251
|
He N, Liu L, Ding J, Sun Y, Xing H, Wang S. MiR-222-3p ameliorates glucocorticoid-induced inhibition of airway epithelial cell repair through down-regulating GILZ expression. J Recept Signal Transduct Res 2020; 40:301-312. [PMID: 32202184 DOI: 10.1080/10799893.2020.1742739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GILZ expression is induced by glucocorticoids (GCs) and is involved in the mechanism of airway epithelial cell repair in patients with asthma. The present study aimed to investigate the role of miR-222-3p/GILZ pathway in treatment of airway epithelial cell repair by GCs. 9HTE cells were treated by 10 µmol/L dexamethasone (Dex) for 6, 12, and 24 hours (h). MiR-222-3p mimic and GILZ were used for cell transfection. Cell vitality, migration, and invasion were detected by methyl-thiazolyl tetrazolium (MTT), wound healing, and Transwell. The targeting relationship between miR-222-3p and GILZ was predicted by TargetScan and further confirmed by dual-luciferase reporter assay. The expressions of relative mRNAs or proteins were detected by Western blot and quantitative polymerase chain reaction (qPCR). The results showed that Dex treatment up-regulated the GILZ expression level but inhibited the levels of p-Raf1, p-MEK1/2, p-ERK1/2, and miR-222-3p of the cells, moreover, it also inhibited cell activity, migration, and invasion in a time-dependent manner. MiR-222-3p specifically targeted GILZ. MiR-222-3p mimic ameliorated the cell viability, migration, and invasion reduced by Dex treatment, increased the expression levels of p-Raf1 and p-MEK1/2, p-ERK1/2, and partially reversed the effects of GILZ overexpression on the above indexes. Moreover, GILZ showed the opposite effects to miR-222-3p. MiR-222-3p activated MAPK signaling pathway through inhibiting the GILZ expression, thus promoting the cell viability, migration, and invasion previously reduced by Dex.
Collapse
Affiliation(s)
- Ning He
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Liping Liu
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Juan Ding
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yuemei Sun
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Haiyan Xing
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| | - Shuyun Wang
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
252
|
Sahu P, Kang J, Erdemci-Tandogan G, Manning ML. Linear and nonlinear mechanical responses can be quite different in models for biological tissues. SOFT MATTER 2020; 16:1850-1856. [PMID: 31984411 PMCID: PMC7453973 DOI: 10.1039/c9sm01068h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The fluidity of biological tissues - whether cells can change neighbors and rearrange - is important for their function. In traditional materials, researchers have used linear response functions, such as the shear modulus, to accurately predict whether a material will behave as a fluid. Similarly, in disordered 2D vertex models for confluent biological tissues, the shear modulus becomes zero precisely when the cells can change neighbors and the tissue fluidizes, at a critical value of control parameter s0* = 3.81. However, the ordered ground states of 2D vertex models become linearly unstable at a lower value of control parameter (3.72), suggesting that there may be a decoupling between linear and nonlinear response. We demonstrate that the linear response does not correctly predict the nonlinear behavior in these systems: when the control parameter is between 3.72 and 3.81, cells cannot freely change neighbors even though the shear modulus is zero. These results highlight that the linear response of vertex models should not be expected to generically predict their rheology. We develop a simple geometric ansatz that correctly predicts the nonlinear response, which may serve as a framework for making nonlinear predictions in other vertex-like models.
Collapse
Affiliation(s)
- Preeti Sahu
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA.
| | | | | | | |
Collapse
|
253
|
O'Sullivan MJ, Mitchel JA, Das A, Koehler S, Levine H, Bi D, Nagel ZD, Park JA. Irradiation Induces Epithelial Cell Unjamming. Front Cell Dev Biol 2020; 8:21. [PMID: 32117962 PMCID: PMC7026004 DOI: 10.3389/fcell.2020.00021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/13/2020] [Indexed: 12/25/2022] Open
Abstract
The healthy and mature epithelial layer is ordinarily quiescent, non-migratory, solid-like, and jammed. However, in a variety of circumstances the layer transitions to a phase that is dynamic, migratory, fluid-like and unjammed. This has been demonstrated in the developing embryo, the developing avian airway, the epithelial layer reconstituted in vitro from asthmatic donors, wounding, and exposure to mechanical stress. Here we examine the extent to which ionizing radiation might similarly provoke epithelial layer unjamming. We exposed primary human bronchial epithelial (HBE) cells maintained in air-liquid interface (ALI) to sub-therapeutic doses (1 Gy) of ionizing radiation (IR). We first assessed: (1) DNA damage by measuring p-H2AX, (2) the integrity of the epithelial layer by measuring transepithelial electrical resistance (TEER), and (3) the extent of epithelial cell differentiation by detecting markers of differentiated airway epithelial cells. As expected, IR exposure induced DNA damage but, surprisingly, disrupted neither normal differentiation nor the integrity of the epithelial cell layer. We then measured cell shape and cellular migration to determine the extent of the unjamming transition (UJT). IR caused cell shape elongation and increased cellular motility, both of which are hallmarks of the UJT as previously confirmed. To understand the mechanism of IR-induced UJT, we inhibited TGF-β receptor activity, and found that migratory responses were attenuated. Together, these observations show that IR can provoke epithelial layer unjamming in a TGF-β receptor-dependent manner.
Collapse
Affiliation(s)
- Michael J O'Sullivan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Jennifer A Mitchel
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Amit Das
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Stephan Koehler
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Herbert Levine
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Zachary D Nagel
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
254
|
Kılıç A, Ameli A, Park JA, Kho AT, Tantisira K, Santolini M, Cheng F, Mitchel JA, McGill M, O'Sullivan MJ, De Marzio M, Sharma A, Randell SH, Drazen JM, Fredberg JJ, Weiss ST. Mechanical forces induce an asthma gene signature in healthy airway epithelial cells. Sci Rep 2020; 10:966. [PMID: 31969610 PMCID: PMC6976696 DOI: 10.1038/s41598-020-57755-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022] Open
Abstract
Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufficient to induce inflammatory, late repair, and fibrotic pathways. Remarkably, this molecular profile of non-asthmatic cells after compression recapitulated the profile of asthmatic cells before compression. Together, these results show that even in the absence of any inflammatory stimulus, mechanical compression alone is sufficient to induce an asthma-like molecular signature.
Collapse
Affiliation(s)
- Ayşe Kılıç
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Asher Ameli
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jin-Ah Park
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Alvin T Kho
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Kelan Tantisira
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Marc Santolini
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Centre for Research and Interdisciplinarity (CRI), Paris, F-75014, France
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA
| | - Jennifer A Mitchel
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Maureen McGill
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Michael J O'Sullivan
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Margherita De Marzio
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Amitabh Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey M Drazen
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Jeffrey J Fredberg
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Program in Molecular Integrative Phyisological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
255
|
Kim J, Zheng Y, Alobaidi AA, Nan H, Tian J, Jiao Y, Sun B. Geometric Dependence of 3D Collective Cancer Invasion. Biophys J 2020; 118:1177-1182. [PMID: 32049055 DOI: 10.1016/j.bpj.2020.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metastasis of mesenchymal tumor cells is traditionally considered as a single-cell process. Here, we report an emergent collective phenomenon in which the dissemination rate of mesenchymal breast cancer cells from three-dimensional tumors depends on the tumor geometry. Combining experimental measurements and computational modeling, we demonstrate that the collective dynamics is coordinated by the mechanical feedback between individual cells and their surrounding extracellular matrix (ECM). We find the tissue-like fibrous ECM supports long-range physical interactions between cells, which turn geometric cues into regulated cell dissemination dynamics. Our results suggest that migrating cells in three-dimensional ECM represent a distinct class of an active particle system in which the collective dynamics is governed by the remodeling of the environment rather than direct particle-particle interactions.
Collapse
Affiliation(s)
- Jihan Kim
- Department of Physics, Oregon State University, Corvallis, Oregon
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Amani A Alobaidi
- Department of Physics, Oregon State University, Corvallis, Oregon
| | - Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, Arizona
| | - Jianxiang Tian
- Materials Science and Engineering, Arizona State University, Tempe, Arizona; Department of Physics, Qufu Normal University, Qufu, China
| | - Yang Jiao
- Department of Physics, Arizona State University, Tempe, Arizona; Materials Science and Engineering, Arizona State University, Tempe, Arizona.
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, Oregon.
| |
Collapse
|
256
|
Kim JH, Pegoraro AF, Das A, Koehler SA, Ujwary SA, Lan B, Mitchel JA, Atia L, He S, Wang K, Bi D, Zaman MH, Park JA, Butler JP, Lee KH, Starr JR, Fredberg JJ. Unjamming and collective migration in MCF10A breast cancer cell lines. Biochem Biophys Res Commun 2020; 521:706-715. [PMID: 31699371 PMCID: PMC6937379 DOI: 10.1016/j.bbrc.2019.10.188] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023]
Abstract
Each cell comprising an intact, healthy, confluent epithelial layer ordinarily remains sedentary, firmly adherent to and caged by its neighbors, and thus defines an elemental constituent of a solid-like cellular collective [1,2]. After malignant transformation, however, the cellular collective can become fluid-like and migratory, as evidenced by collective motions that arise in characteristic swirls, strands, ducts, sheets, or clusters [3,4]. To transition from a solid-like to a fluid-like phase and thereafter to migrate collectively, it has been recently argued that cells comprising the disordered but confluent epithelial collective can undergo changes of cell shape so as to overcome geometric constraints attributable to the newly discovered phenomenon of cell jamming and the associated unjamming transition (UJT) [1,2,5-9]. Relevance of the jamming concept to carcinoma cells lines of graded degrees of invasive potential has never been investigated, however. Using classical in vitro cultures of six breast cancer model systems, here we investigate structural and dynamical signatures of cell jamming, and the relationship between them [1,2,10,11]. In order of roughly increasing invasive potential as previously reported, model systems examined included MCF10A, MCF10A.Vector; MCF10A.14-3-3ζ; MCF10.ErbB2, MCF10AT; and MCF10CA1a [12-15]. Migratory speed depended on the particular cell line. Unsurprisingly, for example, the MCF10CA1a cell line exhibited much faster migratory speed relative to the others. But unexpectedly, across different cell lines higher speeds were associated with enhanced size of cooperative cell packs in a manner reminiscent of a peloton [9]. Nevertheless, within each of the cell lines evaluated, cell shape and shape variability from cell-to-cell conformed with predicted structural signatures of cell layer unjamming [1]. Moreover, both structure and migratory dynamics were compatible with previous theoretical descriptions of the cell jamming mechanism [2,10,11,16,17]. As such, these findings demonstrate the richness of the cell jamming mechanism, which is now seen to apply across these cancer cell lines but remains poorly understood.
Collapse
Affiliation(s)
| | | | - Amit Das
- Northeastern University, MA, USA
| | | | | | - Bo Lan
- Harvard School of Public Health, MA, USA
| | | | - Lior Atia
- Harvard School of Public Health, MA, USA
| | - Shijie He
- Mass General Hospital and Harvard Medical School, USA
| | | | | | | | | | - James P Butler
- Harvard School of Public Health, MA, USA; Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kyu Ha Lee
- The Forsyth Institute, Cambridge, MA, USA
| | | | | |
Collapse
|
257
|
Wyatt TPJ, Fouchard J, Lisica A, Khalilgharibi N, Baum B, Recho P, Kabla AJ, Charras GT. Actomyosin controls planarity and folding of epithelia in response to compression. NATURE MATERIALS 2020; 19:109-117. [PMID: 31451778 DOI: 10.1038/s41563-019-0461-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Throughout embryonic development and adult life, epithelia are subjected to compressive deformations. While these have been shown to trigger mechanosensitive responses such as cell extrusion and differentiation, which span tens of minutes, little is known about how epithelia adapt to compression over shorter timescales. Here, using suspended epithelia, we uncover the immediate response of epithelial tissues to the application of in-plane compressive strains (5-80%). We show that fast compression induces tissue buckling followed by actomyosin-dependent tissue flattening that erases the buckle within tens of seconds, in both mono- and multi-layered epithelia. Strikingly, we identify a well-defined limit to this response, so that stable folds form in the tissue when compressive strains exceed a 'buckling threshold' of ~35%. A combination of experiment and modelling shows that this behaviour is orchestrated by adaptation of the actomyosin cytoskeleton as it re-establishes tissue tension following compression. Thus, tissue pre-tension allows epithelia to both buffer against deformation and sets their ability to form and retain folds during morphogenesis.
Collapse
Affiliation(s)
- Tom P J Wyatt
- London Centre for Nanotechnology, University College London, London, UK
- Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK
| | - Jonathan Fouchard
- London Centre for Nanotechnology, University College London, London, UK
| | - Ana Lisica
- London Centre for Nanotechnology, University College London, London, UK
| | - Nargess Khalilgharibi
- London Centre for Nanotechnology, University College London, London, UK
- Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Pierre Recho
- LIPhy, CNRS-UMR 5588, Université Grenoble Alpes, Grenoble, France
- Department of Engineering, Cambridge University, Cambridge, UK
| | | | - Guillaume T Charras
- London Centre for Nanotechnology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
258
|
Wyatt TPJ, Fouchard J, Lisica A, Khalilgharibi N, Baum B, Recho P, Kabla AJ, Charras GT. Actomyosin controls planarity and folding of epithelia in response to compression. NATURE MATERIALS 2020; 19:109-117. [PMID: 31451778 DOI: 10.1101/422196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 07/09/2019] [Indexed: 05/20/2023]
Abstract
Throughout embryonic development and adult life, epithelia are subjected to compressive deformations. While these have been shown to trigger mechanosensitive responses such as cell extrusion and differentiation, which span tens of minutes, little is known about how epithelia adapt to compression over shorter timescales. Here, using suspended epithelia, we uncover the immediate response of epithelial tissues to the application of in-plane compressive strains (5-80%). We show that fast compression induces tissue buckling followed by actomyosin-dependent tissue flattening that erases the buckle within tens of seconds, in both mono- and multi-layered epithelia. Strikingly, we identify a well-defined limit to this response, so that stable folds form in the tissue when compressive strains exceed a 'buckling threshold' of ~35%. A combination of experiment and modelling shows that this behaviour is orchestrated by adaptation of the actomyosin cytoskeleton as it re-establishes tissue tension following compression. Thus, tissue pre-tension allows epithelia to both buffer against deformation and sets their ability to form and retain folds during morphogenesis.
Collapse
Affiliation(s)
- Tom P J Wyatt
- London Centre for Nanotechnology, University College London, London, UK
- Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK
| | - Jonathan Fouchard
- London Centre for Nanotechnology, University College London, London, UK
| | - Ana Lisica
- London Centre for Nanotechnology, University College London, London, UK
| | - Nargess Khalilgharibi
- London Centre for Nanotechnology, University College London, London, UK
- Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Pierre Recho
- LIPhy, CNRS-UMR 5588, Université Grenoble Alpes, Grenoble, France
- Department of Engineering, Cambridge University, Cambridge, UK
| | | | - Guillaume T Charras
- London Centre for Nanotechnology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
259
|
Janssen LMC. Active glasses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:503002. [PMID: 31469099 DOI: 10.1088/1361-648x/ab3e90] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Active glassy matter has recently emerged as a novel class of non-equilibrium soft matter, combining energy-driven, active particle movement with dense and disordered glass-like behavior. Here we review the state-of-the-art in this field from an experimental, numerical, and theoretical perspective. We consider both non-living and living active glassy systems, and discuss how several hallmarks of glassy dynamics (dynamical slowdown, fragility, dynamical heterogeneity, violation of the Stokes-Einstein relation, and aging) are manifested in such materials. We start by reviewing the recent experimental evidence in this area of research, followed by an overview of the main numerical simulation studies and physical theories of active glassy matter. We conclude by outlining several open questions and possible directions for future work.
Collapse
Affiliation(s)
- Liesbeth M C Janssen
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
260
|
Czajkowski M, Sussman DM, Marchetti MC, Manning ML. Glassy dynamics in models of confluent tissue with mitosis and apoptosis. SOFT MATTER 2019; 15:9133-9149. [PMID: 31674622 DOI: 10.1039/c9sm00916g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent work on particle-based models of tissues has suggested that any finite rate of cell division and cell death is sufficient to fluidize an epithelial tissue. At the same time, experimental evidence has indicated the existence of glassy dynamics in some epithelial layers despite continued cell cycling. To address this discrepancy, we quantify the role of cell birth and death on glassy states in confluent tissues using simulations of an active vertex model that includes cell motility, cell division, and cell death. Our simulation data is consistent with a simple ansatz in which the rate of cell-life cycling and the rate of relaxation of the tissue in the absence of cell cycling contribute independently and additively to the overall rate of cell motion. Specifically, we find that a glass-like regime with caging behavior indicated by subdiffusive cell displacements can be achieved in systems with sufficiently low rates of cell cycling.
Collapse
Affiliation(s)
- Michael Czajkowski
- Physics Department, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Daniel M Sussman
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - M Cristina Marchetti
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - M Lisa Manning
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
261
|
Scaling Physiologic Function from Cell to Tissue in Asthma, Cancer, and Development. Ann Am Thorac Soc 2019; 15:S35-S37. [PMID: 29461895 DOI: 10.1513/annalsats.201710-790kv] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The formation of an integrated tissue from individual cells depends on the properties of the individual cells as well as the interaction of many cells acting as a collective. Three fundamental physiological processes govern the collective scaling from the individual cell to a working tissue: cell sorting, tissue assembly, and collective cellular migration. Mechanistically, cell sorting is governed by differential adhesion, whereas tissue assembly is controlled by the epithelial-to-mesenchymal transition and its inverse, the mesenchymal-to-epithelial transition. The mechanism driving collective cellular migration, however, is not clear. To fill that gap, here we consider cell jamming and unjamming, and their role in collective cellular migration.
Collapse
|
262
|
Staddon MF, Cavanaugh KE, Munro EM, Gardel ML, Banerjee S. Mechanosensitive Junction Remodeling Promotes Robust Epithelial Morphogenesis. Biophys J 2019; 117:1739-1750. [PMID: 31635790 PMCID: PMC6838884 DOI: 10.1016/j.bpj.2019.09.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Morphogenesis of epithelial tissues requires tight spatiotemporal coordination of cell shape changes. In vivo, many tissue-scale shape changes are driven by pulsatile contractions of intercellular junctions, which are rectified to produce irreversible deformations. The functional role of this pulsatory ratchet and its mechanistic basis remain unknown. Here we combine theory and biophysical experiments to show that mechanosensitive tension remodeling of epithelial cell junctions promotes robust epithelial shape changes via ratcheting. Using optogenetic control of actomyosin contractility, we find that epithelial junctions show elastic behavior under low contractile stress, returning to their original lengths after contraction, but undergo irreversible deformation under higher magnitudes of contractile stress. Existing vertex-based models for the epithelium are unable to capture these results, with cell junctions displaying purely elastic or fluid-like behaviors, depending on the choice of model parameters. To describe the experimental results, we propose a modified vertex model with two essential ingredients for junction mechanics: thresholded tension remodeling and continuous strain relaxation. First, junctions must overcome a critical strain threshold to trigger tension remodeling, resulting in irreversible junction length changes. Second, there is a continuous relaxation of junctional strain that removes mechanical memory from the system. This enables pulsatile contractions to further remodel cell shape via mechanical ratcheting. Taken together, the combination of mechanosensitive tension remodeling and junctional strain relaxation provides a robust mechanism for large-scale morphogenesis.
Collapse
Affiliation(s)
- Michael F Staddon
- Department of Physics and Astronomy, University College London, London, United Kingdom; Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Kate E Cavanaugh
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, Illinois
| | - Edwin M Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois; Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois; Department of Physics, University of Chicago, Chicago, Illinois; James Franck Institute, University of Chicago, Chicago, Illinois
| | - Shiladitya Banerjee
- Department of Physics and Astronomy, University College London, London, United Kingdom; Institute for the Physics of Living Systems, University College London, London, United Kingdom; Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
263
|
Patel G, Xu N, Nguyen A, Alvarez DF, Fredberg JJ, Stevens T, Tambe DT. Mechanical signaling in a pulmonary microvascular endothelial cell monolayer. Biochem Biophys Res Commun 2019; 519:337-343. [PMID: 31514994 PMCID: PMC6931900 DOI: 10.1016/j.bbrc.2019.08.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/31/2019] [Indexed: 12/01/2022]
Abstract
The mechanical microenvironment of an endothelial cell includes a stable protein scaffold on the basal side, flowing blood on the apical side and contractile cells on the lateral sides. Interaction with the protein scaffold and flowing blood modulates the ability of endothelial cells to migrate, align and maintain barrier function. Interaction with neighbors provides the endothelial monolayer unique "collective" properties. However, the nature of local mechanical signaling - i.e., the local functional consequence of a cell interacting with its contractile neighbors - remains unclear. Using an advancing sheet of pulmonary microvascular endothelial cells, here we examine the mechanical properties of an individual cell and its neighboring region. By combining Monolayer Stress Microscopy (MSM) with a novel analysis, we assessed several mechanical properties of an individual cell and its neighboring region. Across the monolayer, mechanical properties of the neighboring region defined multicellular "subdivisions" wherein constituent cells were exposed to a similar mechanical microenvironment. Adjacent subdivisions were separated by a narrow interface where adjoining cells were exposed to remarkably different mechanical microenvironments. Comparison of temporal fluctuations in mechanical properties of individual cells and those of their neighboring regions suggested three distinct intercellular mechanical signaling processes. These processes indicated that change in size, shape and speed of individual cells is associated with change in contractile forces in their neighboring regions. In summary, we present a novel approach to assess the mechanical interactions of individual cells with their contractile neighbors and identify potential functional consequences of such interactions.
Collapse
Affiliation(s)
- Gnyata Patel
- Department of Biomedical Sciences, Pat Capps Covey College of Allied Health Professions, University of South Alabama, Mobile, AL, USA
| | - Ningyong Xu
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Alyson Nguyen
- Department of Biomedical Sciences, Pat Capps Covey College of Allied Health Professions, University of South Alabama, Mobile, AL, USA
| | - Diego F Alvarez
- Department of Physiology & Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Dhananjay T Tambe
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA; William B. Burnsed, Jr. Department of Mechanical Engineering, College of Engineering, University of South Alabama, Mobile, AL, USA; Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
264
|
Affiliation(s)
- René Marc Mège
- Institut Jacque Monod, Université Paris Diderot, CNRS, Paris, France.
| |
Collapse
|
265
|
Palamidessi A, Malinverno C, Frittoli E, Corallino S, Barbieri E, Sigismund S, Beznoussenko GV, Martini E, Garre M, Ferrara I, Tripodo C, Ascione F, Cavalcanti-Adam EA, Li Q, Di Fiore PP, Parazzoli D, Giavazzi F, Cerbino R, Scita G. Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma. NATURE MATERIALS 2019; 18:1252-1263. [PMID: 31332337 DOI: 10.1038/s41563-019-0425-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
During wound repair, branching morphogenesis and carcinoma dissemination, cellular rearrangements are fostered by a solid-to-liquid transition, known as unjamming. The biomolecular machinery behind unjamming and its pathophysiological relevance remain, however, unclear. Here, we study unjamming in a variety of normal and tumorigenic epithelial two-dimensional (2D) and 3D collectives. Biologically, the increased level of the small GTPase RAB5A sparks unjamming by promoting non-clathrin-dependent internalization of epidermal growth factor receptor that leads to hyperactivation of the kinase ERK1/2 and phosphorylation of the actin nucleator WAVE2. This cascade triggers collective motility effects with striking biophysical consequences. Specifically, unjamming in tumour spheroids is accompanied by persistent and coordinated rotations that progressively remodel the extracellular matrix, while simultaneously fluidizing cells at the periphery. This concurrent action results in collective invasion, supporting the concept that the endo-ERK1/2 pathway is a physicochemical switch to initiate collective invasion and dissemination of otherwise jammed carcinoma.
Collapse
Affiliation(s)
| | - Chiara Malinverno
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.
- University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy.
| | | | | | | | - Sara Sigismund
- University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy
- Istituto Europeo di Oncologia IRCCS, Milan, Italy
| | | | | | | | - Ines Ferrara
- Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Claudio Tripodo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Flora Ascione
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Qingsen Li
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy
- Istituto Europeo di Oncologia IRCCS, Milan, Italy
| | - Dario Parazzoli
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabio Giavazzi
- University of Milan, Department of Medical Biotechnology and Translational Medicine, Segrate, Italy.
| | - Roberto Cerbino
- University of Milan, Department of Medical Biotechnology and Translational Medicine, Segrate, Italy.
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.
- University of Milan, Department of Oncology and Hemato-Oncology, Milan, Italy.
| |
Collapse
|
266
|
Force and Collective Epithelial Activities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31612452 DOI: 10.1007/978-3-030-17593-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Cells apply forces to their surroundings to perform basic biological activities, including division, adhesion, and migration. Similarly, cell populations in epithelial tissues coordinate forces in physiological processes of morphogenesis and repair. These activities are highly regulated to yield the correct development and function of the body. The modification of this order is at the onset of pathological events and malfunctions. Mechanical forces and their translation into biological signals are the focus of an emerging field of research, shaping as a central discipline in the study of life and gathering knowledge at the interface of engineering, physics, biology and medicine. Novel engineering methods are needed to complement the classic instruments developed by molecular biology, physics and medicine. These should enable the measurement of forces at the cellular and multicellular level, and at a temporal and spatial resolution which is fully compatible with the ranges experienced by cells in vivo.
Collapse
|
267
|
Petridou NI, Heisenberg C. Tissue rheology in embryonic organization. EMBO J 2019; 38:e102497. [PMID: 31512749 PMCID: PMC6792012 DOI: 10.15252/embj.2019102497] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Tissue morphogenesis in multicellular organisms is brought about by spatiotemporal coordination of mechanical and chemical signals. Extensive work on how mechanical forces together with the well-established morphogen signalling pathways can actively shape living tissues has revealed evolutionary conserved mechanochemical features of embryonic development. More recently, attention has been drawn to the description of tissue material properties and how they can influence certain morphogenetic processes. Interestingly, besides the role of tissue material properties in determining how much tissues deform in response to force application, there is increasing theoretical and experimental evidence, suggesting that tissue material properties can abruptly and drastically change in development. These changes resemble phase transitions, pointing at the intriguing possibility that important morphogenetic processes in development, such as symmetry breaking and self-organization, might be mediated by tissue phase transitions. In this review, we summarize recent findings on the regulation and role of tissue material properties in the context of the developing embryo. We posit that abrupt changes of tissue rheological properties may have important implications in maintaining the balance between robustness and adaptability during embryonic development.
Collapse
|
268
|
Vishwakarma M, Di Russo J. Why does epithelia display heterogeneity? Bridging physical and biological concepts. Biophys Rev 2019; 11:683-687. [PMID: 31494837 PMCID: PMC6815311 DOI: 10.1007/s12551-019-00583-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Medhavi Vishwakarma
- School of Cellular and Molecular Medicine, University Walk, University of Bristol, Bristol, BS1 8TD, UK.
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.
| | - Jacopo Di Russo
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
269
|
van Oosten ASG, Chen X, Chin L, Cruz K, Patteson AE, Pogoda K, Shenoy VB, Janmey PA. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature 2019; 573:96-101. [PMID: 31462779 DOI: 10.1038/s41586-019-1516-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/24/2019] [Indexed: 01/09/2023]
Abstract
The viscoelasticity of the crosslinked semiflexible polymer networks-such as the internal cytoskeleton and the extracellular matrix-that provide shape and mechanical resistance against deformation is assumed to dominate tissue mechanics. However, the mechanical responses of soft tissues and semiflexible polymer gels differ in many respects. Tissues stiffen in compression but not in extension1-5, whereas semiflexible polymer networks soften in compression and stiffen in extension6,7. In shear deformation, semiflexible polymer gels stiffen with increasing strain, but tissues do not1-8. Here we use multiple experimental systems and a theoretical model to show that a combination of nonlinear polymer network elasticity and particle (cell) inclusions is essential to mimic tissue mechanics that cannot be reproduced by either biopolymer networks or colloidal particle systems alone. Tissue rheology emerges from an interplay between strain-stiffening polymer networks and volume-conserving cells within them. Polymer networks that soften in compression but stiffen in extension can be converted to materials that stiffen in compression but not in extension by including within the network either cells or inert particles to restrict the relaxation modes of the fibrous networks that surround them. Particle inclusions also suppress stiffening in shear deformation; when the particle volume fraction is low, they have little effect on the elasticity of the polymer networks. However, as the particles become more closely packed, the material switches from compression softening to compression stiffening. The emergence of an elastic response in these composite materials has implications for how tissue stiffness is altered in disease and can lead to cellular dysfunction9-11. Additionally, the findings could be used in the design of biomaterials with physiologically relevant mechanical properties.
Collapse
Affiliation(s)
- Anne S G van Oosten
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Xingyu Chen
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - LiKang Chin
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Katrina Cruz
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison E Patteson
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics, Syracuse University, Syracuse, NY, USA
| | - Katarzyna Pogoda
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Krakow, Poland
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
270
|
Leggett SE, Neronha ZJ, Bhaskar D, Sim JY, Perdikari TM, Wong IY. Motility-limited aggregation of mammary epithelial cells into fractal-like clusters. Proc Natl Acad Sci U S A 2019; 116:17298-17306. [PMID: 31413194 PMCID: PMC6717304 DOI: 10.1073/pnas.1905958116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Migratory cells transition between dispersed individuals and multicellular collectives during development, wound healing, and cancer. These transitions are associated with coordinated behaviors as well as arrested motility at high cell densities, but remain poorly understood at lower cell densities. Here, we show that dispersed mammary epithelial cells organize into arrested, fractal-like clusters at low density in reduced epidermal growth factor (EGF). These clusters exhibit a branched architecture with a fractal dimension of [Formula: see text], reminiscent of diffusion-limited aggregation of nonliving colloidal particles. First, cells display diminished motility in reduced EGF, which permits irreversible adhesion upon cell-cell contact. Subsequently, leader cells emerge that guide collectively migrating strands and connect clusters into space-filling networks. Thus, this living system exhibits gelation-like arrest at low cell densities, analogous to the glass-like arrest of epithelial monolayers at high cell densities. We quantitatively capture these behaviors with a jamming-like phase diagram based on local cell density and EGF. These individual to collective transitions represent an intriguing link between living and nonliving systems, with potential relevance for epithelial morphogenesis into branched architectures.
Collapse
Affiliation(s)
- Susan E Leggett
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912
- Pathobiology Graduate Program, Brown University, Providence, RI 02912
| | - Zachary J Neronha
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912
| | - Dhananjay Bhaskar
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912
| | - Jea Yun Sim
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912
| | - Theodora Myrto Perdikari
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912;
- Pathobiology Graduate Program, Brown University, Providence, RI 02912
| |
Collapse
|
271
|
Spurlin JW, Siedlik MJ, Nerger BA, Pang MF, Jayaraman S, Zhang R, Nelson CM. Mesenchymal proteases and tissue fluidity remodel the extracellular matrix during airway epithelial branching in the embryonic avian lung. Development 2019; 146:dev.175257. [PMID: 31371376 DOI: 10.1242/dev.175257] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/16/2019] [Indexed: 12/31/2022]
Abstract
Reciprocal epithelial-mesenchymal signaling is essential for morphogenesis, including branching of the lung. In the mouse, mesenchymal cells differentiate into airway smooth muscle that wraps around epithelial branches, but this contractile tissue is absent from the early avian lung. Here, we have found that branching morphogenesis in the embryonic chicken lung requires extracellular matrix (ECM) remodeling driven by reciprocal interactions between the epithelium and mesenchyme. Before branching, the basement membrane wraps the airway epithelium as a spatially uniform sheath. After branch initiation, however, the basement membrane thins at branch tips; this remodeling requires mesenchymal expression of matrix metalloproteinase 2, which is necessary for branch extension but for not branch initiation. As branches extend, tenascin C (TNC) accumulates in the mesenchyme several cell diameters away from the epithelium. Despite its pattern of accumulation, TNC is expressed exclusively by epithelial cells. Branch extension coincides with deformation of adjacent mesenchymal cells, which correlates with an increase in mesenchymal fluidity at branch tips that may transport TNC away from the epithelium. These data reveal novel epithelial-mesenchymal interactions that direct ECM remodeling during airway branching morphogenesis.
Collapse
Affiliation(s)
- James W Spurlin
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Michael J Siedlik
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bryan A Nerger
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mei-Fong Pang
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sahana Jayaraman
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Rawlison Zhang
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA .,Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
272
|
Li X, Das A, Bi D. Mechanical Heterogeneity in Tissues Promotes Rigidity and Controls Cellular Invasion. PHYSICAL REVIEW LETTERS 2019; 123:058101. [PMID: 31491312 DOI: 10.1103/physrevlett.123.058101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Indexed: 06/10/2023]
Abstract
We study the influence of cell-level mechanical heterogeneity in epithelial tissues using a vertex-based model. Heterogeneity is introduced into the cell shape index (p_{0}) that tunes the stiffness at a single-cell level. The addition of heterogeneity can always enhance the mechanical rigidity of the epithelial layer by increasing its shear modulus, hence making it more rigid. There is an excellent scaling collapse of our data as a function of a single scaling variable f_{r}, which accounts for the overall fraction of rigid cells. We identify a universal threshold f_{r}^{*} that demarcates fluid versus solid tissues. Furthermore, this rigidity onset is far below the contact percolation threshold of rigid cells. These results give rise to a separation of rigidity and contact percolation processes that leads to distinct types of solid states. We also investigate the influence of heterogeneity on tumor invasion dynamics. There is an overall impedance of invasion as the tissue becomes more rigid. Invasion can also occur in an intermediate heterogeneous solid state that is characterized by significant spatial-temporal intermittency.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Amit Das
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
273
|
Tetley RJ, Staddon MF, Heller D, Hoppe A, Banerjee S, Mao Y. Tissue Fluidity Promotes Epithelial Wound Healing. NATURE PHYSICS 2019; 15:1195-1203. [PMID: 31700525 PMCID: PMC6837871 DOI: 10.1038/s41567-019-0618-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The collective behaviour of cells in epithelial tissues is dependent on their mechanical properties. However, the contribution of tissue mechanics to wound healing in vivo remains poorly understood. Here we investigate the relationship between tissue mechanics and wound healing in live Drosophila wing imaginal discs and show that by tuning epithelial cell junctional tension, we can systematically alter the rate of wound healing. Coincident with the contraction of an actomyosin purse string, we observe cells flowing past each other at the wound edge by intercalating, reminiscent of molecules in a fluid, resulting in seamless wound closure. Using a cell-based physical model, we predict that a reduction in junctional tension fluidises the tissue through an increase in intercalation rate and corresponding reduction in bulk viscosity, in the manner of an unjamming transition. The resultant fluidisation of the tissue accelerates wound healing. Accordingly, when we experimentally reduce tissue tension in wing discs, intercalation rate increases and wounds repair in less time.
Collapse
Affiliation(s)
- Robert J. Tetley
- MRC Laboratory for Molecular Cell Biology, University College
London, Gower Street, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College
London, London, United Kingdom
| | - Michael F. Staddon
- Institute for the Physics of Living Systems, University College
London, London, United Kingdom
- Department of Physics & Astronomy, University College London,
London, United Kingdom
| | - Davide Heller
- Institute of Molecular Life Sciences, University of Zurich,
Winterthurerstrasse 190, Zurich, 8057, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Batiment
Genopode, Lausanne, 1015, Switzerland
| | - Andreas Hoppe
- Faculty of Science, Engineering and Computing, Kingston University,
Kingston-upon-Thames, United Kingdom
| | - Shiladitya Banerjee
- Institute for the Physics of Living Systems, University College
London, London, United Kingdom
- Department of Physics & Astronomy, University College London,
London, United Kingdom
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College
London, Gower Street, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College
London, London, United Kingdom
- College of Information and Control, Nanjing University of
Information Science and Technology, Nanjing, Jiangsu 210044, China
- Correspondence:
| |
Collapse
|
274
|
Cheong SS, Dean CH. On the Move: The Commander IL-4 Leads the Cell Army in Collective Migration. Am J Respir Cell Mol Biol 2019; 60:377-378. [PMID: 30423257 PMCID: PMC6444625 DOI: 10.1165/rcmb.2018-0344ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Sek-Shir Cheong
- 1 National Heart and Lung Institute Imperial College London London, United Kingdom
| | - Charlotte H Dean
- 1 National Heart and Lung Institute Imperial College London London, United Kingdom
| |
Collapse
|
275
|
Disanza A, Bisi S, Frittoli E, Malinverno C, Marchesi S, Palamidessi A, Rizvi A, Scita G. Is cell migration a selectable trait in the natural evolution of cancer development? Philos Trans R Soc Lond B Biol Sci 2019; 374:20180224. [PMID: 31431177 DOI: 10.1098/rstb.2018.0224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selective evolutionary pressure shapes the processes and genes that enable cancer survival and expansion in a tumour-suppressive environment. A distinguishing lethal feature of malignant cancer is its dissemination and seeding of metastatic foci. A key requirement for this process is the acquisition of a migratory/invasive ability. However, how the migratory phenotype is selected for during the natural evolution of cancer and what advantage, if any, it might provide to the growing malignant cells remain open issues. In this opinion piece, we discuss three possible answers to these issues. We will examine lines of evidence from mathematical modelling of cancer evolution that indicate that migration is an intrinsic selectable property of malignant cells that directly impacts on growth dynamics and cancer geometry. Second, we will argue that migratory phenotypes can emerge as an adaptive response to unfavourable growth conditions and endow cells not only with the ability to move/invade, but also with specific metastatic traits, including drug resistance, self-renewal and survival. Finally, we will discuss the possibility that migratory phenotypes are coincidental events that emerge by happenstance in the natural evolution of cancer. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Andrea Disanza
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Sara Bisi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Emanuela Frittoli
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Chiara Malinverno
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| | - Stefano Marchesi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Palamidessi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Abrar Rizvi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| | - Giorgio Scita
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| |
Collapse
|
276
|
Inoue H, Hattori T, Zhou X, Etling EB, Modena BD, Trudeau JB, Holguin F, Wenzel SE. Dysfunctional ErbB2, an EGF receptor family member, hinders repair of airway epithelial cells from asthmatic patients. J Allergy Clin Immunol 2019; 143:2075-2085.e10. [PMID: 30639343 PMCID: PMC6556416 DOI: 10.1016/j.jaci.2018.11.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Genetic and genomic data increasingly point to the airway epithelium as critical to asthma pathogenesis. Epithelial growth factor (EGF) family members play a fundamental role in epithelial differentiation, proliferation, and repair. Although expression of erythroblastosis oncogene B2 (ErbB2) mRNA, an EGF family receptor, was reported to be lower in asthmatic patients, little is understood about its functional role. OBJECTIVE We sought to determine whether decreased ErbB2 activation in freshly isolated human airway epithelial cells (HAECs) from asthmatic patients associated with impaired wound closure in vitro. METHODS An in vitro scratch-wound model of air-liquid interface cultured and freshly isolated HAECs were compared between HAECs from healthy control subjects (HCs) and asthmatic patients in relation to ErbB2. RESULTS Freshly brushed HAECs from asthmatic patients had impaired ErbB2 activation compared with those from HCs. In an in vitro scratch-wound model, HAECs from asthmatic patients showed delayed wound closure compared with HAECs from HCs. Cell proliferation, as assessed based on [3H] thymidine incorporation after wounding, and expression or activation of ErbB2 and cyclin D1 at the leading edge of the wound were lower in HAECs from asthmatic patients and HCs. A selective ErbB2 tyrosine kinase inhibitor, mubritinib, impaired wound closure and decreased cyclin D1 expression in healthy HAECs, with less effect on cells from asthmatic patients, supporting diminished activity in asthmatic patients. CONCLUSION These results implicate a primary defect in the ErbB2 pathway as constraining epithelial repair processes in asthmatic patients. Restoration of homeostatic ErbB2 function should be considered a novel asthma therapeutic target.
Collapse
Affiliation(s)
- Hideki Inoue
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa; Division of Pulmonary and Allergy Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takeshi Hattori
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Xiuxia Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Emily B Etling
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Brian D Modena
- Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, Calif; Department of Allergy, Asthma and Immunology, Scripps Health, San Diego, Calif
| | - John B Trudeau
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Fernando Holguin
- Division of Medicine-Pulmonary Sciences & Critical Care, University of Colorado School of Medicine, Aurora, Colo
| | - Sally E Wenzel
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
277
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
278
|
Marozkina N, Bosch J, Cotton C, Smith L, Seckler J, Zaman K, Rehman S, Periasamy A, Gaston H, Altawallbeh G, Davis M, Jones DR, Schilz R, Randell SH, Gaston B. Cyclic compression increases F508 Del CFTR expression in ciliated human airway epithelium. Am J Physiol Lung Cell Mol Physiol 2019; 317:L247-L258. [PMID: 31116581 DOI: 10.1152/ajplung.00020.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which transepithelial pressure changes observed during exercise and airway clearance can benefit lung health are challenging to study. Here, we have studied 117 mature, fully ciliated airway epithelial cell filters grown at air-liquid interface grown from 10 cystic fibrosis (CF) and 19 control subjects. These were exposed to cyclic increases in apical air pressure of 15 cmH2O for varying times. We measured the effect on proteins relevant to lung health, with a focus on the CF transmembrane regulator (CFTR). Immunoflourescence and immunoblot data were concordant in demonstrating that air pressure increased F508Del CFTR expression and maturation. This effect was in part dependent on the presence of cilia, on Ca2+ influx, and on formation of nitrogen oxides. These data provide a mechanosensory mechanism by which changes in luminal air pressure, like those observed during exercise and airway clearance, can affect epithelial protein expression and benefit patients with diseases of the airways.
Collapse
Affiliation(s)
- Nadzeya Marozkina
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jürgen Bosch
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Calvin Cotton
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Laura Smith
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - James Seckler
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Khalequz Zaman
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Shagufta Rehman
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Ammasi Periasamy
- W. M. Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, Virginia
| | | | - Ghaith Altawallbeh
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Michael Davis
- Department of Pediatrics, Division of Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia
| | - David R Jones
- Thoracic Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Schilz
- Pulmonology and Critical Care Medicine University Hospitals, Cleveland, Ohio
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Benjamin Gaston
- Pediatric Pulmonology Division, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Pediatric Pulmonology Division, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
279
|
Spatarelu CP, Zhang H, Trung Nguyen D, Han X, Liu R, Guo Q, Notbohm J, Fan J, Liu L, Chen Z. Biomechanics of Collective Cell Migration in Cancer Progression: Experimental and Computational Methods. ACS Biomater Sci Eng 2019; 5:3766-3787. [PMID: 32953985 PMCID: PMC7500334 DOI: 10.1021/acsbiomaterials.8b01428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell migration is essential for regulating many biological processes in physiological or pathological conditions, including embryonic development and cancer invasion. In vitro and in silico studies suggest that collective cell migration is associated with some biomechanical particularities such as restructuring of extracellular matrix (ECM), stress and force distribution profiles, and reorganization of the cytoskeleton. Therefore, the phenomenon could be understood by an in-depth study of cells' behavior determinants, including but not limited to mechanical cues from the environment and from fellow "travelers". This review article aims to cover the recent development of experimental and computational methods for studying the biomechanics of collective cell migration during cancer progression and invasion. We also summarized the tested hypotheses regarding the mechanism underlying collective cell migration enabled by these methods. Together, the paper enables a broad overview on the methods and tools currently available to unravel the biophysical mechanisms pertinent to cell collective migration as well as providing perspectives on future development toward eventually deciphering the key mechanisms behind the most lethal feature of cancer.
Collapse
Affiliation(s)
| | - Hao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Dung Trung Nguyen
- Department of Engineering and Computer Science, Seattle Pacific University, Seattle, Washington 98119,
United States
| | - Xinyue Han
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing 400032, China
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350014,
China
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706,
United States
| | - Jing Fan
- Department of Mechanical Engineering, City College of City University of New York, New York 10031, United
States
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing 400032, China
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
280
|
Chandrala LD, Afshar-Mohajer N, Nishida K, Ronzhes Y, Sidhaye VK, Koehler K, Katz J. A Device for measuring the in-situ response of Human Bronchial Epithelial Cells to airborne environmental agents. Sci Rep 2019; 9:7263. [PMID: 31086226 PMCID: PMC6513995 DOI: 10.1038/s41598-019-43784-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/01/2019] [Indexed: 02/03/2023] Open
Abstract
Measuring the time evolution of response of Normal Human Bronchial Epithelial (NHBE) cells to aerosols is essential for understanding the pathogenesis of airway disease. This study introduces a novel Real-Time Examination of Cell Exposure (RTECE) system, which enables direct in situ assessment of functional responses of the cell culture during and following exposure to environmental agents. Included are cell morphology, migration, and specialised responses, such as ciliary beat frequency (CBF). Utilising annular nozzles for aerosol injection and installing windows above and below the culture, the cells can be illuminated and examined during exposure. The performance of RTECE is compared to that of the commercial Vitrocell by exposing NHBE cells to cigarette smoke. Both systems show the same mass deposition and similar trends in smoke-induced changes to monolayer permeability, CBF and transepithelial resistance. In situ measurements performed during and after two exposures to smoke show that the CBF decreases gradually during both exposures, recovering after the first, but decreasing sharply after the second. Using Particle image velocimetry, the cell motions are monitored for twelve hours. Exposure to smoke increases the spatially-averaged cell velocity by an order of magnitude. The relative motion between cells peaks shortly after each exposure, but remains elevated and even increases further several hours later.
Collapse
Affiliation(s)
- Lakshmana D. Chandrala
- 0000 0001 2171 9311grid.21107.35Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218 USA
| | - Nima Afshar-Mohajer
- 0000 0001 2171 9311grid.21107.35Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205 USA
| | - Kristine Nishida
- 0000 0001 2171 9311grid.21107.35Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, 21205 USA
| | - Yury Ronzhes
- 0000 0001 2171 9311grid.21107.35Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218 USA
| | - Venkataramana K. Sidhaye
- 0000 0001 2171 9311grid.21107.35Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205 USA ,0000 0001 2171 9311grid.21107.35Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, 21205 USA
| | - Kirsten Koehler
- 0000 0001 2171 9311grid.21107.35Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205 USA
| | - Joseph Katz
- 0000 0001 2171 9311grid.21107.35Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218 USA
| |
Collapse
|
281
|
Merkel M, Baumgarten K, Tighe BP, Manning ML. A minimal-length approach unifies rigidity in underconstrained materials. Proc Natl Acad Sci U S A 2019; 116:6560-6568. [PMID: 30894489 PMCID: PMC6452732 DOI: 10.1073/pnas.1815436116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We present an approach to understand geometric-incompatibility-induced rigidity in underconstrained materials, including subisostatic 2D spring networks and 2D and 3D vertex models for dense biological tissues. We show that in all these models a geometric criterion, represented by a minimal length [Formula: see text], determines the onset of prestresses and rigidity. This allows us to predict not only the correct scalings for the elastic material properties, but also the precise magnitudes for bulk modulus and shear modulus discontinuities at the rigidity transition as well as the magnitude of the Poynting effect. We also predict from first principles that the ratio of the excess shear modulus to the shear stress should be inversely proportional to the critical strain with a prefactor of 3. We propose that this factor of 3 is a general hallmark of geometrically induced rigidity in underconstrained materials and could be used to distinguish this effect from nonlinear mechanics of single components in experiments. Finally, our results may lay important foundations for ways to estimate [Formula: see text] from measurements of local geometric structure and thus help develop methods to characterize large-scale mechanical properties from imaging data.
Collapse
Affiliation(s)
- Matthias Merkel
- Department of Physics, Syracuse University, Syracuse, NY 13244;
- Centre de Physique Théorique (CPT), Turing Center for Living Systems, Aix Marseille Univ, Université de Toulon, CNRS, 13009 Marseille, France
| | - Karsten Baumgarten
- Process & Energy Laboratory, Delft University of Technology, 2628 CB Delft, The Netherlands
| | - Brian P Tighe
- Process & Energy Laboratory, Delft University of Technology, 2628 CB Delft, The Netherlands
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, NY 13244
| |
Collapse
|
282
|
Lee SN, Ahn JS, Lee SG, Lee HS, Choi AMK, Yoon JH. Integrins αvβ5 and αvβ6 Mediate IL-4–induced Collective Migration in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2019; 60:420-433. [DOI: 10.1165/rcmb.2018-0081oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Seong Gyu Lee
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Hyung-Suk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Augustine M. K. Choi
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York; and
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| | - Joo-Heon Yoon
- The Airway Mucus Institute and
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
283
|
Kilic O, Yoon A, Shah SR, Yong HM, Ruiz-Valls A, Chang H, Panettieri RA, Liggett SB, Quiñones-Hinojosa A, An SS, Levchenko A. A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm. Nat Biomed Eng 2019; 3:532-544. [PMID: 31150010 PMCID: PMC6653686 DOI: 10.1038/s41551-019-0366-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 02/07/2019] [Indexed: 01/08/2023]
Abstract
In asthma, airway smooth muscle (ASM) contraction and the subsequent decrease in airflow involve a poorly understood set of mechanical and biochemical events. Organ-level and molecular-scale models of the airway are frequently based on purely mechanical or biochemical considerations and do not account for physiological mechanochemical couplings. Here, we present a microphysiological model of the airway that allows for the quantitative analysis of the interactions between mechanical and biochemical signals triggered by compressive stress on epithelial cells. We show that a mechanical stimulus mimicking a bronchospastic challenge triggers the marked contraction and delayed relaxation of ASM, and that this is mediated by the discordant expression of cyclooxygenase genes in epithelial cells and regulated by the mechanosensor and transcriptional co-activator YAP (Yes-associated protein). A mathematical model of the intercellular feedback interactions recapitulates aspects of obstructive disease of the airways, including pathognomonic features of severe, difficult-to-treat asthma. The microphysiological model could be used to investigate the mechanisms of asthma pathogenesis and to develop therapeutic strategies that disrupt the positive feedback loop that leads to persistent airway constriction.
Collapse
Affiliation(s)
- Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Arum Yoon
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sagar R Shah
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alejandro Ruiz-Valls
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hao Chang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Reynold A Panettieri
- Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Stephen B Liggett
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Steven S An
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Yale University, New Haven, CT, USA. .,Yale Systems Biology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
284
|
Huang J, Tu T, Wang W, Gao Z, Zhou G, Zhang W, Wu X, Liu W. Aligned topography mediated cell elongation reverses pathological phenotype of
in vitro
cultured keloid fibroblasts. J Biomed Mater Res A 2019; 107:1366-1378. [DOI: 10.1002/jbm.a.36650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/17/2018] [Accepted: 02/04/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jia Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Tian Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Xiaoli Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| |
Collapse
|
285
|
Zhou FY, Ruiz-Puig C, Owen RP, White MJ, Rittscher J, Lu X. Motion sensing superpixels (MOSES) is a systematic computational framework to quantify and discover cellular motion phenotypes. eLife 2019; 8:e40162. [PMID: 30803483 PMCID: PMC6391079 DOI: 10.7554/elife.40162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Correct cell/cell interactions and motion dynamics are fundamental in tissue homeostasis, and defects in these cellular processes cause diseases. Therefore, there is strong interest in identifying factors, including drug candidates that affect cell/cell interactions and motion dynamics. However, existing quantitative tools for systematically interrogating complex motion phenotypes in timelapse datasets are limited. We present Motion Sensing Superpixels (MOSES), a computational framework that measures and characterises biological motion with a unique superpixel 'mesh' formulation. Using published datasets, MOSES demonstrates single-cell tracking capability and more advanced population quantification than Particle Image Velocimetry approaches. From > 190 co-culture videos, MOSES motion-mapped the interactions between human esophageal squamous epithelial and columnar cells mimicking the esophageal squamous-columnar junction, a site where Barrett's esophagus and esophageal adenocarcinoma often arise clinically. MOSES is a powerful tool that will facilitate unbiased, systematic analysis of cellular dynamics from high-content time-lapse imaging screens with little prior knowledge and few assumptions.
Collapse
Affiliation(s)
- Felix Y Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Carlos Ruiz-Puig
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Richard P Owen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Michael J White
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Jens Rittscher
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
- Institute of Biomedical Engineering, Department of EngineeringUniversity of OxfordOxfordUnited Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and DiscoveryUniversity of OxfordOxfordUnited Kingdom
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
286
|
Fujii Y, Ochi Y, Tuchiya M, Kajita M, Fujita Y, Ishimoto Y, Okajima T. Spontaneous Spatial Correlation of Elastic Modulus in Jammed Epithelial Monolayers Observed by AFM. Biophys J 2019; 116:1152-1158. [PMID: 30826009 DOI: 10.1016/j.bpj.2019.01.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 12/28/2022] Open
Abstract
For isolated single cells on a substrate, the intracellular stiffness, which is often measured as the Young's modulus, E, by atomic force microscopy (AFM), depends on the substrate rigidity. However, little is known about how the E of cells is influenced by the surrounding cells in a cell population system in which cells physically and tightly contact adjacent cells. In this study, we investigated the spatial heterogeneities of E in a jammed epithelial monolayer in which cell migration was highly inhibited, allowing us to precisely measure the spatial distribution of E in large-scale regions by AFM. The AFM measurements showed that E can be characterized using two spatial correlation lengths: the shorter correlation length, lS, is within the single cell size, whereas the longer correlation length, lL, is longer than the distance between adjacent cells and corresponds to the intercellular correlation of E. We found that lL decreased significantly when the actin filaments were disrupted or calcium ions were chelated using chemical treatments, and the decreased lL recovered to the value in the control condition after the treatments were washed out. Moreover, we found that lL decreased significantly when E-cadherin was knocked down. These results indicate that the observed long-range correlation of E is not fixed within the jammed state but inherently arises from the formation of a large-scale actin filament structure via E-cadherin-dependent cell-cell junctions.
Collapse
Affiliation(s)
- Yuki Fujii
- Graduate School of Information Science and Technology, Sapporo, Japan
| | - Yuki Ochi
- Graduate School of Information Science and Technology, Sapporo, Japan
| | - Masahiro Tuchiya
- Graduate School of Information Science and Technology, Sapporo, Japan
| | - Mihoko Kajita
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Fujita
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yukitaka Ishimoto
- Department of Machine Intelligence and Systems Engineering, Akita Prefectural University, Yurihonjo City, Japan
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Sapporo, Japan.
| |
Collapse
|
287
|
Sharp TA, Merkel M, Manning ML, Liu AJ. Inferring statistical properties of 3D cell geometry from 2D slices. PLoS One 2019; 14:e0209892. [PMID: 30707703 PMCID: PMC6358273 DOI: 10.1371/journal.pone.0209892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 12/13/2018] [Indexed: 02/01/2023] Open
Abstract
Although cell shape can reflect the mechanical and biochemical properties of the cell and its environment, quantification of 3D cell shapes within 3D tissues remains difficult, typically requiring digital reconstruction from a stack of 2D images. We investigate a simple alternative technique to extract information about the 3D shapes of cells in a tissue; this technique connects the ensemble of 3D shapes in the tissue with the distribution of 2D shapes observed in independent 2D slices. Using cell vertex model geometries, we find that the distribution of 2D shapes allows clear determination of the mean value of a 3D shape index. We analyze the errors that may arise in practice in the estimation of the mean 3D shape index from 2D imagery and find that typically only a few dozen cells in 2D imagery are required to reduce uncertainty below 2%. Even though we developed the method for isotropic animal tissues, we demonstrate it on an anisotropic plant tissue. This framework could also be naturally extended to estimate additional 3D geometric features and quantify their uncertainty in other materials.
Collapse
Affiliation(s)
- Tristan A. Sharp
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Matthias Merkel
- Physics Department, Syracuse University, Syracuse, NY, United States of America
| | - M. Lisa Manning
- Physics Department, Syracuse University, Syracuse, NY, United States of America
- Syracuse Biomaterials Institute, Syracuse, NY, United States of America
| | - Andrea J. Liu
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
288
|
He S, Carman CV, Lee JH, Lan B, Koehler S, Atia L, Park CY, Kim JH, Mitchel JA, Park JA, Butler JP, Lu Q, Fredberg JJ. The tumor suppressor p53 can promote collective cellular migration. PLoS One 2019; 14:e0202065. [PMID: 30707705 PMCID: PMC6358060 DOI: 10.1371/journal.pone.0202065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Loss of function of the tumor suppressor p53 is known to increase the rate of migration of cells transiting the narrow pores of the traditional Boyden chamber assay. Here by contrast we investigate how p53 impacts the rate of cellular migration within a 2D confluent cell layer and a 3D collagen-embedded multicellular spheroid. We use two human carcinoma cell lines, the bladder carcinoma EJ and the colorectal carcinoma HCT116. In the confluent 2-D cell layer, for both EJ and HCT cells the migratory speeds and effective diffusion coefficients for the p53 null cells were significantly smaller than in p53-expressing cells. Compared to p53 expressers, p53-null cells exhibited more organized cortical actin rings together with reduced front-rear cell polarity. Furthermore, loss of p53 caused cells to exert smaller traction forces upon their substrates, and reduced formation of cryptic lamellipodia. In the 3D multicellular spheroid, loss of p53 consistently reduced collective cellular migration into surrounding collagen matrix. As regards the role of p53 in cellular migration, extrapolation from the Boyden chamber assay to other cellular microenvironments is seen to be fraught even in terms of the sign of the effect. Together, these paradoxical results show that the effects of p53 on cellular migration are context-dependent.
Collapse
Affiliation(s)
- Shijie He
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Christopher V. Carman
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jung Hyun Lee
- Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United states of America
| | - Bo Lan
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Stephan Koehler
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Lior Atia
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Chan Young Park
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jae Hun Kim
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jennifer A. Mitchel
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - James P. Butler
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Quan Lu
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jeffrey J. Fredberg
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| |
Collapse
|
289
|
O'Sullivan MJ, Lan B. The Aftermath of Bronchoconstriction. ACTA ACUST UNITED AC 2019; 2:0108031-108036. [PMID: 32328569 DOI: 10.1115/1.4042318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/30/2018] [Indexed: 11/08/2022]
Abstract
Asthma is characterized by chronic airway inflammation, airway remodeling, and excessive constriction of the airway. Detailed investigation exploring inflammation and the role of immune cells has revealed a variety of possible mechanisms by which chronic inflammation drives asthma development. However, the underlying mechanisms of asthma pathogenesis still remain poorly understood. New evidence now suggests that mechanical stimuli that arise during bronchoconstriction may play a critical role in asthma development. In this article, we review the mechanical effect of bronchoconstriction and how these mechanical stresses contribute to airway remodeling independent of inflammation.
Collapse
Affiliation(s)
- Michael J O'Sullivan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 1-G07, Boston, MA 02115
| | - Bo Lan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 1-G07, Boston, MA 02115 e-mail:
| |
Collapse
|
290
|
Kim S, Hilgenfeldt S. A simple landscape of metastable state energies for two-dimensional cellular matter. SOFT MATTER 2019; 15:237-242. [PMID: 30543253 DOI: 10.1039/c8sm01921e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanical behavior of cellular matter in two dimensions can be inferred from geometric information near its energetic ground state. Here it is shown that the much larger set of all metastable state energies is universally described by a systematic expansion in moments of the joint probability distribution of size (area) and topology (number of neighbors). The approach captures bounds to the entire range of metastable state energies and quantitatively identifies any such state. The resulting energy landscape is invariant across different classes of energy functionals, across simulation techniques, and across system polydispersities. The theory also finds a threshold in tissue adhesion beyond which no metastable states are possible. Mechanical properties of cellular matter in biological and technological applications can thus be identified by visual information only.
Collapse
Affiliation(s)
- Sangwoo Kim
- Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, USA.
| | | |
Collapse
|
291
|
Dai B, He L, Zheng L, Fu Y, Wang K, Sui G, Zhang D, Zhuang S, Wang X. Ultrafast cell edge detection by line-scan time-stretch microscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800044. [PMID: 29987909 DOI: 10.1002/jbio.201800044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Ultrafast time-stretch imaging technique recently attracts an increasing interest for applications in cell classification due to high throughput and high sensitivity. A novel imaging modality of time-stretch imaging technique for edge detection is proposed. Edge detection based on the directional derivative is realized using differential detection. As the image processing is mainly implemented in the physical layer, the computation complexity of edge extraction is significantly reduced. An imaging system for edge detection with the scan rate of 77.76 MHz is experimentally demonstrated. Resolution target is first measured to verify the feasibility of the edge extraction. Furthermore, various cells, including red blood cells, lung cancer cells and breast cancer cells, are detected. The edges of cancerous cells present in a completely different form. The imaging system for edge detection would be a good candidate for high-throughput cell classification.
Collapse
Affiliation(s)
- Bo Dai
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Lu He
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaimin Wang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Guodong Sui
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| | - Xu Wang
- The Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
292
|
|
293
|
Abstract
In various physiological processes, the cell collective is organized in a monolayer, such as seen in a simple epithelium. The advances in the understanding of mechanical behavior of the monolayer and its underlying cellular and molecular mechanisms will help to elucidate the properties of cell collectives. In this Review, we discuss recent in vitro studies on monolayer mechanics and their implications on collective dynamics, regulation of monolayer mechanics by physical confinement and geometrical cues and the effect of tissue mechanics on biological processes, such as cell division and extrusion. In particular, we focus on the active nematic property of cell monolayers and the emerging approach to view biological systems in the light of liquid crystal theory. We also highlight the mechanosensing and mechanotransduction mechanisms at the sub-cellular and molecular level that are mediated by the contractile actomyosin cytoskeleton and cell-cell adhesion proteins, such as E-cadherin and α-catenin. To conclude, we argue that, in order to have a holistic understanding of the cellular response to biophysical environments, interdisciplinary approaches and multiple techniques - from large-scale traction force measurements to molecular force protein sensors - must be employed.
Collapse
Affiliation(s)
- Tianchi Chen
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Thuan Beng Saw
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,National University of Singapore, Department of Biomedical Engineering, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583
| | - René-Marc Mège
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, 75205 Paris CEDEX 13, France
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, 75205 Paris CEDEX 13, France
| |
Collapse
|
294
|
Mathur J, Sarker B, Pathak A. Predicting Collective Migration of Cell Populations Defined by Varying Repolarization Dynamics. Biophys J 2018; 115:2474-2485. [PMID: 30527449 PMCID: PMC6302036 DOI: 10.1016/j.bpj.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 01/23/2023] Open
Abstract
Collective migration of heterogeneous cell populations is an essential aspect of fundamental biological processes, including morphogenesis, wound healing, and tumor invasion. Through experiments and modeling, it has been shown that cells attain front-rear polarity, generate forces, and form adhesions to migrate. However, it remains unclear how the ability of individual cells in a population to dynamically repolarize themselves into new directions could regulate the collective response. We present a vertex-based model in which each deformable cell randomly chooses a new polarization direction after every defined time interval, elongates, proportionally generates forces, and causes collective migration. Our simulations predict that cell types that repolarize at longer time intervals attain more elongated shapes, migrate faster, deform the cell sheet, and roughen the leading edge. By imaging collectively migrating epithelial cell monolayers at high temporal resolution, we found longer repolarization intervals and elongated shapes of cells at the leading edge compared to those within the monolayer. Based on these experimental measurements and simulations, we defined aggressive mutant leader cells by long repolarization interval and minimal intercellular contact. The cells with frequent and random repolarization were defined as normal cells. In simulations with uniformly dispersed leader cells in a normal cell population at a 1:10 ratio, the resulting migration and deformation of the heterogeneous cell sheet remained low. However, when the 10% mutant leaders were placed only at the leading edge, we predicted a rise in the migration of an otherwise normal cell sheet. Our model predicts that a repolarization-based definition of leader cells and their placement within a healthy population can generate myriad modes of collective cell migration, which can enhance our understanding of collective cell migration in disease and development.
Collapse
Affiliation(s)
- Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri
| | - Bapi Sarker
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri.
| |
Collapse
|
295
|
|
296
|
Saw TB, Xi W, Ladoux B, Lim CT. Biological Tissues as Active Nematic Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802579. [PMID: 30156334 DOI: 10.1002/adma.201802579] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/11/2018] [Indexed: 05/27/2023]
Abstract
Live tissues can self-organize and be described as active materials composed of cells that generate active stresses through continuous injection of energy. In vitro reconstituted molecular networks, as well as single-cell cytoskeletons show that their filamentous structures can portray nematic liquid crystalline properties and can promote nonequilibrium processes induced by active processes at the microscale. The appearance of collective patterns, the formation of topological singularities, and spontaneous phase transition within the cell cytoskeleton are emergent properties that drive cellular functions. More integrated systems such as tissues have cells that can be seen as coarse-grained active nematic particles and their interaction can dictate many important tissue processes such as epithelial cell extrusion and migration as observed in vitro and in vivo. Here, a brief introduction to the concept of active nematics is provided, and the main focus is on the use of this framework in the systematic study of predominantly 2D tissue architectures and dynamics in vitro. In addition how the nematic state is important in tissue behavior, such as epithelial expansion, tissue homeostasis, and the atherosclerosis disease state, is discussed. Finally, how the nematic organization of cells can be controlled in vitro for tissue engineering purposes is briefly discussed.
Collapse
Affiliation(s)
- Thuan Beng Saw
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore
| | - Wang Xi
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris, France
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, 117411, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, #04-08, Singapore, 117583, Singapore
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, 117411, Singapore
- Biomedical Institute for Global Health, Research and Technology (BIGHEART), National University of Singapore, MD6, 14 Medical Drive, #14-01, Singapore, 117599, Singapore
| |
Collapse
|
297
|
Lee RM, Losert W. Dynamics phenotyping across length and time scales in collective cell migration. Semin Cell Dev Biol 2018; 93:69-76. [PMID: 31429407 DOI: 10.1016/j.semcdb.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 11/29/2022]
Abstract
Processes in collective migration span many length and time scales. In this review, we focus on length scales ranging from tens of microns (single cells) to a few millimeters (cell clusters) and the motion of these cells and cell groups on time scales of minutes to hours. We focus on epithelial cell sheets and metrics of motion developed to measure migration phenotypes in this system. Comparisons between cell motion and fluid flows, facilitated by the popular image analysis technique particle image velocimetry, yield metrics that can be used to study migration across a range of length and time scales. Measuring collective cell migration across these scales provides a complex, quantitative phenotype useful for migration models, in particular those that compare and contrast collective cell migration to movement of particles near a transition to jamming. Contrasting the motion of epithelial cells and the jamming transition illustrates aspects of collective motion that can be attributed to the jammed character of cell clusters, and highlights aspects of collective behavior that likely involve active motility and cell-cell guidance. The application of multiple migration metrics, which span multiple scales of the system, thus allows us to link cell-scale signals and mechanics to collective behavior.
Collapse
Affiliation(s)
- Rachel M Lee
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA; Department of Physics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
298
|
Petrelli I, Digregorio P, Cugliandolo LF, Gonnella G, Suma A. Active dumbbells: Dynamics and morphology in the coexisting region. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:128. [PMID: 30353425 DOI: 10.1140/epje/i2018-11739-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
With the help of molecular dynamics simulations we study an ensemble of active dumbbells in purely repulsive interaction. We derive the phase diagram in the density-activity plane and we characterise the various phases with liquid, hexatic and solid character. The analysis of the structural and dynamical properties, such as enstrophy, mean-square displacement, polarisation, and correlation functions, shows the continuous character of liquid and hexatic phases in the coexisting region when the activity is increased starting from the passive limit.
Collapse
Affiliation(s)
- Isabella Petrelli
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126, Bari, Italy
| | - Pasquale Digregorio
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126, Bari, Italy
| | - Leticia F Cugliandolo
- Sorbonne Université, Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589, 4 Place Jussieu, 75252, Paris Cedex 05, France
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126, Bari, Italy
| | - Antonio Suma
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136, Trieste, Italy.
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, 19122, Philadelphia, PA, USA.
| |
Collapse
|
299
|
Mierke CT, Sauer F, Grosser S, Puder S, Fischer T, Käs JA. The two faces of enhanced stroma: Stroma acts as a tumor promoter and a steric obstacle. NMR IN BIOMEDICINE 2018; 31:e3831. [PMID: 29215759 DOI: 10.1002/nbm.3831] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
In addition to genetic, morphological and biochemical alterations in cells, a key feature of the malignant progression of cancer is the stroma, including cancer cell motility as well as the emergence of metastases. Our current knowledge with regard to the biophysically driven experimental approaches of cancer progression indicates that mechanical aberrations are major contributors to the malignant progression of cancer. In particular, the mechanical probing of the stroma is of great interest. However, the impact of the tumor stroma on cellular motility, and hence the metastatic cascade leading to the malignant progression of cancer, is controversial as there are two different and opposing effects within the stroma. On the one hand, the stroma can promote and enhance the proliferation, survival and migration of cancer cells through mechanotransduction processes evoked by fiber alignment as a result of increased stroma rigidity. This enables all types of cancer to overcome restrictive biological capabilities. On the other hand, as a result of its structural constraints, the stroma acts as a steric obstacle for cancer cell motility in dense three-dimensional extracellular matrices, when the pore size is smaller than the cell's nucleus. The mechanical properties of the stroma, such as the tissue matrix stiffness and the entire architectural network of the stroma, are the major players in providing the optimal environment for cancer cell migration. Thus, biophysical methods determining the mechanical properties of the stroma, such as magnetic resonance elastography, are critical for the diagnosis and prediction of early cancer stages. Fibrogenesis and cancer are tightly connected, as there is an elevated risk of cancer on cystic fibrosis or, subsequently, cirrhosis. This also applies to the subsequent metastatic process.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Frank Sauer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| | - Steffen Grosser
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| | - Stefanie Puder
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Tony Fischer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Josef Alfons Käs
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
300
|
Tetley RJ, Mao Y. The same but different: cell intercalation as a driver of tissue deformation and fluidity. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0328. [PMID: 30249777 DOI: 10.1098/rstb.2017.0328] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2018] [Indexed: 12/22/2022] Open
Abstract
The ability of cells to exchange neighbours, termed intercalation, is a key feature of epithelial tissues. Intercalation is predominantly associated with tissue deformations that drive morphogenesis. More recently, however, intercalation that is not associated with large-scale tissue deformations has been described both during animal development and in mature epithelial tissues. This latter form of intercalation appears to contribute to an emerging phenomenon that we refer to as tissue fluidity-the ability of cells to exchange neighbours without changing the overall dimensions of the tissue. Here, we discuss the contribution of junctional dynamics to intercalation governing both morphogenesis and tissue fluidity. In particular, we focus on the relative roles of junctional contractility and cell-cell adhesion as the driving forces behind intercalation. These two contributors to junctional mechanics can be used to simulate cellular intercalation in mechanical computational models, to test how junctional cell behaviours might regulate tissue fluidity and contribute to the maintenance of tissue integrity and the onset of disease.This article is part of the Theo Murphy meeting issue 'Mechanics of development'.
Collapse
Affiliation(s)
- Robert J Tetley
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Yanlan Mao
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London, UK.,College of Information and Control, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, People's Republic of China
| |
Collapse
|