251
|
Abstract
Tumorigenesis is known to result from multiple genetic changes. Although endogenous and environmental insults can damage DNA, cellular mechanisms exist to repair various forms of damage or to kill those cells irreparably damaged. Hence, the accumulation of numerous genetic changes that would lead to cancer in normal cells is extremely rare. Nevertheless, disruption of a DNA repair pathway has the potential to expedite tumorigenesis by resulting in a cell that is hypermutable. Multiple pathways exist to repair the various forms of DNA damage that can cause mutagenesis. Recent studies have demonstrated a key role for homologous recombination in DNA repair, in particular in the repair chromosomal double-strand breaks. This review summarizes those studies and discusses how disruption of homologous recombination pathways can create genetic instability.
Collapse
Affiliation(s)
- M Jasin
- Memorial Sloan-Kettering Cancer Center, Cornell University Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|
252
|
Abstract
Over the past two decades, the mouse has established itself as the primary organism in which to investigate the fundamental mechanisms of carcinogenesis and to model human neoplasia. The principal reason underlying such dominance almost certainly arises out of our ever increasing ability to manipulate the murine germline. Over the past 20 years we have moved from a position where animal models arose either spontaneously or were generated through exposure to carcinogen to a position in which it is possible to create and study precise mutations of choice. The most recent advances in inducible and conditional technologies now open the possibility for both temporal and tissue-specific gene manipulation. Each of these technological breakthroughs has facilitated significant steps forward in our understanding of the genetic basis of tumorigenesis. This review will highlight some of the major advances in the production and use of murine models of neoplasia over the last two decades.
Collapse
Affiliation(s)
- A R Clarke
- Cardiff School of Biosciences, Cardiff University, PO Box 911, Cardiff CF10 3US, UK.
| |
Collapse
|
253
|
Venkitaraman AR. The breast cancer susceptibility gene, BRCA2: at the crossroads between DNA replication and recombination? Philos Trans R Soc Lond B Biol Sci 2000; 355:191-8. [PMID: 10724455 PMCID: PMC1692733 DOI: 10.1098/rstb.2000.0558] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The identification and cloning of the familial breast cancer susceptibility gene, BRCA2, has excited much interest in its biological functions. Here, evidence is reviewed that the protein encoded by BRCA2 has an essential role in DNA repair through its association with mRad51, a mammalian homologue of bacterial and yeast proteins involved in homologous recombination. A model is proposed that the critical requirement for BRCA2 in cell division and the maintenance of chromosome stability stems from its participation in recombinational processes essential for DNA replication.
Collapse
|
254
|
Abstract
Since BRCA1 and BRCA2 were cloned five years ago, unraveling their normal functions has posed fascinating problems for cancer biologists. Both genes are novel, and little of their normal function was revealed by their sequence. Both genes contribute to homologous recombination and DNA repair, to embryonic proliferation, to transcriptional regulation and, for BRCA1, to ubiquitination. But questions regarding BRCA1 and BRCA2 biology remain, and their resolution is critical for clinical development. Why do ubiquitously expressed genes that participate in universal pathways lead, when mutant, specifically to breast and ovarian cancer? Why are the same genes required for embryonic proliferation and for tumor suppression?
Collapse
Affiliation(s)
- P L Welcsh
- Departments of Medicine and Genetics, Box 357720, University of Washington, Seattle, WA 98195-7720, USA.
| | | | | |
Collapse
|
255
|
Scully R. Role of BRCA gene dysfunction in breast and ovarian cancer predisposition. Breast Cancer Res 2000; 2:324-30. [PMID: 11250724 PMCID: PMC138653 DOI: 10.1186/bcr76] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2000] [Revised: 05/31/2000] [Accepted: 06/14/2000] [Indexed: 01/07/2023] Open
Abstract
Tumor suppressor genes that perform apparently generic cellular functions nonetheless cause tissue-specific syndromes in the human population when they are mutated in the germline. The two major hereditary breast/ovarian cancer predisposition genes, BRCA1 and BRCA2, appear to participate in a common pathway that is involved in the control of homologous recombination and in the maintenance of genomic integrity. How might such functions translate into the specific suppression of cancers of the breast and ovarian epithelia? Recent advances in the study of BRCA1 and BRCA2, discussed herein, have provided new opportunities to address this question.
Collapse
Affiliation(s)
- R Scully
- Dana Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
256
|
Dasika GK, Lin SC, Zhao S, Sung P, Tomkinson A, Lee EY. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 1999; 18:7883-99. [PMID: 10630641 DOI: 10.1038/sj.onc.1203283] [Citation(s) in RCA: 302] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several newly identified tumor suppressor genes including ATM, NBS1, BRCA1 and BRCA2 are involved in DNA double-strand break repair (DSBR) and DNA damage-induced checkpoint activation. Many of the gene products involved in checkpoint control and DSBR have been studied in great detail in yeast. In addition to evolutionarily conserved proteins such as Chk1 and Chk2, studies in mammalian cells have identified novel proteins such as p53 in executing checkpoint control. DSBR proteins including Mre11, Rad50, Rad51, Rad54, and Ku are present in yeast and in mammals. Many of the tumor suppressor gene products interact with these repair proteins as well as checkpoint regulators, thus providing a biochemical explanation for the pleiotropic phenotypes of mutant cells. This review focuses on the proteins mediating G1/S, S, and G2/M checkpoint control in mammalian cells. In addition, mammalian DSBR proteins and their activities are discussed. An intricate network among DNA damage signal transducers, cell cycle regulators and the DSBR pathways is illustrated. Mouse knockout models for genes involved in these processes have provided valuable insights into their function, establishing genomic instability as a major contributing factor in tumorigenesis.
Collapse
Affiliation(s)
- G K Dasika
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 78245, USA
| | | | | | | | | | | |
Collapse
|
257
|
Foray N, Randrianarison V, Marot D, Perricaudet M, Lenoir G, Feunteun J. Gamma-rays-induced death of human cells carrying mutations of BRCA1 or BRCA2. Oncogene 1999; 18:7334-42. [PMID: 10602489 DOI: 10.1038/sj.onc.1203165] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is now evidence to suggest that BRCA1 and BRCA2 are involved in the response of cells to DNA damage and cell cycle checkpoint control. This report examines the death pathways of human cells with various BRCA1 and BRCA2 genotypes after exposure to gamma-rays. A lack of functional BRCA1 and BRCA2 led to defective repair of DNA double-strand breaks in irradiated cells. This impairment resulted in a relaxation of cell cycle checkpoints, production of micronuclei, and a loss of proliferative capacity. Heterozygous BRCA1 and BRCA2 mutations also led to enhanced radiosensitivity, with an impaired proliferative capacity after irradiation. The existence of a phenotype related to radiosensitivity in BRCA1+/- and BRCA2+/- cells raises the question of the response of heterozygous women to radiation.
Collapse
Affiliation(s)
- N Foray
- Laboratoire de Génétique Oncologique, CNRS UMR #1599, Institut Gustave-Roussy, 94805 Villejuif Cedex, France
| | | | | | | | | | | |
Collapse
|
258
|
Lakhani SR, Chaggar R, Davies S, Jones C, Collins N, Odel C, Stratton MR, O'Hare MJ. Genetic alterations in 'normal' luminal and myoepithelial cells of the breast. J Pathol 1999; 189:496-503. [PMID: 10629549 DOI: 10.1002/(sici)1096-9896(199912)189:4<496::aid-path485>3.0.co;2-d] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosomal loci exhibiting loss of heterozygosity (LOH) at high frequency in invasive breast cancer have been investigated in 'normal' breast tissue from patients with carcinoma and from reduction mammoplasty specimens. Duct-lobular units dissected from paraffin-embedded tissues and 485 'normal' luminal and myoepithelial cell clones were studied. Overall, LOH was found in normal cells in 5/10 breast cancer cases and 1/3 reduction mammoplasty specimens. LOH was identified in normal cells adjacent to and distant from the tumour. In one case, all luminal and myoepithelial samples exhibited loss of the same allele on chromosome 13q. One case in which the patient had a germline truncating mutation in the BRCA1 gene exhibited LOH on 17q in 3/33 normal clones. One of these clones showed loss of wild-type allele indicating gene inactivation. This sample also had LOH at markers on chromosomes 11p and 13q. One of 93 clones from three reduction mammoplasties showed allele loss at a locus on chromosome 13q. The identification of LOH in breast lobules suggests that they may be clonal. The demonstration of genetic alteration in luminal and myoepithelial cells provides evidence for the presence of a common stem cell for the two epithelial cell types. LOH has been demonstrated in normal tissues near and away from the carcinoma, suggesting that genetic alterations are likely to be more heterogeneous and widespread than is currently envisaged, and probably occur very early in breast development. Homozygous deletion of BRCA1 per se does not appear to provide clonal advantage.
Collapse
Affiliation(s)
- S R Lakhani
- Department of Histopathology, University College London Medical School, Rockefeller Building, University Street, London WC1E 6JJ, U.K
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Scully R, Ganesan S, Vlasakova K, Chen J, Socolovsky M, Livingston DM. Genetic analysis of BRCA1 function in a defined tumor cell line. Mol Cell 1999; 4:1093-9. [PMID: 10635334 DOI: 10.1016/s1097-2765(00)80238-5] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Retrovirally expressed, wild-type BRCA1 decreased the gamma radiation (IR) sensitivity and increased the efficiency of double-strand DNA break repair (DSBR) of the BRCA1-/- human breast cancer line, HCC1937. It also reduced its susceptibility to DSB generation by IR. By contrast, multiple, clinically validated, missense mutant BRCA1 products were nonfunctional in these assays. These data constitute the basis for a BRCA1 functional assay and suggest that efficient repair of double-strand DNA breaks is linked to BRCA1 tumor suppression function.
Collapse
Affiliation(s)
- R Scully
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
260
|
Gabriel A, Kerr P, Warren M. Second International Workshop on the function of BRCA1 and BRCA2, Cambridge, UK, 9 to 10 September 1999. Breast Cancer Res 1999. [DOI: 10.1186/bcr14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
261
|
Robinson-Benion C, Jensen RA, Holt JT. Analysis of cancer gene functions through gene inhibition with antisense oligonucleotides. Methods Enzymol 1999; 314:499-506. [PMID: 10565035 DOI: 10.1016/s0076-6879(99)14125-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- C Robinson-Benion
- Department of Cell Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
262
|
Spain BH, Larson CJ, Shihabuddin LS, Gage FH, Verma IM. Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. Proc Natl Acad Sci U S A 1999; 96:13920-5. [PMID: 10570174 PMCID: PMC24166 DOI: 10.1073/pnas.96.24.13920] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BRCA2 mutations predispose carriers mainly to breast cancer. The vast majority of BRCA2 mutations are predicted to result in a truncated protein product. The smallest known cancer-associated deletion removes from the C terminus only 224 of the 3,418 residues constituting BRCA2, suggesting that these terminal amino acids are crucial for BRCA2 function. A series of green fluorescent protein (GFP)-tagged BRCA2 deletion mutants revealed that nuclear localization depends on two nuclear localization signals that reside within the final 156 residues of BRCA2. Consistent with this observation, an endogenous truncated BRCA2 mutant (6174delT) was found to be cytoplasmic. Together, these studies provide a simple explanation for why the vast majority of BRCA2 mutants are nonfunctional: they do not translocate into the nucleus.
Collapse
Affiliation(s)
- B H Spain
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
263
|
Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 1999; 286:1162-6. [PMID: 10550055 DOI: 10.1126/science.286.5442.1162] [Citation(s) in RCA: 727] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Brca1 (breast cancer gene 1) tumor suppressor protein is phosphorylated in response to DNA damage. Results from this study indicate that the checkpoint protein kinase ATM (mutated in ataxia telangiectasia) was required for phosphorylation of Brca1 in response to ionizing radiation. ATM resides in a complex with Brca1 and phosphorylated Brca1 in vivo and in vitro in a region that contains clusters of serine-glutamine residues. Phosphorylation of this domain appears to be functionally important because a mutated Brca1 protein lacking two phosphorylation sites failed to rescue the radiation hypersensitivity of a Brca1-deficient cell line. Thus, phosphorylation of Brca1 by the checkpoint kinase ATM may be critical for proper responses to DNA double-strand breaks and may provide a molecular explanation for the role of ATM in breast cancer.
Collapse
Affiliation(s)
- D Cortez
- Verna and Mars McLean Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
264
|
Affiliation(s)
- A R Venkitaraman
- Department of Oncology, University of Cambridge, Cambridge CB2 2XY, UK.
| |
Collapse
|
265
|
Phillips KA, Andrulis IL, Goodwin PJ. Breast carcinomas arising in carriers of mutations in BRCA1 or BRCA2: are they prognostically different? J Clin Oncol 1999; 17:3653-63. [PMID: 10550164 DOI: 10.1200/jco.1999.17.11.3653] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To review the preclinical and clinical studies relevant to the prognosis and prognostic associations of BRCA1- and BRCA2-associated breast carcinomas, with an emphasis on research methodology. METHODS Reports of relevant studies obtained from a MEDLINE search, and references from these articles, were critically reviewed. RESULTS Consistent associations with both favorable (medullary or atypical medullary carcinoma) and unfavorable (high tumor grade, hormone receptor negativity, somatic p53 mutation) prognostic characteristics have been found for BRCA1-associated breast carcinomas. Inconsistent results have been demonstrated for prognostic associations of BRCA2-associated breast tumors. Clinical studies that have directly assessed the prognosis of these tumors have not shown a clear effect of BRCA1 or BRCA2 mutation, but no study has used optimal methodology. In vitro and animal model data suggest a possible influence of these mutations on response to agents that cause double-strand DNA breaks, but clinical data are limited. CONCLUSION The elucidation of an identifiable subgroup of breast carcinomas that result from germline mutations in BRCA1 or BRCA2 may be an important step toward genotype-based understanding of prognosis and choice of therapy in this disease. However, currently there are inadequate data to support use of BRCA1 or BRCA2 status to counsel individuals regarding their prognosis or to select treatment. Well-designed studies of population-based inception cohorts of breast cancer patients, which have adequate sample size and complete follow-up, and which use objective outcome criteria and blinding of outcome assessment, are required to optimally address this question.
Collapse
Affiliation(s)
- K A Phillips
- Samuel Lunenfeld Research Institute and Marvelle Koffler Breast Center, Mt Sinai Hospital, and University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
266
|
Davis PL, Miron A, Andersen LM, Iglehart JD, Marks JR. Isolation and initial characterization of the BRCA2 promoter. Oncogene 1999; 18:6000-12. [PMID: 10557089 DOI: 10.1038/sj.onc.1202990] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hereditary breast cancer susceptibility gene, BRCA2, is considered to be a tumor suppressor gene that may be involved in the cellular response to DNA damage. The transcript for this gene is cell cycle regulated with mRNA levels reaching a peak just before the onset of DNA synthesis. In order to define the mechanisms by which BRCA2 is transcriptionally regulated, we have begun to study upstream regulatory sequences. In this report, we define a minimal promoter region that has strong activity in human breast epithelial cells. Deletions of this sequence narrowed the strong basal activity to a region extending from -66 to +129 with respect to the BRCA2 transcriptional start site. This sequence demonstrated cell cycle regulated activity with kinetics similar to the endogenous transcript. Examination of the sequence revealed several consensus binding sites for transcription factors including an E-box, E2F and Ets recognition motifs. Electrohoretic mobility shift assays revealed specific protein binding to two sequences upstream of the start site; the palindromic E-box and an Ets/E2F site. Site-directed mutagenesis of either of these sites reduced both the basal activity in log phase cells and the cell cycle regulated activity of the promoter. Mutational inactivation of both sites within the same construct effectively eliminated promoter activity. Antibodies to candidate transcription factors used in super shift experiments revealed specific interactions between the BRCA2 promoter and the basic region/helix - loop - helix containing USF-1 and 2 proteins and Elf-1, an Ets domain protein. Binding of these factors depended upon the presence of intact recognition sequences. The USF factors were shown to bind predominantly as a heterodimeric complex of USF-1 and 2 while Elf-1 bound the promoter when it was not occupied by USF. Co-transfection studies with USF proteins and the varicella zoster IE62 protein provide evidence for the involvement of endogenous and exogenous USF in the activation of the BRCA2 promoter. We propose that interactions between USF-1, USF-2 and Elf-1 play an important role in the transcriptional regulation of the BRCA2 gene.
Collapse
Affiliation(s)
- P L Davis
- Department of Surgery, Duke University Medical Center, Box 3873, Durham, North Carolina, NC 27710, USA
| | | | | | | | | |
Collapse
|
267
|
Tutt A, Gabriel A, Bertwistle D, Connor F, Paterson H, Peacock J, Ross G, Ashworth A. Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol 1999; 9:1107-10. [PMID: 10531007 DOI: 10.1016/s0960-9822(99)80479-5] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Women heterozygous for mutations in the breast-cancer susceptibility genes BRCA1 and BRCA2 have a highly elevated risk of developing breast cancer [1]. BRCA1 and BRCA2 encode large proteins with no sequence similarity to one another. Although involvement in DNA repair and transcription has been suggested, it is still not understood how loss of function of these genes leads to breast cancer [2]. Embryonic fibroblasts (MEFs) derived from mice homozygous for a hypomorphic mutation (Brca2(Tr2014)) within the 3' region of exon 11 in Brca2 [3], or a similar mutation (Brca2(Tr)) [4], proliferate poorly in culture and overexpress the tumour suppressor p53 and the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). These MEFs have intact p53-dependent DNA damage G(1)-S [3] [4] and G(2)-M checkpoints [4], but are impaired in DNA double-strand break repair [3] and develop chromosome aberrations [4]. Here, we report that Brca2(Tr2014/Tr2014) MEFs frequently develop micronuclei. These abnormal DNA-containing bodies were formed through both loss of acentric chromosome fragments and by chromosome missegregation, which resulted in aneuploidy. Absence of Brca2 also led to centrosome amplification, which we found associated with the formation of micronuclei. These data suggest a potential mechanism whereby loss of BRCA2 may, within subclones, drive the loss of cell-cycle regulation genes, enabling proliferation and tumourigenesis.
Collapse
Affiliation(s)
- A Tutt
- Section of Gene Function and Regulation Chester Beatty Laboratories Institute of Cancer Research 237 Fulham Road, London, SW3 6JB, UK
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Gonzalez R, Silva JM, Dominguez G, Garcia JM, Martinez G, Vargas J, Provencio M, España P, Bonilla F. Detection of loss of heterozygosity at RAD51, RAD52, RAD54 and BRCA1 and BRCA2 loci in breast cancer: pathological correlations. Br J Cancer 1999; 81:503-9. [PMID: 10507777 PMCID: PMC2362917 DOI: 10.1038/sj.bjc.6690722] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss of heterozygosity (LOH) in loci of the 15q15.1, 12p13, 1p32, 17q21 and 13q12-13 regions may collaborate in the inactivation of RAD51, RAD52, RAD54, BRCA1, BRCA2 and possibly other genes implicated in the repair of double-stranded DNA and in DNA recombination. We investigate allelic losses in microsatellites of the RAD51, RAD52, RAD54, BRCA1 and BRCA2 regions, and their correlations with nine pathologic parameters in 127 breast carcinomas. The LOH analysis was performed by amplifying DNA by PCR, using 15 markers of the 15q15.1, 12p13.3, 1p32, 17q21 and 13q12-13 regions. LOH was found in the RAD51 region in 32% of tumours, in the RAD52 region in 16%, in RAD54 in 20% and in the BRCA1 and BRCA2 regions in 49% and 44% respectively. Significant correlations between one or more regions with concomitant LOH and pathologic parameters were observed with respect to age (P = 0.008), oestrogen receptor content (P = 0.03), progesterone receptors (P = 0.003), higher grade (P = 0.001), more advanced stage (P = 0.004) and peritumoural vessel involvement (P < 0.0001). The number of cases in which LOH was observed simultaneously in two or more regions was always higher than expected on the basis of their statistical probability, and curiously, the three patients with LOH at five regions concomitantly were under the age of 30 years. These results suggest that LOH at these regions could be related to breast cancer, and probably to a poor tumour prognosis.
Collapse
Affiliation(s)
- R Gonzalez
- Department of Medical Oncology, Clinica Puerta de Hierro, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Cressman VL, Backlund DC, Avrutskaya AV, Leadon SA, Godfrey V, Koller BH. Growth retardation, DNA repair defects, and lack of spermatogenesis in BRCA1-deficient mice. Mol Cell Biol 1999; 19:7061-75. [PMID: 10490643 PMCID: PMC84701 DOI: 10.1128/mcb.19.10.7061] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1999] [Accepted: 06/22/1999] [Indexed: 01/17/2023] Open
Abstract
BRCA1 is a nuclear phosphoprotein expressed in a broad spectrum of tissues during cell division. The inheritance of a mutant BRCA1 allele dramatically increases a woman's lifetime risk for developing both breast and ovarian cancers. A number of mouse lines carrying mutations in the Brca1 gene have been generated, and mice homozygous for these mutations generally die before day 10 of embryonic development. We report here the survival of a small number of mice homozygous for mutations in both the p53 and Brca1 genes. The survival of these mice is likely due to additional unknown mutations or epigenetic effects. Analysis of the Brca1(-/-) p53(-/-) animals indicates that BRCA1 is not required for the development of most organ systems. However, these mice are growth retarded, males are infertile due to meiotic failure, and the mammary gland of the female mouse is underdeveloped. Growth deficiency due to loss of BRCA1 was more thoroughly examined in an analysis of primary fibroblast lines obtained from these animals. Like p53(-/-) fibroblasts, Brca1(-/-) p53(-/-) cells proliferate more rapidly than wild-type cells; however, a high level of cellular death in these cultures results in reduced overall growth rates in comparison to p53(-/-) fibroblasts. Brca1(-/-) p53(-/-) fibroblasts are also defective in transcription-coupled repair and display increased sensitivity to DNA-damaging agents. We show, however, that after continued culture, and perhaps accelerated by the loss of BRCA1 repair functions, populations of Brca1(-/-) p53(-/-) fibroblasts with increased growth rates can be isolated. The increased survival of BRCA1-deficient fibroblasts in the absence of p53, and with the subsequent accumulation of additional growth-promoting changes, may mimic the events that occur during malignant transformation of BRCA1-deficient epithelia.
Collapse
Affiliation(s)
- V L Cressman
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
270
|
Abstract
Germline mutations in BRCA1 confer a high risk of breast and ovarian tumors. The role of BRCA1 in tumor suppression is not yet understood, but both transcription and repair functions have been ascribed. Evidence that BRCA1 is involved in DNA repair stems from its association with RAD51, a homolog of the yeast protein involved in the repair of DNA double-strand breaks (DSBs) by homologous recombination. We report here that Brca1-deficient mouse embryonic stem cells have impaired repair of chromosomal DSBs by homologous recombination. The relative frequencies of homologous and nonhomologous DNA integration and DSB repair were also altered. The results demonstrate a caretaker role for BRCA1 in preserving genomic integrity by promoting homologous recombination and limiting mutagenic nonhomologous repair processes.
Collapse
Affiliation(s)
- M E Moynahan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | |
Collapse
|
271
|
Vogel H, Lim DS, Karsenty G, Finegold M, Hasty P. Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci U S A 1999; 96:10770-5. [PMID: 10485901 PMCID: PMC17958 DOI: 10.1073/pnas.96.19.10770] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks formed during the assembly of antigen receptors or after exposure to ionizing radiation are repaired by proteins important for nonhomologous end joining that include Ku86, Ku70, DNA-PK(CS), Xrcc4, and DNA ligase IV. Here we show that ku86-mutant mice, compared with control littermates, prematurely exhibited age-specific changes characteristic of senescence that include osteopenia, atrophic skin, hepatocellular degeneration, hepatocellular inclusions, hepatic hyperplastic foci, and age-specific mortality. Cancer and likely sepsis (indicated by reactive immune responses) partly contributed to age-specific mortality for both cohorts, and both conditions occurred earlier in ku86(-/-) mice. These data indicate that Ku86-dependent chromosomal metabolism is important for determining the onset of age-specific changes characteristic of senescence in mice.
Collapse
Affiliation(s)
- H Vogel
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
272
|
Affiliation(s)
- A Shinohara
- Department of Radiation and Cellular Oncology, University of Chicago, IL 60637, USA.
| | | |
Collapse
|
273
|
Tesoriero A, Andersen C, Southey M, Somers G, McKay M, Armes J, McCredie M, Giles G, Hopper JL, Venter D. De novo BRCA1 mutation in a patient with breast cancer and an inherited BRCA2 mutation. Am J Hum Genet 1999; 65:567-9. [PMID: 10417300 PMCID: PMC1377956 DOI: 10.1086/302503] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
274
|
Abstract
Somatic changes in the genome of breast cancer cells include amplifications, deletions and gene mutations. Several chromosome regions harboring known oncogenes are found amplified in breast tumors. Despite the high number of chromosome regions deleted in breast tumors the functional relationship to known genes at these locations and cancer growth is mainly undiscovered. Mutations in two tumor suppressor genes (TSG) have been described in a subset of breast carcinomas. These TSG are the TP53, encoding the p53 transcription factor, and the CDH1, encoding the cadherin cell adhesion molecule. Breast tumors of patients with a germ-line mutation in the BRCA1 or BRCA2 gene have an increase of additional genetic defects compared with sporadic breast tumors. This higher frequency of genetic aberrations could pinpoint genes that selectively promote tumor progression in individuals predisposed to breast cancer due to BRCA1 or BRCA2 germ-line mutations. Accumulation of somatic genetic changes during tumor progression may follow a specific and more aggressive pathway of chromosome damage in these individuals. Although the sequence of molecular events in the progression of breast tumor is poorly understood the detected genetic alterations fit the model of multistep carcinogenesis in both sporadic and hereditary breast cancer. This review will focus on the genetic lesions within the breast cancer cell.
Collapse
Affiliation(s)
- S Ingvarsson
- Department of Pathology, University Hospital of Iceland, Reykjavik, Iceland
| |
Collapse
|
275
|
Marston NJ, Richards WJ, Hughes D, Bertwistle D, Marshall CJ, Ashworth A. Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals. Mol Cell Biol 1999; 19:4633-42. [PMID: 10373512 PMCID: PMC84261 DOI: 10.1128/mcb.19.7.4633] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Germ line mutations in the breast cancer susceptibility gene BRCA2 predispose to early-onset breast cancer, but the function of the nuclear protein encoded by the gene is ill defined. Using the yeast two-hybrid system with fragments of human BRCA2, we identified an interaction with the human DSS1 (deleted in split hand/split foot) gene. Yeast and mammalian two-hybrid assays showed that DSS1 can associate with BRCA2 in the region of amino acids 2472 to 2957 in the C terminus of the protein. Using coimmunoprecipitation of epitope-tagged BRCA2 and DSS1 cDNA constructs transiently expressed in COS cells, we were able to demonstrate an association. Furthermore, endogenous BRCA2 could be coimmunoprecipitated with endogenous DSS1 in MCF7 cells, demonstrating an in vivo association. Apparent orthologues of the mammalian DSS1 gene were identified in the genome of the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae. Yeast strains in which these DSS1-like genes were deleted showed a temperature-sensitive growth phenotype, which was analyzed by flow cytometry. This provides evidence for a link between the BRCA2 tumor suppressor gene and a gene required for completion of the cell cycle.
Collapse
Affiliation(s)
- N J Marston
- Section of Gene Function and Regulation, Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom SW3 6JB
| | | | | | | | | | | |
Collapse
|
276
|
Lee H, Trainer AH, Friedman LS, Thistlethwaite FC, Evans MJ, Ponder BA, Venkitaraman AR. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol Cell 1999; 4:1-10. [PMID: 10445022 DOI: 10.1016/s1097-2765(00)80182-3] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The murine Brca2 gene encodes a nuclear protein implicated in DNA repair. Brca2 behaves as a tumor suppressor, but paradoxically, its truncation causes proliferative arrest and spontaneous chromosomal damage. Here, we report that inactivation of cell cycle checkpoints responsive to mitotic spindle disruption, by mutant forms of p53 or Bub1, relieves growth arrest and initiates neoplastic transformation in primary cells homozygous for truncated Brca2. Tumors from Brca2-deficient animals exhibit dysfunction of the spindle assembly checkpoint, accompanied by mutations in p53, Bub1, and Mad3L. The chromosomal aberrations precipitated by Brca2 truncation can be suppressed by mutant forms of Bub1 and p53. Thus, inactivating mutations in mitotic checkpoint genes likely cooperate with BRCA2 deficiency in the pathogenesis of inherited breast cancer, with important implications for treatment.
Collapse
Affiliation(s)
- H Lee
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
277
|
van Golen K, Milliron K, Davies S, Merajver SD. BRCA-associated cancer risk: molecular biology and clinical practice. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1999; 134:11-8. [PMID: 10402055 DOI: 10.1016/s0022-2143(99)90049-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- K van Golen
- Department of Internal Medicine, University of Michigan Health Systems, Ann Arbor, USA
| | | | | | | |
Collapse
|
278
|
Abbott DW, Thompson ME, Robinson-Benion C, Tomlinson G, Jensen RA, Holt JT. BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem 1999; 274:18808-12. [PMID: 10373498 DOI: 10.1074/jbc.274.26.18808] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The breast cancer predisposition genes, BRCA1 and BRCA2, are responsible for the vast majority of hereditary breast cancer. Although BRCA2 functions to help the cell repair double-stranded DNA breaks, the function of BRCA1 remains enigmatic. Here, we develop a human genetic system to study the role of BRCA1 in oxidative DNA damage. We show that human cancer cells containing mutated BRCA1 are hypersensitive to ionizing radiation. This hypersensitivity can be reversed by the expression of forms of BRCA1 that are not growth suppressing. Reversal of hypersensitivity requires the ring finger of BRCA1, its transactivation domain, and its BRCT domain. Lastly, we show that unlike BRCA2, BRCA1 does not function in the repair of double-stranded DNA breaks. Instead, it functions in transcription-coupled DNA repair (TCR). TCR ability correlated with radioresistance as cells containing BRCA1 showed both increased TCR and radioresistance, whereas cells without BRCA1 showed decreased TCR and radiosensitivity. These findings give physiologic significance to the interaction of BRCA1 with the basal transcription machinery.
Collapse
Affiliation(s)
- D W Abbott
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
279
|
Yuan R, Fan S, Wang JA, Meng Q, Ma Y, Schreiber D, Goldberg ID, Rosen EM. Coordinate alterations in the expression of BRCA1, BRCA2, p300, and Rad51 in response to genotoxic and other stresses in human prostate cancer cells. Prostate 1999; 40:37-49. [PMID: 10344722 DOI: 10.1002/(sici)1097-0045(19990615)40:1<37::aid-pros5>3.0.co;2-p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND BRCA1 and BRCA2 participate in cell cycle progression, apoptosis, and DNA repair pathways. The latter role may be mediated by interaction with DNA recombinase Rad51. The purpose of this study was to evaluate the effects of genotoxic and other cytotoxic agents on expression of DNA damage-response genes (BRCA1, BRCA2, p300, and Rad51) in human prostate cancer cells. METHODS Subconfluent proliferating cultures of Tsu-Prl or DU-145 cells were treated with various stressful agents and assayed 24 hr later for alterations in: 1) mRNA expression (by semiquantitative reverse transcription-PCR); 2) cell viability (by trypan blue dye exclusion); and 3) protein expression (by Western blotting). RESULTS Of 26 agents screened, BRCA1 and BRCA2 mRNA reductions were observed in both cell lines after exposure to adriamycin (ADR), camptothecin (CPT), sodium selenite (SLN), and ultraviolet radiation (UV), while nitrogen mustard (HN2) caused mRNA reduction in DU-145 but not in Tsu-Prl. Inhibition of BRCA1/2 expression by ADR and HN2 was blocked by cycloheximide, suggesting that this requires new protein synthesis, while inhibition by CPT, SLN, and UV did not require protein synthesis. Reduction of p300 and Rad51 mRNA levels occurred in parallel with that of BRCA1/2, suggesting coordinate regulation of these genes. The ability of an agent to inhibit mRNA expression was not directly correlated with cytotoxicity. ADR, CPT, UV, and SLN also caused reduction of protein levels; but the kinetics of decreases in protein vs. mRNA differed. After ADR treatment, high molecular weight (Mr hyperphosphorylated) BRCA1 decreased more rapidly than the low Mr species. BRCA2 showed a more rapid decrease in protein than mRNA, while Rad51 showed the opposite. By 48 and 72 hr post-ADR, all four mRNAs and proteins were reduced to well below control levels, except for Rad51 protein, which was only moderately decreased. CONCLUSIONS Selected DNA-damaging agents (ADR, CPT, and UV) and a reducing agent (SLN) inhibited BRCA1/2, p300, and Rad51 expression in prostate cancer cells, although decreases in mRNA vs. protein did not coincide. We postulate that temporal changes in relative protein levels affect different phases of the stress response, and that the ultimate downregulation of all four genes promotes prostate cancer survival.
Collapse
Affiliation(s)
- R Yuan
- Department of Radiation Oncology, Long Island Jewish Medical Center, Long Island Campus for the Albert Einstein College of Medicine, New Hyde Park, New York 11040, USA
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Ramus SJ, Bobrow LG, Pharoah PD, Finnigan DS, Fishman A, Altaras M, Harrington PA, Gayther SA, Ponder BA, Friedman LS. Increased frequency of TP53 mutations in BRCA1 and BRCA2 ovarian tumours. Genes Chromosomes Cancer 1999; 25:91-6. [PMID: 10337991 DOI: 10.1002/(sici)1098-2264(199906)25:2<91::aid-gcc3>3.0.co;2-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We screened 81 ovarian tumours (30 BRCA1 associated, 18 BRCA2 associated, and 33 sporadic) for somatic TP53 mutations using both DNA analysis and immunostaining. TP53 mutations were significantly more frequent in tumours with mutations in BRCA1 (70% by immunostaining and 60% by DNA analysis) and BRCA2 (67% and 50%) compared to sporadic controls (39% and 30%) (P = 0.009). A higher proportion of tumours with BRCA1 and BRCA2 mutations were poorly differentiated, and TP53 mutant tumours in all categories were also more likely to be poorly differentiated. The poor differentiation of tumours with BRCA1 and BRCA2 mutations may be directly related to the role of these genes in DNA repair, and the need to overcome cell cycle checkpoints, often through loss of TP53. These results are consistent with the model of BRCA-induced tumorigenesis in which loss of checkpoint control is necessary for tumour development.
Collapse
Affiliation(s)
- S J Ramus
- CRC Human Cancer Genetics Research Group, Strangeways Research Laboratory, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Affiliation(s)
- T S Frank
- Myriad Genetic Laboratories, 320 Wakara Way, Salt Lake City, Utah 84108, USA.
| |
Collapse
|
282
|
Moll U, Lau R, Sypes MA, Gupta MM, Anderson CW. DNA-PK, the DNA-activated protein kinase, is differentially expressed in normal and malignant human tissues. Oncogene 1999; 18:3114-26. [PMID: 10340383 DOI: 10.1038/sj.onc.1202640] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA-PK is a nuclear, serine/threonine protein kinase required for repairing DNA double-strand breaks and for V(D)J recombination. To determine the distribution of DNA-PK in human tissues, we assayed paraffin-embedded sections of normal and cancerous tissues for DNA-PKcs and Ku80 by immunohistochemistry. We also assayed for Brca2, a human tumor suppressor gene that is implicated in the repair of DNA strand-breaks. Brca2 was strongly expressed in epithelial cells of the breast, endometrium, and thymus, in tingible body macrophages of follicular germinal centers of lymphoid tissue, and in reticuloendothelial cells in the spleen. DNA-PKcs and Ku80 expression was usually parallel, but both were expressed in a highly cell- and tissue-specific manner. The highest levels were observed in spermatogenic cells (but not in spermatozoa), and in neurons and glial cells of the central and autonomic nervous system. Neither protein was consistently expressed in liver nor in resting mammary epithelium, but lactating breast epithelium was strongly positive for DNA-PKcs and Ku80. In contrast to established human cell cultures, expression between cells in the same tissue was highly selective in the epidermis, exocrine pancreas, renal glomeruli, the red pulp of the spleen, and within cellular compartments of tonsils, lymph nodes, and thymus. Most cancerous tissues were consistently positive for DNA-PKcs and Ku80, except invasive carcinoma of the breast. DNA-PKcs, Ku80, and Ku70 mRNAs were expressed in all normal tissues with relatively little variation in levels. Our results suggest that the apparent absence of DNA-PKcs and Ku80 from some cells or tissues is a consequence of post-transcriptional mechanisms that regulate protein levels.
Collapse
Affiliation(s)
- U Moll
- Department of Pathology, State University of New York at Stony Brook, 11794, USA
| | | | | | | | | |
Collapse
|
283
|
Hernandez D, Mee PJ, Martin JE, Tybulewicz VL, Fisher EM. Transchromosomal mouse embryonic stem cell lines and chimeric mice that contain freely segregating segments of human chromosome 21. Hum Mol Genet 1999; 8:923-33. [PMID: 10196383 DOI: 10.1093/hmg/8.5.923] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
At least 8% of all human conceptions have major chromosome abnormalities and the frequency of chromosomal syndromes in newborns is >0.5%. Despite these disorders making a large contribution to human morbidity and mortality, we have little understanding of their aetiology and little molecular data on the importance of gene dosage to mammalian cells. Trisomy 21, which results in Down syndrome (DS), is the most frequent aneuploidy in humans (1 in 600 live births, up to 1 in 150 pregnancies world-wide) and is the most common known genetic cause of mental retardation. To investigate the molecular genetics of DS, we report here the creation of mice that carry different human chromosome 21 (Hsa21) fragments as a freely segregating extra chromosome. To produce these 'transchromosomal' animals, we placed a selectable marker into Hsa21 and transferred the chromosome from a human somatic cell line into mouse embryonic stem (ES) cells using irradiation microcell-mediated chromosome transfer (XMMCT). 'Transchromosomal' ES cells containing different Hsa21 regions ranging in size from approximately 50 to approximately 0.2 Mb have been used to create chimeric mice. These mice maintain Hsa21 sequences and express Hsa21 genes in multiple tissues. This novel use of the XMMCT protocol is applicable to investigations requiring the transfer of large chromosomal regions into ES or other cells and, in particular, the modelling of DS and other human aneuploidy syndromes.
Collapse
Affiliation(s)
- D Hernandez
- Department of Neurogenetics, Imperial College School of Medicine, Norfolk Place, London W2 1PG, UK
| | | | | | | | | |
Collapse
|
284
|
Smith PD, Crossland S, Parker G, Osin P, Brooks L, Waller J, Philp E, Crompton MR, Gusterson BA, Allday MJ, Crook T. Novel p53 mutants selected in BRCA-associated tumours which dissociate transformation suppression from other wild-type p53 functions. Oncogene 1999; 18:2451-9. [PMID: 10229196 DOI: 10.1038/sj.onc.1202565] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inheritance of germ-line mutant alleles of BRCA1 and BRCA2 confers a markedly increased risk of breast cancer and we have previously reported a higher incidence of p53 mutations in these tumours than in grade matched sporadic tumours. We have now characterized these p53 mutants. The results of these studies identify a novel class of p53 mutants previously undescribed in human cancer yet with multiple occurrences in BRCA-associated tumours which retain a profile of p53-dependent activities in terms of transactivation, growth suppression and apoptosis induction which is close or equal to wild-type. However, these mutants fail to suppress transformation and exhibit gain of function transforming activity in rat embryo fibroblasts. These mutants therefore fall into a novel category of p53 mutants which dissociate transformation suppression from other wild-type functions. The rarity of these mutants in human cancer and their multiple occurrence in BRCA-associated breast tumours suggests that these novel p53 mutants are selected during malignant progression in the unique genetic background of BRCA1- and BRCA2-associated tumours.
Collapse
Affiliation(s)
- P D Smith
- Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Stratton JF, Buckley CH, Lowe D, Ponder BA. Comparison of prophylactic oophorectomy specimens from carriers and noncarriers of a BRCA1 or BRCA2 gene mutation. United Kingdom Coordinating Committee on Cancer Research (UKCCCR) Familial Ovarian Cancer Study Group. J Natl Cancer Inst 1999; 91:626-8. [PMID: 10203282 DOI: 10.1093/jnci/91.7.626] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The natural history of ovarian cancer is not well understood and, to date, there is conflicting evidence as to whether or not there is a demonstrable precursor lesion. Some women at high risk of developing ovarian cancer because of their family history elect to have a prophylactic oophorectomy. To determine whether or not a recognizable premalignant lesion could be defined in familial ovarian carcinogenesis, we reviewed ovarian tissue specimens from women whose ovaries were removed prophylactically before gene testing became available and who were tested subsequently for BRCA1 or BRCA2 gene mutations. METHODS We analyzed ovarian tissue specimens from 37 women. The specimens were examined for the presence of the following four features: inclusion cysts, clefts and fissures, ovarian epithelial metaplasia, and the presence of papillae on the ovarian surface epithelium. The specimens were also examined closely for the presence of dysplasia and occult neoplasia. Furthermore, the occurrence of endometriosis and benign ovarian tumors was documented in these women. The protein truncation test, nonradioactive single-stranded conformation polymorphism analysis, and heteroduplex analysis, followed by DNA sequencing, were used to identify BRCA1 or BRCA2 mutations in either blood samples or ovarian tissue specimens. RESULTS Eleven women had inherited a mutated BRCA1 or BRCA2 gene; 26 women had not. There was no difference between these groups for any of the features studied. CONCLUSIONS Our data suggest that many of the histologic "abnormalities" described in "normal" ovaries are, in fact, variations of the normal and are not associated with the development of cancer.
Collapse
Affiliation(s)
- J F Stratton
- Department of Obstetrics and Gynaecology, Rosie Maternity Hospital, Cambridge, UK
| | | | | | | |
Collapse
|
286
|
Friedberg EC, Meira LB. Database of mouse strains carrying targeted mutations in genes affecting cellular responses to DNA damage: version 3. Mutat Res 1999; 433:69-87. [PMID: 10102034 DOI: 10.1016/s0921-8777(98)00068-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- E C Friedberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235, USA.
| | | |
Collapse
|
287
|
Abstract
Following the genomic localization and subsequent identification of the breast cancer susceptibility genes, BRCA1 and BRCA2, the basic patterns of cancer risk associated with mutations in these genes have been defined. In addition, preliminary insights into the prevalence of mutations and their contributions to cancer incidence have been acquired. Features of breast and other cancers that develop in these genetic syndromes have now been investigated and shown to differ from sporadic versions of the same neoplasms. However, several areas are complex and require further clarification. There remain discrepancies between published cancer risk estimates. Furthermore, there may be variation in cancer risk between different mutations in the same gene and there is preliminary evidence that genetic and nongenetic influences may modify risks. Finally, it is probable that the genes underlying a substantial component of susceptibility to breast cancer remain to be identified.
Collapse
Affiliation(s)
- N Rahman
- Section of Cancer Genetics, Haddow Laboratories, Sutton, Surrey, United Kingdom.
| | | |
Collapse
|
288
|
Abbott DW, Holt JT. Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J Biol Chem 1999; 274:2732-42. [PMID: 9915804 DOI: 10.1074/jbc.274.5.2732] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An increasing body of evidence suggests that mitogen-induced activation of the RAF/ERK signaling pathway is functionally separate from the stress-induced activation of the SEK/JNK/p38 signaling pathway. In general, stress stimuli strongly activate the p38s and the JNKs while only weakly activating ERK1 and ERK2. However, a number of independent groups have now shown that the RAF/ERK signaling pathway is strongly activated by ionizing radiation. In this work, we examine this paradox. We show that both mitogen-activated protein (MAP) kinase kinase 1 (MEK1) and MAP kinase kinase 2 (MEK2) are activated by ionizing radiation. Blockage of this activation through the use of dominant negative MEK2 increases sensitivity of the cell to ionizing radiation and decreases the ability of a cell to recover from the G2/M cell cycle checkpoint arrest. Blocking MEK2 activation does not affect double-strand DNA break repair, however. Although MEK1 is activated to a lesser extent by ionizing radiation, expression of a dominant negative MEK1 does not affect radiation sensitivity of the cell, the G2/M checkpoint of the cell, or double-strand break repair. Because ionizing radiation leads to a different cell cycle arrest (G2/M arrest) than that typically seen with other stress stimuli, and because we have shown that MEK2 can affect G2/M checkpoint kinetics, these results provide an explanation for the observation that the MEKs can be strongly activated by ionizing radiation and only weakly activated by other stressful stimuli.
Collapse
Affiliation(s)
- D W Abbott
- Vanderbilt University Departments of Cell Biology and Pathology and the Vanderbilt University Cancer Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
289
|
Thompson LH, Schild D. The contribution of homologous recombination in preserving genome integrity in mammalian cells. Biochimie 1999; 81:87-105. [PMID: 10214914 DOI: 10.1016/s0300-9084(99)80042-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Although it is clear that mammalian somatic cells possess the enzymatic machinery to perform homologous recombination of DNA molecules, the importance of this process in mitigating DNA damage has been uncertain. An initial genetic framework for studying homologous recombinational repair (HRR) has come from identifying relevant genes by homology or by their ability to correct mutants whose phenotypes are suggestive of recombinational defects. While yeast has been an invaluable guide, higher eukaryotes diverge in the details and complexity of HRR. For eliminating DSBs, HRR and end-joining pathways share the burden, with HRR contributing critically during S and G2 phases. It is likely that the removal of interstrand cross-links is absolutely dependent on efficient HRR, as suggested by the extraordinary sensitivity of the ercc1, xpf/ercc4, xrcc2, and xrcc3 mutants to cross-linking chemicals. Similarly, chromosome stability in untreated cells requires intact HRR, which may eliminate DSBs arising during DNA replication and thereby prevent chromosome aberrations. Complex regulation of HRR by cell cycle checkpoint and surveillance functions is suggested not only by direct interactions between human Rad51 and p53, c-Abl, and BRCA2, but also by very high recombination rates in p53-deficient cells.
Collapse
Affiliation(s)
- L H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA
| | | |
Collapse
|
290
|
|
291
|
Bertwistle D, Ashworth A. The pathology of familial breast cancer: How do the functions of BRCA1 and BRCA2 relate to breast tumour pathology? Breast Cancer Res 1999; 1:41-7. [PMID: 11250682 PMCID: PMC3386652 DOI: 10.1186/bcr12] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/1999] [Revised: 09/16/1999] [Accepted: 10/06/1999] [Indexed: 01/12/2023] Open
Abstract
Women with mutations in the breast cancer susceptibility genes, BRCA1 and BRCA2, have an increased risk of developing breast cancer. Both BRCA1 and BRCA2 are thought to be tumour suppressor genes since the wild type alleles of these genes are lost in tumours from heterozygous carriers. Several functions have been proposed for the proteins encoded by these genes which could explain their roles in tumour suppression. Both BRCA1 and BRCA2 have been suggested to have a role in transcriptional regulation and several potential BRCA1 target genes have been identified. The nature of these genes suggests that loss of BRCA1 could lead to inappropriate proliferation, consistent with the high mitotic grade of BRCA1-associated tumours. BRCA1 and BRCA2 have also been implicated in DNA repair and regulation of centrosome number. Loss of either of these functions would be expected to lead to chromosomal instability, which is observed in BRCA1 and BRCA2-associated tumours. Taken together, these studies give an insight into the pathogenesis of BRCA-associated tumours and will inform future therapeutic strategies.
Collapse
Affiliation(s)
- D Bertwistle
- The Breakthrough Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | | |
Collapse
|
292
|
|
293
|
Watson ML, Zinn AR, Inoue N, Hess KD, Cobb J, Handel MA, Halaban R, Duchene CC, Albright GM, Moreadith RW. Identification of morc (microrchidia), a mutation that results in arrest of spermatogenesis at an early meiotic stage in the mouse. Proc Natl Acad Sci U S A 1998; 95:14361-6. [PMID: 9826705 PMCID: PMC24378 DOI: 10.1073/pnas.95.24.14361] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The microrchidia, or morc, autosomal recessive mutation results in the arrest of spermatogenesis early in prophase I of meiosis. The morc mutation arose spontaneously during the development of a mouse strain transgenic for a tyrosinase cDNA construct. Morc -/- males are infertile and have grossly reduced testicular mass, whereas -/- females are normal, indicating that the Morc gene acts specifically during male gametogenesis. Immunofluorescence to synaptonemal complex antigens demonstrated that -/- male germ cells enter meiosis but fail to progress beyond zygotene or leptotene stage. An apoptosis assay revealed massive numbers of cells undergoing apoptosis in testes of -/- mice. No other abnormal phenotype was observed in mutant animals, with the exception of eye pigmentation caused by transgene expression in the retina. Spermatogenesis is normal in +/- males, despite significant transgene expression in germ cells. Genomic analysis of -/- animals indicates the presence of a deletion adjacent to the transgene. Identification of the gene inactivated by the transgene insertion may define a novel biochemical pathway involved in mammalian germ cell development and meiosis.
Collapse
Affiliation(s)
- M L Watson
- Department of Pathology, The University of Texas Southwestern Medical School, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Marmorstein LY, Ouchi T, Aaronson SA. The BRCA2 gene product functionally interacts with p53 and RAD51. Proc Natl Acad Sci U S A 1998; 95:13869-74. [PMID: 9811893 PMCID: PMC24938 DOI: 10.1073/pnas.95.23.13869] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Germ-line mutations in the human BRCA2 gene confer susceptibility to breast cancer. Efforts to elucidate its function have revealed a putative transcriptional activation domain and in vitro interaction with the DNA repair protein RAD51. Other studies have indicated that RAD51 physically associates with the p53 tumor suppressor protein. Here we show that the BRCA2 gene product is a 460-kDa nuclear phosphoprotein, which forms in vivo complexes with both p53 and RAD51. Moreover, exogenous BRCA2 expression in cancer cells inhibits p53's transcriptional activity, and RAD51 coexpression enhances BRCA2's inhibitory effects. These findings demonstrate that BRCA2 physically and functionally interacts with two key components of cell cycle control and DNA repair pathways. Thus, BRCA2 likely participates with p53 and RAD51 in maintaining genome integrity.
Collapse
Affiliation(s)
- L Y Marmorstein
- The Derald H. Ruttenberg Cancer Center, The Mount Sinai Medical Center, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
295
|
Sharan SK, Bradley A. Functional characterization of BRCA1 and BRCA2: clues from their interacting proteins. J Mammary Gland Biol Neoplasia 1998; 3:413-21. [PMID: 10819535 DOI: 10.1023/a:1018788132560] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The familial breast and ovarian cancer susceptibility genes, BRCA1 and BRCA2 have been the subject of extensive functional analysis studies since their cloning. Clues to their biological role in maintaining the genomic integrity were provided by studies that revealed their interaction with the recombination repair protein HsRad51. The first clue of an interaction between HsRad51 and BRCA1 came from the colocalization of the characteristic nuclear foci formed by these two proteins during S phase of the cell cycle. An interaction between murine Brca2 and MmRad51 was detected by the yeast two hybrid system. Utilizing the yeast two hybrid system and other techniques several other Brca1 and Brca2 interacting proteins have been identified like, BARD1, importin-alpha, BIPs, RNA polymerase II holoenzyme, BRAP2 etc. Recently, mutations suggesting a role as a tumor suppressor have been identified in the BARD1 gene in primary human tumors. The identification of molecules that interact with Brca1 and Brca2 has greatly enhanced our knowledge of how BRCA1 and BRCA2 may function as tumor suppressors.
Collapse
Affiliation(s)
- S K Sharan
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
296
|
Abstract
Between 5% and 10% of all breast cancer is hereditary, with patients having a strong family history of the disease. The remaining 90-95% of cases are classed as sporadic. Within the inherited group, 80-90% of cases are the result of germline mutations affecting two recently identified genes: BRCA1 and BRCA2. Since the sequencing of these genes, considerable research on the genetics of the mutation carriers has been performed, with less attention having been focused on the BRCA1 and BRCA2 proteins themselves. The structure and function of the protein products thus continues to hold mystery and might be the key to the full understanding of this complex disease.
Collapse
Affiliation(s)
- J A Duncan
- University Department of Surgery, Galsgow Royal Infirmary, UK.
| | | | | |
Collapse
|
297
|
Abstract
In humans, the inheritance of mutations in the breast cancer susceptibility genes BRCA1 and BRCA2 increases the risk of developing breast and ovarian cancer. To study their biological function and to create animal models for these cancer susceptibility genes, several strains of mice mutated in the homologous genes Brca1 and Brca2 have been generated by gene targeting. Analyses of these "knock-out" mouse mutants have provided invaluable knowledge about the function of these genes. Brca1 and Brca2 null mutants are similar in phenotype: mutations in both genes result in embryonic lethality and the developing embryos show signs of a cellular proliferation defect associated with activation of the p53 pathway. The significance of this activation, as well as the role of these cancer susceptibility genes in DNA damage repair, is discussed.
Collapse
Affiliation(s)
- R Hakem
- Amgen Institute and Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
298
|
Alapetite C. [Individual radiosensitivity and DNA repair proficiency: the value of the comet assay]. Cancer Radiother 1998; 2:534-40. [PMID: 9868398 DOI: 10.1016/s1278-3218(98)80069-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Some rare hereditary syndromes demonstrate high cancer risk and hypersensitivity in response to exposures to agents such as ultraviolet or ionising radiation, and are characterised by a defective processing of DNA damage. They highlight the importance of the individual capacity of restoring the genomic integrity in the individual risk associated to exposures. The comet assay, a simple technique that detects DNA strand breaks, requires few cells and allows examination of DNA repair capacities in established cell lines, in blood samples or biopsies. The assay has been validated on cellular systems with known repair defects such as xeroderma pigmentosum defective in nucleotide excision repair, on mutant rodent cell lines defective in DNA single strand break rejoining (XRCC1) (alkaline version) or DNA double strand breaks rejoining (XRCC5/Ku80 and XRCC7/DNAPKcs) (neutral conditions). This assay does not allow to distinguish a defective phenotype in ataxia telangiectasia cells. It shows in homozygous mouse embryo fibroblasts Brca2-/- an impaired DNA double strand break rejoining. Simplicity, rapidity and sensitivity of the alkaline comet assay allow to examine the response of lymphocytes. It has been applied to the analysis of the role of DNA repair in the pathogenesis of collagen diseases, and the involvement of individual DNA repair proficiency in the thyroid tumorigenesis induced in some patients after therapeutic irradiation at childhood has been questioned. Preliminary results of these studies suggest that this type of approach could help for adapting treatment modalities and surveillance in subgroups of patients defective in DNA repair process. It could also have some incidence in the radioprotection field.
Collapse
Affiliation(s)
- C Alapetite
- UMR 218-CNRS, LRC n(o) 1-CEA, Institut Curie-recherche, Paris, France
| |
Collapse
|
299
|
Chen J, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM, Scully R. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell 1998; 2:317-28. [PMID: 9774970 DOI: 10.1016/s1097-2765(00)80276-2] [Citation(s) in RCA: 442] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BRCA1 and BRCA2 account for most cases of familial, early onset breast and/or ovarian cancer and encode products that each interact with hRAD51. Results presented here show that BRCA1 and BRCA2 coexist in a biochemical complex and colocalize in subnuclear foci in somatic cells and on the axial elements of developing synaptonemal complexes. Like BRCA1 and RAD51, BRCA2 relocates to PCNA+ replication sites following exposure of S phase cells to hydroxyurea or UV irradiation. Thus, BRCA1 and BRCA2 participate, together, in a pathway(s) associated with the activation of double-strand break repair and/or homologous recombination. Dysfunction of this pathway may be a general phenomenon in the majority of cases of hereditary breast and/or ovarian cancer.
Collapse
Affiliation(s)
- J Chen
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
López-Otín C, Diamandis EP. Breast and prostate cancer: an analysis of common epidemiological, genetic, and biochemical features. Endocr Rev 1998; 19:365-96. [PMID: 9715372 DOI: 10.1210/edrv.19.4.0337] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- C López-Otín
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Oviedo, Spain
| | | |
Collapse
|