251
|
Carlsen RW, Sitti M. Bio-hybrid cell-based actuators for microsystems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3831-51. [PMID: 24895215 DOI: 10.1002/smll.201400384] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/10/2014] [Indexed: 05/25/2023]
Abstract
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.
Collapse
Affiliation(s)
- Rika Wright Carlsen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
252
|
Deng W, Goldys EM, Farnham MMJ, Pilowsky PM. Optogenetics, the intersection between physics and neuroscience: light stimulation of neurons in physiological conditions. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1292-302. [PMID: 25274906 DOI: 10.1152/ajpregu.00072.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuronal stimulation by light is a novel approach in the emerging field of optogenetics, where genetic engineering is used to introduce light-activated channels. However, light is also capable of stimulating neurons even in the absence of genetic modifications through a range of physical and biological mechanisms. As a result, rigorous design of optogenetic experiments needs to take note of alternative and parallel effects of light illumination of neuronal tissues. Thus all matters relating to light penetration are critical to the development of studies using light-activated proteins. This paper discusses ways to quantify light, light penetration in tissue, as well as light stimulation of neurons in physiological conditions. We also describe the direct effect of light on neurons investigated at different sites.
Collapse
Affiliation(s)
- Wei Deng
- Physics and Astronomy Department, Macquarie University, Sydney, Australia; and
| | - Ewa M Goldys
- Physics and Astronomy Department, Macquarie University, Sydney, Australia; and
| | | | - Paul M Pilowsky
- Heart Research Institute and Sydney University, Sydney, Australia
| |
Collapse
|
253
|
Ambrosi CM, Entcheva E. Optogenetics' promise: pacing and cardioversion by light? Future Cardiol 2014; 10:1-4. [PMID: 24344652 DOI: 10.2217/fca.13.89] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Christina M Ambrosi
- Department of Biomedical Engineering, Stony Brook University, BST6-120B, Stony Brook, NY 11794-8661, USA
| | | |
Collapse
|
254
|
Optical mapping of optogenetically shaped cardiac action potentials. Sci Rep 2014; 4:6125. [PMID: 25135113 PMCID: PMC4137261 DOI: 10.1038/srep06125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/30/2014] [Indexed: 12/19/2022] Open
Abstract
Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation.
Collapse
|
255
|
Yoon J, Choi M, Ku T, Choi WJ, Choi C. Optical induction of muscle contraction at the tissue scale through intrinsic cellular amplifiers. JOURNAL OF BIOPHOTONICS 2014; 7:597-606. [PMID: 23650149 DOI: 10.1002/jbio.201200246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/03/2013] [Accepted: 03/03/2013] [Indexed: 06/02/2023]
Abstract
The smooth muscle cell is the principal component responsible for involuntary control of visceral organs, including vascular tonicity, secretion, and sphincter regulation. It is known that the neurotransmitters released from nerve endings increase the intracellular Ca(2+) level in smooth muscle cells followed by muscle contraction. We herein report that femtosecond laser pulses focused on the diffraction-limited volume can induce intracellular Ca(2+) increases in the irradiated smooth muscle cell without neurotransmitters, and locally increased intracellular Ca(2+) levels are amplified by calcium-induced calcium-releasing mechanisms through the ryanodine receptor, a Ca(2+) channel of the endoplasmic reticulum. The laser-induced Ca(2+) increases propagate to adjacent cells through gap junctions. Thus, ultrashort-pulsed lasers can induce smooth muscle contraction by controlling Ca(2+), even with optical stimulation of the diffraction-limited volume. This optical method, which leads to reversible and reproducible muscle contraction, can be used in research into muscle dynamics, neuromuscular disease treatment, and nanorobot control.
Collapse
Affiliation(s)
- Jonghee Yoon
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea; KAIST Institute for Optical Science and Technology, KAIST, Daejeon, Korea
| | | | | | | | | |
Collapse
|
256
|
Klimas A, Entcheva E. Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:080701. [PMID: 25117076 PMCID: PMC4161000 DOI: 10.1117/1.jbo.19.8.080701] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/17/2014] [Indexed: 05/13/2023]
Abstract
The ability to perform precise, spatially localized actuation and measurements of electrical activity in the heart is crucial in understanding cardiac electrophysiology and devising new therapeutic solutions for control of cardiac arrhythmias. Current cardiac imaging techniques (i.e. optical mapping) employ voltage- or calcium-sensitive fluorescent dyes to visualize the electrical signal propagation through cardiac syncytium in vitro or in situ with very high-spatiotemporal resolution. The extension of optogenetics into the cardiac field, where cardiac tissue is genetically altered to express light-sensitive ion channels allowing electrical activity to be elicited or suppressed in a precise cell-specific way, has opened the possibility for all-optical interrogation of cardiac electrophysiology. In vivo application of cardiac optogenetics faces multiple challenges and necessitates suitable optical systems employing fiber optics to actuate and sense electrical signals. In this technical perspective, we present a compendium of clinically relevant access routes to different parts of the cardiac electrical conduction system based on currently employed catheter imaging systems and determine the quantitative size constraints for endoscopic cardiac optogenetics. We discuss the relevant technical advancements in microendoscopy, cardiac imaging, and optogenetics and outline the strategies for combining them to create a portable, miniaturized fiber-based system for all-optical interrogation of cardiac electrophysiology in vivo.
Collapse
Affiliation(s)
- Aleksandra Klimas
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United States
| | - Emilia Entcheva
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United States
- Stony Brook University, Department of Physiology and Biophysics, Stony Brook, New York 11794, United States
- Stony Brook University, Institute for Molecular Cardiology, Stony Brook, New York 11794, United States
- Address all correspondence to: Emilia Entcheva, E-mail:
| |
Collapse
|
257
|
Bingen BO, Engels MC, Schalij MJ, Jangsangthong W, Neshati Z, Feola I, Ypey DL, Askar SFA, Panfilov AV, Pijnappels DA, de Vries AAF. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovasc Res 2014; 104:194-205. [PMID: 25082848 DOI: 10.1093/cvr/cvu179] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common cardiac arrhythmia and often involves reentrant electrical activation (e.g. spiral waves). Drug therapy for AF can have serious side effects including proarrhythmia, while electrical shock therapy is associated with discomfort and tissue damage. Hypothetically, forced expression and subsequent activation of light-gated cation channels in cardiomyocytes might deliver a depolarizing force sufficient for defibrillation, thereby circumventing the aforementioned drawbacks. We therefore investigated the feasibility of light-induced spiral wave termination through cardiac optogenetics. METHODS AND RESULTS Neonatal rat atrial cardiomyocyte monolayers were transduced with lentiviral vectors encoding light-activated Ca(2+)-translocating channelrhodopsin (CatCh; LV.CatCh∼eYFP↑) or eYFP (LV.eYFP↑) as control, and burst-paced to induce spiral waves rotating around functional cores. Effects of CatCh activation on reentry were investigated by optical and multi-electrode array (MEA) mapping. Western blot analyses and immunocytology confirmed transgene expression. Brief blue light pulses (10 ms/470 nm) triggered action potentials only in LV.CatCh∼eYFP↑-transduced cultures, confirming functional CatCh-mediated current. Prolonged light pulses (500 ms) resulted in reentry termination in 100% of LV.CatCh∼eYFP↑-transduced cultures (n = 31) vs. 0% of LV.eYFP↑-transduced cultures (n = 11). Here, CatCh activation caused uniform depolarization, thereby decreasing overall excitability (MEA peak-to-peak amplitude decreased 251.3 ± 217.1 vs. 9.2 ± 9.5 μV in controls). Consequently, functional coresize increased and phase singularities (PSs) drifted, leading to reentry termination by PS-PS or PS-boundary collisions. CONCLUSION This study shows that spiral waves in atrial cardiomyocyte monolayers can be terminated effectively by a light-induced depolarizing current, produced by the arrhythmogenic substrate itself, upon optogenetic engineering. These results provide proof-of-concept for shockless defibrillation.
Collapse
Affiliation(s)
- Brian O Bingen
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, the Netherlands
| | - Marc C Engels
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, the Netherlands
| | - Martin J Schalij
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, the Netherlands
| | - Wanchana Jangsangthong
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, the Netherlands
| | - Zeinab Neshati
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, the Netherlands
| | - Iolanda Feola
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, the Netherlands
| | - Dirk L Ypey
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, the Netherlands
| | - Saïd F A Askar
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, the Netherlands
| | | | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, the Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, the Netherlands
| |
Collapse
|
258
|
Ambrosi CM, Klimas A, Yu J, Entcheva E. Cardiac applications of optogenetics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:294-304. [PMID: 25035999 DOI: 10.1016/j.pbiomolbio.2014.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 01/16/2023]
Abstract
In complex multicellular systems, such as the brain or the heart, the ability to selectively perturb and observe the response of individual components at the cellular level and with millisecond resolution in time, is essential for mechanistic understanding of function. Optogenetics uses genetic encoding of light sensitivity (by the expression of microbial opsins) to provide such capabilities for manipulation, recording, and control by light with cell specificity and high spatiotemporal resolution. As an optical approach, it is inherently scalable for remote and parallel interrogation of biological function at the tissue level; with implantable miniaturized devices, the technique is uniquely suitable for in vivo tracking of function, as illustrated by numerous applications in the brain. Its expansion into the cardiac area has been slow. Here, using examples from published research and original data, we focus on optogenetics applications to cardiac electrophysiology, specifically dealing with the ability to manipulate membrane voltage by light with implications for cardiac pacing, cardioversion, cell communication, and arrhythmia research, in general. We discuss gene and cell delivery methods of inscribing light sensitivity in cardiac tissue, functionality of the light-sensitive ion channels within different types of cardiac cells, utility in probing electrical coupling between different cell types, approaches and design solutions to all-optical electrophysiology by the combination of optogenetic sensors and actuators, and specific challenges in moving towards in vivo cardiac optogenetics.
Collapse
Affiliation(s)
- Christina M Ambrosi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Aleksandra Klimas
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Jinzhu Yu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-8661, USA.
| |
Collapse
|
259
|
Kaestner L, Scholz A, Tian Q, Ruppenthal S, Tabellion W, Wiesen K, Katus HA, Müller OJ, Kotlikoff MI, Lipp P. Genetically encoded Ca2+ indicators in cardiac myocytes. Circ Res 2014; 114:1623-39. [PMID: 24812351 DOI: 10.1161/circresaha.114.303475] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetically encoded Ca(2+) indicators constitute a powerful set of tools to investigate functional aspects of Ca(2+) signaling in isolated cardiomyocytes, cardiac tissue, and whole hearts. Here, we provide an overview of the concepts, experiences, state of the art, and ongoing developments in the use of genetically encoded Ca(2+) indicators for cardiac cells and heart tissue. This review is supplemented with in vivo viral gene transfer experiments and comparisons of available genetically encoded Ca(2+) indicators with each other and with the small molecule dye Fura-2. In the context of cardiac myocytes, we provide guidelines for selecting a genetically encoded Ca(2+) indicator. For future developments, we discuss improvements of a broad range of properties, including photophysical properties such as spectral spread and biocompatibility, as well as cellular and in vivo applications.
Collapse
Affiliation(s)
- Lars Kaestner
- From the Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, School of Medicine, Saarland University, Homburg-Saar, Germany (L.K., A.S., Q.T., S.R., W.T., K.W., P.L.); Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany (H.A.K., O.J.M.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.); and Biomedical Sciences Department, College of Veterinary Medicine, Cornell University, Ithaca, NY (M.I.K.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
How to control proteins with light in living systems. Nat Chem Biol 2014; 10:533-41. [DOI: 10.1038/nchembio.1534] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/21/2014] [Indexed: 11/08/2022]
|
261
|
Entcheva E. Fiat lux in understanding cardiac pacing, resynchronization and signalling by way of optogenetics. Cardiovasc Res 2014; 102:342-3. [PMID: 24760549 DOI: 10.1093/cvr/cvu109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Emilia Entcheva
- Department of Biomedical Engineering, Stony Brook University, Stony Brook 11790, NY, USA
| |
Collapse
|
262
|
A comprehensive multiscale framework for simulating optogenetics in the heart. Nat Commun 2014; 4:2370. [PMID: 23982300 PMCID: PMC3838435 DOI: 10.1038/ncomms3370] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/26/2013] [Indexed: 02/05/2023] Open
Abstract
Optogenetics has emerged as an alternative method for electrical control of the heart, where illumination is used to elicit a bioelectric response in tissue modified to express photosensitive proteins (opsins). This technology promises to enable evocation of spatiotemporally precise responses in targeted cells or tissues, thus creating new possibilities for safe and effective therapeutic approaches to ameliorate cardiac function. Here, we present a comprehensive framework for multi-scale modelling of cardiac optogenetics, allowing both mechanistic examination of optical control and exploration of potential therapeutic applications. The framework incorporates accurate representations of opsin channel kinetics and delivery modes, spatial distribution of photosensitive cells, and tissue illumination constraints, making possible the prediction of emergent behaviour resulting from interactions at sub-organ scales. We apply this framework to explore how optogenetic delivery characteristics determine energy requirements for optical stimulation and to identify cardiac structures that are potential pacemaking targets with low optical excitation threshold.
Collapse
|
263
|
Wang YT, Gu S, Ma P, Watanabe M, Rollins AM, Jenkins MW. Optical stimulation enables paced electrophysiological studies in embryonic hearts. BIOMEDICAL OPTICS EXPRESS 2014; 5:1000-13. [PMID: 24761284 PMCID: PMC3985989 DOI: 10.1364/boe.5.001000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/13/2014] [Accepted: 02/21/2014] [Indexed: 05/11/2023]
Abstract
Cardiac electrophysiology plays a critical role in the development and function of the heart. Studies of early embryonic electrical activity have lacked a viable point stimulation technique to pace in vitro samples. Here, optical pacing by high-precision infrared stimulation is used to pace excised embryonic hearts, allowing electrophysiological parameters to be quantified during pacing at varying rates with optical mapping. Combined optical pacing and optical mapping enables electrophysiological studies in embryos under more physiological conditions and at varying heart rates, allowing detection of abnormal conduction and comparisons between normal and pathological electrical activity during development in various models.
Collapse
Affiliation(s)
- Yves T. Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44120, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44120, USA
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44120, USA
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44120, USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44120, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44120, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44120, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44120, USA
| |
Collapse
|
264
|
Biomedically relevant circuit-design strategies in mammalian synthetic biology. Mol Syst Biol 2014; 9:691. [PMID: 24061539 PMCID: PMC3792348 DOI: 10.1038/msb.2013.48] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 08/07/2013] [Indexed: 12/24/2022] Open
Abstract
The development and progress in synthetic biology has been remarkable. Although still in its infancy, synthetic biology has achieved much during the past decade. Improvements in genetic circuit design have increased the potential for clinical applicability of synthetic biology research. What began as simple transcriptional gene switches has rapidly developed into a variety of complex regulatory circuits based on the transcriptional, translational and post-translational regulation. Instead of compounds with potential pharmacologic side effects, the inducer molecules now used are metabolites of the human body and even members of native cell signaling pathways. In this review, we address recent progress in mammalian synthetic biology circuit design and focus on how novel designs push synthetic biology toward clinical implementation. Groundbreaking research on the implementation of optogenetics and intercellular communications is addressed, as particularly optogenetics provides unprecedented opportunities for clinical application. Along with an increase in synthetic network complexity, multicellular systems are now being used to provide a platform for next-generation circuit design.
Collapse
|
265
|
Beiert T, Bruegmann T, Sasse P. Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes. Cardiovasc Res 2014; 102:507-16. [PMID: 24576953 DOI: 10.1093/cvr/cvu046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Investigation of Gq signalling with pharmacological agonists of Gq-coupled receptors lacks spatio-temporal precision. The aim of this study was to establish melanopsin, a light-sensitive Gq-coupled receptor, as a new tool for the investigation of spatial and temporal effects of Gq stimulation on pacemaking in cardiomyocytes at an early developmental stage. METHODS AND RESULTS A vector for ubiquitous expression of melanopsin was tested in HEK293FT cells, which showed light-induced production of inositol-1,4,5-trisphosphate and elevation of intracellular Ca(2+) concentration. Mouse embryonic stem cells were stably transfected with this plasmid and differentiated into spontaneously beating embryoid bodies (EBs). Cardiomyocytes within EBs showed melanopsin expression and illumination (60 s, 308.5 nW/mm(2), 470 nm) of EBs increased beating rate within 10.2 ± 1.7 s to 317.1 ± 16.3% of baseline frequency. Illumination as short as 5 s was sufficient for generating the maximal frequency response. After termination of illumination, baseline frequency was reached with a decay constant of 27.1 ± 2.5 s. The light-induced acceleration of beating frequency showed a sigmoid dependence on light intensity with a half maximal effective light intensity of 41.7 nW/mm(2). Interestingly, EBs showed a high rate of irregular contractions after termination of high-intensity illumination. Local Gq activation by illumination of a small region in a functional syncytium of cardiomyocytes led to pacemaker activity within the illuminated area. CONCLUSIONS Light-induced Gq activation in melanopsin-expressing cardiomyocytes increases beating rate and generates local pacemaker activity. We propose that melanopsin is a powerful optogenetic tool for the investigation of spatial and temporal aspects of Gq signalling in cardiovascular research.
Collapse
Affiliation(s)
- Thomas Beiert
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, Bonn 53105, Germany
| | - Tobias Bruegmann
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, Bonn 53105, Germany
| | - Philipp Sasse
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, Bonn 53105, Germany
| |
Collapse
|
266
|
Chan V, Asada HH, Bashir R. Utilization and control of bioactuators across multiple length scales. LAB ON A CHIP 2014; 14:653-670. [PMID: 24345906 DOI: 10.1039/c3lc50989c] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this review, we summarize the recent developments in the emerging field of bioactuators across a multitude of length scales. First, we discuss the use and control of biomolecules as nanoscale actuators. Molecular motors, such as DNA, kinesin, myosin, and F1-ATPase, have been shown to exert forces in the range between 1 pN to 45 pN. Second, we discuss the use and control of single and small clusters of cells to power microscale devices. Microorganisms, such as flagellated bacteria, protozoa, and algae, can naturally swim at speeds between 20 μm s(-1) to 2 mm s(-1) and produce thrust forces between 0.3 pN to 200 pN. Individual and clustered mammalian cells, such as cardiac and skeletal cells, can produce even higher contractile forces between 80 nN to 3.5 μN. Finally, we discuss the use and control of 2D- and 3D-assembled muscle tissues and muscle tissue explants as bioactuators to power devices. Depending on the size, composition, and organization of these hierarchical tissue constructs, contractile forces have been demonstrated to produce between 25 μN to 1.18 mN.
Collapse
Affiliation(s)
- Vincent Chan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
267
|
Nussinovitch U, Shinnawi R, Gepstein L. Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins. Cardiovasc Res 2014; 102:176-87. [PMID: 24518144 DOI: 10.1093/cvr/cvu037] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Optogenetics approaches, utilizing light-sensitive proteins, have emerged as unique experimental paradigms to modulate neuronal excitability. We aimed to evaluate whether a similar strategy could be used to control cardiac-tissue excitability. METHODS AND RESULTS A combined cell and gene therapy strategy was developed in which fibroblasts were transfected to express the light-activated depolarizing channel Channelrhodopsin-2 (ChR2). Patch-clamp studies confirmed the development of a robust inward current in the engineered fibroblasts following monochromatic blue-light exposure. The engineered cells were co-cultured with neonatal rat cardiomyocytes (or human embryonic stem cell-derived cardiomyocytes) and studied using a multielectrode array mapping technique. These studies revealed the ability of the ChR2-fibroblasts to electrically couple and pace the cardiomyocyte cultures at varying frequencies in response to blue-light flashes. Activation mapping pinpointed the source of this electrical activity to the engineered cells. Similarly, diffuse seeding of the ChR2-fibroblasts allowed multisite optogenetics pacing of the co-cultures, significantly shortening their electrical activation time and synchronizing contraction. Next, optogenetics pacing in an in vitro model of conduction block allowed the resynchronization of the tissue's electrical activity. Finally, the ChR2-fibroblasts were transfected to also express the light-sensitive hyperpolarizing proton pump Archaerhodopsin-T (Arch-T). Seeding of the ChR2/ArchT-fibroblasts allowed to either optogentically pace the cultures (in response to blue-light flashes) or completely suppress the cultures' electrical activity (following continuous illumination with 624 nm monochromatic light, activating ArchT). CONCLUSIONS The results of this proof-of-concept study highlight the unique potential of optogenetics for future biological pacemaking and resynchronization therapy applications and for the development of novel anti-arrhythmic strategies.
Collapse
Affiliation(s)
- Udi Nussinovitch
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine; the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, PO Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
268
|
Abstract
Optogenetics, the use of light to stimulate or inhibit neural circuits via viral transduction of protein channels, has emerged as a possible method of treating epilepsy. By introducing viral vectors carrying algal-derived cation or anion channels, known as opsins, neurons that initiate or propagate seizures may be silenced. To date, studies using this technique have been performed in animal models, and current efforts are moving toward more sophisticated nonhuman primate models. In this paper, the authors present a brief overview of the development of optogenetics and review recent studies investigating optogenetic modification of circuits involved in seizures. Further developments in the field are explored, with an emphasis on how optogenetics may influence future neurosurgical interventions.
Collapse
Affiliation(s)
- J Nicole Bentley
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
269
|
Abstract
Optogenetics is an emerging technology for the manipulation and control of excitable tissues, such as the brain and heart. As this technique requires the genetic modification of cells in order to inscribe light sensitivity, for cardiac applications, here we describe the process through which neonatal rat ventricular myocytes are virally infected in vitro with channelrhodopsin-2 (ChR2). We also describe in detail the procedure for quantitatively determining the optimal viral dosage, including instructions for patterning gene expression in multicellular cardiomyocyte preparations (cardiac syncytia) to simulate potential in vivo transgene distributions. Finally, we address optical actuation of ChR2-transduced cells and means to measure their functional response to light.
Collapse
|
270
|
Affiliation(s)
- Michael I Kotlikoff
- College of Veterinary Medicine, Cornell University, S2-005 Schurman Hall, Ithaca, NY 14853-6401, USA
| |
Collapse
|
271
|
Boyle PM, Entcheva E, Trayanova NA. See the light: can optogenetics restore healthy heartbeats? And, if it can, is it really worth the effort? Expert Rev Cardiovasc Ther 2013; 12:17-20. [PMID: 24308809 DOI: 10.1586/14779072.2014.864951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cardiac optogenetics is an exciting new methodology in which light-sensitive ion channels are expressed in heart tissue to enable optical control of bioelectricity. This technology has the potential to open new avenues for safely and effectively treating rhythm disorders in the heart with gentle beams of light. Recently, we developed a comprehensive framework for modeling cardiac optogenetics. Simulations conducted in this platform will provide insights to guide in vitro investigation and steer the development of therapeutic applications - these are the first steps toward clinical translation. In this editorial, we review literature relevant to light-sensitive protein delivery and intracardiac illumination to provide a holistic feasibility assessment for optogenetics-based arrhythmia termination therapy. We then draw on examples from computational work to show that the optical control paradigm has undeniable advantages that cannot be attained with conventional electrotherapy. Hence, we argue that cardiac optogenetics is more than a flashy substitute for current approaches.
Collapse
Affiliation(s)
- Patrick M Boyle
- Department of Biomedical Engineering, Johns Hopkins University, Institute for Computational Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
272
|
Abstract
In the past decade, optical mapping provided crucial mechanistic insight into electromechanical function and the mechanism of ventricular fibrillation. Therefore, to date, optical mapping dominates experimental cardiac electrophysiology. The first cardiac measurements involving optics were done in the early 1900s using the fast cinematograph that later evolved into methods for high-resolution activation and repolarization mapping and stimulation of specific cardiac cell types. The field of "optocardiography," therefore, emerged as the use of light for recording or interfering with cardiac physiology. In this review, we discuss how optocardiography developed into the dominant research technique in experimental cardiology. Furthermore, we envision how optocardiographic methods can be used in clinical cardiology.
Collapse
|
273
|
Williams JC, Xu J, Lu Z, Klimas A, Chen X, Ambrosi CM, Cohen IS, Entcheva E. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model. PLoS Comput Biol 2013; 9:e1003220. [PMID: 24068903 PMCID: PMC3772068 DOI: 10.1371/journal.pcbi.1003220] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 07/28/2013] [Indexed: 11/18/2022] Open
Abstract
Channelrhodospin-2 (ChR2), a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues. Focusing on one of the most widely used ChR2 mutants (H134R) with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1) accurate inward rectification in the current-voltage response across irradiances; 2) empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation); and 3) accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10) were derived and model kinetics was adjusted to physiological temperatures. Using optical action potential clamp, we experimentally validated model-predicted ChR2 behavior in guinea pig ventricular myocytes. The model was then incorporated in a variety of cardiac myocytes, including human ventricular, atrial and Purkinje cell models. We demonstrate the ability of ChR2 to trigger action potentials in human cardiomyocytes at relatively low light levels, as well as the differential response of these cells to light, with the Purkinje cells being most easily excitable and ventricular cells requiring the highest irradiance at all pulse durations. This new experimentally-validated ChR2 model will facilitate virtual experimentation in neural and cardiac optogenetics at the cell and organ level and provide guidance for the development of in vivo tools. Optogenetics, the use of light-sensitive ion channels for stimulation of mammalian cells and tissues, offers specificity and superior precision of control compared to traditional chemical or electrical means of stimulation. In particular, Channelrhodospin-2 (ChR2), a light-sensitive ion channel, originally derived from algae, has found wide-spread application in neuroscience for controlled stimulation of different brain regions. More recently, this work was extended to other organs, including the heart, where it opens the possibility for a new generation of optical pacemakers. The development of new optogenetic tools that allow for more efficient optical stimulation can be guided by computational prediction of the response of different cells and tissues to light. In this report, we provide a new computational model of ChR2 that was empirically validated and can be inserted into different cell types – neurons or heart cells – for virtual optical stimulation and prediction of optimal light-delivery arrangements, minimum energy needs etc. Overall, virtual optogenetics can accelerate the development of new optical stimulation tools for better understanding and control of brain and heart function.
Collapse
Affiliation(s)
- John C. Williams
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Jianjin Xu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhongju Lu
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York, United States of America
| | - Aleksandra Klimas
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Xuxin Chen
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Christina M. Ambrosi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Ira S. Cohen
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York, United States of America
- Institute for Molecular Cardiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Emilia Entcheva
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York, United States of America
- Institute for Molecular Cardiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
274
|
Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 2013; 16:1499-508. [PMID: 23995068 PMCID: PMC3793847 DOI: 10.1038/nn.3502] [Citation(s) in RCA: 539] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/29/2013] [Indexed: 11/09/2022]
Abstract
Channelrhodopsins (ChRs) are used to optogenetically depolarize neurons. We engineered a variant of ChR, denoted red-activatable ChR (ReaChR), that is optimally excited with orange to red light (λ ∼590-630 nm) and offers improved membrane trafficking, higher photocurrents and faster kinetics compared to existing red-shifted ChRs. Red light is less scattered by tissue and is absorbed less by blood than the blue to green wavelengths that are required by other ChR variants. We used ReaChR expressed in the vibrissa motor cortex to drive spiking and vibrissa motion in awake mice when excited with red light through intact skull. Precise vibrissa movements were evoked by expressing ReaChR in the facial motor nucleus in the brainstem and illumination with red light through the external auditory canal. Thus, ReaChR enables transcranial optical activation of neurons in deep brain structures without the need to surgically thin the skull, form a transcranial window or implant optical fibers.
Collapse
Affiliation(s)
- John Y Lin
- 1] Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. [2]
| | | | | | | | | |
Collapse
|
275
|
Abilez OJ. Cardiac optogenetics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:1386-9. [PMID: 23366158 DOI: 10.1109/embc.2012.6346197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For therapies based on human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) to be effective, arrhythmias must be avoided. Towards achieving this goal, light-activated channelrhodopsin-2 (ChR2), a cation channel activated with 480 nm light, and a first generation halorhodopsin (NpHR1.0), an anion pump activated by 580 nm light, have been introduced into hiPSC. By using in vitro approaches, hiPSC-CM are able to be optogenetically activated and inhibited. ChR2 and NpHR1.0 are stably transduced into undifferentiated hiPSC via a lentiviral vector. Via directed differentiation, both wildtype hiPSC-CM (hiPSC(WT)-CM) and hiPSC(ChR2/NpHR)-CM are produced and subjected to both electrical and optical stimulation. Both hiPSC(WT)-CM and hiPSC(ChR2/NpHR)-CM respond to traditional electrical stimulation and produce similar contractility features but only hiPSC(ChR2/NpHR)-CM can be synchronized and inhibited by optical stimulation. Here it is shown that light sensitive proteins can enable in vitro optical control of hiPSC-CM. For future therapy, in vivo optical stimulation could allow precise and specific synchronization of implanted hiPSC-CM with patient cardiac rates and rhythms.
Collapse
Affiliation(s)
- Oscar J Abilez
- Bio-X Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
276
|
Papagiakoumou E. Optical developments for optogenetics. Biol Cell 2013; 105:443-64. [PMID: 23782010 DOI: 10.1111/boc.201200087] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 06/12/2013] [Indexed: 12/11/2022]
Abstract
Brain intricacies and the difficulty that scientists encounter in revealing its function with standard approaches such as electrical stimulation of neurons have led to the exploration of new tools that enable the study of neural circuits in a remote and non-invasive way. To this end, optogenetics has initialised a revolution for neuroscience in the last decade by enabling simultaneous monitoring and stimulation of specific neuronal populations in intact brain preparations through genetically targeted expression of light sensitive proteins and molecular photoswitches. In addition to ongoing molecular probe development and optimisation, novel optical techniques hold immense potential to amplify and diversify the utility of optogenetic methods. Importantly, by improving the spatio-temporal resolution of light stimulation, neural circuits can be photoactivated in patterns mimicking endogenous physiological processes. The following synopsis addresses the possibilities and limitations of optical stimulation methods applied to and developed for activation of neuronal optogenetic tools.
Collapse
Affiliation(s)
- Eirini Papagiakoumou
- Wavefront-Engineering Microscopy Group, Neurophysiology and New Microscopies Laboratory, CNRS UMR 8154, Inserm S603, Paris Descartes University, 75270 Paris Cedex 06, France
| |
Collapse
|
277
|
Feng Z, Zhang W, Xu J, Gauron C, Ducos B, Vriz S, Volovitch M, Jullien L, Weiss S, Bensimon D. Optical control and study of biological processes at the single-cell level in a live organism. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:072601. [PMID: 23764902 PMCID: PMC3736146 DOI: 10.1088/0034-4885/76/7/072601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Living organisms are made of cells that are capable of responding to external signals by modifying their internal state and subsequently their external environment. Revealing and understanding the spatio-temporal dynamics of these complex interaction networks is the subject of a field known as systems biology. To investigate these interactions (a necessary step before understanding or modelling them) one needs to develop means to control or interfere spatially and temporally with these processes and to monitor their response on a fast timescale (< minute) and with single-cell resolution. In 2012, an EMBO workshop on 'single-cell physiology' (organized by some of us) was held in Paris to discuss those issues in the light of recent developments that allow for precise spatio-temporal perturbations and observations. This review will be largely based on the investigations reported there. We will first present a non-exhaustive list of examples of cellular interactions and developmental pathways that could benefit from these new approaches. We will review some of the novel tools that have been developed for the observation of cellular activity and then discuss the recent breakthroughs in optical super-resolution microscopy that allow for optical observations beyond the diffraction limit. We will review the various means to photo-control the activity of biomolecules, which allow for local perturbations of physiological processes. We will end up this review with a report on the current status of optogenetics: the use of photo-sensitive DNA-encoded proteins as sensitive reporters and efficient actuators to perturb and monitor physiological processes.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Molecular, Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Liske H, Towne C, Anikeeva P, Zhao S, Feng G, Deisseroth K, Delp S. Optical inhibition of motor nerve and muscle activity in vivo. Muscle Nerve 2013; 47:916-21. [PMID: 23629741 DOI: 10.1002/mus.23696] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2012] [Indexed: 02/01/2023]
Abstract
INTRODUCTION There is no therapeutic approach that provides precise and rapidly reversible inhibition of motor nerve and muscle activity for treatment of spastic hypertonia. METHODS We used optogenetics to demonstrate precise and rapidly reversible light-mediated inhibition of motor nerve and muscle activity in vivo in transgenic Thy1::eNpHR2.0 mice. RESULTS We found optical inhibition of motor nerve and muscle activity to be effective at all muscle force amplitudes and determined that muscle activity can be modulated by changing light pulse duration and light power density. CONCLUSIONS This demonstration of optical inhibition of motor nerves is an important advancement toward novel optogenetics-based therapies for spastic hypertonia.
Collapse
Affiliation(s)
- Holly Liske
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
279
|
Kirkton RD, Bursac N. Genetic engineering of somatic cells to study and improve cardiac function. Europace 2013; 14 Suppl 5:v40-v49. [PMID: 23104914 DOI: 10.1093/europace/eus269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS To demonstrate the utility of genetically engineered excitable cells for studies of basic electrophysiology and cardiac cell therapy. METHODS AND RESULTS 'Zig-zag' networks of neonatal rat ventricular myocytes (NRVMs) were micropatterned onto thin elastomeric films to mimic the slow action potential (AP) conduction found in fibrotic myocardium. Addition of genetically engineered excitable human embryonic kidney cells (HEK-293 cells) ('Ex-293' cells stably expressing Kir2.1, Na(v)1.5, and Cx43 channels) increased both cardiac conduction velocity by 370% and twitch force amplitude by 64%. Furthermore, we stably expressed mutant Na(v)1.5 [A1924T (fast sodium channel mutant (substitution of alanine by threonine at amino acid 1924)] channels with hyperpolarized steady-state activation and showed that, despite a 71.6% reduction in peak I(Na), these cells propagated APs at the same velocity as the wild-type Na(v)1.5-expressing Ex-293 cells. Stable expression of Ca(v)3.3 (T-type voltage-gated calcium) channels in Ex-293 cells (to generate an 'ExCa-293' line) significantly increased their AP duration and reduced repolarization gradients in cocultures of these cells and NRVMs. Additional expression of an optogenetic construct [ChIEF (light-gated Channelrhodopsin mutant)]enabled light-based control of AP firing in ExCa-293 cells. CONCLUSION We show that, despite being non-contractile, genetically engineered excitable cells can significantly improve both electrical and mechanical function of engineered cardiac tissues in vitro. We further demonstrate the utility of engineered cells for tissue-level studies of basic electrophysiology and cardiac channelopathies. In the future, this novel platform could be utilized in the high-throughput design of new genetically encoded indicators of cell electrical function, validation, and improvement of computer models of AP conduction, and development of novel engineered somatic cell therapies for the treatment of cardiac infarction and arrhythmias.
Collapse
Affiliation(s)
- Robert D Kirkton
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
280
|
Yawo H, Asano T, Sakai S, Ishizuka T. Optogenetic manipulation of neural and non-neural functions. Dev Growth Differ 2013; 55:474-90. [PMID: 23550617 DOI: 10.1111/dgd.12053] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 01/22/2023]
Abstract
Optogenetic manipulation of the neuronal activity enables one to analyze the neuronal network both in vivo and in vitro with precise spatio-temporal resolution. Channelrhodopsins (ChRs) are light-sensitive cation channels that depolarize the cell membrane, whereas halorhodopsins and archaerhodopsins are light-sensitive Cl(-) and H(+) transporters, respectively, that hyperpolarize it when exogenously expressed. The cause-effect relationship between a neuron and its function in the brain is thus bi-directionally investigated with evidence of necessity and sufficiency. In this review we discuss the potential of optogenetics with a focus on three major requirements for its application: (i) selection of the light-sensitive proteins optimal for optogenetic investigation, (ii) targeted expression of these selected proteins in a specific group of neurons, and (iii) targeted irradiation with high spatiotemporal resolution. We also discuss recent progress in the application of optogenetics to studies of non-neural cells such as glial cells, cardiac and skeletal myocytes. In combination with stem cell technology, optogenetics may be key to successful research using embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) derived from human patients through optical regulation of differentiation-maturation, through optical manipulation of tissue transplants and, furthermore, through facilitating survival and integration of transplants.
Collapse
Affiliation(s)
- Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | | | | | | |
Collapse
|
281
|
Abstract
Optogenetics is an emerging technology for optical interrogation and control of biological function with high specificity and high spatiotemporal resolution. Mammalian cells and tissues can be sensitized to respond to light by a relatively simple and well-tolerated genetic modification using microbial opsins (light-gated ion channels and pumps). These can achieve fast and specific excitatory or inhibitory response, offering distinct advantages over traditional pharmacological or electrical means of perturbation. Since the first demonstrations of utility in mammalian cells (neurons) in 2005, optogenetics has spurred immense research activity and has inspired numerous applications for dissection of neural circuitry and understanding of brain function in health and disease, applications ranging from in vitro to work in behaving animals. Only recently (since 2010), the field has extended to cardiac applications with less than a dozen publications to date. In consideration of the early phase of work on cardiac optogenetics and the impact of the technique in understanding another excitable tissue, the brain, this review is largely a perspective of possibilities in the heart. It covers the basic principles of operation of light-sensitive ion channels and pumps, the available tools and ongoing efforts in optimizing them, overview of neuroscience use, as well as cardiac-specific questions of implementation and ideas for best use of this emerging technology in the heart.
Collapse
Affiliation(s)
- Emilia Entcheva
- Department of Biomedical Engineering, Department of Physiology and Biophysics, and Institute for Molecular Cardiology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
282
|
Jenkins MW, Wang YT, Doughman YQ, Watanabe M, Cheng Y, Rollins AM. Optical pacing of the adult rabbit heart. BIOMEDICAL OPTICS EXPRESS 2013; 4:1626-35. [PMID: 24049683 PMCID: PMC3771833 DOI: 10.1364/boe.4.001626] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/21/2013] [Accepted: 07/30/2013] [Indexed: 05/03/2023]
Abstract
Optical pacing has been demonstrated to be a viable alternative to electrical pacing in embryonic hearts. In this study, the feasibility of optically pacing an adult rabbit heart was explored. Hearts from adult New Zealand White rabbits (n = 9) were excised, cannulated and perfused on a modified Langendorff apparatus. Pulsed laser light (λ = 1851 nm) was directed to either the left or right atrium through a multimode optical fiber. An ECG signal from the left ventricle and a trigger pulse from the laser were recorded simultaneously to determine when capture was achieved. Successful optical pacing was demonstrated by obtaining pacing capture, stopping, then recapturing as well as by varying the pacing frequency. Stimulation thresholds measured at various pulse durations suggested that longer pulses (8 ms) had a lower energy capture threshold. To determine whether optical pacing caused damage, two hearts were perfused with 30 µM of propidium iodide and analyzed histologically. A small number of cells near the stimulation site had compromised cell membranes, which probably limited the time duration over which pacing was maintained. Here, short-term optical pacing (few minutes duration) is demonstrated in the adult rabbit heart for the first time. Future studies will be directed to optimize optical pacing parameters to decrease stimulation thresholds and may enable longer-term pacing.
Collapse
Affiliation(s)
- Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, 11000 Euclid Ave., Cleveland, Oh. 44106 USA
| | - Y. T. Wang
- Department of Biomedical Engineering, Case Western Reserve University, 11000 Euclid Ave., Cleveland, Oh. 44106 USA
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Oh. 44195 USA
| | - Y. Q. Doughman
- Department of Pediatrics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Oh. 44106 USA
| | - M. Watanabe
- Department of Pediatrics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Oh. 44106 USA
| | - Y. Cheng
- Department of Biomedical Engineering, Case Western Reserve University, 11000 Euclid Ave., Cleveland, Oh. 44106 USA
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Oh. 44195 USA
- Department of Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Oh. 44195 USA
| | - A. M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, 11000 Euclid Ave., Cleveland, Oh. 44106 USA
| |
Collapse
|
283
|
Müller K, Weber W. Optogenetic tools for mammalian systems. MOLECULAR BIOSYSTEMS 2013; 9:596-608. [DOI: 10.1039/c3mb25590e] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
284
|
Sakar MS, Neal D, Boudou T, Borochin MA, Li Y, Weiss R, Kamm RD, Chen CS, Asada HH. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. LAB ON A CHIP 2012; 12:4976-85. [PMID: 22976544 PMCID: PMC3586563 DOI: 10.1039/c2lc40338b] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Densely arrayed skeletal myotubes are activated individually and as a group using precise optical stimulation with high spatiotemporal resolution. Skeletal muscle myoblasts are genetically encoded to express a light-activated cation channel, Channelrhodopsin-2, which allows for spatiotemporal coordination of a multitude of skeletal myotubes that contract in response to pulsed blue light. Furthermore, ensembles of mature, functional 3D muscle microtissues have been formed from the optogenetically encoded myoblasts using a high-throughput device. The device, called "skeletal muscle on a chip", not only provides the myoblasts with controlled stress and constraints necessary for muscle alignment, fusion and maturation, but also facilitates the measurement of forces and characterization of the muscle tissue. We measured the specific static and dynamic stresses generated by the microtissues and characterized the morphology and alignment of the myotubes within the constructs. The device allows testing of the effect of a wide range of parameters (cell source, matrix composition, microtissue geometry, auxotonic load, growth factors and exercise) on the maturation, structure and function of the engineered muscle tissues in a combinatorial manner. Our studies integrate tools from optogenetics and microelectromechanical systems (MEMS) technology with skeletal muscle tissue engineering to open up opportunities to generate soft robots actuated by a multitude of spatiotemporally coordinated 3D skeletal muscle microtissues.
Collapse
Affiliation(s)
- Mahmut Selman Sakar
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Richards R, Dempski RE. Re-introduction of transmembrane serine residues reduce the minimum pore diameter of channelrhodopsin-2. PLoS One 2012; 7:e50018. [PMID: 23185520 PMCID: PMC3501483 DOI: 10.1371/journal.pone.0050018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/17/2012] [Indexed: 11/18/2022] Open
Abstract
Channelrhodopsin-2 (ChR2) is a microbial-type rhodopsin found in the green algae Chlamydomonas reinhardtii. Under physiological conditions, ChR2 is an inwardly rectifying cation channel that permeates a wide range of mono- and divalent cations. Although this protein shares a high sequence homology with other microbial-type rhodopsins, which are ion pumps, ChR2 is an ion channel. A sequence alignment of ChR2 with bacteriorhodopsin, a proton pump, reveals that ChR2 lacks specific motifs and residues, such as serine and threonine, known to contribute to non-covalent interactions within transmembrane domains. We hypothesized that reintroduction of the eight transmembrane serine residues present in bacteriorhodopsin, but not in ChR2, will restrict the conformational flexibility and reduce the pore diameter of ChR2. In this work, eight single serine mutations were created at homologous positions in ChR2. Additionally, an endogenous transmembrane serine was replaced with alanine. We measured kinetics, changes in reversal potential, and permeability ratios in different alkali metal solutions using two-electrode voltage clamp. Applying excluded volume theory, we calculated the minimum pore diameter of ChR2 constructs. An analysis of the results from our experiments show that reintroducing serine residues into the transmembrane domain of ChR2 can restrict the minimum pore diameter through inter- and intrahelical hydrogen bonds while the removal of a transmembrane serine results in a larger pore diameter. Therefore, multiple positions along the intracellular side of the transmembrane domains contribute to the cation permeability of ChR2.
Collapse
Affiliation(s)
- Ryan Richards
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Robert E. Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
286
|
Development of miniaturized walking biological machines. Sci Rep 2012; 2:857. [PMID: 23155480 PMCID: PMC3498929 DOI: 10.1038/srep00857] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/24/2012] [Indexed: 01/15/2023] Open
Abstract
The quest to 'forward-engineer' and fabricate biological machines remains a grand challenge. Towards this end, we have fabricated locomotive "bio-bots" from hydrogels and cardiomyocytes using a 3D printer. The multi-material bio-bot consisted of a 'biological bimorph' cantilever structure as the actuator to power the bio-bot, and a base structure to define the asymmetric shape for locomotion. The cantilever structure was seeded with a sheet of contractile cardiomyocytes. We evaluated the locomotive mechanisms of several designs of bio-bots by changing the cantilever thickness. The bio-bot that demonstrated the most efficient mechanism of locomotion maximized the use of contractile forces for overcoming friction of the supporting leg, while preventing backward movement of the actuating leg upon relaxation. The maximum recorded velocity of the bio-bot was ~236 µm s(-1), with an average displacement per power stroke of ~354 µm and average beating frequency of ~1.5 Hz.
Collapse
|
287
|
Kos A, Loohuis NFO, Glennon JC, Celikel T, Martens GJM, Tiesinga PH, Aschrafi A. Recent developments in optical neuromodulation technologies. Mol Neurobiol 2012; 47:172-85. [PMID: 23065387 DOI: 10.1007/s12035-012-8361-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
The emergence of optogenetics technology facilitated widespread applications for interrogation of complex neural networks, such as activation of specific axonal pathways, previously found impossible with electrical stimulation. Consequently, within the short period of its application in neuroscience research, optogenetics has led to findings of significant importance both during normal brain function as well as in disease. Moreover, the optimization of optogenetics for in vivo studies has allowed the control of certain behavioral responses such as motility, reflex, and sensory responses, as well as more complex emotional and cognitive behaviors such as decision-making, reward seeking, and social behavior in freely moving animals. These studies have produced a wide variety of animal models that have resulted in fundamental findings and enhanced our understanding of the neural networks associated with behavior. The increasing number of opsins available for this technique enabled even broader regulation of neuronal activity. These advancements highlight the potential of this technique for future treatment of human diseases. Here, we provide an overview of the recent developments in the field of optogenetics technology that are relevant for a better understanding of several neuropsychiatric and neurodegenerative disorders and may pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Aron Kos
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, 6525 EZ, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
288
|
Bacchus W, Fussenegger M. The use of light for engineered control and reprogramming of cellular functions. Curr Opin Biotechnol 2012; 23:695-702. [DOI: 10.1016/j.copbio.2011.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/07/2011] [Accepted: 12/07/2011] [Indexed: 11/16/2022]
|
289
|
Simmons CS, Petzold BC, Pruitt BL. Microsystems for biomimetic stimulation of cardiac cells. LAB ON A CHIP 2012; 12:3235-48. [PMID: 22782590 DOI: 10.1039/c2lc40308k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The heart is a complex integrated system that leverages mechanoelectrical signals to synchronize cardiomyocyte contraction and push blood throughout the body. The correct magnitude, timing, and distribution of these signals is critical for proper functioning of the heart; aberrant signals can lead to acute incidents, long-term pathologies, and even death. Due to the heart's limited regenerative capacity and the wide variety of pathologies, heart disease is often studied in vitro. However, it is difficult to accurately replicate the cardiac environment outside of the body. Studying the biophysiology of the heart in vitro typically consists of studying single cells in a tightly controlled static environment or whole tissues in a complex dynamic environment. Micro-electromechanical systems (MEMS) allow us to bridge these two extremes by providing increasing complexity for cell culture without having to use a whole tissue. Here, we carefully describe the electromechanical environment of the heart and discuss MEMS specifically designed to replicate these stimulation modes. Strengths, limitations and future directions of various designs are discussed for a variety of applications.
Collapse
Affiliation(s)
- Chelsey S Simmons
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
290
|
Rapidly-moving insect muscle-powered microrobot and its chemical acceleration. Biomed Microdevices 2012; 14:979-86. [DOI: 10.1007/s10544-012-9700-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
291
|
Yao JP, Hou WS, Yin ZQ. Optogenetics: a novel optical manipulation tool for medical investigation. Int J Ophthalmol 2012; 5:517-22. [PMID: 22937517 DOI: 10.3980/j.issn.2222-3959.2012.04.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/25/2012] [Indexed: 11/02/2022] Open
Abstract
Optogenetics is a new and rapidly evolving gene and neuroengineering technology that allows optical control of specific populations of neurons without affecting other neurons in the brain at high temporal and spatial resolution. By heterologous expression of the light-sensitive membrane proteins, cell type-specific depolarization or hyperpolarization can be optically induced on a millisecond time scale. Optogenetics has the higher selectivity and specificity compared to traditional electrophysiological techniques and pharmaceutical methods. It has been a novel promising tool for medical research. Because of easy handling, high temporal and spatial precision, optogenetics has been applied to many aspects of nervous system research, such as tactual neural circuit, visual neural circuit, auditory neural circuit and olfactory neural circuit, as well as research of some neurological diseases. The review highlights the recent advances of optogenetics in medical study.
Collapse
Affiliation(s)
- Jun-Ping Yao
- College of Biology Engineering, Chongqing University, Chongqing 400044, China
| | | | | |
Collapse
|
292
|
Malan D, Fleischmann BK. Functional expression and modulation of the L-type Ca2+ current in embryonic heart cells. Pediatr Cardiol 2012; 33:907-15. [PMID: 22639002 DOI: 10.1007/s00246-012-0360-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/30/2012] [Indexed: 11/28/2022]
Abstract
Voltage-dependent L-type Ca2+ channels (VDCCs) are critically involved in excitation contraction coupling and regulation of the force of contraction. An important mechanism contributing to the adaptation of heart function is modulation of the L-type Ca2+ current (I(Ca-L)) by hormones of the autonomous nervous system. The signaling pathways underlying this regulation in the adult heart are well understood. However, VDCC expression and its regulation in the embryonic heart are less understood. This report therefore provides a short overview of the current knowledge on this topic using embryonic stem cells and the mouse as model systems.
Collapse
Affiliation(s)
- Daniela Malan
- Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| | | |
Collapse
|
293
|
Chang YF, Arai Y, Nagai T. Optogenetic activation during detector “dead time” enables compatible real-time fluorescence imaging. Neurosci Res 2012; 73:341-7. [DOI: 10.1016/j.neures.2012.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 11/25/2022]
|
294
|
Prigge M, Schneider F, Tsunoda SP, Shilyansky C, Wietek J, Deisseroth K, Hegemann P. Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem 2012; 287:31804-12. [PMID: 22843694 DOI: 10.1074/jbc.m112.391185] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Channelrhodopsin-2 is a light-gated ion channel and a major tool of optogenetics. It is used to control neuronal activity via blue light. Here we describe the construction of color-tuned high efficiency channelrhodopsins (ChRs), based on chimeras of Chlamydomonas channelrhodopsin-1 and Volvox channelrhodopsin-1. These variants show superb expression and plasma membrane integration, resulting in 3-fold larger photocurrents in HEK cells compared with channelrhodopsin-2. Further molecular engineering gave rise to chimeric variants with absorption maxima ranging from 526 to 545 nm, dovetailing well with maxima of channelrhodopsin-2 derivatives ranging from 461 to 492 nm. Additional kinetic fine-tuning led to derivatives in which the lifetimes of the open state range from 19 ms to 5 s. Finally, combining green- with blue-absorbing variants allowed independent activation of two distinct neural cell populations at 560 and 405 nm. This novel panel of channelrhodopsin variants may serve as an important toolkit element for dual-color cell stimulation in neural circuits.
Collapse
Affiliation(s)
- Matthias Prigge
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
295
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Light-controlled tools. Angew Chem Int Ed Engl 2012; 51:8446-76. [PMID: 22829531 DOI: 10.1002/anie.201202134] [Citation(s) in RCA: 750] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Indexed: 12/21/2022]
Abstract
Spatial and temporal control over chemical and biological processes plays a key role in life, where the whole is often much more than the sum of its parts. Quite trivially, the molecules of a cell do not form a living system if they are only arranged in a random fashion. If we want to understand these relationships and especially the problems arising from malfunction, tools are necessary that allow us to design sophisticated experiments that address these questions. Highly valuable in this respect are external triggers that enable us to precisely determine where, when, and to what extent a process is started or stopped. Light is an ideal external trigger: It is highly selective and if applied correctly also harmless. It can be generated and manipulated with well-established techniques, and many ways exist to apply light to living systems--from cells to higher organisms. This Review will focus on developments over the last six years and includes discussions on the underlying technologies as well as their applications.
Collapse
Affiliation(s)
- Clara Brieke
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
296
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Lichtgesteuerte Werkzeuge. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202134] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara Brieke
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| | - Falk Rohrbach
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Gottschalk
- Buchmann‐Institut für Molekulare Lebenswissenschaften, Institut für Biochemie, Max‐von‐Laue‐Straße 15, 60438 Frankfurt/Main (Deutschland)
| | - Günter Mayer
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Heckel
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| |
Collapse
|
297
|
Room temperature operable autonomously moving bio-microrobot powered by insect dorsal vessel tissue. PLoS One 2012; 7:e38274. [PMID: 22808004 PMCID: PMC3394766 DOI: 10.1371/journal.pone.0038274] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 05/01/2012] [Indexed: 11/19/2022] Open
Abstract
Living muscle tissues and cells have been attracting attention as potential actuator candidates. In particular, insect dorsal vessel tissue (DVT) seems to be well suited for a bio-actuator since it is capable of contracting autonomously and the tissue itself and its cells are more environmentally robust under culturing conditions compared with mammalian tissues and cells. Here we demonstrate an autonomously moving polypod microrobot (PMR) powered by DVT excised from an inchworm. We fabricated a prototype of the PMR by assembling a whole DVT onto an inverted two-row micropillar array. The prototype moved autonomously at a velocity of 3.5 × 10(-2) µm/s, and the contracting force of the whole DVT was calculated as 20 µN. Based on the results obtained by the prototype, we then designed and fabricated an actual PMR. We were able to increase the velocity significantly for the actual PMR which could move autonomously at a velocity of 3.5 µm/s. These results indicate that insect DVT has sufficient potential as the driving force for a bio-microrobot that can be utilized in microspaces.
Collapse
|
298
|
Wong J, Abilez OJ, Kuhl E. Computational Optogenetics: A Novel Continuum Framework for the Photoelectrochemistry of Living Systems. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2012; 60:1158-1178. [PMID: 22773861 PMCID: PMC3388516 DOI: 10.1016/j.jmps.2012.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Electrical stimulation is currently the gold standard treatment for heart rhythm disorders. However, electrical pacing is associated with technical limitations and unavoidable potential complications. Recent developments now enable the stimulation of mammalian cells with light using a novel technology known as optogenetics. The optical stimulation of genetically engineered cells has significantly changed our understanding of electrically excitable tissues, paving the way towards controlling heart rhythm disorders by means of photostimulation. Controlling these disorders, in turn, restores coordinated force generation to avoid sudden cardiac death. Here, we report a novel continuum framework for the photoelectrochemistry of living systems that allows us to decipher the mechanisms by which this technology regulates the electrical and mechanical function of the heart. Using a modular multiscale approach, we introduce a non-selective cation channel, channelrhodopsin-2, into a conventional cardiac muscle cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, this channel opens and allows sodium ions to enter the cell, inducing electrical activation. In side-by-side comparisons with conventional heart muscle cells, we show that photostimulation directly increases the sodium concentration, which indirectly decreases the potassium concentration in the cell, while all other characteristics of the cell remain virtually unchanged. We integrate our model cells into a continuum model for excitable tissue using a nonlinear parabolic second order partial differential equation, which we discretize in time using finite differences and in space using finite elements. To illustrate the potential of this computational model, we virtually inject our photosensitive cells into different locations of a human heart, and explore its activation sequences upon photostimulation. Our computational optogenetics tool box allows us to virtually probe landscapes of process parameters, and to identify optimal photostimulation sequences with the goal to pace human hearts with light and, ultimately, to restore mechanical function.
Collapse
Affiliation(s)
- Jonathan Wong
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA,
| | - Oscar J. Abilez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA,
| | - Ellen Kuhl
- Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
299
|
Abstract
The use of ion channels to control defined events in defined cell types at defined times in the context of living tissue or whole organism represent one of the major advance of the last decade, and optogenetics (i.e the combination of genetic and optical methods) obviously played a key role in this achievement.1 Although the existence of light-activated ion channels (i.e ospin channels) has been known since 1971,2 it took about 35 y before the concept of an ion channel used for bioengineering control of cell or tissue activity becomes reality.3 From that moment forward, rhodopsine channels4,5 (i.e blue light-gated non-specific Na+ channels that depolarize cells thus increasing cell excitability) or halorhodopsin channels6 (i.e yellow light-gated Cl- channels that hyperpolarize cells thus decreasing cell excitability) have been extensively used to turn neurons on and off in response to diverse colors of light, with an extremely high temporal precision (i.e milliseconds range). Although optogenetics has been originally established in neuroscience, it addresses now to non-neuronal systems, including cardiac, smooth and skeletal muscles, glial cells or even embryonic stem cells.7-9 However, although light stimulation allows control of cell excitability with a high spatio-temporal specificity, light waves present the disadvantage to not penetrate deep tissue, and implanted devices are required for in vivo light stimulation. In contrast to visible light-waves, radio-waves (i.e longer wavelength and lower frequency) can penetrate deep tissues with minimal energy absorption.
Collapse
|
300
|
Abstract
A snapshot of recent key developments in the patent literature of relevance to the advancement of pharmaceutical and medical R&D
Collapse
|