251
|
Fox R, Nhan TQ, Law GL, Morris DR, Liles WC, Schwartz SM. PSGL-1 and mTOR regulate translation of ROCK-1 and physiological functions of macrophages. EMBO J 2007; 26:505-15. [PMID: 17245434 PMCID: PMC1783463 DOI: 10.1038/sj.emboj.7601522] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022] Open
Abstract
Rho-associated kinases (ROCKs) are critical molecules involved in the physiological functions of macrophages, such as chemotaxis and phagocytosis. We demonstrate that macrophage adherence promotes rapid changes in physiological functions that depend on translational upregulation of preformed ROCK-1 mRNA, but not ROCK-2 mRNA. Before adherence, both ROCK mRNAs were present in the cytoplasm of macrophages, whereas ROCK proteins were undetectable. Macrophage adherence promoted signaling through P-selectin glycoprotein ligand-1 (PSGL-1)/Akt/mTOR that resulted in synthesis of ROCK-1, but not ROCK-2. Following synthesis, ROCK-1 was catalytically active. In addition, there was a rapamycin/sirolimus-sensitive enhanced loading of ribosomes on preformed ROCK-1 mRNAs. Inhibition of mTOR by rapamycin abolished ROCK-1 synthesis in macrophages resulting in an inhibition of chemotaxis and phagocytosis. Macrophages from PSGL-1-deficient mice recapitulated pharmacological inhibitor studies. These results indicate that receptor-mediated regulation at the level of translation is a component of a rapid set of mechanisms required to direct the macrophage phenotype upon adherence and suggest a mechanism for the immunosuppressive and anti-inflammatory effects of rapamycin/sirolimus.
Collapse
Affiliation(s)
- Richard Fox
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, 815 Mercer Street, Seattle, WA 98109, USA. Tel.: +1 206 390 2997; Fax: +1 206 897 1540; E-mail:
| | - Thomas Q Nhan
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - G Lynn Law
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David R Morris
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - W Conrad Liles
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Toronto/University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - Stephen M Schwartz
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, 815 Mercer Street, Room 421, Seattle, WA 98109-4714, USA. Tel.: +1 206 543 0258; Fax: +1 206 897 1540; E-mail:
| |
Collapse
|
252
|
Mitoma J, Bao X, Petryanik B, Schaerli P, Gauguet JM, Yu SY, Kawashima H, Saito H, Ohtsubo K, Marth JD, Khoo KH, von Andrian UH, Lowe JB, Fukuda M. Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nat Immunol 2007; 8:409-18. [PMID: 17334369 DOI: 10.1038/ni1442] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 01/23/2007] [Indexed: 01/24/2023]
Abstract
Lymphocyte homing is mediated by specific interaction between L-selectin on lymphocytes and the carbohydrate ligand 6-sulfo sialyl Lewis X on high endothelial venules. Here we generated mice lacking both core 1 extension and core 2 branching enzymes to assess the functions of O-glycan-borne L-selectin ligands in vivo. Mutant mice maintained robust lymphocyte homing, yet they lacked O-glycan L-selectin ligands. Biochemical analyses identified a class of N-glycans bearing the 6-sulfo sialyl Lewis X L-selectin ligand in high endothelial venules. These N-glycans supported the binding of L-selectin to high endothelial venules in vitro and contributed in vivo to O-glycan-independent lymphocyte homing in wild-type and mutant mice. Our results demonstrate the critical function of N-glycan-linked 6-sulfo sialyl Lewis X in L-selectin-dependent lymphocyte homing and recruitment.
Collapse
Affiliation(s)
- Junya Mitoma
- Glycobiology Program, Cancer Research Center, Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Ali S, O'Boyle G, Mellor P, Kirby JA. An apparent paradox: Chemokine receptor agonists can be used for anti-inflammatory therapy. Mol Immunol 2007; 44:1477-82. [PMID: 17000001 DOI: 10.1016/j.molimm.2006.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 07/31/2006] [Accepted: 08/02/2006] [Indexed: 11/19/2022]
Abstract
Inflammation plays an important role in a wide range of human diseases. Chemokines are a group of proteins which control the migration and activation of the immune cells involved in all aspects of the inflammatory response. Chemokines bind to specific receptors of the seven-transmembrane spanning type on target leukocytes and also bind to cell-surface glycosaminoglycans (GAG). Leukocytes express a range of chemokine receptors which can cross-desensitise each other, potentially allowing a single chemokine receptor agonist to desensitise all the chemokine receptors on a cell. If an appropriate single receptor agonist is engineered to be non-chemotactic itself, then a treated cell will lose the potential to migrate in response to chemokines towards any developing site of inflammation. A non-GAG-binding but receptor agonistic form of the chemokine CCL7 can inhibit leukocyte recruitment in response to a diverse range of chemokines in vitro and in vivo. We hypothesise that this modified chemokine mediates its effect by inducing homologous and heterologous receptor desensitisation and further propose that other suitable candidates could include agonistic chemokine receptor-specific antibodies or small molecule chemokine receptor agonists. Hence, an appropriate chemokine receptor agonist could be used to inhibit multiple chemokine receptors, thereby producing a powerful and robust anti-inflammatory effect. This review considers the mechanisms leading to chemokine receptor desensitisation and discusses the potential to develop a new class of anti-inflammatory agents based on targeted stimulation of chemokine receptors.
Collapse
Affiliation(s)
- Simi Ali
- Applied Immunobiology and Transplantation Research Group, School of Surgical and Reproductive Sciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | | | | | | |
Collapse
|
254
|
Tang J, Ley KF, Hunt CA. Dynamics of in silico leukocyte rolling, activation, and adhesion. BMC SYSTEMS BIOLOGY 2007; 1:14. [PMID: 17408504 PMCID: PMC1839892 DOI: 10.1186/1752-0509-1-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 02/19/2007] [Indexed: 11/29/2022]
Abstract
Background We present a multilevel, agent based, in silico model that represents the dynamics of rolling, activation, and adhesion of individual leukocytes in vitro. Object-oriented software components were designed, verified, plugged together, and then operated in ways that represent the molecular and cellular mechanisms believed responsible for leukocyte rolling and adhesion. The result is an in silico analogue of an experimental in vitro system. The experimentally measured, phenotypic attributes of the analogue were compared and contrasted to those of leukocytes in vitro from three different experimental conditions. Results The individual in silico dynamics of "rolling" on simulated P-selectin, and separately on simulated VCAM-1, were an acceptable match to individual in vitro distance-time and velocity-time measurements. The analogues are also able to represent the transition from rolling to adhesion on P-selectin and VCAM-1 in the presence of GRO-α chemokine. The individual in silico and in vitro behavioral similarities translated successfully to population level measures. These behavioral similarities were enabled in part by subdividing the functionality of the analogue's surface into 600 independent, "cell"-controlled, equally capable modules of comparable functionality. Conclusion The overlap in phenotypic attributes of our analogue with those of leukocytes in vitro confirm the considerable potential of our model for studying the key events that determine the behavioral outcome of individual leukocytes during rolling, activation, and adhesion. Our results provide an important foundation and framework for future in silico research into plausible causal links between well-documented, subcellular molecular level events and the variety of systemic phenotypic attributes that distinguish normal leukocyte adhesion from abnormal disease-associated adhesion.
Collapse
Affiliation(s)
- Jonathan Tang
- The UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, CA, USA
| | - Klaus F Ley
- Robert M. Berne Cardiovascular Research Center and Departments of Biomedical Engineering, Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - C Anthony Hunt
- The UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, CA, USA
- The Department of Biopharmaceutical Sciences, Biosystems Group, University of California, San Francisco, CA, USA
| |
Collapse
|
255
|
Simonson WTN, Franco SJ, Huttenlocher A. Talin1 regulates TCR-mediated LFA-1 function. THE JOURNAL OF IMMUNOLOGY 2007; 177:7707-14. [PMID: 17114441 DOI: 10.4049/jimmunol.177.11.7707] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The leukocyte integrin LFA-1 plays a critical role in T cell trafficking and T cell adhesion to APCs. It is known that integrin-mediated adhesion is regulated by changes in integrin ligand-binding affinity and valency through inside-out signaling. However, the molecular mechanisms involved in TCR-mediated LFA-1 regulation are not well understood. In this study, we show that the cytoskeletal protein talin1 is required for TCR-mediated activation of LFA-1 through regulation of LFA-1 affinity and clustering. Depletion of talin1 from human T cells by small interfering RNAs impairs TCR-induced adhesion to ICAM-1 and T cell-APC conjugation. TCR-induced LFA-1 polarization, but not actin polarization, is defective in talin1-deficient T cells. Although LFA-1 affinity is also reduced in talin1-deficient T cells, rescue of LFA-1 affinity alone is not sufficient to restore LFA-1 adhesive function. Together, our findings indicate that TCR-induced up-regulation of LFA-1-dependent adhesiveness and resulting T cell-APC conjugation require talin1.
Collapse
Affiliation(s)
- William T N Simonson
- Program in Cellular and Molecular Biology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
256
|
Kinashi T. Integrin Regulation of Lymphocyte Trafficking: Lessons from Structural and Signaling Studies. Adv Immunol 2007; 93:185-227. [PMID: 17383542 DOI: 10.1016/s0065-2776(06)93005-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High trafficking capability of lymphocytes is crucial in immune surveillance and antigen responses. Central to this regulatory process is a dynamic control of lymphocyte adhesion behavior regulated by chemokines and adhesion receptors such as integrins. Modulation of lymphocyte adhesive responses occurs in a wide range of time window from less than a second to hours, enabling rolling lymphocyte to attach to and migrate through endothelium and interact with antigen-presenting cells. While there has been a rapid progress in the understanding of integrin structure, elucidation of signaling events to relay extracellular signaling to integrins in physiological contexts has recently emerged from studies using gene-targeting and gene-silencing technique. Regulatory molecules critical for integrin activity control distribution of integrins, polarized cell morphology and motility, suggesting a signaling network that coordinates integrin function with lymphocyte migration. Here, I review recent studies of integrin structural changes and intracellular signal molecules that trigger integrin activation (inside-out signals), and discuss molecular mechanisms that control lymphocyte integrins and how inside-out signals coordinately modulate adhesive reactions and cell shape and migration.
Collapse
Affiliation(s)
- Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Kyoto 606, Japan
| |
Collapse
|
257
|
|
258
|
Alon R, Dustin ML. Force as a Facilitator of Integrin Conformational Changes during Leukocyte Arrest on Blood Vessels and Antigen-Presenting Cells. Immunity 2007; 26:17-27. [PMID: 17241958 DOI: 10.1016/j.immuni.2007.01.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Integrins comprise a large family of cell-cell and cell-matrix adhesion receptors that rapidly modulate their adhesiveness. The arrest of leukocyte integrins on target vascular beds involves instantaneous conformational switches generating shear-resistant adhesions. Structural data suggest that these integrins are maintained in low-affinity conformations and must rapidly undergo conformational switches transduced via cytoplasmic changes ("inside-out" signaling) and simultaneous ligand-induced rearrangements ("outside-in"). This bidirectional activation is accelerated by signals from endothelial chemoattractants (chemokines). Recent studies predict that shear forces in the piconewton (pN) range per integrin can facilitate these biochemical switches. After extravasation, antigen recognition involves smaller internal forces from cytoskeletal motors and actin polymers forming the immune synapse. In this review, we address how forces facilitate allosteric integrin activation by biochemical signals. Evidence suggests that preformed cytoskeletal anchorage rather than free integrin mobility is key for force-enhanced integrin activation by chemokines and TCR signals.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
259
|
Zollner TM, Asadullah K, Schön MP. Targeting leukocyte trafficking to inflamed skin - still an attractive therapeutic approach? Exp Dermatol 2007; 16:1-12. [PMID: 17181631 DOI: 10.1111/j.1600-0625.2006.00503.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Research into leukocyte trafficking and its therapeutic exploitation appears to be a multistep process, just like the trafficking cascade itself. The initial euphoria evoked by an early understanding of the trafficking steps was followed by considerable disappointment following the clinical failure of the first selectin antagonist Cylexin (CY-1503), a sialyl Lewis(X) mimetic. The research area recovered and identified additional attractive pharmacological targets such as chemokine receptors and integrins. However, after lack of efficacy in anti-chemokine trials and the fatalities associated with anti VLA-4 therapy (Tysabri), the question arose again whether targeting leukocyte trafficking is really promising or whether such a complex, multistep process with many redundant and/or functionally overlapping molecules is simply too challenging to deal with. In this article, we delineate some pros and cons of this approach followed by a brief update on where we stand in the field and where we might move in the future.
Collapse
|
260
|
Etzioni A. Leukocyte adhesion deficiencies: molecular basis, clinical findings, and therapeutic options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:51-60. [PMID: 17712991 DOI: 10.1007/978-0-387-72005-0_5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Leukocyte trafficking from bloodstream to tissue is important for the continuous surveillance for foreign antigens, as well as for rapid leukocyte accumulation at sites of inflammatory response or tissue injury. Leukocyte interaction with vascular endothelial cells is a pivotal event in the inflammatory response and is mediated by several families of adhesion molecules. The crucial role of the beta2-integrin subfamily in leukocyte emigration was established after leukocyte adhesion deficiency (LAD) I was discovered. Patients with this disorder suffer from life-threatening bacterial infections, and in its severe form, death usually occurs in early childhood unless bone marrow transplantation is performed. The LAD II disorder clarifies the role of the selectin receptors and their fucosylated ligands. Clinically, patients with LAD II suffer from a less severe form of disease, resembling the moderate phenotype of LAD I. LAD III emphasizes the importance of the integrin activation phase in the adhesion cascade. Although the primary defect is still unknown, it is clear that all hematopoietic integrin activation processes are defective, which lead to severe infection as observed in LAD I and to marked increase tendency for bleeding problems.
Collapse
Affiliation(s)
- Amos Etzioni
- Meyer Children Hospital, the Rappaport School of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
261
|
Krummel MF, Macara I. Maintenance and modulation of T cell polarity. Nat Immunol 2006; 7:1143-9. [PMID: 17053799 DOI: 10.1038/ni1404] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/14/2006] [Indexed: 02/07/2023]
Abstract
As T cells move through the lymphatics and tissues, chemokine receptors, adhesion molecules, costimulatory molecules and antigen receptors engage their ligands in the microenvironment and contribute to establishing and maintaining cell polarity. Cytoskeletal assemblies, surface proteins and vesicle traffic are essential components of polarity and probably stabilize the activity of lymphocytes that must negotiate their 'noisy' environment. An additional component of polarity is a family of polarity proteins in T cells that includes Dlg, Scrib and Lgl, as well as a complex of partitioning-defective proteins. Ultimately, the strength of a T cell response may rely on correct T cell polarization. Therefore, loss of polarity regulators or guidance cues may interfere with T cell activation.
Collapse
Affiliation(s)
- Matthew F Krummel
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143-0511, USA.
| | | |
Collapse
|
262
|
Abstract
In this issue of Immunity, demonstrate a spectrum of dynamic conformation changes, from a bent form to extended forms, in extracellular domains in alpha(X)beta(2) and alpha(L)beta(2) upon separation of the alpha and beta subunits, providing structural evidence for activation of leukocyte integrins.
Collapse
Affiliation(s)
- Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
| |
Collapse
|
263
|
Evangelista V, Pamuklar Z, Piccoli A, Manarini S, Dell'elba G, Pecce R, Martelli N, Federico L, Rojas M, Berton G, Lowell CA, Totani L, Smyth SS. Src family kinases mediate neutrophil adhesion to adherent platelets. Blood 2006; 109:2461-9. [PMID: 17095622 PMCID: PMC1852189 DOI: 10.1182/blood-2006-06-029082] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polymorphonuclear leukocyte (PMN)-platelet interactions at sites of vascular damage contribute to local and systemic inflammation. We sought to determine the role of "outside-in" signaling by Src-family tyrosine kinases (SFKs) in the regulation of alphaMbeta2-integrin-dependent PMN recruitment by activated platelets under (patho)physiologic conditions. Activation-dependent epitopes in beta2 integrin were exposed at the contact sites between PMNs and platelets and were abolished by SFK inhibitors. PMNs from alphaMbeta2(-/-), hck(-/-)fgr(-/-), and hck(-/-)fgr(-/-)lyn(-/-) mice had an impaired capacity to adhere with activated platelets in suspension. Phosphorylation of Pyk2 accompanied PMN adhesion to platelets and was blocked by inhibition as well as by genetic deletion of alphaMbeta2 integrin and SFKs. A Pyk2 inhibitor reduced platelet-PMN adhesion, indicating that Pyk2 may be a downstream effector of SFKs. Analysis of PMN-platelet interactions under flow revealed that SFK signaling was required for alphaMbeta2-mediated shear-resistant adhesion of PMNs to adherent platelets, but was dispensable for P-selectin-PSGL-1-mediated recruitment and rolling. Finally, SFK activity was required to support PMN accumulation along adherent platelets at the site of vascular injury, in vivo. These results definitely establish a role for SFKs in PMN recruitment by activated platelets and suggest novel targets to disrupt the pathophysiologic consequences of platelet-leukocyte interactions in vascular disease.
Collapse
Affiliation(s)
- Virgilio Evangelista
- Laboratory of Vascular Biology and Pharmacology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Chen Q, Fisher DT, Clancy KA, Gauguet JMM, Wang WC, Unger E, Rose-John S, von Andrian UH, Baumann H, Evans SS. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol 2006; 7:1299-308. [PMID: 17086187 DOI: 10.1038/ni1406] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 10/04/2006] [Indexed: 12/25/2022]
Abstract
Fever is an evolutionarily conserved response during acute inflammation, although its physiological benefit is poorly understood. Here we show thermal stress in the range of fever temperatures increased the intravascular display of two 'gatekeeper' homing molecules, intercellular adhesion molecule 1 (ICAM-1) and CCL21 chemokine, exclusively in high endothelial venules (HEVs) that are chief portals for the entry of blood-borne lymphocytes into lymphoid organs. Enhanced endothelial expression of ICAM-1 and CCL21 was linked to increased lymphocyte trafficking across HEVs. A bifurcation in the mechanisms controlling HEV adhesion was demonstrated by evidence that the thermal induction of ICAM-1 but not of CCL21 involved an interleukin 6 trans-signaling pathway. Our findings identify the 'HEV axis' as a thermally sensitive alert system that heightens immune surveillance during inflammation by amplifying lymphocyte trafficking to lymphoid organs.
Collapse
Affiliation(s)
- Qing Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Zhu DM, Dustin ML, Cairo CW, Golan DE. Analysis of two-dimensional dissociation constant of laterally mobile cell adhesion molecules. Biophys J 2006; 92:1022-34. [PMID: 17085486 PMCID: PMC1779959 DOI: 10.1529/biophysj.106.089649] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We formulate a general analysis to determine the two-dimensional dissociation constant (2D Kd), and use this method to study the interaction of CD2-expressing T cells with glass-supported planar bilayers containing fluorescently labeled CD58, a CD2 counter-receptor. Both CD2 and CD58 are laterally mobile in their respective membranes. Adhesion is indicated by accumulation of CD2 and CD58 in the cell-bilayer contact area; adhesion molecule density and contact area size attain equilibrium within 40 min. The standard (Scatchard) analysis of solution-phase binding is not applicable to the case of laterally mobile adhesion molecules due to the dynamic nature of the interaction. We derive a new binding equation, B/F=[(Ntxf)/(KdxScell)]-[(Bxp)/Kd], where B and F are bound and free CD58 density in the contact area, respectively; Nt is CD2 molecule number per cell; f is CD2 fractional mobility; Scell is cell surface area; and p is the ratio of contact area at equilibrium to Scell. We use this analysis to determine that the 2D Kd for CD2-CD58 is 5.4-7.6 molecules/microm2. 2D Kd analysis provides a general and quantitative measure of the mechanisms regulating cell-cell adhesion.
Collapse
Affiliation(s)
- De-Min Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Hematology Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
266
|
Groot F, Kuijpers TW, Berkhout B, de Jong EC. Dendritic cell-mediated HIV-1 transmission to T cells of LAD-1 patients is impaired due to the defect in LFA-1. Retrovirology 2006; 3:75. [PMID: 17078873 PMCID: PMC1635562 DOI: 10.1186/1742-4690-3-75] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/01/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dendritic cells (DC) have been proposed to mediate sexual HIV-1 transmission by capturing the virus in the mucosa and subsequently presenting it to CD4+ T cells. We have demonstrated before that DC subsets expressing higher levels of intercellular adhesion molecule-1 (ICAM-1) are better HIV-1 transmitters. ICAM-1 binds leukocyte function-associated molecule-1 (LFA-1) on T cells, an integrin responsible for adhesion and signaling at the immunological synapse. To corroborate the importance of the ICAM-1- LFA-1 interaction, we performed transmission experiments to LFA-1 negative leukocytes from Leukocyte Adhesion Deficiency type 1 (LAD-1) patients. RESULTS We clearly show that DC-mediated HIV-1 transmission to LAD-1 T cells is impaired in comparison to healthy controls. Furthermore, HIV-1 transmission to T cells from a unique LAD-1 patient with a well characterized LFA-1 activation defect was impaired as well, demonstrating that activation of LFA-1 is crucial for efficient transmission. Decreased cell adhesion between DC and LAD-1 T cells could also be illustrated by significantly smaller DC-T cell clusters after HIV-1 transmission. CONCLUSION By making use of LFA-1 defect cells from unique patients, this study provides more insight into the mechanism of HIV-1 transmission by DC. This may offer new treatment options to reduce sexual transmission of HIV-1.
Collapse
Affiliation(s)
- Fedde Groot
- Department of Human Retrovirology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Cell Biology and Histology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Present address: The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Taco W Kuijpers
- Division of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Department of Human Retrovirology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther C de Jong
- Department of Cell Biology and Histology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
267
|
Smith DF, Deem TL, Bruce AC, Reutershan J, Wu D, Ley K. Leukocyte phosphoinositide-3 kinase {gamma} is required for chemokine-induced, sustained adhesion under flow in vivo. J Leukoc Biol 2006; 80:1491-9. [PMID: 16997858 DOI: 10.1189/jlb.0306227] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During inflammation, leukocytes roll along the wall of postcapillary venules scanning the surface for immobilized CXCL1, a chemokine that triggers firm adhesion by activating CXCR2 on the neutrophil. PI-3K are signaling molecules important in cellular processes, ranging from cellular differentiation to leukocyte migration. PI-3Kgamma can be activated directly by the betagamma dimer of heterotrimeric G proteins coupled to CXCR2. Here, we used in vivo and ex vivo intravital microscopy models to test the role of PI-3Kgamma in leukocyte arrest. PI-3Kgamma null mice showed an 80% decrease in CXCL1-induced leukocyte adhesion in venules of the exteriorized mouse cremaster muscle. In wild-type mice, rolling leukocytes showed rapid and sustained adhesion, but in PI-3Kgamma(-/-) mice, adhesion was not triggered at all or was transient, suggesting that absence of PI-3Kgamma interferes with integrin bond strengthening. Wild-type mice reconstituted with PI-3Kgamma null bone marrow showed a 50% decrease in CXCL1-induced leukocyte adhesion. In a blood-perfused micro-flow chamber, leukocytes from PI-3Kgamma(-/-) mice showed a defect in adhesion on a P-selectin/ICAM-1/CXCL1 substrate, indicating that leukocyte PI-3Kgamma was required for adhesion. The adhesion defect in PI-3Kgamma(-/-) mice was as severe as that in mice lacking LFA-1, the major integrin responsible for neutrophil adhesion. We conclude that the gamma isoform of PI-3K must be functional in leukocytes to allow efficient adhesion from rolling in response to chemokine stimulation.
Collapse
Affiliation(s)
- David F Smith
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
268
|
Friedman RS, Jacobelli J, Krummel MF. Surface-bound chemokines capture and prime T cells for synapse formation. Nat Immunol 2006; 7:1101-8. [PMID: 16964261 DOI: 10.1038/ni1384] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 07/28/2006] [Indexed: 01/20/2023]
Abstract
T cell activation in vivo occurs in a lymphoid milieu that presents chemotactic and T cell receptor signals concurrently. Here we demonstrate that T cell zone chemokines such as CCL21 are bound to the surface of lymph node dendritic cells. Contact with antigen-presenting cells bearing chemokines costimulated T cells by a previously unknown two-step contact mechanism. T cells initially formed an antigen-independent 'tethered' adhesion on chemokine-bearing antigen-presenting cells. The formation of those tethers superseded T cell receptor signaling and immunological synapse formation. However, chemokine-tethered T cells were hyper-responsive to subsequent contacts with antigen-presenting cells. Thus, T cells are costimulated 'in trans' and sequentially after initial engagement with their chemokine-rich environment.
Collapse
Affiliation(s)
- Rachel S Friedman
- The Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
269
|
Hyduk SJ, Chan JR, Duffy ST, Chen M, Peterson MD, Waddell TK, Digby GC, Szaszi K, Kapus A, Cybulsky MI. Phospholipase C, calcium, and calmodulin are critical for α4β1 integrin affinity up-regulation and monocyte arrest triggered by chemoattractants. Blood 2006; 109:176-84. [PMID: 16960156 DOI: 10.1182/blood-2006-01-029199] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractDuring inflammation, monocytes roll on activated endothelium and arrest after stimulation by proteoglycan-bound chemokines and other chemoattractants. We investigated signaling pathways downstream of G protein–coupled receptors (GPCRs) that are relevant to α4β1 integrin affinity up-regulation using formyl peptide receptor-transfected U937 cells stimulated with fMLP or stromal-derived factor-1α and human peripheral blood monocytes stimulated with multiple chemokines or chemoattractants. The up-regulation of soluble LDV peptide or vascular cell adhesion molecule-1 (VCAM-1) binding by these stimuli was critically dependent on activation of phospholipase C (PLC), inositol 1,4,5-triphosphate receptors, increased intracellular calcium, influx of extracellular calcium, and calmodulin, suggesting that this signaling pathway is required for α4 integrins to assume a high-affinity conformation. In fact, a rise in intracellular calcium following treatment with thapsigargin or ionomycin was sufficient to induce binding of ligand. Blockade of p44/42 and p38 mitogen-activated protein (MAP) kinases, phosphoinositide 3-kinase, or protein kinase C (PKC) signaling did not inhibit chemoattractant-induced LDV or VCAM-1 binding. However, activation of PKC by phorbol ester up-regulated α4β1 affinity with kinetics distinct from those of GPCR signaling. A critical role for PLC and calmodulin was also established for leukocyte arrest and adhesion strengthening.
Collapse
Affiliation(s)
- Sharon J Hyduk
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Abstract
The polysaccharide heparan sulphate is ubiquitously expressed as a proteoglycan in extracellular matrices and on cell surfaces. Heparan sulphate has marked sequence diversity that allows it to specifically interact with many proteins. This Review focuses on the multiple roles of heparan sulphate in inflammatory responses and, in particular, on its participation in almost every stage of leukocyte transmigration through the blood-vessel wall. Heparan sulphate is involved in the initial adhesion of leukocytes to the inflamed endothelium, the subsequent chemokine-mediated transmigration through the vessel wall and the establishment of both acute and chronic inflammatory reactions.
Collapse
Affiliation(s)
- Christopher R Parish
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
271
|
Cairo CW, Mirchev R, Golan DE. Cytoskeletal regulation couples LFA-1 conformational changes to receptor lateral mobility and clustering. Immunity 2006; 25:297-308. [PMID: 16901728 DOI: 10.1016/j.immuni.2006.06.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 05/19/2006] [Accepted: 06/06/2006] [Indexed: 11/21/2022]
Abstract
The alpha(L)beta(2) integrin (leukocyte function-associated antigen-1 [LFA-1]) is regulated to engage and maintain T cell adhesion. Conformational changes in the receptor are associated with changes in receptor-ligand affinity and are necessary for firm adhesion. Less well understood is the relationship between receptor conformation and the regulation of its lateral mobility. We have used fluorescence photobleaching recovery and single-particle tracking to measure the lateral mobility of specific conformations of LFA-1. These measurements show that different receptor conformations have distinct diffusion profiles and that these profiles vary according to the activation state of the cell. Notably, a high-affinity conformation of LFA-1 is mobile on resting cells but immobile on phorbol-12-myristate-13-acetate-activated cells. This activation-induced immobilization is prevented by a calpain inhibitor and by an allosteric LFA-1 inhibitor. Our results suggest that current models of LFA-1 regulation are incomplete and that LFA-1 confinement by cytoskeletal attachment regulates cell adhesion both negatively and positively.
Collapse
Affiliation(s)
- Christopher W Cairo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
272
|
Molteni R, Fabbri M, Bender JR, Pardi R. Pathophysiology of leukocyte-tissue interactions. Curr Opin Cell Biol 2006; 18:491-8. [PMID: 16904306 DOI: 10.1016/j.ceb.2006.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 08/01/2006] [Indexed: 10/25/2022]
Abstract
Unlike most somatic cells, leukocytes are constitutively non-adherent. However, adhesive interactions are not only a required step in essentially all effector functions performed by leukocytes, but they also relay increasingly well-defined intracellular signals that affect the leukocyte as well as the surrounding tissues. Dissecting such signals in leukocytes has provided a wealth of information that contributes to our understanding of how adhesion controls higher-order biological responses, ranging from cell migration to proliferation, differentiation and survival.
Collapse
Affiliation(s)
- Raffaella Molteni
- Unit of Leukocyte Biology, Vita-Salute San Raffaele University School of Medicine, DIBIT-Scientific Institute San Raffaele, Milano, Italy
| | | | | | | |
Collapse
|
273
|
Giagulli C, Ottoboni L, Caveggion E, Rossi B, Lowell C, Constantin G, Laudanna C, Berton G. The Src family kinases Hck and Fgr are dispensable for inside-out, chemoattractant-induced signaling regulating beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involved in sustained adhesion. THE JOURNAL OF IMMUNOLOGY 2006; 177:604-11. [PMID: 16785558 DOI: 10.4049/jimmunol.177.1.604] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophil beta(2) integrins are activated by inside-out signaling regulating integrin affinity and valency; following ligand binding, beta(2) integrins trigger outside-in signals regulating cell functions. Addressing inside-out and outside-in signaling in hck(-/-)fgr(-/-) neutrophils, we found that Hck and Fgr do not regulate chemoattractant-induced activation of beta(2) integrin affinity. In fact, beta(2) integrin-mediated rapid adhesion, in static condition assays, and neutrophil adhesion to glass capillary tubes cocoated with ICAM-1, P-selectin, and a chemoattractant, under flow, were unaffected in hck(-/-)fgr(-/-) neutrophils. Additionally, examination of integrin affinity by soluble ICAM-1 binding assays and of beta(2) integrin clustering on the cell surface, showed that integrin activation did not require Hck and Fgr expression. However, after binding, hck(-/-)fgr(-/-) neutrophil spreading over beta(2) integrin ligands was reduced and they rapidly detached from the adhesive surface. Whether alterations in outside-in signaling affect sustained adhesion to the vascular endothelium in vivo was addressed by examining neutrophil adhesiveness to inflamed muscle venules. Intravital microscopy analysis allowed us to conclude that Hck and Fgr regulate neither the number of rolling cells nor rolling velocity in neutrophils. However, arrest of hck(-/-)fgr(-/-) neutrophils to >60 microm in diameter venules was reduced. Thus, Hck and Fgr play no role in chemoattractant-induced inside-out beta(2) integrin activation but regulate outside-in signaling-dependent sustained adhesion.
Collapse
Affiliation(s)
- Cinzia Giagulli
- Department of Pathology, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
274
|
Viola A, Contento RL, Molon B. T cells and their partners: The chemokine dating agency. Trends Immunol 2006; 27:421-7. [PMID: 16860609 DOI: 10.1016/j.it.2006.07.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/20/2006] [Accepted: 07/11/2006] [Indexed: 11/23/2022]
Abstract
Chemokines and their receptors have long been recognized as key molecules directing leukocyte migration between blood, lymph and tissues. Evidence accumulated in recent years indicates that, in addition to their chemotactic functions, chemokine receptors are highly versatile players fine-tuning immune responses. Chemokine receptors and ligands have been implicated in dendritic-cell maturation, signal transmission at the immunological synapse between T lymphocytes and their cellular partners, and in the polarization of immune responses. These findings identify new roles for chemokines in T-cell triggering and activation of effector functions, and suggest that these small cytokines represent key conductors of adaptive immunity.
Collapse
Affiliation(s)
- Antonella Viola
- Department of Biomedical Science, University of Padua and Venetian Institute of Molecular Medicine, 35129 Padua, Italy.
| | | | | |
Collapse
|
275
|
Fagerholm SC, Varis M, Stefanidakis M, Hilden TJ, Gahmberg CG. alpha-Chain phosphorylation of the human leukocyte CD11b/CD18 (Mac-1) integrin is pivotal for integrin activation to bind ICAMs and leukocyte extravasation. Blood 2006; 108:3379-86. [PMID: 16857989 DOI: 10.1182/blood-2006-03-013557] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The promiscuous CD11b/CD18 (Mac-1) integrin has important roles in regulating many immunologic functions such as leukocyte adhesion and emigration from the bloodstream via interactions with the endothelial ligands ICAM-1 and ICAM-2, iC3b-mediated phagocytosis, and apoptosis. However, the mechanisms for Mac-1 inside-out activation have remained poorly understood. Phosphorylation of integrin cytoplasmic domains is emerging as an important mechanism of regulating integrin functions. Here, we have studied phosphorylation of human CD11b, which takes place on the cytoplasmic Ser1126 in neutrophils. We show that mutation of the serine phosphorylation site leads to inability of Mac-1 to become activated to bind the cellular ligands ICAM-1 and ICAM-2. However, CD11b-mutant cells are fully capable of binding other studied CD11b ligands (ie, iC3b and denatured BSA). Activation epitopes expressed in the extracellular domain of the integrin and affinity for soluble ICAM ligands were decreased for the mutated integrin. Additionally, the mutation resulted in inhibition of chemokine-induced migration in a transendothelial assay in vitro and significantly reduced the accumulation of intravenously administered cells in the spleen and lungs of Balb/c mice. These results characterize a novel selective mechanism of Mac-1-integrin activation, which mediates leukocyte emigration from the bloodstream to the tissues.
Collapse
Affiliation(s)
- Susanna C Fagerholm
- Division of Biochemistry, Faculty of Biosciences, PB56 (Viikinkaari 5), 00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
276
|
Cambi A, Joosten B, Koopman M, de Lange F, Beeren I, Torensma R, Fransen JA, Garcia-Parajó M, van Leeuwen FN, Figdor CG. Organization of the integrin LFA-1 in nanoclusters regulates its activity. Mol Biol Cell 2006; 17:4270-81. [PMID: 16855029 PMCID: PMC1635357 DOI: 10.1091/mbc.e05-12-1098] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The beta2-integrin LFA-1 facilitates extravasation of monocytes (MOs) into the underlying tissues, where MOs can differentiate into dendritic cells (DCs). Although DCs express LFA-1, unlike MOs, they cannot bind to ICAM-1. We hypothesized that an altered integrin organization on the DC plasma membrane might cause this effect and investigated the relationship between membrane organization and function of LFA-1 on MOs and DCs. High-resolution mapping of LFA-1 surface distribution revealed that on MOs LFA-1 function is associated with a distribution in well-defined nanoclusters (100-150-nm diameter). Interestingly, a fraction of these nanoclusters contains primed LFA-1 molecules expressing the specific activation-dependent L16-epitope. Live imaging of MO-T-cell conjugates showed that only these primed nanoclusters are dynamically recruited to the cellular interface forming micrometer-sized assemblies engaged in ligand binding and linked to talin. We conclude that besides affinity regulation, LFA-1 function is controlled by at least three different avidity patterns: random distributed inactive molecules, well-defined ligand-independent proactive nanoclusters, and ligand-triggered micrometer-sized macroclusters.
Collapse
Affiliation(s)
| | | | - Marjolein Koopman
- Applied Optics Group and Department of Applied Physics and MESA+ Research Institute, University of Twente, 7522 NM Enschede, The Netherlands
| | - Frank de Lange
- *Department of Tumor Immunology and
- Department of Cell Biology and Microscopic Imaging Centre, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands; and
| | | | | | - Jack A. Fransen
- Department of Cell Biology and Microscopic Imaging Centre, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands; and
| | - Maria Garcia-Parajó
- Applied Optics Group and Department of Applied Physics and MESA+ Research Institute, University of Twente, 7522 NM Enschede, The Netherlands
| | | | | |
Collapse
|
277
|
Chesnutt BC, Smith DF, Raffler NA, Smith ML, White EJ, Ley K. Induction of LFA-1-dependent neutrophil rolling on ICAM-1 by engagement of E-selectin. Microcirculation 2006; 13:99-109. [PMID: 16459323 DOI: 10.1080/10739680500466376] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To study rolling of mouse neutrophils on E-selectin and ICAM-1 in an ex vivo flow chamber system. METHODS The authors developed a small autoperfused flow chamber (20 x 200-microm cross section) that allows direct visualization of cells with and without fluorescent labeling and does not require recirculation of blood. RESULTS Neutrophils rolled on E-selectin alone, but were unable to interact with immobilized ICAM-1. When ICAM-1 was co-immobilized with E-selectin, the number of cells that rolled was doubled, but no significant firm adhesion was observed. This phenomenon was specific for E-selectin, and no enhancement of rolling was observed when P-selectin was immobilized with ICAM-1. The increased neutrophil rolling seen on E-selectin and ICAM-1 substrates required beta2 integrins. Treating mice with antibodies to the beta2 integrins LFA-1 and Mac-1 showed that LFA-1 was primarily responsible for mediating rolling on ICAM-1 in this model. Increased rolling on E-selectin and ICAM-1 was significantly reduced following administration of a specific p38 mitogen-activated protein kinase (MAPK) inhibitor. CONCLUSION The data show that neutrophil rolling on E-selectin leads to partial activation of LFA-1, enabling LFA-1-dependent rolling on ICAM-1. This mechanism is likely to amplify and accelerate neutrophil recruitment in inflammation.
Collapse
Affiliation(s)
- Betsy C Chesnutt
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | |
Collapse
|
278
|
Totani L, Piccoli A, Manarini S, Federico L, Pecce R, Martelli N, Cerletti C, Piccardoni P, Lowell CA, Smyth SS, Berton G, Evangelista V. Src-family kinases mediate an outside-in signal necessary for beta2 integrins to achieve full activation and sustain firm adhesion of polymorphonuclear leucocytes tethered on E-selectin. Biochem J 2006; 396:89-98. [PMID: 16433632 PMCID: PMC1449987 DOI: 10.1042/bj20051924] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In cell suspensions subjected to high-shear rotatory motion, human PMN (polymorphonuclear cells) adhered to E-selectin-expressing CHO (Chinese-hamster ovary) cells (CHO-E), and formed homotypic aggregates when challenged by E-selectin-IgG fusion protein, by a mechanism that involved beta2 integrins. Both heterotypic and homotypic PMN adhesion was accompanied by tyrosine phosphorylation of a 110 kDa protein (P110). This event was prevented by blocking anti-(beta2 integrin) antibodies and by inhibitors of Src-family kinases, suggesting that it was part of an 'outside-in' signalling that was initiated by integrin engagement. Interestingly, Src-family kinase inhibitors prevented beta2-integrin-mediated (i) homotypic PMN adhesion triggered by E-selectin-IgG, (ii) heterotypic CHO-E/PMN adhesion in mixed-cell suspensions, and (iii) firm adhesion of PMN to CHO-E monolayers under physiological flow. Similarly to PMN treated with Src-family kinase inhibitors, PMN from hck-/-fgr-/- and hck-/-fgr-/-lyn-/- mice showed significant impairment of beta2-integrin-mediated adhesion to CHO-E. Moreover, the expression of beta2 integrin activation epitopes at the sites of cell-cell contact in CHO-E/PMN conjugates was abolished by Src-family kinase inhibitors. One component of P110 was identified as the FAK (focal adhesion kinase) Pyk2 (proline-rich tyrosine kinase 2), which was phosphorylated in a beta2 integrin- and Src-family-kinase-dependent manner. Thus, Src-family kinases, and perhaps Pyk2, mediate a signal necessary for beta2 integrin function in PMN tethered by E-selectin.
Collapse
Affiliation(s)
- Licia Totani
- Laboratory of Vascular Biology and Pharmacology, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Abstract
This review focuses on the major, 'successful' target families in inflammation and attempts to identify some of the key features of what makes a good anti-inflammatory target. The review is based on a systematic analysis of approved anti-inflammatory drugs grouped according to their drug-target family. The cytokine family is a drug-dense area. They have yielded and continue to yield a rich stream of drugs. As in other therapeutic areas, G-protein-coupled receptors (GPCRs), also known as seven-transmembrane pass receptors, have provided significant drug targets. In addition, the superfamilies of cell adhesion molecules and co-stimulatory molecules, which have special relevance to immune processes, have begun to provide the first approved drugs and might yield many more. The recent, rapid increase in the number of defined targets in the immune system -- leukocyte surface antigens, cytokines, GPCRs, adhesion molecules and co-stimulatory molecules -- will ensure a rich stream of future anti-inflammatory drug targets.
Collapse
Affiliation(s)
- David L Simmons
- Inflammation Discovery Research, Wyeth Research, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| |
Collapse
|
280
|
Abstract
Endothelial cells lining the blood vessels form a barrier between circulating immune cells and parenchymal tissue. While the molecular mechanisms involved in antigen-independent recruitment of leukocytes into infected tissue have been extensively studied, the mechanisms involving antigen-specific recruitment of T cells into tissue have remained largely elusive. Here I shall review the experimental evidence that endothelial cells function as antigen-presenting cells and in this function contribute first to regulation of immune responses and second, to antigen-specific recruitment of T cells.
Collapse
Affiliation(s)
- Percy A Knolle
- Institute for Molecular Medicine and Experimental Immunology, Friedrich-Wilhelms-Universität Bonn, Germany.
| |
Collapse
|
281
|
Alon R, Feigelson SW, Manevich E, Rose DM, Schmitz J, Overby DR, Winter E, Grabovsky V, Shinder V, Matthews BD, Sokolovsky-Eisenberg M, Ingber DE, Benoit M, Ginsberg MH. Alpha4beta1-dependent adhesion strengthening under mechanical strain is regulated by paxillin association with the alpha4-cytoplasmic domain. ACTA ACUST UNITED AC 2006; 171:1073-84. [PMID: 16365170 PMCID: PMC2171310 DOI: 10.1083/jcb.200503155] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The capacity of integrins to mediate adhesiveness is modulated by their cytoplasmic associations. In this study, we describe a novel mechanism by which α4-integrin adhesiveness is regulated by the cytoskeletal adaptor paxillin. A mutation of the α4 tail that disrupts paxillin binding, α4(Y991A), reduced talin association to the α4β1 heterodimer, impaired integrin anchorage to the cytoskeleton, and suppressed α4β1-dependent capture and adhesion strengthening of Jurkat T cells to VCAM-1 under shear stress. The mutant retained intrinsic avidity to soluble or bead-immobilized VCAM-1, supported normal cell spreading at short-lived contacts, had normal α4-microvillar distribution, and responded to inside-out signals. This is the first demonstration that cytoskeletal anchorage of an integrin enhances the mechanical stability of its adhesive bonds under strain and, thereby, promotes its ability to mediate leukocyte adhesion under physiological shear stress conditions.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Santiago B, Baleux F, Palao G, Gutiérrez-Cañas I, Ramírez JC, Arenzana-Seisdedos F, Pablos JL. CXCL12 is displayed by rheumatoid endothelial cells through its basic amino-terminal motif on heparan sulfate proteoglycans. Arthritis Res Ther 2006; 8:R43. [PMID: 16507142 PMCID: PMC1526602 DOI: 10.1186/ar1900] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 01/09/2006] [Accepted: 01/17/2006] [Indexed: 11/16/2022] Open
Abstract
The chemokine CXCL12 (also known as stromal cell-derived factor, SDF-1) is constitutively expressed by stromal resident cells and is involved in the homeostatic and inflammatory traffic of leukocytes. Binding of CXCL12 to glycosaminoglycans on endothelial cells (ECs) is supposed to be relevant to the regulation of leukocyte diapedesis and neoangiogenesis during inflammatory responses. To improve our understanding of the relevance of this process to rheumatoid arthritis (RA), we have studied the mechanisms of presentation of exogenous CXCL12 by cultured RA ECs. RA synovial tissues had higher levels of CXCL12 on the endothelium than osteoarthritis (OA) tissues; in both, CXCL12 colocalized to heparan sulfate proteoglycans (HSPGs) and high endothelial venules. In cultured RA ECs, exogenous CXCL12α was able to bind in a CXCR4-independent manner to surface HSPGs. Desulfation of RA EC HSPGs by pretreatment with sodium chlorate, or by replacing in a synthetic CXCL12α the residues Lys24 and Lys27 by Ser (CXCL12α-K2427S), decreased or abrogated the ability of the chemokine to bind to RA ECs. Ex vivo, synovial ECs from patients with either OA or RA displayed a higher CXCL12-binding capacity than human umbilical vein ECs (HUVECs), and in HUVECs the binding of CXCL12 was increased on exposure to tumor necrosis factor-α or lymphotoxin-α1β2. Our findings indicate that CXCL12 binds to HSPGs on ECs of RA synovium. The phenomenon relates to the interaction of HSPGs with a CXCL12 domain with net positive surface charge located in the first β strand, which encompasses a canonical BXBB HSPG-binding motif. Furthermore, we show that the attachment of CXCL12 to HSPGs is upregulated by inflammatory cytokines. Both the upregulation of a constitutive chemokine during chronic inflammation and the HSPG-dependent immobilization of CXCL12 in EC surfaces are potential sites for therapeutic intervention.
Collapse
Affiliation(s)
- Begoña Santiago
- Servicio de Reumatología y Unidad de Investigación, Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - Françoise Baleux
- Organic Chemistry Unit, Pasteur Institute, 28 Rue Dr. Roux, 75724 Paris CEDEX, France
| | - Guillermo Palao
- Servicio de Reumatología y Unidad de Investigación, Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - Irene Gutiérrez-Cañas
- Servicio de Reumatología y Unidad de Investigación, Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - Juan C Ramírez
- Servicio de Reumatología y Unidad de Investigación, Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | | | - José L Pablos
- Servicio de Reumatología y Unidad de Investigación, Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| |
Collapse
|
283
|
Barreiro O, de la Fuente H, Mittelbrunn M, Sánchez-Madrid F. Posterolateral approach for open reduction and internal fixation of trimalleolar ankle fractures. Immunol Rev 2006; 218:147-64. [PMID: 17624951 DOI: 10.1111/j.1600-065x.2007.00529.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell-cell and cell-matrix interactions are of critical importance in immunobiology. Leukocytes make extensive use of a specialized repertoire of receptors to mediate such processes. Among these receptors, integrins are known to be of crucial importance. This review deals with the central role of integrins and their counterreceptors during the establishment of leukocyte-endothelium contacts, interstitial migration, and final encounter with antigen-presenting cells to develop an appropriate immune response. Particularly, we have addressed the molecular events occurring during these sequential processes, leading to the dynamic subcellular redistribution of adhesion receptors and the reorganization of the actin cytoskeleton, which is reflected in changes in cytoarchitecture, including leukocyte polarization, endothelial docking structure formation, or immune synapse organization. The roles of signaling and structural actin cytoskeleton-associated proteins and organized membrane microdomains in the regulation of receptor adhesiveness are also discussed.
Collapse
Affiliation(s)
- Olga Barreiro
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
284
|
Evans BJ, McDowall A, Taylor PC, Hogg N, Haskard DO, Landis RC. Shedding of lymphocyte function-associated antigen-1 (LFA-1) in a human inflammatory response. Blood 2006; 107:3593-9. [PMID: 16418329 DOI: 10.1182/blood-2005-09-3695] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shedding of adhesion molecules has been described for members of the selectin and immunoglobulin superfamilies, but integrins are not known to be shed. Here, we describe shedding of the integrin lymphocyte function-associated antigen-1 (LFA-1; CD11a/CD18) from human leukocytes during the cutaneous inflammatory response to the blistering agent cantharidin. Expression of LFA-1 was significantly diminished on blister-infiltrated neutrophils (P < .001) and monocytes (P = .02) compared with cells in peripheral blood, but expression on lymphocytes remained unchanged. A capture enzyme-linked immunosorbent assay (ELISA) indicated that LFA-1 was shed into blister fluid as a heterodimer expressing an intact headpiece with I and I-like epitopes. However, a CD11a central region epitope, G25.2, was absent and this remained expressed as a "stub" on the cell surface of blister neutrophils. Western analysis of soluble LFA-1 revealed a truncated 110-kDa CD11a chain and a minimally truncated 86-kDa CD18 chain. However, LFA-1 was shed in a ligand-binding conformation, since it expressed KIM-127 and 24 activation epitopes and bound to solid-phase ICAM-1. Shed LFA-1 was also detected in a synovial effusion by ELISA and Western analysis. We hypothesize that LFA-1 shedding may play a role in leukocyte detachment after transendothelial migration and in regulating integrin-dependent outside-in signaling.
Collapse
Affiliation(s)
- Betsy J Evans
- BHF Cardiovascular Medicine Unit, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
285
|
Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2006; 6:1182-90. [PMID: 16369557 DOI: 10.1038/ni1275] [Citation(s) in RCA: 903] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The burgeoning field of leukocyte trafficking has created new and exciting opportunities in the clinic. Trafficking signals are being defined that finely control the movement of distinct subsets of immune cells into and out of specific tissues. Because the accumulation of leukocytes in tissues contributes to a wide variety of diseases, these 'molecular codes' have provided new targets for inhibiting tissue-specific inflammation, which have been confirmed in the clinic. However, immune cell migration is also critically important for the delivery of protective immune responses to tissues. Thus, the challenge for the future will be to identify the trafficking molecules that will most specifically inhibit the key subsets of cells that drive disease processes without affecting the migration and function of leukocytes required for protective immunity.
Collapse
Affiliation(s)
- Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
286
|
Galkina E, Ley K. Leukocyte recruitment and vascular injury in diabetic nephropathy. J Am Soc Nephrol 2006; 17:368-77. [PMID: 16394109 DOI: 10.1681/asn.2005080859] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Different types of activated leukocytes play a crucial role in the pathogenesis of most kidney diseases from acute to chronic stages; however, diabetic nephropathy was not considered an inflammatory disease in the past. This view is changing now because there is a growing body of evidence implicating inflammatory cells at every stage of diabetic nephropathy. Renal tissue macrophages, T cells, and neutrophils produce various reactive oxygen species, proinflammatory cytokines, metalloproteinases, and growth factors, which modulate the local response and increase inflammation within the diabetic kidney. Although the precise mechanisms that direct leukocyte homing into renal tissues are not fully identified, it has been reported that intercellular adhesion molecule-1 and the chemokines CCL2 and CX3CL1 probably are involved in leukocyte migration in diabetic nephropathy. This review focuses on the molecular mechanisms of leukocyte recruitment into the diabetic kidney and the involvement of immigrated immune cells in the damage to renal tissues.
Collapse
Affiliation(s)
- Elena Galkina
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, PO Box 801394, Charlottesville, VA 22908, USA
| | | |
Collapse
|
287
|
Kellersch B, Kolanus W. Membrane-proximal signaling events in beta-2 integrin activation. Results Probl Cell Differ 2006; 43:245-57. [PMID: 17068975 DOI: 10.1007/400_024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the immune system, integrins have essential roles in leukocyte trafficking and function. These include immune cell attachment to endothelial and antigen-presenting cells, cytotoxicity, and extravasation into tissues. The integrin leukocyte function-associated antigen-1 (LFA-1), which is exclusively expressed on hematopoietic cells, has been intensely studied since this receptor is important for many functions of the immune system. LFA-1 is involved in a) the interaction between T-cells and antigen presenting cells, b) the adhesion of cells to post-capillary high endothelial venules or to activated endothelium at sites of inflammation (extravasation), c) the control of cell differentiation and proliferation, and d) the regulation of T-cell effector functions. Therefore, a precise understanding of the spatial and temporal control of LFA-1 interaction with its cellular counter-receptors, the intercellular adhesion molecules (ICAM) -1, -2 and -3, in the various contexts, is of high interest. LFA-1 mediated adhesion is induced by several extracellular stimuli in different cell types. In T-cells, LFA-1 becomes activated upon signaling from the T-cell receptor (TCR), and upon cytokine and chemokine sensing. Adhesion of monocytes to ICAM-1 is induced by lipopolysaccharide (LPS), a component of the bacterial cell wall. To investigate the regulation of LFA-1 adhesiveness, research has focused on the identification of interaction partners of the intracellular portions of the integrin alpha and beta subunits. This review will highlight recent developments on transmembrane and intracellular signaling proteins, which have been implicated in beta-2 integrin activation.
Collapse
Affiliation(s)
- Bettina Kellersch
- Life and Medical Sciences Institute (LIMES), Molecular Immune and Cell Biology Program Unit, Laboratory of Molecular Immunology, University of Bonn, Germany
| | | |
Collapse
|
288
|
Sperandio M, Pickard J, Unnikrishnan S, Acton ST, Ley K. Analysis of leukocyte rolling in vivo and in vitro. Methods Enzymol 2006; 416:346-71. [PMID: 17113878 DOI: 10.1016/s0076-6879(06)16023-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leukocyte rolling is an important step for the successful recruitment of leukocytes from blood to tissues mediated by a specialized group of glycoproteins termed selectins. Because of the dynamic process of leukocyte rolling, binding of selectins to their respective counter-receptors (selectin ligands) needs to fulfill three major requirements: (1) rapid bond formation, (2) high tensile strength, and (3) fast dissociation rates. These criteria are perfectly met by selectins, which interact with specific carbohydrate determinants on selectin ligands. This chapter describes the theoretical background, technical requirements, and analytical tools needed to quantitatively assess leukocyte rolling in vivo and in vitro. For the in vivo setting, intravital microscopy allows the observation and recording of leukocyte rolling under different physiological and pathological conditions in almost every organ. Real-time and off-line analysis tools help to assess geometric, hemodynamic, and rolling parameters. Under in vitro conditions, flow chamber assays such as parallel plate flow chamber systems have been the mainstay to study interactions between leukocytes and adhesion molecules under flow. In this setting, adhesion molecules are immobilized on plastic, in a lipid monolayer, or presented on cultured endothelial cells on the chamber surface. Microflow chambers are available for studying leukocyte adhesion in the context of whole blood and without blood cell isolation. The microscopic observation of leukocyte rolling in different in vivo and in vitro settings has significantly contributed to our understanding of the molecular mechanisms responsible for the stepwise extravasation of leukocytes into inflamed tissues.
Collapse
Affiliation(s)
- Markus Sperandio
- Children's Hospital, Division of Neonatology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
289
|
Staunton DE, Lupher ML, Liddington R, Gallatin WM. Targeting integrin structure and function in disease. Adv Immunol 2006; 91:111-57. [PMID: 16938539 DOI: 10.1016/s0065-2776(06)91003-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Initially linked to the pathogenesis of inflammatory and hematologic diseases, integrins have become validated drug targets with the approval of five drugs. Moreover, there are several promising drug candidates in preclinical and clinical stages of development for multiple clinical indications. Integrins are attractive drug targets as their antagonism can block several steps in disease progression or maintenance. Integrin inhibitors can block the proliferation, migration, or tissue localization of inflammatory, angiogenic, and tumor cells, as well as signaling and gene expression contributing to disease. There has been a rapid increase in the elucidation of integrin structure, their allosteric mechanisms of bidirectional signaling, and the structure of complexes with drugs. This information brings greater focus to how integrins support various cellular functions and how they have been and may be targeted to develop novel drugs. Here we review conformational switches, including an internal ligand, which allosterically regulate the transition from low- to high-affinity ligand binding. We address some of the successes, disappointments, and challenges in targeting competitive or allosteric sites to develop therapeutics. We also discuss new opportunities, including a structure-based approach to discover novel drugs to treat inflammatory and other diseases. This approach targets structural relatives of the von Willebrand factor A-domain present in integrins and many functionally diverse proteins.
Collapse
|
290
|
Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005. [DOI: 10.1038/ni1275 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
291
|
Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005. [DOI: 10.1038/ni1275 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
292
|
Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005. [DOI: 10.1038/ni1275 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
293
|
Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005. [DOI: 10.1038/ni1275 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
294
|
Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005. [DOI: 10.1038/ni1275 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
295
|
Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005. [DOI: 10.1038/ni1275 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
296
|
Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005. [DOI: 10.1038/ni1275 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
297
|
Garrood T, Lee L, Pitzalis C. Molecular mechanisms of cell recruitment to inflammatory sites: general and tissue-specific pathways. Rheumatology (Oxford) 2005; 45:250-60. [PMID: 16319101 DOI: 10.1093/rheumatology/kei207] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T Garrood
- Rheumatology Unit, 5th Floor, Thomas Guy House, Guy's Hospital , London SE1 9RT, UK
| | | | | |
Collapse
|
298
|
Green CE, Schaff UY, Sarantos MR, Lum AFH, Staunton DE, Simon SI. Dynamic shifts in LFA-1 affinity regulate neutrophil rolling, arrest, and transmigration on inflamed endothelium. Blood 2005; 107:2101-11. [PMID: 16269618 PMCID: PMC1895714 DOI: 10.1182/blood-2005-06-2303] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polymorphonuclear leukocyte (PMN) recruitment to vascular endothelium during acute inflammation involves cooperation between selectins, G-proteins, and beta2-integrins. LFA-1 (CD11a/CD18) affinity correlates with specific adhesion functions because a shift from low to intermediate affinity supports rolling on ICAM-1, whereas high affinity is associated with shear-resistant leukocyte arrest. We imaged PMN adhesion on cytokine-inflamed endothelium in a parallel-plate flow chamber to define the dynamics of beta2-integrin function during recruitment and transmigration. After arrest on inflamed endothelium, high-affinity LFA-1 aligned along the uropod-pseudopod major axis, which was essential for efficient neutrophil polarization and subsequent transmigration. An allosteric small molecule inhibitor targeted to the I-domain stabilized LFA-1 in an intermediate-affinity conformation, which supported neutrophil rolling but inhibited cell polarization and abrogated transmigration. We conclude that a shift in LFA-1 from intermediate to high affinity during the transition from rolling to arrest provides the contact-mediated signaling and guidance necessary for PMN transmigration on inflamed endothelium.
Collapse
Affiliation(s)
- Chad E Green
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facility, University of California at Davis, 451 E Health Sciences Dr, Davis, CA 95616-5294, USA
| | | | | | | | | | | |
Collapse
|
299
|
Friedman RS, Jacobelli J, Krummel MF. Mechanisms of T cell motility and arrest: deciphering the relationship between intra- and extracellular determinants. Semin Immunol 2005; 17:387-99. [PMID: 16219473 DOI: 10.1016/j.smim.2005.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T lymphocytes are capable of rapid motility in vitro and in vivo. Upon antigen recognition, they may stop crawling and form a stable cell-cell contact called the 'immunological synapse' (IS). However, it is becoming clear that this outcome may not occur with the reliability that was once presumed. T cells, particularly naïve cells, are apparently triggered partly 'on the fly' during short contacts with peptide-MHC (pMHC) bearing antigen-presenting cells (APCs) and are also influenced in both activity and synapse duration by a multitude of external cues. Underlying the emerging issues is a paucity of data concerning the cell biology of T lymphocytes. Here, we review the molecular mechanisms of crawling and adhesion versus the various potential modes of 'stopping' in T lymphocytes. Both motility and arrest involve similar processes: adhesion, actin elongation and internal tension control, but with different coordination. We will attempt to integrate this with the known and potential external cues that signal for T cell motility versus stopping to form a synapse in vivo. Finally, we discuss how this interplay may give rise to unexpectedly complex motile and morphological behavior.
Collapse
Affiliation(s)
- Rachel S Friedman
- Department of Pathology, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0511, USA
| | | | | |
Collapse
|
300
|
Rot A. Contribution of Duffy antigen to chemokine function. Cytokine Growth Factor Rev 2005; 16:687-94. [PMID: 16054417 DOI: 10.1016/j.cytogfr.2005.05.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 11/28/2022]
Abstract
In addition to classical G protein-coupled receptors (GPCRs), a group of alternative, "silent" chemokine receptors has recently been identified. These serpentine molecules are not coupled to G proteins and subsequent signaling cascades, but can efficiently internalize their cognate chemokine ligands, thus act as "interceptors" (internalizing receptors). Here we discuss a mechanism by which a member of this family, Duffy antigen (DARC), contributes to chemokine-induced leukocyte emigration. Cumulative experimental evidence suggests that DARC on venular endothelium mediates chemokine internalization at the abluminal surface followed by transcytosis and transfer of the chemokine cargo onto the luminal surface. DARC is also expressed on the erythrocyte surface of DARC positive individuals. Erythrocyte DARC binds plasma chemokines which results, on one hand, in impediment of the chemokines loss from the circulation and, on the other hand, in neutralization of chemokines in the blood. This leads to leukocyte protection from inadvertent "desensitization" and enhancement of leukocyte recruitment.
Collapse
Affiliation(s)
- Antal Rot
- Novartis Institutes for BioMedical Research, Brunnerstrasse 59, A-1230 Vienna, Austria.
| |
Collapse
|