251
|
Jacob TC, Moss SJ, Jurd R. GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 2008; 9:331-43. [PMID: 18382465 PMCID: PMC2709246 DOI: 10.1038/nrn2370] [Citation(s) in RCA: 490] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GABA (gamma-aminobutyric acid) type A receptors (GABA(A)Rs) mediate most fast synaptic inhibition in the mammalian brain, controlling activity at both the network and the cellular levels. The diverse functions of GABA in the CNS are matched not just by the heterogeneity of GABA(A)Rs, but also by the complex trafficking mechanisms and protein-protein interactions that generate and maintain an appropriate receptor cell-surface localization. In this Review, we discuss recent progress in our understanding of the dynamic regulation of GABA(A)R composition, trafficking to and from the neuronal surface, and lateral movement of receptors between synaptic and extrasynaptic locations. Finally, we highlight a number of neurological disorders, including epilepsy and schizophrenia, in which alterations in GABA(A)R trafficking occur.
Collapse
Affiliation(s)
- Tija C. Jacob
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Stephen J. Moss
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Department of Pharmacology, University College London, WC1E 6BT, UK
| | - Rachel Jurd
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
252
|
Fritschy JM. Epilepsy, E/I Balance and GABA(A) Receptor Plasticity. Front Mol Neurosci 2008; 1:5. [PMID: 18946538 PMCID: PMC2525999 DOI: 10.3389/neuro.02.005.2008] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 01/26/2023] Open
Abstract
GABAA receptors mediate most of the fast inhibitory transmission in the CNS. They form heteromeric complexes assembled from a large family of subunit genes. The existence of multiple GABAA receptor subtypes differing in subunit composition, localization and functional properties underlies their role for fine-tuning of neuronal circuits and genesis of network oscillations. The differential regulation of GABAA receptor subtypes represents a major facet of homeostatic synaptic plasticity and contributes to the excitation/inhibition (E/I) balance under physiological conditions and upon pathological challenges. The purpose of this review is to discuss recent findings highlighting the significance of GABAA receptor heterogeneity for the concept of E/I balance and its relevance for epilepsy. Specifically, we address the following issues: (1) role for tonic inhibition, mediated by extrasynaptic GABAA receptors, for controlling neuronal excitability; (2) significance of chloride ion transport for maintenance of the E/I balance in adult brain; and (3) molecular mechanisms underlying GABAA receptor regulation (trafficking, posttranslational modification, gene transcription) that are important for homoeostatic plasticity. Finally, the relevance of these findings is discussed in light of the involvement of GABAA receptors in epileptic disorders, based on recent experimental studies of temporal lobe epilepsy (TLE) and absence seizures and on the identification of mutations in GABAA receptor subunit genes underlying familial forms of epilepsy.
Collapse
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
253
|
Galanopoulou AS. GABA(A) receptors in normal development and seizures: friends or foes? Curr Neuropharmacol 2008; 6:1-20. [PMID: 19305785 PMCID: PMC2645547 DOI: 10.2174/157015908783769653] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/24/2007] [Accepted: 08/05/2007] [Indexed: 12/26/2022] Open
Abstract
GABA(A) receptors have an age-adapted function in the brain. During early development, they mediate excitatory effects resulting in activation of calcium sensitive signaling processes that are important for the differentiation of the brain. In more mature stages of development and in adults, GABA(A) receptors transmit inhibitory signals. The maturation of GABA(A) signaling follows sex-specific patterns, which appear to also be important for the sexual differentiation of the brain. The inhibitory effects of GABA(A) receptor activation have been widely exploited in the treatment of conditions where neuronal silencing is necessary. For instance, drugs that target GABA(A) receptors are the mainstay of treatment of seizures. Recent evidence suggests however that the physiology and function of GABA(A) receptors changes in the brain of a subject that has epilepsy or status epilepticus.This review will summarize the physiology of and the developmental factors regulating the signaling and function of GABA(A) receptors; how these may change in the brain that has experienced prior seizures; what are the implications for the age and sex specific treatment of seizures and status epilepticus. Finally, the implications of these changes for the treatment of certain forms of medically refractory epilepsies and status epilepticus will be discussed.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Albert Einstein College of Medicine, Saul R Korey Department of Neurology & Dominick P Purpura, Department of Neuroscience, Bronx NY, USA.
| |
Collapse
|
254
|
|
255
|
Grill MF, Losey TE, Ng YT. The Hitchhiker's guide to the child neurologist's genetic evaluation of epilepsy. Semin Pediatr Neurol 2008; 15:32-40. [PMID: 18342259 DOI: 10.1016/j.spen.2008.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Over the past several decades, familial aggregation studies as well as twin studies have supported a genetic component to seizures. The recent advent of the genome project has served as a catalyst in the search for elucidating the hereditary influences of various epilepsies. Overlapping seizure features may lead to ambiguity when attempting to isolate a single phenotype. Conversely, the phenomenon of genetic heterogeneity implies that multiple genetic mutations may give rise to a similar phenotype. Despite valiant attempts at strictly defining epilepsy phenotype and mode of penetrance, one must also consider the role of environment in gene expression. Genetics (testing) in epilepsy is no longer limited to the idiopathic epilepsies but may have an equally significant role in the symptomatic epilepsies. This article guides the reader through the genetics of epilepsy via discussion of the phenotypic description of known genetic childhood epilepsy syndromes, illustration of the associated gene mutations identified thus far, and the implications of genetic testing in clinical practice.
Collapse
Affiliation(s)
- Marie F Grill
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | | | | |
Collapse
|
256
|
Ragsdale DS. How do mutant Nav1.1 sodium channels cause epilepsy? ACTA ACUST UNITED AC 2008; 58:149-59. [PMID: 18342948 DOI: 10.1016/j.brainresrev.2008.01.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 11/28/2022]
Abstract
Voltage-gated sodium channels comprise pore-forming alpha subunits and auxiliary beta subunits. Nine different alpha subtypes, designated Nav1.1-Nav1.9 have been identified in excitable cells. Nav1.1, 1.2 and 1.6 are major subtypes in the adult mammalian brain. More than 200 mutations in the Nav1.1 alpha subtype have been linked to inherited epilepsy syndromes, ranging in severity from the comparatively mild disorder Generalized Epilepsy with Febrile Seizures Plus to the epileptic encephalopathy Severe Myoclonic Epilepsy of Infancy. Studies using heterologous expression and functional analysis of recombinant Nav1.1 channels suggest that epilepsy mutations in Nav1.1 may cause either gain-of-function or loss-of-function effects that are consistent with either increased or decreased neuronal excitability. How these diverse effects lead to epilepsy is poorly understood. This review summarizes the data on sodium channel mutations and epilepsy and builds a case for the hypothesis that most Nav1.1 mutations have their ultimate epileptogenic effects by reducing Nav1.1-mediated whole cell sodium currents in GABAergic neurons, resulting in widespread loss of brain inhibition, an ideal background for the genesis of epileptic seizures.
Collapse
Affiliation(s)
- David S Ragsdale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| |
Collapse
|
257
|
Bernard G, Shevell MI. Channelopathies: a review. Pediatr Neurol 2008; 38:73-85. [PMID: 18206787 DOI: 10.1016/j.pediatrneurol.2007.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/05/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
Abstract
Channelopathies are a recently delineated, emerging group of neurologic disorders united by genetically determined defects in ion-channel function. These disorders are characterized by a prominent genetic and phenotypic heterogeneity that can make them challenging and bewildering to understand. This systematic review attempts to categorize these disorders according to their predominant clinical manifestations (i.e., myotonia, weakness, migraine, ataxia, epilepsy, and movement disorders) within the context of what is presently known about the molecular basis of recognized clinical syndromes. Areas of both genetic and phenotypic overlap are highlighted. The review is intended to assist clinicians in enhancing their diagnostic acumen and in targeting specific genetic tests.
Collapse
Affiliation(s)
- Genevieve Bernard
- Department of Neurology/Neurosurgery, McGill University, Montreal Children's Hospital-McGill University Health Center, Montreal, Quebec, Canada
| | | |
Collapse
|
258
|
Abstract
Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABA(A) (gamma-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery.
Collapse
Affiliation(s)
- Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, California 94143-0521, USA.
| | | |
Collapse
|
259
|
GABA(A) receptor gamma 2 subunit mutations linked to human epileptic syndromes differentially affect phasic and tonic inhibition. J Neurosci 2008; 27:14108-16. [PMID: 18094250 DOI: 10.1523/jneurosci.2618-07.2007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA acts on GABA(A) receptors to evoke both phasic inhibitory synaptic events and persistent, tonic currents. The gamma2 subunit of the GABA(A) receptor is involved in both phasic and tonic signaling in the hippocampus. Several mutations of this subunit are linked to human epileptic syndromes with febrile seizures, yet it is not clear how they perturb neuronal activity. Here, we examined the expression and functional impact of recombinant gamma2 in hippocampal neurons. We show that the K289M mutation has no effect on membrane trafficking and synaptic aggregation of recombinant gamma2, but accelerates the decay of synaptic currents. In contrast, the R43Q mutation primarily reduces surface expression of recombinant gamma2. However, it has no dominant effect on synaptic currents but instead reduces tonic GABA currents, at least in part by reducing surface expression of the alpha5 subunit. Our data suggests that the phenotypic specificity of mutations affecting the GABA(A) receptor gamma2 gene may result from different actions specific to distinct modes of GABAergic signaling.
Collapse
|
260
|
|
261
|
Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy. Proc Natl Acad Sci U S A 2007; 104:17536-41. [PMID: 17947380 DOI: 10.1073/pnas.0708440104] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the GABA(A) receptor gamma2 subunit are associated with childhood absence epilepsy and febrile seizures. To understand better the molecular basis of absence epilepsy in man, we developed a mouse model harboring a gamma2 subunit point mutation (R43Q) found in a large Australian family. Mice heterozygous for the mutation demonstrated behavioral arrest associated with 6-to 7-Hz spike-and-wave discharges, which are blocked by ethosuximide, a first-line treatment for absence epilepsy in man. Seizures in the mouse showed an abrupt onset at around age 20 days corresponding to the childhood nature of this disease. Reduced cell surface expression of gamma2(R43Q) was seen in heterozygous mice in the absence of any change in alpha1 subunit surface expression, ruling out a dominant-negative effect. GABA(A)-mediated synaptic currents recorded from cortical pyramidal neurons revealed a small but significant reduction that was not seen in the reticular or ventrobasal thalamic nuclei. We hypothesize that a subtle reduction in cortical inhibition underlies childhood absence epilepsy seen in humans harboring the R43Q mutation.
Collapse
|
262
|
Tomaskova Z, Gaburjakova J, Brezova A, Gaburjakova M. Inhibition of anion channels derived from mitochondrial membranes of the rat heart by stilbene disulfonate--DIDS. J Bioenerg Biomembr 2007; 39:301-11. [PMID: 17899339 DOI: 10.1007/s10863-007-9090-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 05/01/2007] [Indexed: 01/05/2023]
Abstract
The objective of this work was to characterize in more detail the inhibition effect of diisothiocyanatostilbene-2',2-disulfonic acid (DIDS) on anion channels isolated from the rat heart mitochondria. The channels reconstituted into a planar lipid membrane displayed limited powers of discrimination between anions and cations and the ion conductance measured under asymmetric (250/50 mM KCl, cis/trans) and symmetric (150 mM KCl) conditions was approximately 100 pS. DIDS caused a dramatic decrease in the channel activity (IC(50) = 11.7 +/- 3.1 microM) only when it was added to the cis side of a planar lipid membrane. The inhibition was accompanied by the significant prolongation of closings and the shortening of openings within the burst as well as gaps between bursts were prolonged and durations of bursts were reduced. The blockade was complete and irreversible when concentration of DIDS was increased up to 200 microM. Our data indicate that DIDS is an allosteric blocker of mitochondrial anion channels and this specific effect could be used as a tool for reliable identification of anion channels on the functional level.
Collapse
Affiliation(s)
- Zuzana Tomaskova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 83334 Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
263
|
Lucarini N, Verrotti A, Napolioni V, Bosco G, Curatolo P. Genetic polymorphisms and idiopathic generalized epilepsies. Pediatr Neurol 2007; 37:157-64. [PMID: 17765802 DOI: 10.1016/j.pediatrneurol.2007.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/14/2007] [Accepted: 06/01/2007] [Indexed: 10/22/2022]
Abstract
In recent years, progress in understanding the genetic basis of idiopathic generalized epilepsies has proven challenging because of their complex inheritance patterns and genetic heterogeneity. Genetic polymorphisms offer a convenient avenue for a better understanding of the genetic basis of idiopathic generalized epilepsy by providing evidence for the involvement of a given gene in these disorders, and by clarifying its pathogenetic mechanisms. Many of these genes encode for some important central nervous system ion channels (KCNJ10, KCNJ3, KCNQ2/KCNQ3, CLCN2, GABRG2, GABRA1, SCN1B, and SCN1A), while many others encode for ubiquitary enzymes that play crucial roles in various metabolic pathways (HP, ACP1, ME2, LGI4, OPRM1, GRIK1, BRD2, EFHC1, and EFHC2). We review the main genetic polymorphisms reported in idiopathic generalized epilepsy, and discusses their possible functional significance in the pathogenesis of seizures.
Collapse
Affiliation(s)
- Nazzareno Lucarini
- Department of Molecular, Cellular, and Animal Biology, University of Camerino, Camerino, Italy.
| | | | | | | | | |
Collapse
|
264
|
Huang MC, Okada M, Nakatsu F, Oguni H, Ito M, Morita K, Nagafuji H, Hirose S, Sakaki Y, Kaneko S, Ohno H, Kojima T. Mutation screening of AP3M2 in Japanese epilepsy patients. Brain Dev 2007; 29:462-7. [PMID: 17293072 DOI: 10.1016/j.braindev.2006.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/20/2006] [Accepted: 12/23/2006] [Indexed: 12/01/2022]
Abstract
Evidence that some types of epilepsies show strong genetic predisposition has been well documented. AP3M2 is considered to be an epileptogenic gene because AP3M2 knockout mice exhibit symptoms of spontaneous epileptic seizures. In order to investigate whether the AP3M2 gene causes susceptibility to epilepsy, we performed mutation screening of the genomic DNA of 190 patients with six epilepsy types; this screening involved all the 9 exons and the relevant exon-intron boundaries of AP3M2. Although neither missense nor nonsense mutations were detected, we identified 21 sequence variations, of which 16 variations were novel. Of the 21 variations, 11 were detected in 5' and 3' UTRs, while the remaining variations were detected in introns. Although the present study failed to identify the possible AP3M2 mutations that may cause epilepsy, our results suggest that some AP3M2 mutations still remain candidates for unmapped disorders including epilepsy, febrile seizure, and other neuronal developmental disorders associated with functional abnormalities of GABAergic transmission.
Collapse
Affiliation(s)
- Ming-Chih Huang
- Comparative Systems Biology Team, Genomic Sciences Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
D'Hulst C, Kooy RF. The GABAA receptor: a novel target for treatment of fragile X? Trends Neurosci 2007; 30:425-31. [PMID: 17590448 DOI: 10.1016/j.tins.2007.06.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/11/2007] [Accepted: 06/06/2007] [Indexed: 11/29/2022]
Abstract
GABA(A) receptors are the major inhibitory neurotransmitter receptors in the mammalian brain, implicated in anxiety, depression, epilepsy, insomnia, and learning and memory. Here, we present several lines of evidence for involvement of the GABAergic system, and in particular the GABA(A) receptor-mediated function, in fragile X syndrome, the most common form of inherited mental retardation. We argue that an altered expression of the GABA(A) receptor has neurophysiologic and functional consequences that might relate to the behavioural and neurological phenotype associated with fragile X syndrome. Interestingly, some neuropsychiatric disorders, such as anxiety, epilepsy and sleep disorders, are effectively treated with therapeutic agents that act on the GABA(A) receptor. Therefore, the GABA(A) receptor might be a novel therapeutic target for fragile X syndrome.
Collapse
Affiliation(s)
- Charlotte D'Hulst
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | | |
Collapse
|
266
|
Abstract
Genetic influences as causal factors in the epilepsies continue to be vigorously investigated, and we review several important studies of genes reported in 2006. To date, mutations in ion channel and neuroreceptor component genes have been reported in the small fraction of cases with clear Mendelian inheritance. These findings confirm that the so-called "channelopathies" are generally inherited as monogenic disorders. At the same time, the literature in common epilepsies abounds with reports of associations and reports of nonreplication of those association studies, primarily with channel genes. These contradictory reports can mostly be explained by confounding factors unique to genetic studies. The methodology of genetic studies and their common biases and confounding factors are also explained in this review. Amid the controversy, steady progress is being made on the epilepsies of complex inheritance, which represent the most common idiopathic epilepsy. Recent discoveries show that genes influencing the developmental assembly of neural circuits and neuronal metabolism may play a more prominent role in the common epilepsies than genes affecting membrane excitability and synaptic transmission.
Collapse
Affiliation(s)
- David A Greenberg
- Division of Statistical Genetics, Mailman School of Public Health, Columbia University Medical Center, 122 West 168th Street, 6th Floor, New York, NY 10032, USA.
| | | |
Collapse
|
267
|
Association analysis of gamma2 subunit of gamma-aminobutyric acid (GABA) type A receptor and voltage-gated sodium channel type II alpha-polypeptide gene mutation in southern Chinese children with febrile seizures. J Child Neurol 2007; 22:714-9. [PMID: 17641256 DOI: 10.1177/0883073807304002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We attempted to identify the prevalence of the R188W mutation of the SCN2A gene and the K289M mutation and single-nucleotide polymorphism rs211014 of the GABRG2 gene in children of southern China who have febrile seizures. Neither mutation was found in our subjects. The single-nucleotide polymorphism rs211014 AA genotype was overrepresented in the febrile-seizures group compared with controls (62.4% vs 29.0%). The single-nucleotide polymorphism rs211014 A allele was higher in the febrile-seizures group (P < .005). Compared with the single-nucleotide polymorphism rs211014 CC genotype, the odds ratio for developing febrile seizures in individuals with the single-nucleotide polymorphism rs211014 AA genotype was 4.05 (P < .005). A new mutation of C-to-T transition was found at nucleotide 81719 of the GABRG2 gene in a 5-year-old boy, suggesting that the above mutations may not be the main disease mutations. The single-nucleotide polymorphism rs211014 A allele may predict susceptibility to febrile seizures.
Collapse
|
268
|
Káradóttir R, Attwell D. Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 2007; 145:1426-38. [PMID: 17049173 PMCID: PMC2173944 DOI: 10.1016/j.neuroscience.2006.08.070] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 07/20/2006] [Accepted: 08/18/2006] [Indexed: 10/25/2022]
Abstract
Oligodendrocytes are crucial to the function of the mammalian brain: they increase the action potential conduction speed for a given axon diameter and thus facilitate the rapid flow of information between different brain areas. The proliferation and differentiation of developing oligodendrocytes, and their myelination of axons, are partly controlled by neurotransmitters. In addition, in models of conditions like stroke, periventricular leukomalacia leading to cerebral palsy, spinal cord injury and multiple sclerosis, oligodendrocytes are damaged by glutamate and, contrary to dogma, it has recently been discovered that this damage is mediated in part by N-methyl-D-aspartate receptors. Mutations in oligodendrocyte neurotransmitter receptors or their interacting proteins may cause defects in CNS function. Here we review the roles of neurotransmitter receptors in the normal function, and malfunction in pathological conditions, of oligodendrocytes.
Collapse
Affiliation(s)
- R Káradóttir
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
269
|
Kapoor A, Ratnapriya R, Kuruttukulam G, Anand A. A novel genetic locus for juvenile myoclonic epilepsy at chromosome 5q12-q14. Hum Genet 2007; 121:655-62. [PMID: 17431681 DOI: 10.1007/s00439-007-0360-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 03/21/2007] [Indexed: 11/30/2022]
Abstract
Juvenile myoclonic epilepsy is a clinically well-defined, age-related common idiopathic generalized epilepsy syndrome with substantial genetic basis to its etiology. We report identification of a novel epilepsy locus at chromosome 5q12-q14 in a family exhibiting autosomal dominant form of juvenile myoclonic epilepsy from south India. The highest two-point LOD score of 3.3344 was obtained for the microsatellite markers D5S641 and D5S459 at 5q14. Centromeric and telomeric chromosomal boundaries of the locus were defined by D5S624 and D5S428, respectively. The 5q12-q14 locus encompasses about 25 megabases of the genomic region and harbours several candidate genes. Further work involving a detailed mutational analysis of the locus, to isolate the gene responsible for the epilepsy disorder in the family, shall help enhance our understanding of molecular basis of epilepsy disorders.
Collapse
Affiliation(s)
- Ashish Kapoor
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, Karnataka, India
| | | | | | | |
Collapse
|
270
|
Hadley SH, Amin J. Rat alpha6beta2delta GABAA receptors exhibit two distinct and separable agonist affinities. J Physiol 2007; 581:1001-18. [PMID: 17395622 PMCID: PMC2170852 DOI: 10.1113/jphysiol.2007.132886] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The onset of motor learning in rats coincides with exclusive expression of GABAA receptors containing alpha6 and delta subunits in the granule neurons of the cerebellum. This development temporally correlates with the presence of a spontaneously active chloride current through alpha6-containing GABAA receptors, known as tonic inhibition. Here we report that the coexpression of alpha6, beta2, and delta subunits produced receptor-channels which possessed two distinct and separable states of agonist affinity, one exhibiting micromolar and the other nanomolar affinities for GABA. The high-affinity state was associated with a significant level of spontaneous channel activity. Increasing the level of expression or the ratio of beta2 to alpha6 and delta subunits increased the prevalence of the high-affinity state. Comparative studies of alpha6beta2delta, alpha1beta2delta, alpha6beta2gamma2, alpha1beta2gamma2 and alpha4beta2delta receptors under equivalent levels of expression demonstrated that the significant level of spontaneous channel activity is uniquely attributable to alpha6beta2delta receptors. The pharmacology of spontaneous channel activity arising from alpha6beta2delta receptor expression corresponded to that of tonic inhibition. For example, GABAA receptor antagonists, including furosemide, blocked the spontaneous current. Further, the neuroactive steroid 5alpha-THDOC and classical glycine receptor agonists beta-alanine and taurine directly activated alpha6beta2delta receptors with high potency. Specific mutation within the GABA-dependent activation domain (betaY157F) impaired both low- and high-affinity components of GABA agonist activity in alpha6betaY157Fdelta receptors, but did not attenuate the spontaneous current. In comparison, a mutation located between the second and third transmembrane segments of the delta subunit (deltaR287M) significantly diminished the nanomolar component and the spontaneous activity. The possibility that the high affinity state of the alpha6beta2delta receptor modulates the granule neuron activity as well as potential mechanisms affecting its expression are discussed.
Collapse
Affiliation(s)
- Stephen H Hadley
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | |
Collapse
|
271
|
Wolfe DM, Pearce DA. Channeling studies in yeast: yeast as a model for channelopathies? Neuromolecular Med 2007; 8:279-306. [PMID: 16775381 DOI: 10.1385/nmm:8:3:279] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 11/30/1999] [Accepted: 01/09/2006] [Indexed: 01/30/2023]
Abstract
Regulation of the concentration of ions within a cell is mediated by their specific transport and sequestration across cellular membranes. This regulation constitutes a major factor in the maintenance of correct cellular homeostasis, with the transport occurring through the action of a large number of different channel proteins localized to the plasma membrane as well as to various organelles. These ion channels vary in specificity from broad (cationic vs anionic) to highly selective (chloride vs sodium). Mutations in many of these channels result in a large number of human diseases, collectively termed channelopathies. Characterization of many of these channels has been undertaken in a variety of both prokaryotic and eukaryotic organisms. Among these organisms is the budding yeast Saccharomyces cerevisiae. Possessing a fully annotated genome, S. cerevisiae would appear to be an ideal organism in which to study this class of proteins associated to diseases. We have compiled and reviewed a list of yeast ion channels, each possessing a human homolog implicated in a channelopathy. Although yeast has been used for the study of other human disease, it has been under utilized for channelopathy research. The utility of using yeast as a model system for studying ion channels associated to human disease is illustrated using yeast lacking the GEF1 gene product that encodes the human homolog to the chloride channel CLC-3.
Collapse
Affiliation(s)
- Devin M Wolfe
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
272
|
Chakravarty A, Mukherjee A, Roy D. Observations on juvenile myoclonic epilepsy amongst ethnic Bengalees in West Bengal—An Eastern Indian State. Seizure 2007; 16:134-41. [PMID: 17218118 DOI: 10.1016/j.seizure.2006.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 02/22/2006] [Accepted: 10/31/2006] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Juvenile myoclonic epilepsy (JME) is not too uncommonly encountered in Indian neurological practice. A number of reports from different parts of India have documented the clinical phenomenology and EEG characteristics of this genetically determined epileptic syndrome. However, no study has yet been reported from the Eastern part of India and none done so far in patients in a specific ethnic group. Furthermore therapy response and follow up data are not available in detail in the Indian studies. OBJECTIVE To study disease expression, EEG characteristics and therapy response of JME patients in ethnic Bengalees in West Bengal, an Eastern Indian State, in a clinic based study. MATERIAL AND METHODS 200 patients with JME attending the Neurology Department of the Institute have been followed up for 5 years and different parameters of disease expression as outlined above have been studied. RESULTS Overall clinical disease expression has been found to be similar in this clinic based study in ethnic Bengalees as compared to other reports from India and elsewhere. About 16% of patients showed a relative resistance to Valproate therapy. Hundred percent of patients in whom therapy withdrawal was attempted, relapsed within<1-2 years. Amongst female patients (132), 16 developed features of polycystic ovarian syndrome while on Valproate therapy. In over half of them, the symptoms regressed after successful switch over from Valproate to Clobazam. 12/132 female patients became pregnant during follow up and while on Valproate; teratogenic effect was evident in only one such patient. CONCLUSIONS Phenotypic variations in disease expression including therapy response have been noted within a single ethnic group of patients attending the clinic and might account for genetic heterogeneity noted in molecular genetic studies. JME cannot really be called a very 'benign' epileptic syndrome; recurrence after therapy withdrawal almost invariably occurs.
Collapse
Affiliation(s)
- A Chakravarty
- Department of Neurology, Vivekananda Institute of Medical Sciences, Calcutta, India.
| | | | | |
Collapse
|
273
|
Olsen RW. When is hot not so hot? Fever reduces brain inhibition. Epilepsy Curr 2007; 6:167-9. [PMID: 17260048 PMCID: PMC1783473 DOI: 10.1111/j.1535-7511.2006.00134.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Why Does Fever Trigger Febrile Seizures? GABAA Receptor γ2 Subunit Mutations Associated with Idiopathic Generalized Epilepsies Have Temperature-Dependent Trafficking Deficiencies Kang JQ, Shen W, Macdonald RL J Neurosci 2006;26:2590–2597 With a worldwide incidence as high as 6.7% of children, febrile seizures are one of the most common reasons for seeking pediatric care, but the mechanisms underlying generation of febrile seizures are poorly understood. Febrile seizures have been suspected to have a genetic basis, and recently, mutations in GABAA receptor and sodium channel genes have been identified that are associated with febrile seizures and generalized seizures with febrile seizures plus pedigrees. Pentameric GABAA receptors mediate the majority of fast synaptic inhibition in the brain and are composed of combinations of α( 1 – 6 ), β( 1 – 3 ), and γ( 1 – 3 ) subunits. In αβγ2 GABAA receptors, the γ2 subunit is critical for receptor trafficking, clustering, and synaptic maintenance, and mutations in the γ2 subunit have been monogenically associated with autosomal dominant transmission of febrile seizures. Here, we report that whereas trafficking of wild-type α1 β2 γ2 receptors was slightly temperature dependent, trafficking of mutant α1 β2 γ2 receptors containing γ2 subunit mutations [ γ2(R43Q), γ2(K289M),and γ2(Q351X)] associated with febrile seizures was highly temperature dependent. In contrast, trafficking of mutant α1 β2 γ2 receptors containing an α1 subunit mutation [ α1(A322D)] not associated with febrile seizures was not highly temperature dependent. Brief increases in temperature from 37 to 40°C rapidly (<10 min) impaired trafficking and/or accelerated endocytosis of heterozygous mutant α1 β2 γ2 receptors containing γ2 subunit mutations associated with febrile seizures but not of wild-type α1 β2 γ2 receptors or heterozygous mutant α1(A322D) β2 γ2 receptors, suggesting that febrile seizures may be produced by a temperature-induced dynamic reduction of susceptible mutant surface GABAA receptors in response to fever.
Collapse
|
274
|
Hempelmann A, Cobilanschi J, Heils A, Muhle H, Stephani U, Weber Y, Lerche H, Sander T. Lack of evidence of an allelic association of a functional GABRB3 exon 1a promoter polymorphism with idiopathic generalized epilepsy. Epilepsy Res 2007; 74:28-32. [PMID: 17215107 DOI: 10.1016/j.eplepsyres.2006.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 11/20/2006] [Accepted: 12/01/2006] [Indexed: 01/12/2023]
Abstract
PURPOSE Mutation screening and linkage disequilibrium mapping of the gene encoding the GABA(A) beta(3) subunit (GABRB3) identified a common genetic variant in the exon 1a promoter region (C-allele of rs4906902) which displayed a reduced transcriptional activity and showed a strong allelic association with childhood absence epilepsy (CAE). The present population-based association study tested whether the C-allele of rs4906902 confers susceptibility to CAE or other common syndromes of idiopathic generalized epilepsy (IGE) in a German sample. METHODS Seven hundred and eighty unrelated German IGE patients (250 CAE, 123 juvenile absence epilepsy, 303 juvenile myoclonic epilepsy (JME), 104 epilepsy with generalized tonic-clonic seizures on awakening) and 559 healthy population controls were genotyped for the single nucleotide polymorphism (SNP) rs4906902. RESULTS The frequency of the risk-conferring C-allele did not differ significantly between CAE patients (f(C)=0.190) and controls (f(C)=0.183; P=0.376, one-tailed). Similarly, no evidence for an allelic association was found for 373 patients with idiopathic absence epilepsy, 303 JME patients, and the entire IGE sample (P>0.77, two-tailed). CONCLUSION Our study failed to replicate an association of the common GABRB3 exon 1a promoter SNP rs4906902 with CAE. Moreover, the present results do not provide evidence that the common functional C-variant confers a substantial epileptogenic effect to a broad spectrum of IGE syndromes in the German population.
Collapse
Affiliation(s)
- Anne Hempelmann
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Street 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Association of GABRG2 polymorphisms with idiopathic generalized epilepsy. Pediatr Neurol 2007; 36:40-4. [PMID: 17162195 DOI: 10.1016/j.pediatrneurol.2006.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/21/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
Abstract
Missense mutations in the gamma2 subunit of gamma-aminobutyric acid (GABA) receptor gene have recently been described in families with idiopathic generalized epilepsies. This study aimed to evaluate whether polymorphisms of the gamma2 subunit of the GABA receptor gene are associated with idiopathic generalized epilepsies. A total of 77 children with idiopathic generalized epilepsies and 83 normal control subjects were included in the study. Polymerase chain reaction was used to identify the C/T and A/G polymorphisms of the gamma2 subunit of the GABA receptor gene on chromosome 5q33. Genotypes and allelic frequencies in both groups were compared. The gamma2 subunit of the GABA receptor (nucleotide position 3145 in intron G-> A) gene in both groups was not significantly different. In contrast, the gamma2 subunit of GABA receptor (SNP211037)-C allele frequency in patients with idiopathic generalized epilepsies was significantly higher than that in healthy control subjects (P = 0.002). The odds ratio for developing idiopathic generalized epilepsies in individuals with the gamma2 subunit of the GABA receptor (SNP211037)-C/C genotype was 3.61 compared with individuals with the gamma2 subunit of the GABA receptor (SNP211037)-T/T genotype. These data suggest that the gamma2 subunit of the GABA receptor gene might be one of the susceptibility factors for idiopathic generalized epilepsies.
Collapse
|
276
|
Winawer MR, Kuperman R, Niethammer M, Sherman S, Rabinowitz D, Guell IP, Ponder CA, Palmer AA. Use of chromosome substitution strains to identify seizure susceptibility loci in mice. Mamm Genome 2007; 18:23-31. [PMID: 17242861 PMCID: PMC2640942 DOI: 10.1007/s00335-006-0087-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022]
Abstract
Seizure susceptibility varies among inbred mouse strains. Chromosome substitution strains (CSS), in which a single chromosome from one inbred strain (donor) has been transferred onto a second strain (host) by repeated backcrossing, may be used to identify quantitative trait loci (QTLs) that contribute to seizure susceptibility. QTLs for susceptibility to pilocarpine-induced seizures, a model of temporal lobe epilepsy, have not been reported, and CSS have not previously been used to localize seizure susceptibility genes. We report QTLs identified using a B6 (host) x A/J (donor) CSS panel to localize genes involved in susceptibility to pilocarpine-induced seizures. Three hundred fifty-five adult male CSS mice, 58 B6, and 39 A/J were tested for susceptibility to pilocarpine-induced seizures. Highest stage reached and latency to each stage were recorded for all mice. B6 mice were resistant to seizures and slower to reach stages compared to A/J mice. The CSS for Chromosomes 10 and 18 progressed to the most severe stages, diverging dramatically from the B6 phenotype. Latencies to stages were also significantly shorter for CSS10 and CSS18 mice. CSS mapping suggests seizure susceptibility loci on mouse Chromosomes 10 and 18. This approach provides a framework for identifying potentially novel homologous candidate genes for human temporal lobe epilepsy.
Collapse
Affiliation(s)
- Melodie R Winawer
- Department of Neurology, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Abou-Khalil B, Krei L, Lazenby B, Harris PA, Haines JL, Hedera P. Familial genetic predisposition, epilepsy localization and antecedent febrile seizures. Epilepsy Res 2007; 73:104-10. [PMID: 17046202 DOI: 10.1016/j.eplepsyres.2006.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Revised: 08/17/2006] [Accepted: 08/22/2006] [Indexed: 11/24/2022]
Abstract
PURPOSE The magnitude of genetic influence in epilepsy may vary in relation to epilepsy classification and localization and factors such as antecedent febrile seizures. We assessed this genetic influence in a large epilepsy population. METHODS Patients with established epilepsy diagnosis evaluated in the Vanderbilt Epilepsy Program were systematically questioned about family history of epilepsy and febrile seizures, prior febrile seizures and other risk factors for epilepsy. RESULTS A total of 1994 patients with epilepsy and reliable family history were identified. Patients with prior febrile seizures (FS) were more likely to have a family history of febrile seizures than those without prior FS (p<0.000001) and also had a greater proportion of relatives with febrile seizures. The groups did not differ with respect to family history of epilepsy. Patients with generalized epilepsy were more likely to have first and second degree relatives with epilepsy than those with partial epilepsy (40.2% versus 31.2%, p=0.001), and also had a greater proportion of affected first degree relatives (p<0.000001). The proportion of first degree relatives affected with epilepsy was higher than local published prevalence, for both groups. CONCLUSION Susceptibility for febrile seizures with subsequent epilepsy may be genetically distinct from susceptibility for afebrile seizures alone. Although family history of epilepsy was more likely with generalized epilepsy, a familial tendency was considerable in partial epilepsy.
Collapse
|
278
|
Abstract
The inhibitory ligand-gated ion channel family of receptors, including the type A gamma-aminobutryic acid (GABA(A)) and glycine receptors, mediates inhibitory neurotransmissions in the central nervous system. In this study, GABA receptor (GABR) evolution was explored through comparative genomics using genomes that span divergent lineages. GABA(A)/Gly receptor-like (GRL) gene sequences were retrieved from the genomes of various species ranging from mammal to fish to worm and subjected to cross-species comparison. All vertebrate GRL gene sets in the study but no invertebrate ones exhibit the extensive and conserved pattern of gene clustering that is characteristic of human GABR genes, indicating that the gene clusters were established early in vertebrate evolution, after divergence from the invertebrates. Moreover, the vertebrate gene structure is highly conserved with a basic 9-coding exon structure, whereas, as well as being diverse in copy numbers and chromosomal loci, the invertebrate GRL genes display a variety of gene structures. Remarkably, the invertebrates each possess a unique GRL gene pair that lies in neighboring loci within their respective genomes: zc482.5 and zc482.1 in roundworm, CG8916 and CG17336 in fruitfly, Ci4249 and Ci4254 in Ciona, and these were revealed by phylogenetic analysis to be homologous to human GABR alpha and beta subunits, respectively. The phylogenetic classification of these genes is also corroborated by experimental ligand-binding measurements using recombinant gene products. Furthermore, the 3 invertebrate gene pairs harbor characteristic key residues and exhibit similarities in intron positions to their vertebrate counterparts. The results strongly indicate that such a gene pair originally existed in the bilaterian ancestor from which all 3 phyla evolved and suggest that the extant GABR clusters arose from an ancestral alpha-beta subunit gene pair gave rise to the extant GABR clusters.
Collapse
Affiliation(s)
- Shui-Ying Tsang
- Department of Biochemistry and Applied Genomics Laboratory, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
279
|
Abstract
PURPOSE Emerging genetic information and the availability of genetic testing has the potential to increase understanding of the disease and improve clinical management of some types of epilepsy. However, genetic testing is also likely to raise significant ethical, legal, and social issues for people with epilepsy, their family members, and their health care providers. We review the genetic and social dimensions of epilepsy relevant to understanding the complex questions raised by epilepsy genetics. METHODS We reviewed two literatures: (a) research on the genetics of epilepsy, and (b) social science research on the social experience and social consequences of epilepsy. For each, we note key empiric findings and discuss their implications with regard to the consequences of emerging genetic information about epilepsy. We also briefly review available principles and guidelines from professional and advocacy groups that might help to direct efforts to ascertain and address the ethical, legal, and social dimensions of genetic testing for epilepsy. RESULTS Genetic information about epilepsy may pose significant challenges for people with epilepsy and their family members. Although some general resources are available for navigating this complex new terrain, no guidelines specific to epilepsy have yet been developed to assist people with epilepsy, their family members, or their health care providers. CONCLUSIONS Research is needed on the ethical, legal, and social concerns raised by genetic research on epilepsy and the advent of genetic testing. This research should include the perspectives of people with epilepsy and their family members, as well as those of health care professionals, policymakers, and bioethicists.
Collapse
Affiliation(s)
- Sara Shostak
- Department of Sociology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | |
Collapse
|
280
|
Qi JS, Yao J, Fang C, Luscher B, Chen G. Downregulation of tonic GABA currents following epileptogenic stimulation of rat hippocampal cultures. J Physiol 2006; 577:579-90. [PMID: 16990405 PMCID: PMC1890447 DOI: 10.1113/jphysiol.2006.113134] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Deficits in GABAergic inhibitory transmission are a hallmark of temporal lobe epilepsy and have been replicated in animal and tissue culture models of epilepsy. GABAergic inhibition comprises phasic and tonic inhibition that is mediated by synaptic and extrasynaptic GABAA receptors, respectively. We have recently demonstrated that chronic stimulation with cyclothiazide (CTZ) or kainic acid (KA) induces robust epileptiform activity in hippocampal neurons both in vitro and in vivo. Here, we report a downregulation of tonic GABA inhibition after chronic epileptogenic stimulation of rat hippocampal cultures. Chronic pretreatment of hippocampal neurons with CTZ or KA resulted in a marked reduction in GABAergic inhibition, as shown by a significant decrease in whole-cell GABA currents and in the frequency of miniature inhibitory postsynaptic currents (mIPSCs). Interestingly, synaptically localized GABAA receptors remained relatively stable, as evidenced by the unaltered amplitude of mIPSCs, as well as the unchanged punctate immunoreactivity of gamma2 subunit-containing postsynaptic GABAA receptors. In contrast, tonic GABA currents, assessed either by a GABAA receptor antagonist bicuculline or a selective extrasynaptic GABAA receptor agonist THIP, were significantly reduced following epileptogenic stimulation. These results reveal a novel form of neural plasticity, that epileptogenic stimulation can selectively downregulate extrasynaptic GABAA receptors while leaving synaptic GABAA receptors unchanged. Thus, in addition to synaptic alteration of GABAergic transmission, regulation of tonic inhibition may also play an important role during epileptogenesis.
Collapse
Affiliation(s)
- Jin-shun Qi
- Department of Biology, 201 Life Sciences Building, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
281
|
Bessaïh T, Bourgeais L, Badiu CI, Carter DA, Toth TI, Ruano D, Lambolez B, Crunelli V, Leresche N. Nucleus-specific abnormalities of GABAergic synaptic transmission in a genetic model of absence seizures. J Neurophysiol 2006; 96:3074-81. [PMID: 16971676 DOI: 10.1152/jn.00682.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human and experimental studies indicate that molecular genetic changes in GABA(A) receptors may underlie the expression of spike-and-waves discharges (SWDs) occurring during absence seizures. However, the full spectrum of the genetic defects underlying these seizures has only been partially elucidated, the expression and functional profiles of putative abnormal protein(s) within the thalamocortical network are undefined, and the pathophysiological mechanism(s) by which these proteins would lead to absence paroxysms are poorly understood. Here we investigated GABA(A) inhibitory postsynaptic currents (IPSCs) in key thalamocortical areas, i.e., the somatosensory cortex, ventrobasal thalamus (VB) and nucleus reticularis thalami (NRT), in preseizure genetic absence epilepsy rats from Strasbourg (GAERS), a well-established genetic model of typical absence seizures that shows no additional neurological abnormalities, and compared their properties to age-matched non-epileptic controls (NECs). Miniature GABA(A) IPSCs of VB and cortical layers II/III neurons were similar in GAERS and NEC, whereas in GAERS NRT neurons they had 25% larger amplitude, 40% faster decay. In addition, baclofen was significantly less effective in decreasing the frequency of NRT mIPSCs in GAERS than in NEC, whereas no difference was observed for cortical and VB mIPSCS between the two strains. Paired-pulse depression was 45% smaller in GAERS NRT, but not in VB, and was insensitive to GABA(B) antagonists. These results point to subtle, nucleus-specific, GABA(A) receptor abnormalities underlying SWDs of typical absence seizures rather than a full block of these receptors across the whole thalamocortical network, and their occurrence prior to seizure onset suggests that they might be of epileptogenic significance.
Collapse
Affiliation(s)
- Thomas Bessaïh
- Neurobiologie des Processus Adaptatifs, UMR 7102 CNRS, Université Pierre et Marie Curie-Paris 6, 9 quai St Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Fedi M, Berkovic SF, Marini C, Mulligan R, Tochon-Danguy H, Reutens DC. A GABAA receptor mutation causing generalized epilepsy reduces benzodiazepine receptor binding. Neuroimage 2006; 32:995-1000. [PMID: 16875845 DOI: 10.1016/j.neuroimage.2006.05.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/16/2006] [Accepted: 05/18/2006] [Indexed: 11/22/2022] Open
Abstract
Understanding the consequences of newly discovered single gene mutations causing human epilepsy has the potential to yield new insights into the underlying mechanisms of this disorder. A mutation of the gamma2 subunit of the GABA(A) receptor, which substitutes glutamine for arginine at position 43 (R43Q) has been found in a familial generalized epilepsy. We tested the hypothesis that individuals affected by the GABRG2(R43Q) mutation have reduced binding to the GABA(A) receptor complex using positron emission tomography (PET) and the benzodiazepine receptor ligand [(11)C]-flumazenil. Fourteen subjects with the GABRG2(R43Q) mutation and 20 controls were studied. Benzodiazepine receptor binding was reduced in subjects with the mutation (mean whole brain binding potential for [(11)C]-flumazenil: GABA(A) mutation 0.66+/-0.1; controls 0.89+/-0.1; P<0.003). The greatest change in benzodiazepine binding occurred anteriorly, with peak differences in insular and anterior cingulate cortices revealed by statistical parametric mapping. Our findings provide in vivo evidence of reduced benzodiazepine receptor binding in subjects with the mutation. As synaptic inhibition in the human brain is largely mediated by the GABA(A) receptor, these findings are likely to represent an important clue to the mechanisms linking this gene defect and the epilepsy phenotype.
Collapse
Affiliation(s)
- Marco Fedi
- Department of Medicine, The University of Melbourne, Austin Health Heidelberg, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
283
|
Kanaumi T, Takashima S, Iwasaki H, Mitsudome A, Hirose S. Developmental changes in the expression of GABAA receptor alpha 1 and gamma 2 subunits in human temporal lobe, hippocampus and basal ganglia: An implication for consideration on age-related epilepsy. Epilepsy Res 2006; 71:47-53. [PMID: 16829043 DOI: 10.1016/j.eplepsyres.2006.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 11/22/2022]
Abstract
Mutations of genes encoding GABA(A) receptor alpha 1 (GABARA1) and gamma 2 subunit (GABARG2) are associated with age-dependent epilepsy. The development of the subunits expression may be related to the age-dependency of epilepsy. Nevertheless, developmental and spatial changes in expression of GABA(A) receptors have not been examined in the human brain. Using immunohistochemistry, we examined the development of GABARA1 and GABARG2 in the human temporal lobe, hippocampus and basal ganglia in specimens obtained from 21 fetuses/subjects who died aged 22 gestation weeks (GW) to 75 years. Unique developmental changes of GABARA1 and GABARG2 were recorded in each region. In hippocampal pyramidal cells, GABARA1 was already found from 22 GW mainly on CA2-3, whereas GABARG2 was expressed later than GABARA1 predominantly in CA3. In the temporal cortex, both subunits appeared in the pyramidal cells layer from 22 GW, while GABARA1 and GABARG2 expression was increased from 29 to 38 GW, respectively. Furthermore, transient increase of GABARA1 was detected in the granular cell layer of the hippocampus from 29 GW to 4 months, in the cortical pyramidal cell layer from 29 to 40 GW, and in the putamen from birth to 5 years of age. Thus gradual or transient increase of GABARA1 and GABARG2 was found in every region at different age. These developmental changes in the expression of these subunits may contribute to the age dependency in some epilepsy syndromes where deficiency of GABARA1 and GABARG2 is involved.
Collapse
Affiliation(s)
- Takeshi Kanaumi
- Department of Pediatrics, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan.
| | | | | | | | | |
Collapse
|
284
|
Ito M, Yamakawa K, Sugawara T, Hirose S, Fukuma G, Kaneko S. Phenotypes and genotypes in epilepsy with febrile seizures plus. Epilepsy Res 2006; 70 Suppl 1:S199-205. [PMID: 16884893 DOI: 10.1016/j.eplepsyres.2005.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/07/2005] [Accepted: 11/07/2005] [Indexed: 11/15/2022]
Abstract
In the last several years, mutations of sodium channel genes, SCN1A, SCN2A, and SCN1B, and GABA(A) receptor gene, GABRG2 were identified as causes of some febrile seizures related epilepsies. In 19 unrelated Japanese families whose probands had febrile seizures plus or epilepsy following febrile seizures plus, we identified 2 missense mutations of SCN1A to be responsible for the seizure phenotypes in two FS+ families and another mutation of SCN2A in one family. The combined frequency of SCN1A, SCN2A, SCN1B, SCN2B, and GABRG2 mutations in Japanese patients with FS+ was 15.8%. One family, which had R188W mutation in SCN2A, showed digenic inheritance, and another modifier gene was thought to take part in the seizure phenotype. The phenotypes of probands were FS+ in 5, FS+ and partial epilepsy in 10, FS+ and generalized epilepsy in 3, and FS+ and unclassified epilepsy in 1. We proposed the term epilepsy with febrile seizures plus (EFS+), because autosomal-dominant inheritance in EFS+ might be rare, and most of EFS+ display a complex pattern of inheritance, even when it appears to be an autosomal-dominant inheritance. There is a possibility of simultaneous involvement of multiple genes for seizure phenotypes.
Collapse
Affiliation(s)
- M Ito
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Moriyama 524-0022, Japan.
| | | | | | | | | | | |
Collapse
|
285
|
Nakayama J, Arinami T. Molecular genetics of febrile seizures. Epilepsy Res 2006; 70 Suppl 1:S190-8. [PMID: 16887333 DOI: 10.1016/j.eplepsyres.2005.11.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Revised: 11/14/2005] [Accepted: 11/14/2005] [Indexed: 10/24/2022]
Abstract
Febrile seizures (FSs) represent the most common form of childhood seizures, occurring in 2-5% of infants in Europe and North America and in 6-9% in Japan. It has been recognized that there is a significant genetic component for susceptibility to this type of seizure. Six susceptibility FS loci have been identified on chromosomes 8q13-q21 (FEB1), 19p (FEB2), 2q23-q24 (FEB3), 5q14-q15 (FEB4), 6q22-q24 (FEB5), and 18p11 (FEB6). Furthermore, mutations in the voltage-gated sodium channel alpha-1, alpha-2 and beta-1 subunit genes (SCN1A, SCN2A and SCN1B) and the GABA(A) receptor gamma-2 subunit gene (GABRG2) have been identified in families with a clinical subset of seizures termed "generalized epilepsy with febrile seizure plus (GEFS+)". However, the causative genes have not been identified in most patients with FSs or GEFS+. Common forms of FSs are genetically complex disorders believed to be influenced by variations in several susceptibility genes. Recently, several association studies in FSs have been reported, but the results vary among different groups and no consistent or convincing FS susceptibility genes have emerged. To find a true association, larger sample size and newer methodologic refinements are recommended.
Collapse
Affiliation(s)
- Junko Nakayama
- Department of Medical Genetics, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan.
| | | |
Collapse
|
286
|
Hirose S. A new paradigm of channelopathy in epilepsy syndromes: Intracellular trafficking abnormality of channel molecules. Epilepsy Res 2006; 70 Suppl 1:S206-17. [PMID: 16860540 DOI: 10.1016/j.eplepsyres.2005.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/01/2005] [Accepted: 12/01/2005] [Indexed: 10/24/2022]
Abstract
Mutations in genes encoding ion channels in brain neurons have been identified in various epilepsy syndromes. In neuronal networks, "gain-of-function" of channels in excitatory neurotransmission could lead to hyper-excitation while "loss-of-function" in inhibitory transmission impairs neuronal inhibitory system, both of which can result in epilepsy. A working hypothesis to view epilepsy as a disorder of channel or "channelopathy" seems rational to explore the pathogenesis of epilepsy. However, the imbalance resulting from channel dysfunction is not sufficient to delineate the pathogenesis of all epilepsy syndromes of which the underlying channel abnormalities have been verified. Mutations identified in epilepsy, mainly in genes encoding subunits of GABA(A) receptors, undermine intracellular trafficking, thus leading to retention of channel molecules in the endoplasmic reticulum (ER). This process may cause ER stress followed by apoptosis, which is a known pathomechanism of certain neurodegenerative disorders. Thus, the pathomechanism of "channel trafficking abnormality" may provide a new paradigm to channelopathy to unsolved questions underlying epilepsy, such as differences between generalized epilepsy with febrile seizures plus and severe myoclonic epilepsy in infancy, which share the causative genetic abnormalities in the same genes and hence are so far considered to be within the spectrum of one disease entity or allelic variants.
Collapse
Affiliation(s)
- Shinichi Hirose
- Department of Pediatrics, Fukuoka University, 45-1,7-chome Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
287
|
Kinirons P, Cavalleri GL, Shahwan A, Wood NW, Goldstein DB, Sisodiya SM, Delanty N, Doherty CP. Examining the role of common genetic variation in the gamma2 subunit of the GABA(A) receptor in epilepsy using tagging SNPs. Epilepsy Res 2006; 70:229-38. [PMID: 16806831 DOI: 10.1016/j.eplepsyres.2006.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/26/2006] [Accepted: 05/03/2006] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Mutations in the gamma2 subunit gene of the GABA(A) receptor, GABRG2, have been shown to cause generalised epilepsy syndromes in rare familial cases. Here we set out to examine whether common variation in GABRG2 predisposes to the development of common, complex forms of epilepsy in two large independent cohorts. METHODS We have applied a tagging single nucleotide polymorphism (tSNP) technique allowing us to satisfactorily represent common variation in the gene. However, to ensure maximal representation of functional variation and in particular in cases of low minor allele frequency (MAF), we have identified and forced known functional variation as tagging SNPs. We examined the association between tagging SNPs and subtypes of epilepsy in two independent cohorts; the first consisted of 677 cases and 384 healthy controls, the second of 684 cases and 277 healthy controls. RESULTS We failed to detect any variation that conferred an increased risk of disease development in both cohorts. DISCUSSION Our results suggest that common variants of strong effect in GABRG2 do not appear to play a role in the development of common, complex forms of epilepsy. This report illustrates a number of important features of study design in genetic association studies, including the simultaneous use of map and sequence-based techniques and the necessity of replication before robust conclusions can be drawn from results.
Collapse
Affiliation(s)
- Peter Kinirons
- Department of Clinical Neurological Sciences, Royal College of Surgeons in Ireland, Division of Neurology, Beaumont Hospital, Dublin 9, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Maljevic S, Krampfl K, Cobilanschi J, Tilgen N, Beyer S, Weber YG, Schlesinger F, Ursu D, Melzer W, Cossette P, Bufler J, Lerche H, Heils A. A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol 2006; 59:983-7. [PMID: 16718694 DOI: 10.1002/ana.20874] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To detect mutations in GABRA1 in idiopathic generalized epilepsy. METHODS GABRA1 was sequenced in 98 unrelated idiopathic generalized epilepsy patients. Patch clamping and confocal imaging was performed in transfected mammalian cells. RESULTS We identified the first GABRA1 mutation in a patient with childhood absence epilepsy. Functional studies showed no detectable GABA-evoked currents for the mutant, truncated receptor, which was not integrated into the surface membrane. INTERPRETATION We conclude that this de novo mutation can contribute to the cause of "sporadic" childhood absence epilepsy by a loss of function and haploinsufficiency of the GABA(A) receptor alpha(1)-subunit, and that GABRA1 mutations rarely are associated with idiopathic generalized epilepsy.
Collapse
|
289
|
Urak L, Feucht M, Fathi N, Hornik K, Fuchs K. A GABRB3 promoter haplotype associated with childhood absence epilepsy impairs transcriptional activity. Hum Mol Genet 2006; 15:2533-41. [PMID: 16835263 DOI: 10.1093/hmg/ddl174] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Childhood absence epilepsy (CAE) is considered to exhibit a complex non-Mendelian pattern of inheritance. So far, only few CAE susceptibility genes have been identified. In a previous study of our group, an association between the GABA(A) receptor beta3 subunit (GABRB3) gene and CAE was shown. To further investigate this association, we screened 45 CAE patients of the first study for mutations in the 10 exons, the exon-intron boundaries and the regulatory sequences of GABRB3. Although we found no functionally relevant mutation, we did identify 13 single nucleotide polymorphisms (SNPs) in the GABRB3 gene region from the exon 1a promoter to the beginning of intron 3. Using these SNPs we defined four haplotypes for the respective GABRB3 gene region. A transmission disequilibrium test in the same 45 CAE patients and their parents indicated a significant association of this region and CAE (P=0.007075). Reporter gene assays in NT2 cells using exon 1a promoter constructs indicated that the disease-associated haplotype 2 promoter causes a significantly lower transcriptional activity than the haplotype 1 promoter that is over-represented in the controls. In silico analysis suggested that an exchange from T (haplotype 1) to C (haplotype 2) within this promoter impairs binding of the neuron-specific transcriptional activator N-Oct-3. Electrophoretic mobility shift assays demonstrated that the respective polymorphism reduces the nuclear protein binding affinity, thus explaining the results of the reporter gene assays. Reduced expression of the GABRB3 gene could therefore be one potential cause for the development of CAE, pathogenetically relevant in our patient group.
Collapse
Affiliation(s)
- Lydia Urak
- Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
290
|
Abstract
The idiopathic generalized epilepsies encompass a class of epileptic seizure types that exhibit a polygenic and heritable etiology. Advances in molecular biology and genetics have implicated defects in certain types of voltage-gated calcium channels and their ancillary subunits as important players in this form of epilepsy. Both T-type and P/Q-type channels appear to mediate important contributions to seizure genesis, modulation of network activity, and genetic seizure susceptibility. Here, we provide a comprehensive overview of the roles of these channels and associated subunits in normal and pathological brain activity within the context of idiopathic generalized epilepsy.
Collapse
Affiliation(s)
- Houman Khosravani
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Canada
| | | |
Collapse
|
291
|
Mulley JC, Scheffer IE, Harkin LA, Berkovic SF, Dibbens LM. Susceptibility genes for complex epilepsy. Hum Mol Genet 2006; 14 Spec No. 2:R243-9. [PMID: 16244322 DOI: 10.1093/hmg/ddi355] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Common idiopathic epilepsies are, clinically and genetically, a heterogeneous group of complex seizure disorders. Seizures arise from periodic neuronal hyperexcitability of unknown cause. The genetic component is mostly polygenic, where each susceptibility gene in any given individual is likely to represent a small component of the total heritability. Two susceptibility genes have been so far identified, where genetic variation is associated with experimentally demonstrated changes in ion channel properties, consistent with seizure susceptibility. Rare variants and a polymorphic allele of the T-type calcium channel CACNA1H and a polymorphic allele and a rare variant of the GABA(A) receptor delta subunit gene have differential functional effects. We speculate that these and other as yet undiscovered susceptibility genes for complex epilepsy could act as 'modifier' loci, affecting penetrance and expressivity of the mutations of large effect in those 'monogenic' epilepsies with simple inheritance that segregate through large families. Discovery of epilepsy-associated ion channel defects in these rare families has opened the door to the discovery of the first two susceptibility genes in epilepsies with complex genetics. The susceptibility genes so far detected are not commonly involved in complex epilepsy suggesting the likelihood of considerable underlying polygenic heterogeneity.
Collapse
Affiliation(s)
- John C Mulley
- Department of Genetic Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
292
|
Li H, Kraus A, Wu J, Huguenard JR, Fisher RS. Selective changes in thalamic and cortical GABAA receptor subunits in a model of acquired absence epilepsy in the rat. Neuropharmacology 2006; 51:121-8. [PMID: 16678865 DOI: 10.1016/j.neuropharm.2006.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 11/19/2022]
Abstract
Neonatal treatment of Long-Evans Hooded rats with the cholesterol synthesis inhibitor (CSI) AY9944 has been shown to increase occurrence of spike-waves in EEG recordings and decrease benzodiazepines sensitivity of GABA(A) receptor-mediated responses in neurons from the thalamic reticular nuclei (nRt, Wu et al., 2004). The present experiments were designed to investigate the changes in the gamma2 and alpha1 subunits of the GABA(A) receptor in CSI model rats as possible mechanisms of these changes. Western blot, immunohistochemistry and real-time PCR techniques were performed to measure the levels of GABA(A) receptor gamma2 and alpha1 subunit transcripts and protein in the nRt and ventrobasal (VB) relay nuclei of thalamus and in somatosensory cortex. In CSI model animals, Western blot results showed that gamma2 subunit expression significantly decreased in thalamus (control, n=6: 0.17+/-0.02 relative to actin vs. CSI model, n=6: 0.11+/-0.01, P<0.05) but neither in cortex nor in hippocampal tissues. Conversely, alpha1 subunit expression decreased in CSI model somatosensory cortex, but not in nRt and VB. The present results demonstrate that neonatal block of cholesterol synthesis produces region- and subunit-specific decreases in GABA(A) receptor subunits in thalamus and cortex. Selective reductions in GABA(A) receptor subunits in thalamus may play a role in pathophysiology of absence epilepsy.
Collapse
Affiliation(s)
- Huifang Li
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Room A343, Stanford Medical Center, 300 Pasteur Drive, Stanford, CA 94305-5235, USA.
| | | | | | | | | |
Collapse
|
293
|
Abstract
Phenotype definition consists of the use of epidemiologic, biological, molecular, or computational methods to systematically select features of a disorder that might result from distinct genetic influences. By carefully defining the target phenotype, or dividing the sample by phenotypic characteristics, we can hope to narrow the range of genes that influence risk for the trait in the study population, thereby increasing the likelihood of finding them. In this article, fundamental issues that arise in phenotyping in epilepsy and other disorders are reviewed, and factors complicating genotype-phenotype correlation are discussed. Methods of data collection, analysis, and interpretation are addressed, focusing on epidemiologic studies. With this foundation in place, the epilepsy subtypes and clinical features that appear to have a genetic basis are described, and the epidemiologic studies that have provided evidence for the heritability of these phenotypic characteristics, supporting their use in future genetic investigations, are reviewed. Finally, several molecular approaches to phenotype definition are discussed, in which the molecular defect, rather than the clinical phenotype, is used as a starting point.
Collapse
Affiliation(s)
- Melodie R Winawer
- Department of Neurology and Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.
| |
Collapse
|
294
|
Feng HJ, Kang JQ, Song L, Dibbens L, Mulley J, Macdonald RL. Delta subunit susceptibility variants E177A and R220H associated with complex epilepsy alter channel gating and surface expression of alpha4beta2delta GABAA receptors. J Neurosci 2006; 26:1499-506. [PMID: 16452673 PMCID: PMC6675478 DOI: 10.1523/jneurosci.2913-05.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most human idiopathic generalized epilepsies (IGEs) are polygenic, but virtually nothing is known of the molecular basis for any of the complex epilepsies. Recently, two GABAA receptor delta subunit variants (E177A, R220H) were proposed as susceptibility alleles for generalized epilepsy with febrile seizures plus and juvenile myoclonic epilepsy. In human embryonic kidney 293T cells, recombinant halpha1beta2delta(E177A) and halpha1beta2delta(R220H) receptor currents were reduced, but the basis for the current reduction was not determined. We examined the mechanistic basis for the current reduction produced by these variants using the halpha4beta2delta receptor, an isoform more physiologically relevant and linked to epileptogenesis, by characterizing the effects of these variants on receptor cell surface expression and single-channel gating properties. Expression of variant alpha4beta2delta(R220H) receptors resulted in a decrease in surface receptor proteins, and a smaller, but significant, reduction was observed for variant alpha4beta2delta(E177A) receptors. For both variants, no significant alterations of surface expression were observed for mixed population of wild-type and variant receptors. The mean open durations of alpha4beta2delta(E177A) and alpha4beta2delta(R220H) receptor single-channel currents were both significantly decreased compared to wild-type receptors. These data suggest that both delta(E177A) and delta(R220H) variants may result in disinhibition in IGEs by similar cellular and molecular mechanisms, and in heterozygously affected individuals, a reduction in channel open duration of delta subunit-containing GABAA receptors may be the major contributor to the epilepsy phenotypes.
Collapse
|
295
|
Barela AJ, Waddy SP, Lickfett JG, Hunter J, Anido A, Helmers SL, Goldin AL, Escayg A. An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability. J Neurosci 2006; 26:2714-23. [PMID: 16525050 PMCID: PMC6675156 DOI: 10.1523/jneurosci.2977-05.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in three voltage-gated sodium channel genes, SCN1A, SCN2A, and SCN1B, and two GABAA receptor subunit genes, GABRG2 and GABRD, have been identified in families with generalized epilepsy with febrile seizures plus (GEFS+). A novel mutation, R859C, in the Nav1.1 sodium channel was identified in a four-generation, 33-member Caucasian family with a clinical presentation consistent with GEFS+. The mutation neutralizes a positively charged arginine in the domain 2 S4 voltage sensor of the Nav1.1 channel alpha subunit. This residue is conserved in mammalian sodium channels as well as in sodium channels from lower organisms. When the mutation was placed in the rat Nav1.1 channel and expressed in Xenopus oocytes, the mutant channel displayed a positive shift in the voltage dependence of sodium channel activation, slower recovery from slow inactivation, and lower levels of current compared with the wild-type channel. Computational analysis suggests that neurons expressing the mutant channel have higher thresholds for firing a single action potential and for firing multiple action potentials, along with decreased repetitive firing. Therefore, this mutation should lead to decreased neuronal excitability, in contrast to most previous GEFS+ sodium channel mutations, which have changes predicted to increase neuronal firing.
Collapse
|
296
|
Kang JQ, Shen W, Macdonald RL. Why does fever trigger febrile seizures? GABAA receptor gamma2 subunit mutations associated with idiopathic generalized epilepsies have temperature-dependent trafficking deficiencies. J Neurosci 2006; 26:2590-7. [PMID: 16510738 PMCID: PMC6793669 DOI: 10.1523/jneurosci.4243-05.2006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With a worldwide incidence as high as 6.7% of children, febrile seizures are one of the most common reasons for seeking pediatric care, but the mechanisms underlying generation of febrile seizures are poorly understood. Febrile seizures have been suspected to have a genetic basis, and recently, mutations in GABAA receptor and sodium channel genes have been identified that are associated with febrile seizures and generalized seizures with febrile seizures plus pedigrees. Pentameric GABAA receptors mediate the majority of fast synaptic inhibition in the brain and are composed of combinations of alpha(1-6), beta(1-3), and gamma(1-3) subunits. In alphabetagamma2 GABAA receptors, the gamma2 subunit is critical for receptor trafficking, clustering, and synaptic maintenance, and mutations in the gamma2 subunit have been monogenically associated with autosomal dominant transmission of febrile seizures. Here, we report that whereas trafficking of wild-type alpha1beta2gamma2 receptors was slightly temperature dependent, trafficking of mutant alpha1beta2gamma2 receptors containing gamma2 subunit mutations [gamma2(R43Q), gamma2(K289M), and gamma2(Q351X)] associated with febrile seizures was highly temperature dependent. In contrast, trafficking of mutant alpha1beta2gamma2 receptors containing an alpha1 subunit mutation [alpha1(A322D)] not associated with febrile seizures was not highly temperature dependent. Brief increases in temperature from 37 to 40 degrees C rapidly (<10 min) impaired trafficking and/or accelerated endocytosis of heterozygous mutant alpha1beta2gamma2 receptors containing gamma2 subunit mutations associated with febrile seizures but not of wild-type alpha1beta2gamma2 receptors or heterozygous mutant alpha1(A322D)beta2gamma2 receptors, suggesting that febrile seizures may be produced by a temperature-induced dynamic reduction of susceptible mutant surface GABAA receptors in response to fever.
Collapse
|
297
|
Puljak L, Kilic G. Emerging roles of chloride channels in human diseases. Biochim Biophys Acta Mol Basis Dis 2006; 1762:404-13. [PMID: 16457993 DOI: 10.1016/j.bbadis.2005.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/18/2005] [Accepted: 12/12/2005] [Indexed: 01/22/2023]
Abstract
In the past decade, there has been remarkable progress in understanding of the roles of Cl(-) channels in the development of human diseases. Genetic studies in humans have identified mutations in the genes encoding Cl(-) channels which lead to a loss of Cl(-) channel activity. These mutations are responsible for the development of a variety of deleterious diseases in muscle, kidney, bone and brain including myotonia congenita, dystrophia myotonica, cystic fibrosis, osteopetrosis and epilepsy. Recent studies indicate that some diseases may develop as a result of Cl(-) channel activation. There is growing evidence that the progression of glioma in the brain and the growth of the malaria parasite in red blood cells may be mediated through Cl(-) channel activation. These findings suggest that Cl(-) channels may be novel targets for the pharmacological treatment of a broad spectrum of diseases. This review discusses the proposed roles of abnormal Cl(-) channel activity in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Livia Puljak
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8887, USA
| | | |
Collapse
|
298
|
Abstract
An increasing number of infantile epilepsy syndromes have been recognized. However, a significant number of infants (children aged 1-24 months) do not fit in any of the currently used subcategories. This article reviews the clinical presentation, electroencephalographic findings, evolution, and management of the following entities: early infantile epileptic encephalopathy, early myoclonic epilepsy, infantile spasms/West syndrome, severe myoclonic epilepsy of infancy, myoclonic-astatic epilepsy, generalized epilepsy with febrile seizures plus, malignant migrating partial seizures of infancy, hemiconvulsions-hemiplegia-epilepsy, benign myoclonic epilepsy, and benign familial/nonfamilial infantile seizures. Issues related to their classification are addressed.
Collapse
Affiliation(s)
- Christian M Korff
- Epilepsy Center, Children's Memorial Hospital, Chicago, Illinois 60614-3394, USA
| | | |
Collapse
|
299
|
Abstract
The epilepsies are one of the most common serious brain disorders, can occur at all ages, and have many possible presentations and causes. Although incidence in childhood has fallen over the past three decades in developed countries, this reduction is matched by an increase in elderly people. Monogenic Mendelian epilepsies are rare. A clinical syndrome often has multiple possible genetic causes, and conversely, different mutations in one gene can lead to various epileptic syndromes. Most common epilepsies, however, are probably complex traits with environmental effects acting on inherited susceptibility, mediated by common variation in particular genes. Diagnosis of epilepsy remains clinical, and neurophysiological investigations assist with diagnosis of the syndrome. Brain imaging is making great progress in identifying the structural and functional causes and consequences of the epilepsies. Current antiepileptic drugs suppress seizures without influencing the underlying tendency to generate seizures, and are effective in 60-70% of individuals. Pharmacogenetic studies hold the promise of being able to better individualise treatment for each patient, with maximum possibility of benefit and minimum risk of adverse effects. For people with refractory focal epilepsy, neurosurgical resection offers the possibility of a life-changing cure. Potential new treatments include precise prediction of seizures and focal therapy with drug delivery, neural stimulation, and biological grafts.
Collapse
Affiliation(s)
- John S Duncan
- Department of Clinical and Experimental Epilepsy, Institute of Neurology UCL, Queen Square, London WC1N 3BG, UK and The National Society for Epilepsy, Chalfont St Peter, UK.
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, Institute of Neurology UCL, Queen Square, London WC1N 3BG, UK and The National Society for Epilepsy, Chalfont St Peter, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, Institute of Neurology UCL, Queen Square, London WC1N 3BG, UK and The National Society for Epilepsy, Chalfont St Peter, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology UCL, Queen Square, London WC1N 3BG, UK and The National Society for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
300
|
Jones-Davis DM, Song L, Gallagher MJ, Macdonald RL. Structural determinants of benzodiazepine allosteric regulation of GABA(A) receptor currents. J Neurosci 2006; 25:8056-65. [PMID: 16135763 PMCID: PMC6725463 DOI: 10.1523/jneurosci.0348-05.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Benzodiazepine enhancement of GABA(A) receptor current requires a gamma subunit, and replacement of the gamma subunit by the delta subunit abolishes benzodiazepine enhancement. Although it has been demonstrated that benzodiazepines bind to GABA(A) receptors at the junction between alpha and gamma subunits, the structural basis for the coupling of benzodiazepine binding to allosteric enhancement of the GABA(A) receptor current is unclear. To determine the structural basis for this coupling, the present study used a chimera strategy, using gamma2L-delta GABA(A) receptor subunit chimeras coexpressed with alpha1 and beta3 subunits in human embryonic kidney 293T cells. Different domains of the gamma2L subunit were replaced by delta subunit sequence, and diazepam sensitivity was determined. Chimeric subunits revealed two areas of interest: domain 1 in transmembrane domain 1 (M1) and domain 2 in the C-terminal portion of transmembrane domain 2 (M2) and the M2-M3 extracellular loop. In those domains, site-directed mutagenesis demonstrated that the following two groups of residues were involved in benzodiazepine transduction of current enhancement: residues Y235, F236, T237 in M1; and S280, T281, I282 in M2 as well as the entire M2-M3 loop. These results suggest that a pocket of residues may transduce benzodiazepine binding to increased gating. Benzodiazepine transduction involves a group of residues that connects the N terminus and M1, and another group of residues that may facilitate an interaction between the N terminus and the M2 and M2-M3 loop domains.
Collapse
Affiliation(s)
- Dorothy M Jones-Davis
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48104-1687, USA
| | | | | | | |
Collapse
|