to viral mutational escape, and there are also challenges in delivery systems to induce RNAi. To aid in the development of anti-human immunodeficiency virus (anti-HIV) RNAi therapies, we have developed a novel stochastic computational model that simulates in molecular-level detail the propagation of an HIV infection in cells expressing RNAi. The model provides quantitative predictions on how targeting multiple locations in the HIV genome, while keeping the overall RNAi strength constant, significantly improves efficacy. Furthermore, it demonstrates that delivery systems must be highly efficient to preclude leaving reservoirs of unprotected cells where the virus can propagate, mutate, and eventually overwhelm the entire system. It also predicts how therapeutic success depends upon a relationship between RNAi strength and delivery efficiency and uniformity. Finally, targeting an essential viral element, in this case the HIV TAR region, can be highly successful if the RNAi target sequence is correctly selected. In addition to providing specific predictions for how to optimize a clinical therapy, this system may also serve as a future tool for investigating more fundamental questions of viral evolution.
Collapse
Affiliation(s)
- Joshua N Leonard
- Department of Chemical Engineering and The Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462, USA
| | | |
Collapse
|
276
|
Kittler R, Pelletier L, Ma C, Poser I, Fischer S, Hyman AA, Buchholz F. RNA interference rescue by bacterial artificial chromosome transgenesis in mammalian tissue culture cells. Proc Natl Acad Sci U S A 2005; 102:2396-401. [PMID: 15695330 PMCID: PMC548992 DOI: 10.1073/pnas.0409861102] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) is a widely used method for analysis of gene function in tissue culture cells. However, to date there has been no reliable method for testing the specificity of any particular RNAi experiment. The ideal experiment is to rescue the phenotype by expression of the target gene in a form refractory to RNAi. The transgene should be expressed at physiological levels and with its different splice variants. Here, we demonstrate that expression of murine bacterial artificial chromosomes in human cells provides a reliable method to create RNAi-resistant transgenes. This strategy should be applicable to all eukaryotes and should therefore be a standard technology for confirming the specificity of RNAi. We show that this technique can be extended to allow the creation of tagged transgenes, expressed at physiological levels, for the further study of gene function.
Collapse
Affiliation(s)
- Ralf Kittler
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
277
|
|
278
|
Abstract
Synthetic small interfering RNA (siRNA) has become a valuable tool for investigating gene function in cell culture. This success has led to high expectations for siRNA as a tool for in vivo investigation and as a platform for therapeutic development. siRNA in cell culture owes much of its success to years of development of traditional antisense oligonucleotides, and in vivo applications will also benefit from previous experience in this regard. However, the duplex nature of siRNA presents significant obstacles that will need to be overcome. Here, we discuss the current status of in vivo siRNA technology and describe some of the barriers to widespread application of RNAi-mediated gene silencing in mammals.
Collapse
Affiliation(s)
- Zain Paroo
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | | |
Collapse
|
279
|
Stein CA, Rossi JJ. A critical assessment of the potential of short interfering RNA therapeutics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2005; 2:27-31. [PMID: 24981752 DOI: 10.1016/j.ddtec.2005.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
siRNA technology is now being extensively investigated both academically and commercially as a therapeutic modality because of its ability, at low concentration, to effectively downregulate the expression of target genes in tissue culture. However, the road to therapeutic siRNAs, similar to antisense oligodeoxyribonucleotides, an older technology that is also based on Watson-Crick base-pair complementation and which have not performed well in the clinic, will undoubtedly be long and challenging despite the initial enthusiasm.:
Collapse
Affiliation(s)
- C A Stein
- Department of Oncology, Albert Einstein-Montefiore Cancer Center, 111 E. 210 St. Bronx, NY 10461, USA.
| | - J J Rossi
- Beckman Research Institute, City of Hope National Medical Center, 1450 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
280
|
Akashi H, Miyagishi M, Yokota T, Watanabe T, Hino T, Nishina K, Kohara M, Taira K. Escape from the interferon response associated with RNA interference using vectors that encode long modified hairpin-RNA. MOLECULAR BIOSYSTEMS 2005; 1:382-90. [PMID: 16881007 DOI: 10.1039/b510159j] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In mammalian cells, siRNAs have been used to induce RNA interference (RNAi) in an attempt to prevent nonspecific effects (including the interferon (IFN) response) which are caused by long double-stranded RNAs (dsRNAs) of more than 30 bp. In this report, we describe a novel and simple strategy for avoiding activation of the IFN response by dsRNA. We show that modified hairpin-RNAs (mhRNAs) of more than 100 bp, with multiple specific point-mutations within the sense strand and transcribed from the U6 or tRNA(Val) promoters, can cause RNAi without inducing the IFN pathway genes. Moreover, we demonstrate that the 50-bp mhRNA vector could effectively suppress the replication of multiple hepatitis C viruses (the genomes of which differ slightly, thus the 21-bp siRNA vector failed to suppress one of them). Our findings should enhance the exploitation of RNAi in mammalian cells, especially in the field of RNAi therapy against pathogenic viruses.
Collapse
Affiliation(s)
- Hideo Akashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 2004; 23:222-6. [PMID: 15619617 DOI: 10.1038/nbt1051] [Citation(s) in RCA: 643] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 11/01/2004] [Indexed: 02/07/2023]
Abstract
RNA interference (RNAi) is the process of sequence-specific post-transcriptional gene silencing triggered by double-stranded RNAs. In attempts to identify RNAi triggers that effectively function at lower concentrations, we found that synthetic RNA duplexes 25-30 nucleotides in length can be up to 100-fold more potent than corresponding conventional 21-mer small interfering RNAs (siRNAs). Some sites that are refractory to silencing by 21-mer siRNAs can be effectively targeted by 27-mer duplexes, with silencing lasting up to 10 d. Notably, the 27-mers do not induce interferon or activate protein kinase R (PKR). The enhanced potency of the longer duplexes is attributed to the fact that they are substrates of the Dicer endonuclease, directly linking the production of siRNAs to incorporation in the RNA-induced silencing complex. These results provide an alternative strategy for eliciting RNAi-mediated target cleavage using low concentrations of synthetic RNA as substrates for cellular Dicer-mediated cleavage.
Collapse
|
282
|
Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 2004; 11:50-5. [PMID: 15619632 DOI: 10.1038/nm1164] [Citation(s) in RCA: 520] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 10/27/2004] [Indexed: 11/09/2022]
Abstract
Respiratory syncytial virus (RSV) and parainfluenza virus (PIV) are two respiratory pathogens of paramount medical significance that exert high mortality. At present, there is no reliable vaccine or antiviral drug against either virus. Using an RNA interference (RNAi) approach, we show that individual as well as joint infection by RSV and PIV can be specifically prevented and inhibited by short interfering RNAs (siRNAs), instilled intranasally in the mouse, with or without transfection reagents. The degree of protection matched the antiviral activity of the siRNA in cell culture, allowing an avenue for quick screening of an efficacious siRNA. When targeting both viruses in a joint infection, excess of one siRNA moderated the inhibitory effect of the other, suggesting competition for the RNAi machinery. Our results suggest that, if properly designed, low dosages of inhaled siRNA might offer a fast, potent and easily administrable antiviral regimen against respiratory viral diseases in humans.
Collapse
Affiliation(s)
- Vira Bitko
- Department of Biochemistry and Molecular Biology (MSB 2370), University of South Alabama, College of Medicine, 307 University Boulevard, Mobile, Alabama 36688-0002, USA
| | | | | | | |
Collapse
|
283
|
Heidel JD, Hu S, Liu XF, Triche TJ, Davis ME. Lack of interferon response in animals to naked siRNAs. Nat Biotechnol 2004; 22:1579-82. [PMID: 15558046 DOI: 10.1038/nbt1038] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 09/30/2004] [Indexed: 01/22/2023]
Abstract
RNA interference (RNAi) is rapidly becoming the method of choice for the elucidation of gene function and the identification of drug targets. As with other oligonucleotide-based strategies, RNAi is envisioned to ultimately be useful as a human therapeutic. Unlike previous nucleic acid therapeutics, small interfering RNAs have the potential to elicit immune responses via interactions with Toll-like receptor 3 and trigger interferon responses like long, double-stranded RNA and its analogs, such as poly(I:C). Recently, the safety of siRNAs has been questioned because they have been shown to trigger an interferon response in cultured cells. We show here that it is possible to administer naked, synthetic siRNAs to mice and downregulate an endogenous or exogenous target without inducing an interferon response.
Collapse
|
284
|
Abstract
The discovery of RNA interference (RNAi) may well be one of the transforming events in biology in the past decade. RNAi can result in gene silencing or even in the expulsion of sequences from the genome. Harnessed as an experimental tool, RNAi has revolutionized approaches to decoding gene function. It also has the potential to be exploited therapeutically, and clinical trials to test this possibility are already being planned.
Collapse
Affiliation(s)
- Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
285
|
Pauls E, Esté JA. RNA interference as a tool for target validation. DRUG DISCOVERY TODAY. TECHNOLOGIES 2004; 1:135-140. [PMID: 24981383 DOI: 10.1016/j.ddtec.2004.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
RNA interference (RNAi) is a cellular phenomenon, aspects of which still remain partially unknown. Nevertheless, beyond its function in cellular defense or control of development, RNAi provides a powerful tool for the study of gene function and target validation. Here, we review some of the key technologies that have allowed RNAi to be used 'in vitro' and 'in vivo'. We summarize their main advantages and disadvantages, in the hope of creating a basic guideline for scientists needing to introduce RNAi as a tool for basic research.:
Collapse
Affiliation(s)
- Eduardo Pauls
- Retrovirology Laboratory IrsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - José A Esté
- Retrovirology Laboratory IrsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain.
| |
Collapse
|
286
|
Wang Q, Carmichael GG. Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev 2004; 68:432-52, table of contents. [PMID: 15353564 PMCID: PMC515255 DOI: 10.1128/mmbr.68.3.432-452.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since double-stranded RNA (dsRNA) has not until recently generally been thought to be deliberately expressed in cells, it has commonly been assumed that the major source of cellular dsRNA is viral infections. In this view, the cellular responses to dsRNA would be natural and perhaps ancient antiviral responses. While the cell may certainly react to some dsRNAs as an antiviral response, this does not represent the only response or even, perhaps, the major one. A number of recent observations have pointed to the possibility that dsRNA molecules are not seen only as evidence of viral infection or recognized for degradation because they cannot be translated. In some instances they may also play important roles in normal cell growth and function. The purpose of this review is to outline our current understanding of the fate of dsRNA in cells, with a focus on the apparent fact that their fates and functions appear to depend critically not only on where in the cell dsRNA molecules are found, but also on how long they are and perhaps on how abundant they are.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | | |
Collapse
|
287
|
Ichim TE, Li M, Qian H, Popov IA, Rycerz K, Zheng X, White D, Zhong R, Min W. RNA interference: a potent tool for gene-specific therapeutics. Am J Transplant 2004; 4:1227-36. [PMID: 15268723 PMCID: PMC7175948 DOI: 10.1111/j.1600-6143.2004.00530.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNA interference (RNAi) is a process through which double-stranded RNA induces the activation of cellular pathways, leading to potent and selective silencing of genes with homology to the double strand. Much excitement surrounding small interfering RNA (siRNA)-mediated therapeutics arises from the fact that this approach overcomes many of the shortcomings previously experienced with approaches such as antibodies, antisense oligonucleotides and pharmacological inhibitors. Induction of RNAi through administration of siRNA has been successfully used in treatment of hepatitis, viral infections, and cancer. In this review we will present a brief history of RNAi, methods of inducing RNAi, application of RNAi in the therapeutic setting, and the possibilities of using this highly promising approach in the context of transplantation.
Collapse
Affiliation(s)
- Thomas E. Ichim
- Department of Surgery, Microbiology and Immunology, University of Western Ontario
- Multi‐Organ Transplant program, London Health Sciences Centre
| | - Mu Li
- Department of Surgery, Microbiology and Immunology, University of Western Ontario
- Multi‐Organ Transplant program, London Health Sciences Centre
| | - Hua Qian
- Department of Surgery, Microbiology and Immunology, University of Western Ontario
- Multi‐Organ Transplant program, London Health Sciences Centre
| | - Igor A. Popov
- Department of Surgery, Microbiology and Immunology, University of Western Ontario
- Multi‐Organ Transplant program, London Health Sciences Centre
| | - Katarzyna Rycerz
- Department of Surgery, Microbiology and Immunology, University of Western Ontario
| | - Xiufen Zheng
- Department of Surgery, Microbiology and Immunology, University of Western Ontario
| | - David White
- Department of Surgery, Microbiology and Immunology, University of Western Ontario
- Multi‐Organ Transplant program, London Health Sciences Centre
- Immunology and Transplantation, Lawson Health Research Institute, and
- Robarts Research Institute, London, ON, Canada
| | - Robert Zhong
- Department of Surgery, Microbiology and Immunology, University of Western Ontario
- Multi‐Organ Transplant program, London Health Sciences Centre
- Immunology and Transplantation, Lawson Health Research Institute, and
- Robarts Research Institute, London, ON, Canada
| | - Wei‐Ping Min
- Department of Surgery, Microbiology and Immunology, University of Western Ontario
- Multi‐Organ Transplant program, London Health Sciences Centre
- Immunology and Transplantation, Lawson Health Research Institute, and
- Robarts Research Institute, London, ON, Canada
| |
Collapse
|
288
|
Hall J. Unravelling the general properties of siRNAs: strength in numbers and lessons from the past. Nat Rev Genet 2004; 5:552-7. [PMID: 15211357 DOI: 10.1038/nrg1382] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jonathan Hall
- Novartis Pharma AG, Department of Functional Genomics, WSJ88.431, CH-4002 Basel, Switzerland.
| |
Collapse
|
289
|
Affiliation(s)
- Vivek Mittal
- Cancer Genome Research Center, Cold Spring Harbor Laboratory, 500 Sunnyside Boulevard, Woodbury, New York 11797, USA.
| |
Collapse
|
290
|
Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen J. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci U S A 2004; 101:8676-81. [PMID: 15173599 PMCID: PMC423254 DOI: 10.1073/pnas.0402486101] [Citation(s) in RCA: 327] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Influenza A virus infection is a major source of morbidity and mortality worldwide. Because the effectiveness of existing vaccines and antiviral drugs is limited, development of new treatment modalities is needed. Here, we show that short interfering RNAs (siRNAs) specific for conserved regions of influenza virus genes can prevent and treat influenza virus infection in mice. Virus production in lungs of infected mice is reduced by siRNAs given either before or after initiating virus infection, by using slow i.v. administration of small volumes containing siRNAs in complexes with a polycation carrier. Similar effects also are observed when mice are given DNA vectors i.v. or intranasally, from which siRNA precursors can be transcribed. Development of delivery systems that may be compatible with human use demonstrates the potential utility of siRNAs for prophylaxis and therapy of influenza virus infections in humans.
Collapse
Affiliation(s)
- Qing Ge
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
291
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2004. [PMCID: PMC2447433 DOI: 10.1002/cfg.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
292
|
Congress of Clinical Chemistry and Laboratory Medicine Annual meeting of the German United Society for Clinical Chemistry and Laboratory Medicine (DGKL), Düsseldorf, Germany, November 22-24, 2004. Clin Chem Lab Med 2004. [DOI: 10.1515/cclm.2004.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
293
|
Abstract
A relatively recent entrant into molecular biology--double-stranded RNA (dsRNA)--as a class exhibits a unique set of properties: relative stability, affinity for specific proteins and enzymes, ability to activate the interferon pathway and finally, RNA interference (RNAi). In RNAi, unique double-stranded short interfering RNA molecules (siRNA) destroy the corresponding target RNA with exquisite potency and selectivity, thus causing post-transcriptional gene silencing (PTGS). An understanding of the design of gene-specific dsRNA and development of techniques to deliver dsRNA in the cell and in live animals has heralded a new age of gene therapy without gene knockout. This review first summarizes the biological synthesis, metabolism and effect of the dsRNA with special emphasis on siRNA and RNAi. This is followed by the clinical, pharmacological and pharmaceutical prospects of the development of the dsRNA as a drug. It is clear that the dsRNA holds an enormous promise in the treatment of a large number of metabolic and infectious diseases including but not limited to cancer, macular degeneration, diabetic retinopathy, Alzheimer's and other neural disorders, autoimmune diseases, and all viral infections including AIDS (acquired immune deficiency syndrome), hepatitis and respiratory syncytial virus (RSV).
Collapse
Affiliation(s)
- Sailen Barik
- Department of Biochemistry and Molecular Biology, University of Southern Alabama, College of Medicine, Mobile 36688-0002, USA.
| |
Collapse
|