251
|
Visan I, Yuan JS, Tan JB, Cretegny K, Guidos CJ. Regulation of intrathymic T-cell development by Lunatic Fringe- Notch1 interactions. Immunol Rev 2006; 209:76-94. [PMID: 16448535 DOI: 10.1111/j.0105-2896.2006.00360.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrathymic Notch1 signaling critically regulates T-lineage specification and commitment as well as T-cell progenitor survival and differentiation. Notch1 activation is continuously required during progression of early CD4/CD8-double-negative thymocytes to the CD4/CD8-double-positive stage. This developmental transition occurs as thymocytes migrate from the corticomedullary junction (CMJ) to the outer subcapsular zone (SCZ) of the thymus. Members of two families of structurally distinct Notch ligands, Delta-like 1 and Jagged-1, are expressed by cortical thymic epithelial cells, but it is not known which ligands are functionally required within the CMJ and SCZ microenvironmental niches. Our laboratory has investigated this question by genetically manipulating thymocyte expression of Lunatic Fringe (L-Fng), a glycosyltransferase that enhances sensitivity of Notch receptors to Delta-like ligands. This approach has revealed that low-threshold intrathymic Notch1 signals instruct multipotent thymus-seeding progenitors to suppress their B-cell potential and choose the T-cell fate. This strategy has also revealed that Delta-like Notch ligands are functionally limiting in both the CMJ and SCZ microenvironmental niches. Finally, we discuss our recent demonstration that L-Fng-mediated competition for Delta-like ligands is an important mechanism for regulating thymus size.
Collapse
Affiliation(s)
- Ioana Visan
- Program in Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
252
|
Maillard I, Tu L, Sambandam A, Yashiro-Ohtani Y, Millholland J, Keeshan K, Shestova O, Xu L, Bhandoola A, Pear WS. The requirement for Notch signaling at the beta-selection checkpoint in vivo is absolute and independent of the pre-T cell receptor. ACTA ACUST UNITED AC 2006; 203:2239-45. [PMID: 16966428 PMCID: PMC2118105 DOI: 10.1084/jem.20061020] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Genetic inactivation of Notch signaling in CD4(-)CD8(-) double-negative (DN) thymocytes was previously shown to impair T cell receptor (TCR) gene rearrangement and to cause a partial block in CD4(+)CD8(+) double-positive (DP) thymocyte development in mice. In contrast, in vitro cultures suggested that Notch was absolutely required for the generation of DP thymocytes independent of pre-TCR expression and activity. To resolve the respective role of Notch and the pre-TCR, we inhibited Notch-mediated transcriptional activation in vivo with a green fluorescent protein-tagged dominant-negative Mastermind-like 1 (DNMAML) that allowed us to track single cells incapable of Notch signaling. DNMAML expression in DN cells led to decreased production of DP thymocytes but only to a modest decrease in intracellular TCRbeta expression. DNMAML attenuated the pre-TCR-associated increase in cell size and CD27 expression. TCRbeta or TCRalphabeta transgenes failed to rescue DNMAML-related defects. Intrathymic injections of DNMAML(-) or DNMAML(+) DN thymocytes revealed a complete DN/DP transition block, with production of DNMAML(+) DP thymocytes only from cells undergoing late Notch inactivation. These findings indicate that the Notch requirement during the beta-selection checkpoint in vivo is absolute and independent of the pre-TCR, and it depends on transcriptional activation by Notch via the CSL/RBP-J-MAML complex.
Collapse
Affiliation(s)
- Ivan Maillard
- Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
García-Peydró M, de Yébenes VG, Toribio ML. Notch1 and IL-7 Receptor Interplay Maintains Proliferation of Human Thymic Progenitors while Suppressing Non-T Cell Fates. THE JOURNAL OF IMMUNOLOGY 2006; 177:3711-20. [PMID: 16951331 DOI: 10.4049/jimmunol.177.6.3711] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Notch signaling is critical for T cell development of multipotent hemopoietic progenitors. Yet, how Notch regulates T cell fate specification during early thymopoiesis remains unclear. In this study, we have identified an early subset of CD34high c-kit+ flt3+ IL-7Ralpha+ cells in the human postnatal thymus, which includes primitive progenitors with combined lymphomyeloid potential. To assess the impact of Notch signaling in early T cell development, we expressed constitutively active Notch1 in such thymic lymphomyeloid precursors (TLMPs), or triggered their endogenous Notch pathway in the OP9-Delta-like1 stroma coculture. Our results show that proliferation vs differentiation is a critical decision influenced by Notch at the TLMP stage. We found that Notch signaling plays a prominent role in inhibiting non-T cell differentiation (i.e., macrophages, dendritic cells, and NK cells) of TLMPs, while sustaining the proliferation of undifferentiated thymocytes with T cell potential in response to unique IL-7 signals. However, Notch activation is not sufficient for inducing T-lineage progression of proliferating progenitors. Rather, stroma-derived signals are concurrently required. Moreover, while ectopic IL-7R expression cannot replace Notch for the maintenance and expansion of undifferentiated thymocytes, Notch signals sustain IL-7R expression in proliferating thymocytes and induce IL-7R up-regulation in a T cell line. Thus, IL-7R and Notch pathways cooperate to synchronize cell proliferation and suppression of non-T lineage choices in primitive intrathymic progenitors, which will be allowed to progress along the T cell pathway only upon interaction with an inductive stromal microenvironment. These data provide insight into a mechanism of Notch-regulated amplification of the intrathymic pool of early human T cell progenitors.
Collapse
Affiliation(s)
- Marina García-Peydró
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | |
Collapse
|
254
|
Talebian L, Li Z, Guo Y, Gaudet J, Speck ME, Sugiyama D, Kaur P, Pear WS, Maillard I, Speck NA. T-lymphoid, megakaryocyte, and granulocyte development are sensitive to decreases in CBFbeta dosage. Blood 2006; 109:11-21. [PMID: 16940420 PMCID: PMC1785070 DOI: 10.1182/blood-2006-05-021188] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The family of core-binding factors includes the DNA-binding subunits Runx1-3 and their common non-DNA-binding partner CBFbeta. We examined the collective role of core-binding factors in hematopoiesis with a hypomorphic Cbfb allelic series. Reducing CBFbeta levels by 3- or 6-fold caused abnormalities in bone development, megakaryocytes, granulocytes, and T cells. T-cell development was very sensitive to an incremental reduction of CBFbeta levels: mature thymocytes were decreased in number upon a 3-fold reduction in CBFbeta levels, and were virtually absent when CBFbeta levels were 6-fold lower. Partially penetrant consecutive differentiation blocks were found among early T-lineage progenitors within the CD4- CD8- double-negative 1 and downstream double-negative 2 thymocyte subsets. Our data define a critical CBFbeta threshold for normal T-cell development, and situate an essential role for core-binding factors during the earliest stages of T-cell development.
Collapse
Affiliation(s)
- Laleh Talebian
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH
| | - Zhe Li
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH
| | - Yalin Guo
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH
| | - Justin Gaudet
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH
| | - Maren E. Speck
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH
| | - Daisuke Sugiyama
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH
| | - Prabhjot Kaur
- Department of Pathology, Dartmouth Medical School, Hanover, NH
| | - Warren S. Pear
- Department of Pathology & Laboratory Medicine, Abramson Family Cancer Research Institute, Institute for Medicine & Engineering, University of Pennsylvania, Philadelphia, PA; and
| | - Ivan Maillard
- Division of Hematology-Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA
- Correspondence: Ivan Maillard, Division of Hematology-Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160; e-mail:
; or
| | - Nancy A. Speck
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH
- Nancy A. Speck, Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755; e-mail:
| |
Collapse
|
255
|
Jenkinson EJ, Jenkinson WE, Rossi SW, Anderson G. The thymus and T-cell commitment: the right niche for Notch? Nat Rev Immunol 2006; 6:551-5. [PMID: 16799474 DOI: 10.1038/nri1883] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The current dogma is that the thymus is colonized by progenitors that retain the capacity to generate both T cells and B cells, and that intrathymic Notch signalling determines lineage choice so that T cells, rather than B cells, develop in the thymus. However, evidence is now accumulating to indicate that, at least during fetal life, this is not the case. Rather, it now seems that the fetal thymus is colonized by progenitors that have already made the T-cell versus B-cell lineage choice. We propose an alternative role for Notch signalling in the thymus, which is not to mediate this choice but instead to reveal it by supporting further T-cell differentiation in the thymic microenvironment.
Collapse
Affiliation(s)
- Eric J Jenkinson
- MRC Centre for Immune Regulation, Division of Immunity and Infection, Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
256
|
Abstract
The Notch signaling pathway is among the most commonly used communication channels in animal cells. Recent studies have demonstrated that this pathway is indispensable for cells in various stages of maturation, including terminal differentiation. One main focus in mammalian studies is the role of Notch in embryonic and postembryonic stem cell systems. In this review, the roles of Notch signaling in various mammalian stem and early progenitor cells are summarized.
Collapse
Affiliation(s)
- Shigeru Chiba
- Department of Cell Therapy and Transplantation Medicine, University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan.
| |
Collapse
|
257
|
Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, Li Y, Wolfe MS, Shachaf C, Felsher D, Blacklow SC, Pear WS, Aster JC. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20:2096-109. [PMID: 16847353 PMCID: PMC1536060 DOI: 10.1101/gad.1450406] [Citation(s) in RCA: 671] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 06/06/2006] [Indexed: 02/06/2023]
Abstract
Human acute T-cell lymphoblastic leukemias and lymphomas (T-ALL) are commonly associated with gain-of-function mutations in Notch1 that contribute to T-ALL induction and maintenance. Starting from an expression-profiling screen, we identified c-myc as a direct target of Notch1 in Notch-dependent T-ALL cell lines, in which Notch accounts for the majority of c-myc expression. In functional assays, inhibitors of c-myc interfere with the progrowth effects of activated Notch1, and enforced expression of c-myc rescues multiple Notch1-dependent T-ALL cell lines from Notch withdrawal. The existence of a Notch1-c-myc signaling axis was bolstered further by experiments using c-myc-dependent murine T-ALL cells, which are rescued from withdrawal of c-myc by retroviral transduction of activated Notch1. This Notch1-mediated rescue is associated with the up-regulation of endogenous murine c-myc and its downstream transcriptional targets, and the acquisition of sensitivity to Notch pathway inhibitors. Additionally, we show that primary murine thymocytes at the DN3 stage of development depend on ligand-induced Notch signaling to maintain c-myc expression. Together, these data implicate c-myc as a developmentally regulated direct downstream target of Notch1 that contributes to the growth of T-ALL cells.
Collapse
Affiliation(s)
- Andrew P Weng
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Prinz I, Sansoni A, Kissenpfennig A, Ardouin L, Malissen M, Malissen B. Visualization of the earliest steps of γδ T cell development in the adult thymus. Nat Immunol 2006; 7:995-1003. [PMID: 16878135 DOI: 10.1038/ni1371] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 07/06/2006] [Indexed: 01/15/2023]
Abstract
The checkpoint in gammadelta cell development that controls successful T cell receptor (TCR) gene rearrangements remains poorly characterized. Using mice expressing a reporter gene 'knocked into' the Tcrd constant region gene, we have characterized many of the events that mark the life of early gammadelta cells in the adult thymus. We identify the developmental stage during which the Tcrd locus 'opens' in early T cell progenitors and show that a single checkpoint controls gammadelta cell development during the penultimate CD4- CD8- stage. Passage through this checkpoint required the assembly of gammadelta TCR heterodimers on the cell surface and signaling via the Lat adaptor protein. In addition, we show that gammadelta selection triggered a phase of sustained proliferation similar to that induced by the pre-TCR.
Collapse
Affiliation(s)
- Immo Prinz
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Institut National de la Santé et de la Recherche Médicale, U631, Marseille, France
| | | | | | | | | | | |
Collapse
|
259
|
Zhu YM, Zhao WL, Fu JF, Shi JY, Pan Q, Hu J, Gao XD, Chen B, Li JM, Xiong SM, Gu LJ, Tang JY, Liang H, Jiang H, Xue YQ, Shen ZX, Chen Z, Chen SJ. NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res 2006; 12:3043-9. [PMID: 16707600 DOI: 10.1158/1078-0432.ccr-05-2832] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE NOTCH signaling pathway is essential in T-cell development and NOTCH1 mutations are frequently present in T-cell acute lymphoblastic leukemia (T-ALL). To gain insight into its clinical significance, NOTCH1 mutation was investigated in 77 patients with T-ALL. EXPERIMENTAL DESIGN Detection of NOTCH1 mutation was done using reverse transcription-PCR amplification and direct sequencing, and thereby compared according to the clinical/biological data of the patients. RESULTS Thirty-two mutations were identified in 29 patients (with dual mutations in 3 cases), involving not only the heterodimerization and proline/glutamic acid/serine/threonine domains as previously reported but also the transcription activation and ankyrin repeat domains revealed for the first time. These mutations were significantly associated with elevated WBC count at diagnosis and independently linked to short survival time. Interestingly, the statistically significant difference of survival according to NOTCH1 mutations was only observed in adult patients (>18 years) but not in pediatric patients (< or = 18 years), possibly due to the relatively good overall response of childhood T-ALL to the current chemotherapy. NOTCH1 mutations could coexist with HOX11, HOX11L2, or SIL-TAL1 expression. The negative effect of NOTCH1 mutation on prognosis was potentiated by HOX11L2 but was attenuated by HOX11. CONCLUSION NOTCH1 mutation is an important prognostic marker in T-ALL and its predictive value could be even further increased if coevaluated with other T-cell-related regulatory genes. NOTCH pathway thus acts combinatorially with oncogenic transcriptional factors on T-ALL pathogenesis.
Collapse
Affiliation(s)
- Yong-Mei Zhu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Krueger A, Garbe AI, von Boehmer H. Phenotypic plasticity of T cell progenitors upon exposure to Notch ligands. ACTA ACUST UNITED AC 2006; 203:1977-84. [PMID: 16847069 PMCID: PMC2118379 DOI: 10.1084/jem.20060731] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite many efforts, the nature of thymic immigrants that give rise to T cells has remained obscure, especially since it became known that extrathymic lineage-negative, Sca-1–positive, c-kit high progenitor cells differ from intrathymic early T cell progenitors (ETPs) by functional potential and dependence on Notch signaling. After our observation that intrathymic T cell precursors expressing a human CD25 reporter under control of pre-TCRα regulatory elements almost exclusively have the ETP phenotype, we have analyzed the phenotypic changes of reporter-expressing common lymphoid progenitor (CLP) cells in the bone marrow when cultured on Delta-like 1–expressing stromal cells. We note that these quickly adopt the phenotype of double negative (DN)2 thymocytes with little display of the ETP phenotype. Our data suggest that common lymphoid progenitor (CLP) cells could be responsible for the rapid reconstitution of thymus function after bone marrow transplantation since CLP cells in the blood have the capacity to rapidly enter the thymus and become DN2 thymocytes.
Collapse
Affiliation(s)
- Andreas Krueger
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | |
Collapse
|
261
|
Abstract
Transcription factors are critical for instructing the development of B lymphocytes from multipotential progenitor cells in the bone marrow (BM). Here, we show that the absence of STAT3 impaired B-cell development. Mice selectively lacking STAT3 in BM progenitor cells displayed reduced numbers of mature B cells, both in the BM and in the periphery. The reduction in the B-cell compartment included reduced percentages and numbers of pro-B, pre-B, and immature B cells in the absence of STAT3, whereas the number of pre-pro-B cells was increased. We found that pro-B and pre-B-cell populations lacking STAT3 were hyporesponsive to IL-7 because of a decreased number of IL-7-responsive cells rather than decreased expression or signaling of IL-7Ralpha. Moreover, STAT3-deficient mice displayed enhanced apoptosis in the pro-B population when deprived of survival factors, suggesting that at least 2 mechanisms (impaired differentiation and enhanced apoptosis) are involved in the mutant phenotype. Last, BM transplantation confirmed that impaired B lymphopoiesis in the absence of STAT3 was caused by a cell autonomous defect. In sum, these studies defined a specific role for STAT3 in early B-cell development, probably acting at the pre-pro-B transition by contributing to the survival of IL-7-responsive progenitors.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Rm 513, No. 1, Jen-Ai Road, Section 1, Taipei, 100 Taiwan
| | | | | |
Collapse
|
262
|
Dose M, Khan I, Guo Z, Kovalovsky D, Krueger A, von Boehmer H, Khazaie K, Gounari F. c-Myc mediates pre-TCR-induced proliferation but not developmental progression. Blood 2006; 108:2669-77. [PMID: 16788099 PMCID: PMC1895574 DOI: 10.1182/blood-2006-02-005900] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Constitutive and cell-autonomous signals emanating from the pre-T-cell receptor (pre-TCR) promote proliferation, survival and differentiation of immature thymocytes. We show here that induction of pre-TCR signaling resulted in rapid elevation of c-Myc protein levels. Cre-mediated thymocyte-specific ablation of c-Myc in CD25(+)CD44(-) thymocytes reduced proliferation and cell growth at the pre-TCR checkpoint, resulting in thymic hypocellularity and a severe reduction in CD4(+)CD8(+) thymocytes. In contrast, c-Myc deficiency did not inhibit pre-TCR-mediated differentiation or survival. Myc(-/-) double-negative (DN) 3 cells progressed to the double-positive (DP) stage and up-regulated TCRalphabeta surface expression in the absence of cell proliferation, in vivo as well as in vitro. These observations indicate that distinct signals downstream of the pre-TCR are responsible for proliferation versus differentiation, and demonstrate that c-Myc is only required for pre-TCR-induced proliferation but is dispensable for developmental progression from the DN to the DP stage.
Collapse
Affiliation(s)
- Marei Dose
- Tufts-New England Medical Center, 750 Washington St, Tufts-NEMC no. 5602, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Schnell FJ, Zoller AL, Patel SR, Williams IR, Kersh GJ. Early growth response gene 1 provides negative feedback to inhibit entry of progenitor cells into the thymus. THE JOURNAL OF IMMUNOLOGY 2006; 176:4740-7. [PMID: 16585567 DOI: 10.4049/jimmunol.176.8.4740] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The size of the thymus can be greatly influenced by changes in the small number of early progenitors in the thymus. However, it is not known whether thymic cellularity feeds back to regulate the recruitment, survival, and expansion of progenitors. The transcription factor early growth response gene 1 (Egr1) has been implicated in controlling proliferation and survival in many cell types. We have previously shown that mice deficient in Egr1 have increased thymic cellularity. We now show that Egr1 regulates a negative feedback signal that controls the entry of cells into the thymus. Egr1-deficient mice have higher percentages of early T lineage progenitors in the thymus, yet Egr1-deficient mice have normal numbers of myelolymphoid progenitors in the bone marrow, and Egr1-deficient thymocytes show normal rates of apoptosis and proliferation at all stages of development. Evidence from mixed bone marrow chimeras shows that the ability of Egr1 to control progenitor recruitment is mediated by bone marrow-derived cells, but is not cell autonomous. Furthermore, Egr1-deficient thymuses have increased P-selectin expression. The data suggest that Egr1 mediates a feedback mechanism whereby the number of resident double negative thymocytes controls the entry of new progenitors into the thymus by regulating P-selectin expression on thymic endothelial cells.
Collapse
Affiliation(s)
- Frederick J Schnell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
264
|
Visan I, Tan JB, Yuan JS, Harper JA, Koch U, Guidos CJ. Regulation of T lymphopoiesis by Notch1 and Lunatic fringe-mediated competition for intrathymic niches. Nat Immunol 2006; 7:634-43. [PMID: 16699526 DOI: 10.1038/ni1345] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 04/04/2006] [Indexed: 01/19/2023]
Abstract
Notch1 activation regulates T lineage commitment and early T cell development. Fringe glycosyltransferases alter the sensitivity of Notch receptors to Delta-like versus Jagged Notch ligands, but their functions in T lymphopoiesis have not been defined. Here we show that developmental stage-specific expression of the glycosyltransferase lunatic fringe (Lfng) is required for coordination of the access of T cell progenitors to intrathymic niches that support Notch1-dependent phases of T cell development. Lfng-null progenitors generated few thymocytes in competitive assays, whereas Lfng overexpression converted thymocytes into 'supercompetitors' with enhanced binding of Delta-like ligands and blocked T lymphopoiesis from normal progenitors. We suggest that the ability of Lfng and Notch1 to control progenitor competition for limiting cortical niches is an important mechanism for the homeostatic regulation of thymus size.
Collapse
Affiliation(s)
- Ioana Visan
- Program in Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | |
Collapse
|
265
|
Weerkamp F, van Dongen JJM, Staal FJT. Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 2006; 20:1197-205. [PMID: 16688226 DOI: 10.1038/sj.leu.2404255] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many acute lymphoblastic leukemias can be considered as malignant counterparts of cells in the various stages of normal lymphoid development in bone marrow and thymus. T-cell development in the thymus is an ordered and tightly controlled process. Two evolutionary conserved signaling pathways, which were first discovered in Drosophila, control the earliest steps of T-cell development. These are the Notch and Wnt-signaling routes, which both are deregulated in several types of leukemias. In this review we discuss both pathways, with respect to their signaling mechanisms, functions during T-cell development and their roles in development of leukemias, especially T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- F Weerkamp
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | |
Collapse
|
266
|
Grabher C, von Boehmer H, Look AT. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 2006; 6:347-59. [PMID: 16612405 DOI: 10.1038/nrc1880] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The chromosomal translocation t(7;9) in human T-cell acute lymphoblastic leukaemia (T-ALL) results in deregulated expression of a truncated, activated form of Notch 1 (TAN1) under the control of the T-cell receptor-beta (TCRB) locus. Although TAN1 efficiently induces T-ALL in mouse models, t(7;9) is present in less than 1% of human T-ALL cases. The recent discovery of novel activating mutations in NOTCH1 in more than 50% of human T-ALL samples has made it clear that Notch 1 is far more important in human T-ALL pathogenesis than previously suspected.
Collapse
Affiliation(s)
- Clemens Grabher
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
267
|
Kawamoto H. A close developmental relationship between the lymphoid and myeloid lineages. Trends Immunol 2006; 27:169-75. [PMID: 16515884 DOI: 10.1016/j.it.2006.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 01/24/2006] [Accepted: 02/16/2006] [Indexed: 02/03/2023]
Abstract
The classic dichotomy model of hematopoiesis postulates that the first step of differentiation beyond the multipotent hematopoietic stem cell generates the common myelo-erythroid progenitors and common lymphoid progenitors (CLPs). Previous studies in fetal mice showed, however, that myeloid potential persists in the T- and B-cell branches even after these lineages have diverged, indicating that the simple dichotomy model is invalid, at least for fetal hematopoiesis. Nevertheless, CLPs have persisted in models of adult hematopoiesis; results from several groups support the presence of CLPs in bone marrow. Recent evidence challenges the dichotomy model in the adult, and it is proposed here that the alternative myeloid-based model is applicable to both fetal and adult hematopoiesis.
Collapse
Affiliation(s)
- Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
268
|
Aster JC. Deregulated NOTCH signaling in acute T-cell lymphoblastic leukemia/lymphoma: new insights, questions, and opportunities. Int J Hematol 2006; 82:295-301. [PMID: 16298817 DOI: 10.1532/ijh97.05096] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent work has shown that the majority of human acute T-cell lymphoblastic leukemias and lymphomas (T-ALL) have gain-of-function mutations in NOTCH1, a type I transmembrane receptor that normally signals through a gamma-secretase-dependent mechanism that relies on ligand-induced regulated intramembranous proteolysis. Cleavage by gamma-secretase releases the intracellular domain of NOTCH1 (ICN1), permitting it to translocate to the nucleus and form a short-lived transcriptional activation complex that is essential for normal T-cell development. Two types of mutations are prevalent in human T-ALL: extracellular domain mutations that increase ICN1 production and C-terminal mutations that sustain ICN1 action. Inhibitors of ICN1 production and activity abrogate the growth of established T-ALL cell lines, and a clinical trial of a NOTCH pathway inhibitor in patients with refractory T-ALL has opened recently. These insights raise a number of new questions relevant to T-ALL pathogenesis and offer exciting opportunities for rational targeted therapy.
Collapse
Affiliation(s)
- Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
269
|
Abstract
T cells developing in the adult thymus ultimately derive from haematopoietic stem cells in the bone marrow. Here, we summarize research into the identity of the haematopoietic progenitors that leave the bone marrow, migrate through the blood and settle in the thymus to generate T cells. Accumulating data indicate that various different bone-marrow progenitors are T-cell-lineage competent and might contribute to intrathymic T-cell development. Such developmental flexibility implies a mechanism of T-cell-lineage commitment that can operate on a range of T-cell-lineage-competent progenitors, and further indicates that only those T-cell-lineage-competent progenitors able to migrate to, and settle in, the thymus should be considered physiological T-cell progenitors.
Collapse
Affiliation(s)
- Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 3400 Spruce Street, Pennsylvania 19104-6160, USA.
| | | |
Collapse
|
270
|
Nagasawa T. Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol 2006; 6:107-16. [PMID: 16491135 DOI: 10.1038/nri1780] [Citation(s) in RCA: 312] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
B-cell development is known to occur in a complex bone-marrow microenvironment but its functional organization remains unclear. It is thought that bone-marrow stromal cells create distinct microenvironments, known as niches, that provide support for haematopoiesis and B-cell development. Although it has been more than 20 years since the development of a culture system that allows the growth of B-cell progenitors on bone-marrow-derived stromal cells in vitro, it is only recently that studies have provided a novel basis for understanding the nature of the niches for B-cell development in vivo. This article summarizes the recent advances in research on the earliest B-cell precursors, their requisite environmental factors and the cellular niches that supply these factors and maintain B cells during their development.
Collapse
Affiliation(s)
- Takashi Nagasawa
- Department of Medical Systems Control, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
271
|
Weerkamp F, Pike-Overzet K, Staal FJT. T-sing progenitors to commit. Trends Immunol 2006; 27:125-31. [PMID: 16473042 DOI: 10.1016/j.it.2006.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/22/2005] [Accepted: 01/19/2006] [Indexed: 01/04/2023]
Abstract
T-cell development in the thymus is a complex and highly regulated process. During the process of differentiation from multipotent progenitor cells to mature T cells, proliferation, restriction of lineage potential, TCR gene rearrangements and selection events occur, all accompanied by changes in gene expression. A comprehensive understanding of thymocyte differentiation remains to be established. Two related, key issues have received much attention recently: the nature of the thymus seeding cell and the regulation of T-cell lineage commitment. Here we review the perspectives of different researchers working both on murine and human T-cell development and argue that a true T-cell commitment factor might not be required because of the unique properties of the thymus.
Collapse
Affiliation(s)
- Floor Weerkamp
- Department of Immunology, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | |
Collapse
|
272
|
Radtke F, Schweisguth F, Pear W. The Notch 'gospel'. EMBO Rep 2006; 6:1120-5. [PMID: 16299468 PMCID: PMC1369216 DOI: 10.1038/sj.embor.7400585] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2004] [Accepted: 10/19/2004] [Indexed: 01/07/2023] Open
Affiliation(s)
- Freddy Radtke
- The Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland.
| | | | | |
Collapse
|
273
|
Wu L. T lineage progenitors: the earliest steps en route to T lymphocytes. Curr Opin Immunol 2006; 18:121-6. [PMID: 16459068 DOI: 10.1016/j.coi.2006.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 01/25/2006] [Indexed: 12/11/2022]
Abstract
T lymphocyte development in the thymus is a tightly regulated stepwise process. The identification and characterization of the earliest T lineage progenitors and their downstream progeny now enables the study of important cellular and molecular mechanisms that control and regulate T lineage commitment and differentiation. Significant progress has been made recently on the developmental relationships of the various cells with T cell progenitor activity identified in mouse bone marrow, blood and thymus, and on the molecular regulation of progenitor homing to the thymus. The essential role of Notch-1 signalling in intrathymic T lineage commitment and subsequent T cell development has been clearly documented.
Collapse
Affiliation(s)
- Li Wu
- The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, Victoria, 3050, Australia.
| |
Collapse
|
274
|
Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 2006; 6:127-35. [PMID: 16491137 DOI: 10.1038/nri1781] [Citation(s) in RCA: 482] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lympho-stromal interactions in multiple microenvironments within the thymus have a crucial role in the regulation of T-cell development and selection. Recent studies have implicated that chemokines that are produced by thymic stromal cells have a pivotal role in positioning developing T cells within the thymus. In this Review, I discuss the importance of stroma-derived chemokines in guiding the traffic of developing thymocytes, with an emphasis on the processes of cortex-to-medulla migration and T-cell-repertoire selection, including central tolerance.
Collapse
Affiliation(s)
- Yousuke Takahama
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| |
Collapse
|
275
|
Abstract
The lymph nodes (LNs) harbor a cryptic T-lymphopoietic pathway that is dramatically amplified by oncostatin M (OM). OM-transgenic mice generate massive amounts of T lymphocytes in the absence of Lin(-)c-Kit(hi)IL-7Ralpha- lymphoid progenitors and of reticular epithelial cells. Extrathymic T cells that develop along the OM-dependent LN pathway originate from Lin(-)c-Kit(lo)IL-7Ralpha+ lymphoid progenitors and are different from classic T cells in terms of turnover kinetics and function. Positive selection does not obey the same rules in the thymus and the LNs, where positive selection of developing T cells is supported primarily by epithelial and hematopoietic cells, respectively. Extrathymic T cells undergo enhanced homeostatic proliferation and thereby acquire some properties of memory T cells. Following antigen encounter, extrathymic T-cells initiate proliferation and cytokine secretion more readily than classic T cells, but their accumulation is limited by an exquisite susceptibility to apoptosis. Studies on in vitro and in vivo extrathymic T-cell development have yielded novel insights into the essence of a primary T-lymphoid organ. Furthermore, comparison of the thymic and OM-dependent extrathymic pathways shows how the division of labor between primary and secondary lymphoid organs influences the repertoire and homeostasis of T lymphocytes.
Collapse
Affiliation(s)
- Marie-Eve Blais
- Institute of Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
276
|
Goldschneider I. Cyclical mobilization and gated importation of thymocyte progenitors in the adult mouse: evidence for a thymus-bone marrow feedback loop. Immunol Rev 2006; 209:58-75. [PMID: 16448534 DOI: 10.1111/j.0105-2896.2006.00354.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has recently been observed, as in the fetal thymus, that the importation of hematogenous thymocyte progenitors by the adult thymus is a gated phenomenon, whereby saturating numbers of progenitors periodically enter the thymus and occupy a finite number of intrathymic niches. In addition, the mobilization of thymocyte progenitors from the bone marrow appears to be a cyclical process that coincides temporally with the periods of thymic receptivity (open gate). It is proposed that these events are coordinated by a thymus-bone marrow feedback loop in which a wave of developing triple negative (CD3- CD4- CD8-) thymocytes interacts with stromal cells in the stratified regions of the thymus cortex to sequentially induce the release of diffusible cytokines that regulate the production, mobilization, and recruitment of thymocyte progenitors. The likely components of this feedback loop are described here, as are the properties of the intrathymic vascular gates and niches for thymocyte progenitors. The cyclical production and release of thymocyte progenitors from the bone marrow is placed in the context of a general phenomenon of oscillatory feedback regulation involving all lymphohemopoietic cell lineages. Lastly, the question of whether the gated (as opposed to the continuous) entry of thymocyte progenitors is essential for normal thymocytopoiesis in adult life is discussed.
Collapse
Affiliation(s)
- Irving Goldschneider
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
277
|
Abstract
T-cell development in the thymus requires periodic importation of hematopoietic progenitors from the bone marrow. Such thymus settling progenitors arise from hematopoietic stem cells (HSCs) that are retained in a specific bone marrow microenvironmental niche. Vacation of this niche is required for HSC proliferation and differentiation into downstream progenitors. In order to reach the thymus, progenitors must then be mobilized from bone marrow to blood. Finally, progenitors in blood must settle in the thymus. Here we review signals and molecular interactions that are likely to play a role in trafficking from the bone marrow to the thymus, focusing on how these interactions may regulate which progenitors physiologically contribute to thymopoiesis.
Collapse
Affiliation(s)
- Benjamin A Schwarz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6082, USA
| | | |
Collapse
|
278
|
Abstract
Transcriptional regulation of T-cell development involves successive interactions between complexes of transcriptional regulators and their binding sites within the regulatory regions of each gene. The regulatory modules that control expression of T-lineage genes frequently include binding sites for a core set of regulators that set the T-cell-specific background for signal-dependent control, including GATA-3, Notch/CSL, c-myb, TCF-1, Ikaros, HEB/E2A, Ets, and Runx factors. Additional regulators in early thymocytes include PU.1, Id-2, SCL, Spi-B, Erg, Gfi-1, and Gli. Many of these factors are involved in simultaneous regulation of non-T-lineage genes, T-lineage genes, and genes involved in cell cycle control, apoptosis, or survival. Potential and known interactions between early thymic transcription factors such as GATA-3, SCL, PU.1, Erg, and Spi-B are explored. Regulatory modules involved in the expression of several critical T-lineage genes are described, and models are presented for shifting occupancy of the DNA-binding sites in the regulatory modules of pre-Talpha, T-cell receptor beta (TCRbeta), recombinase activating genes 1 and 2 (Rag-1/2), and CD4 during T-cell development. Finally, evidence is presented that c-kit, Erg, Hes-1, and HEBAlt are expressed differently in Rag-2(-/-) thymocytes versus normal early thymocytes, which provide insight into potential regulatory interactions that occur during normal T-cell development.
Collapse
Affiliation(s)
- Michele K Anderson
- Sunnybrook and Women's College Health Sciences Center, Division of Molecular and Cell Biology, University of Toronto, Department of Immunology, Toronto, ON, Canada.
| |
Collapse
|
279
|
Aifantis I, Mandal M, Sawai K, Ferrando A, Vilimas T. Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol Rev 2006; 209:159-69. [PMID: 16448541 DOI: 10.1111/j.0105-2896.2006.00343.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pre-T-cell receptor (pre-TCR) functions and the study of early thymocyte development continue to fascinate immunologists more than 10 years after the first description and cloning of the receptor. Although multiple reports have addressed several aspects of pre-TCR signaling and function, its ability to regulate diverse functions, including proliferation, survival, and allelic exclusion of the TCR-beta locus, remains an open question. What fascinates us is its central role in the fine balance between physiological differentiation and thymocyte transformation that leads to T-cell leukemia and lymphomas. In this review, we integrate pre-TCR signaling pathways and study their effects on the regulation of T-cell progenitor cell-cycle entry and cell survival. We also connect aberrant pre-TCR signaling to deregulated proliferation and apoptotic balances and thymocyte transformation.
Collapse
MESH Headings
- Animals
- Cell Cycle
- Cell Survival
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction
- T-Lymphocytes/cytology
- Thymus Gland/cytology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Iannis Aifantis
- University of Chicago, Department of Medicine, Section of Rheumatology, Committees of Immunology, Cancer and Developmental Biology, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
280
|
Neves H, Weerkamp F, Gomes AC, Naber BAE, Gameiro P, Becker JD, Lúcio P, Clode N, van Dongen JJM, Staal FJT, Parreira L. Effects of Delta1 and Jagged1 on early human hematopoiesis: correlation with expression of notch signaling-related genes in CD34+ cells. Stem Cells 2006; 24:1328-37. [PMID: 16410393 DOI: 10.1634/stemcells.2005-0207] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It has been shown that Notch signaling mediated by ligands of both Jagged and Delta families expands the hematopoietic stem cell compartment while blocking or delaying terminal myeloid differentiation. Here we show that Delta1- and Jagged1-expressing stromal cells have distinct effects on the clonogenic and differentiation capacities of human CD34(+) CD38(+) cells. Jagged1 increases the number of bipotent colony-forming unit-granulocyte macrophage (CFU-GM) and unipotent progenitors (CFU-granulocytes and CFU-macrophages), without quantitatively affecting terminal cell differentiation, whereas Delta1 reduces the number of CFU-GM and differentiated monocytic cells. Expression analysis of genes coding for Notch receptors, Notch targets, and Notch signaling modulators in supernatant CD34(+) cells arising upon contact with Jagged1 and Delta1 shows dynamic and differential gene expression profiles over time. At early time points, modest upregulation of Notch1, Notch3, and Hes1 was observed in Jagged1-CD34(+) cells, whereas those in contact with Delta1 strikingly upregulated Notch3 and Hes1. Later, myeloid progenitors with strong clonogenic potential emerging upon contact with Jagged1 upregulated Notch1 and Deltex and downregulated Notch signaling modulators, whereas T/NK progenitors originated by Delta1 strikingly upregulated Notch3 and Deltex and, to a lesser extent, Hes1, Lunatic Fringe, and Numb. Together, the data unravel previously unrecognized expression patterns of Notch signaling-related genes in CD34(+) CD38(+) cells as they develop in Jagged1- or Delta1-stromal cell environments, which appear to reflect sequential maturational stages of CD34(+) cells into distinct cell lineages.
Collapse
Affiliation(s)
- Hélia Neves
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Maillard I, Schwarz BA, Sambandam A, Fang T, Shestova O, Xu L, Bhandoola A, Pear WS. Notch-dependent T-lineage commitment occurs at extrathymic sites following bone marrow transplantation. Blood 2006; 107:3511-9. [PMID: 16397133 PMCID: PMC1895767 DOI: 10.1182/blood-2005-08-3454] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Early T-lineage progenitors (ETPs) arise after colonization of the thymus by multipotent bone marrow progenitors. ETPs likely serve as physiologic progenitors of T-cell development in adult mice, although alternative T-cell differentiation pathways may exist. While we were investigating mechanisms of T-cell reconstitution after bone marrow transplantation (BMT), we found that efficient donor-derived thymopoiesis occurred before the pool of ETPs had been replenished. Simultaneously, T lineage-restricted progenitors were generated at extrathymic sites, both in the spleen and in peripheral lymph nodes, but not in the bone marrow or liver. The generation of these T lineage-committed cells occurred through a Notch-dependent differentiation process. Multipotent bone marrow progenitors efficiently gave rise to extrathymic T lineage-committed cells, whereas common lymphoid progenitors did not. Our data show plasticity of T-lineage commitment sites in the post-BMT environment and indicate that Notch-driven extrathymic Tlineage commitment from multipotent progenitors may contribute to early T-lineage reconstitution after BMT.
Collapse
Affiliation(s)
- Ivan Maillard
- 611 BRB II/III, 421 Curie Blvd, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
282
|
Masuda K, Kubagawa H, Ikawa T, Chen CC, Kakugawa K, Hattori M, Kageyama R, Cooper MD, Minato N, Katsura Y, Kawamoto H. Prethymic T-cell development defined by the expression of paired immunoglobulin-like receptors. EMBO J 2005; 24:4052-60. [PMID: 16292344 PMCID: PMC1356317 DOI: 10.1038/sj.emboj.7600878] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 10/25/2005] [Indexed: 12/19/2022] Open
Abstract
T cells are produced in the thymus from progenitors of extrathymic origin. As no specific markers are available, the developmental pathway of progenitors preceding thymic colonization remains unclear. Here we show that progenitors in murine fetal liver and blood, which are capable of giving rise to T cells, NK cells and dendritic cells, but not B cells, can be isolated by their surface expression of paired immunoglobulin-like receptors (PIR). PIR expression is maintained until the earliest intrathymic stage, then downregulated before the onset of CD25 expression. Unlike intrathymic progenitors, generation of prethymic PIR(+) progenitors does not require Hes1-mediated Notch signaling. These findings disclose a prethymic stage of T-cell development programmed for immigration of the thymus, which is genetically separable from intrathymic stages.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/physiology
- Cell Differentiation/immunology
- Cell Lineage/immunology
- Cells, Cultured
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Homeodomain Proteins/physiology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Liver/cytology
- Liver/embryology
- Liver/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Transgenic
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Notch/physiology
- Signal Transduction/physiology
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Transcription Factor HES-1
Collapse
Affiliation(s)
- Kyoko Masuda
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Hiromi Kubagawa
- Department of Pathology, Division of Developmental and Clinical Immunology, University of Alabama, Birmingham, AL, USA
| | - Tomokatsu Ikawa
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ching-Cheng Chen
- Department of Pathology, Division of Developmental and Clinical Immunology, University of Alabama, Birmingham, AL, USA
| | - Kiyokazu Kakugawa
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Masakazu Hattori
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Laboratory of Growth Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Max D Cooper
- Department of Pathology, Division of Developmental and Clinical Immunology, University of Alabama, Birmingham, AL, USA
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshimoto Katsura
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| |
Collapse
|
283
|
Lu M, Tayu R, Ikawa T, Masuda K, Matsumoto I, Mugishima H, Kawamoto H, Katsura Y. The earliest thymic progenitors in adults are restricted to T, NK, and dendritic cell lineage and have a potential to form more diverse TCRbeta chains than fetal progenitors. THE JOURNAL OF IMMUNOLOGY 2005; 175:5848-56. [PMID: 16237077 DOI: 10.4049/jimmunol.175.9.5848] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell progenitors in the adult thymus (AT) are not well characterized. In the present study, we show that the earliest progenitors in the murine AT are, like those in fetal thymus (FT), unable to generate B or myeloid cells, but still retain the ability to generate NK cells and dendritic cells. However, AT progenitors are distinct from those in FT or fetal liver, in that they are able to produce approximately 100 times larger numbers of T cells than progenitors in fetuses. Such a capability to generate a large number of T cells was mainly attributed to their potential to extensively proliferate before the TCRbeta chain gene rearrangement. We propose that the AT is colonized by T/NK/dendritic cell tripotential progenitors with much higher potential to form diversity in TCRbeta chains than FT progenitors.
Collapse
Affiliation(s)
- Min Lu
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Pelayo R, Welner RS, Nagai Y, Kincade PW. Life before the pre-B cell receptor checkpoint: specification and commitment of primitive lymphoid progenitors in adult bone marrow. Semin Immunol 2005; 18:2-11. [PMID: 16310376 DOI: 10.1016/j.smim.2005.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The production of B cells is a complex process determined by well-timed combinations of intrinsic factors and environmental cues that guide the differentiation of primitive progenitors in the bone marrow. Expression of several key transcription factors and receptor-stromal cell ligand interactions are landmarks of the earliest events in B lymphopoiesis in adult bone marrow. We describe this as a gradual loss of options for other blood cell lineages coincident with gain of essential properties. Experimental, stress or infection-related deregulation may change B cell fate specification, commitment or population dynamics, and consequently the production rate of mature populations.
Collapse
Affiliation(s)
- Rosana Pelayo
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
285
|
Abstract
Members of the Notch family of transmembrane receptors play an important role in cell fate determination. Over the past decade, a role for Notch in the pathogenesis of hematologic and solid malignancies has become apparent. Numerous cellular functions and microenvironmental cues associated with tumorigenesis are modulated by Notch signaling, including proliferation, apoptosis, adhesion, epithelial-to-mesenchymal transition, and angiogenesis. It is becoming increasingly evident that Notch signaling can be both oncogenic and tumor suppressive. This review highlights recent findings regarding the molecular and functional aspects of Notch-mediated neoplastic transformation. In addition, cellular mechanisms that potentially explain the complex role of Notch in tumorigenesis are discussed.
Collapse
Affiliation(s)
- Kevin G Leong
- Department of Medical Biophysics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | |
Collapse
|
286
|
Abstract
Questions regarding T cell development have recently received much attention, but the earliest intrathymic differentiation steps in adult mice have remained controversial. Three new papers together show that for at least some thymus-settling precursors, the loss of B lineage potential occurs in the thymus, and Notch acts on multipotent progenitors early after thymic entry.
Collapse
Affiliation(s)
- Valerie P Zediak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
287
|
Sambandam A, Maillard I, Zediak VP, Xu L, Gerstein RM, Aster JC, Pear WS, Bhandoola A. Erratum: Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol 2005. [DOI: 10.1038/ni0805-852a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
288
|
|