251
|
Xu J, Shamul JG, Staten NA, White AM, Jiang B, He X. Bioinspired 3D Culture in Nanoliter Hyaluronic Acid-Rich Core-Shell Hydrogel Microcapsules Isolates Highly Pluripotent Human iPSCs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102219. [PMID: 34260817 PMCID: PMC8376787 DOI: 10.1002/smll.202102219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 06/01/2023]
Abstract
Human induced pluripotent stem cells (iPSCs) are ideal for developing personalized medicine. However, the spontaneous differentiation of human iPSCs under conventional 2D and 3D cultures results in significant heterogeneity and compromised quality. Therefore, a method for effectively isolating and expanding high-quality human iPSCs is critically needed. Here, a biomimetic microencapsulation approach for isolating and culturing high-quality human iPSCs is reported. This is inspired by the natural proliferation and development of blastomeres into early blastocyst where the early embryonic stem cells-containing core is enclosed in a semipermeable hydrogel shell known as the zona pellucida (Zona). Blastomere cluster-like human iPSC clusters are encapsulated in a miniaturized (≈10 nanoliter) hyaluronic acid (HA)-rich core of microcapsules with a semipermeable Zona-like hydrogel shell and subsequently cultured to form pluripotent human iPSC spheroids with significantly improved quality. This is indicated by their high expression of pluripotency markers and highly efficient 3D cardiac differentiation. In particular, HA is found to be crucial for isolating the high-quality human iPSCs with the biomimetic core-shell microencapsulation culture. Interestingly, the isolated human iPSCs can maintain high pluripotency even after being cultured again in 2D. These discoveries and the bioinspired culture method may be valuable to facilitate the human iPSC-based personalized medicine.
Collapse
Affiliation(s)
- Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Nicholas A Staten
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
252
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
253
|
Heydari P, Kharaziha M, Varshosaz J, Javanmard SH. Current knowledge of immunomodulation strategies for chronic skin wound repair. J Biomed Mater Res B Appl Biomater 2021; 110:265-288. [PMID: 34318595 DOI: 10.1002/jbm.b.34921] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
In orchestrating the wound healing process, the immune system plays a critical role. Hence, controlling the immune system to repair skin defects is an attractive approach. The highly complex immune system includes the coordinated actions of several immune cells, which can produce various inflammatory and antiinflammatory cytokines and affect the healing of skin wounds. This process can be optimized using biomaterials, bioactive molecules, and cell delivery. The present review discusses various immunomodulation strategies for supporting the healing of chronic wounds. In this regard, following the evolution of the immune system and its role in the wound healing mechanism, the interaction between the extracellular mechanism and immune cells for acceleration wound healing will be firstly investigated. Consequently, the immune-based chronic wounds will be briefly examined and the mechanism of progression, and conventional methods of their treatment are evaluated. In the following, various biomaterials-based immunomodulation strategies are introduced to stimulate and control the immune system to treat and regenerate skin defects. Other effective methods of controlling the immune system in wound healing which is the release of bioactive agents (such as antiinflammatory, antigens, and immunomodulators) and stem cell therapy at the site of injury are reviewed.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
254
|
Alderfer L, Russo E, Archilla A, Coe B, Hanjaya-Putra D. Matrix stiffness primes lymphatic tube formation directed by vascular endothelial growth factor-C. FASEB J 2021; 35:e21498. [PMID: 33774872 DOI: 10.1096/fj.202002426rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Dysfunction of the lymphatic system is associated with a wide range of disease phenotypes. The restoration of dysfunctional lymphatic vessels has been hypothesized as an innovative method to rescue healthy phenotypes in diseased states including neurological conditions, metabolic syndromes, and cardiovascular disease. Compared to the vascular system, little is known about the molecular regulation that controls lymphatic tube morphogenesis. Using synthetic hyaluronic acid (HA) hydrogels as a chemically and mechanically tunable system to preserve lymphatic endothelial cell (LECs) phenotypes, we demonstrate that low matrix elasticity primes lymphatic cord-like structure (CLS) formation directed by a high concentration of vascular endothelial growth factor-C (VEGF-C). Decreasing the substrate stiffness results in the upregulation of key lymphatic markers, including PROX-1, lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and VEGFR-3. Consequently, higher levels of VEGFR-3 enable stimulation of LECs with VEGF-C which is required to both activate matrix metalloproteinases (MMPs) and facilitate LEC migration. Both of these steps are critical in establishing CLS formation in vitro. With decreases in substrate elasticity, we observe increased MMP expression and increased cellular elongation, as well as formation of intracellular vacuoles, which can further merge into coalescent vacuoles. RNAi studies demonstrate that MMP-14 is required to enable CLS formation and that LECs sense matrix stiffness through YAP/TAZ mechanosensors leading to the activation of their downstream target genes. Collectively, we show that by tuning both the matrix stiffness and VEGF-C concentration, the signaling pathways of CLS formation can be regulated in a synthetic matrix, resulting in lymphatic networks which will be useful for the study of lymphatic biology and future approaches in tissue regeneration.
Collapse
Affiliation(s)
- Laura Alderfer
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Elizabeth Russo
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Adriana Archilla
- Notre Dame Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Brian Coe
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| | - Donny Hanjaya-Putra
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Notre Dame, IN, USA.,Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA.,Notre Dame Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, Notre Dame, IN, USA.,Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
255
|
Wu ZL, Ertelt JM. Assays for hyaluronidases and heparanase using nonreducing end fluorophore-labeled hyaluronan and heparan sulfate proteoglycan. Glycobiology 2021; 31:1435-1443. [PMID: 34280262 DOI: 10.1093/glycob/cwab061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/30/2023] Open
Abstract
Glycosaminoglycans (GAGs), such as hyaluronan (HA) and heparan sulfate (HS), are a large group of polysaccharides found in the extracellular matrix and on the cell surface. The turnover of these molecules is controlled by de novo synthesis and catabolism through specific endoglycosidases, which are the keys to our understanding of the homeostasis of GAGs and could hold opportunities for therapeutic intervention. Herein, we describe assays for endoglycosidases using nonreducing end fluorophore-labeled GAGs, in which GAGs were labeled via incorporation of GlcNAz by specific synthases and cycloaddition of alkyne fluorophores and then digested with corresponding endoglycosidases. Assays of various HA-specific hyaluronidases (HYALs), including PH-20 or SPAM1, and HS-specific heparanase (HPSE) are presented. We demonstrated the distinctive pH profiles, substrate specificities and specific activities of these enzymes and provided evidence that both HYAL3 and HYAL4 are authentic hyaluronidases. In addition, while all HYALs are active on high-molecular-weight HA, they are active on low-molecular-weight HA. Subsequently, we defined a new way of measuring the activities of HYALs. Our results indicate that the activities of HYALs must be under strict pH regulation. Our quantitative methods of measuring the activity GAG endoglycosidases could bring the opportunity of designing novel therapeutics by targeting these important enzymes.
Collapse
Affiliation(s)
- Zhengliang L Wu
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - James M Ertelt
- Bio-techne, R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| |
Collapse
|
256
|
Wang Y, Gao W. A label-free and sensitive fluorescence assay for hyaluronidase activity through electrostatic-controlled quantum dots self-assembly. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211018973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A label-free fluorescence assay for hyaluronidase (HAase) activity based on self-assembly of quantum dots is developed. A cationic polymer (polycation) can induce aggregation of the negatively charged quantum dots through electrostatic interactions and the fluorescence of the quantum dots is quenched. When the polycation is mixed with hyaluronic acid (HA), intense binding of HA to the polycation makes the quantum dots free and recovery of the fluorescence of the quantum dots is observed. However, in the presence of HAase, HA is hydrolyzed into small fragments and the polycation induces reaggregation of the quantum dots. A simple and rapid fluorescence sensor with high sensitivity and selectivity for HAase activity detection is therefore successfully established with a detection limit of 0.01 U/mL. Moreover, we have demonstrated an assay that can be applied to detect HAase activity in a complex mixture sample including 1% human serum.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, People’s Republic of China
| | - Wenwen Gao
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, People’s Republic of China
| |
Collapse
|
257
|
Ito K, Nishida Y, Ikuta K, Urakawa H, Koike H, Sakai T, Zhang J, Shimoyama Y, Imagama S. Overexpression of KIAA1199, a novel strong hyaluronidase, is a poor prognostic factor in patients with osteosarcoma. J Orthop Surg Res 2021; 16:439. [PMID: 34233709 PMCID: PMC8262042 DOI: 10.1186/s13018-021-02590-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
Background Hyaluronan (HA) has been shown to play important roles in the growth, invasion, and metastasis of malignant tumors. KIAA1199, which has potent HA-degrading activity, has been reported to be expressed in various malignancies and associated with patient prognosis. However, there are no reports on the expression of KIAA1199 in osteosarcoma. The aim of this study was to investigate the impact of KIAA1199 and HA expression in osteosarcoma tissues on the prognosis and other clinical characteristics of osteosarcoma patients. Methods From 2003 to 2013, we included 49 patients with osteosarcoma at our institution, whose FFPE (formalin fixed paraffin embedded) tissue was available at the time of biopsy. The expressions of KIAA1199 and HA in each sample were assessed by immunohistochemistry using the primary antibody for KIAA1199 and HA-binding protein (HABP), respectively. For evaluation of the positivity of KIAA1199 staining, we divided the samples into two groups: High group with more than 75% positive staining and Low group with less than 75% positive staining. In the HABP staining, those with more than and less than 60% were assigned to a High group, and Low group respectively. Various clinical features were correlated with staining positivity. Prognostic factors including positivity of the staining were analyzed. Levels of mRNA expression for enzymes related to HA metabolism were assessed in two osteosarcoma cell lines using real-time RT-PCR. Results In KIAA1199 staining, high positivity was significantly correlated with occurrence of distant metastases (P = 0.002). The necrosis rate after preoperative chemotherapy was significantly lower in the High positivity group (59%), compared to that in the Low group (84.8%) (P = 0.003). HABP positivity was not correlated with any demographic variables, although the Low positivity group had a significantly better overall survival than the High group with KIAA1199 and HABP staining (P = 0.026 and P = 0.029, respectively). In multivariable analysis, KIAA1199 (P = 0.036) and HABP staining (P = 0.002), location (P = 0.001), and distant metastasis at initial diagnosis (P < 0.001) were identified as significant prognostic factors. KIAA1199 and hyaluronan synthase mRNA were expressed at different levels in the two osteosarcoma cell lines. Conclusions Our results showed that high expression of KIAA1199 and HA are both poor prognostic factors in osteosarcoma. KIAA1199 may be a useful marker for distant metastasis and chemoresistance.
Collapse
Affiliation(s)
- Kan Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan. .,Department of Rehabilitation, Nagoya University Hospital, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan.
| | - Kunihiro Ikuta
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Hiroshi Urakawa
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Hiroshi Koike
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Tomohisa Sakai
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Jiarui Zhang
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Yoshie Shimoyama
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
258
|
Cheng D, Ji Y, Wang B, Wang Y, Tang Y, Fu Y, Xu Y, Qian X, Zhu W. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer. Acta Biomater 2021; 128:435-446. [PMID: 33862284 DOI: 10.1016/j.actbio.2021.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/15/2023]
Abstract
Multi-modal combination therapy has attracted great attention, owing to the unsatisfactory therapeutic efficacy of conventional chemotherapy. Mesoporous silica-coated gold nanorods possess great potential in photothermal therapy and drug delivery. In this work, we fabricate a dual-responsive nanohybrid for combination treatment of the malignant tumor. In this system, gold nanorods are coated with the degradable mesoporous silica, and the chemotherapy drug doxorubicin (DOX) and photosensitizer (IR820) are co-loaded inside the pores of the silica. The encapsulation of hyaluronic acid (HA) endow the nanohybrids with mammary carcinoma targeting ability and better biocompatibility, owning to CD44+ receptor overexpressed in some cancer cells. As-prepared nanohybrids exhibit high responsiveness to a high glutathione (GSH) level and degrade rapidly in the presence of hyaluronidase (HAase) and GSH after endocytosis by 4T1 cells, allowing the efficient release of loaded DOX and IR 820 in tumor sites. Interestingly, near-infrared (NIR) laser not only triggers the generation of reactive oxygen species, but also remarkable photothermal efficacy originating from GNRs. Therefore, upon the irradiation of 808 nm NIR light, the combinatorial photodynamic, photothermal and chemotherapy is achieved, accordingly leading to a highly efficient antitumor outcome in vitro and in vivo. This strategy provides an ideal approach to constructing multimodal cancer therapy system. STATEMENT OF SIGNIFICANCE: • Dual-responsive nanohybrids for combinatorial therapy of breast cancer. • The nanohybrids exhibit both HAase and GSH stimuli-responsive behavior. • The nanohybrids exhibit light-activated PDT/PTT/chemotherapy. • The nanohybrids show good biosafety for potential clinical application.
Collapse
|
259
|
Unfer V, Tilotta M, Kaya C, Noventa M, Török P, Alkatout I, Gitas G, Bilotta G, Laganà AS. Absorption, distribution, metabolism and excretion of hyaluronic acid during pregnancy: a matter of molecular weight. Expert Opin Drug Metab Toxicol 2021; 17:823-840. [PMID: 33999749 DOI: 10.1080/17425255.2021.1931682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION For many years hyaluronic acid (HA) was mainly used for its hydrating properties. However, new applications have recently arisen, considering the biological properties of HA and its molecular weight. Clinical application of low molecular weight HA (LMW-HA) initially was supported by specific absorption data. The identification of high molecular weight HA (HMW-HA) absorption pathways and the knowledge of its physiological role allowed to evaluate its clinical application. Based on the immunomodulatory properties of HMW-HA and its physiological involvement as signaling molecule, pregnancy represents an interesting context of application. AREA COVERED This expert opinion includes in-vitro, in-vivo, ex-vivo and clinical studies on gestational models. It provides an overview of the physiological and the therapeutic role of HMW-HA in pregnancy starting from its metabolism. Indeed, HMW-HA is widely involved in several physiological processes as implantation, immune response, uterine quiescence and cervical remodeling, and therefore is an essential molecule for a successful pregnancy. EXPERT OPINION Available evidence suggests that HMW-HA administration can support physiological pregnancy, favoring blastocyst adhesion and development, preventing miscarriage and pre-term birth. For this reason, supplementation in pregnancy should be evaluated.
Collapse
Affiliation(s)
| | | | - Cihan Kaya
- Department of Obstetrics and Gynaecology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Marco Noventa
- Department of Women and Children's Health, Clinic of Gynecology and Obstetrics, University of Padua, Padua, Italy
| | - Péter Török
- Faculty of Medicine, Institute of Obstetrics and Gynecology, University of Debrecen, Hungary
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Georgios Gitas
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital,University of Insubria, Varese, Italy
| |
Collapse
|
260
|
Hyaluronan and the Fascial Frontier. Int J Mol Sci 2021; 22:ijms22136845. [PMID: 34202183 PMCID: PMC8269293 DOI: 10.3390/ijms22136845] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
The buzz about hyaluronan (HA) is real. Whether found in face cream to increase water volume loss and viscoelasticity or injected into the knee to restore the properties of synovial fluid, the impact of HA can be recognized in many disciplines from dermatology to orthopedics. HA is the most abundant polysaccharide of the extracellular matrix of connective tissues. HA can impact cell behavior in specific ways by binding cellular HA receptors, which can influence signals that facilitate cell survival, proliferation, adhesion, as well as migration. Characteristics of HA, such as its abundance in a variety of tissues and its responsiveness to chemical, mechanical and hormonal modifications, has made HA an attractive molecule for a wide range of applications. Despite being discovered over 80 years ago, its properties within the world of fascia have only recently received attention. Our fascial system penetrates and envelopes all organs, muscles, bones and nerve fibers, providing the body with a functional structure and an environment that enables all bodily systems to operate in an integrated manner. Recognized interactions between cells and their HA-rich extracellular microenvironment support the importance of studying the relationship between HA and the body’s fascial system. From fasciacytes to chronic pain, this review aims to highlight the connections between HA and fascial health.
Collapse
|
261
|
Affo S, Nair A, Brundu F, Ravichandra A, Bhattacharjee S, Matsuda M, Chin L, Filliol A, Wen W, Song X, Decker A, Worley J, Caviglia JM, Yu L, Yin D, Saito Y, Savage T, Wells RG, Mack M, Zender L, Arpaia N, Remotti HE, Rabadan R, Sims P, Leblond AL, Weber A, Riener MO, Stockwell BR, Gaublomme J, Llovet JM, Kalluri R, Michalopoulos GK, Seki E, Sia D, Chen X, Califano A, Schwabe RF. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell 2021; 39:866-882.e11. [PMID: 33930309 PMCID: PMC8241235 DOI: 10.1016/j.ccell.2021.03.012] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/26/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Cancer-associated fibroblasts (CAF) are a poorly characterized cell population in the context of liver cancer. Our study investigates CAF functions in intrahepatic cholangiocarcinoma (ICC), a highly desmoplastic liver tumor. Genetic tracing, single-cell RNA sequencing, and ligand-receptor analyses uncovered hepatic stellate cells (HSC) as the main source of CAF and HSC-derived CAF as the dominant population interacting with tumor cells. In mice, CAF promotes ICC progression, as revealed by HSC-selective CAF depletion. In patients, a high panCAF signature is associated with decreased survival and increased recurrence. Single-cell RNA sequencing segregates CAF into inflammatory and growth factor-enriched (iCAF) and myofibroblastic (myCAF) subpopulations, displaying distinct ligand-receptor interactions. myCAF-expressed hyaluronan synthase 2, but not type I collagen, promotes ICC. iCAF-expressed hepatocyte growth factor enhances ICC growth via tumor-expressed MET, thus directly linking CAF to tumor cells. In summary, our data demonstrate promotion of desmoplastic ICC growth by therapeutically targetable CAF subtype-specific mediators, but not by type I collagen.
Collapse
Affiliation(s)
- Silvia Affo
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Ajay Nair
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesco Brundu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Michitaka Matsuda
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90024, USA
| | - LiKang Chin
- Department of Medicine, Penn Physical Sciences in Oncology Center PSOC@Penn, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aveline Filliol
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Wen Wen
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94158, USA
| | - Aubrianna Decker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jeremy Worley
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Lexing Yu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Deqi Yin
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yoshinobu Saito
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Thomas Savage
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rebecca G Wells
- Department of Medicine, Penn Physical Sciences in Oncology Center PSOC@Penn, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lars Zender
- Department of Medical Oncology and Pneumology, University Hospital Tuebingen, 72076 Tuebingen, Germany; German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; iFIT Cluster of Excellence EXC 2180, University of Tuebingen, 72076 Tuebingen, Germany
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Helen E Remotti
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Sims
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Anne-Laure Leblond
- Department for Pathology and Molecular Pathology, Zürich University Hospital, 8091 Zürich, Switzerland
| | - Achim Weber
- Department for Pathology and Molecular Pathology, Zürich University Hospital, 8091 Zürich, Switzerland
| | - Marc-Oliver Riener
- Department for Pathology and Molecular Pathology, Zürich University Hospital, 8091 Zürich, Switzerland
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jellert Gaublomme
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Josep M Llovet
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Ekihiro Seki
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90024, USA
| | - Daniela Sia
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94158, USA
| | - Andrea Califano
- Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Institute of Human Nutrition, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
262
|
Pang X, Li W, Chang L, Gautrot JE, Wang W, Azevedo HS. Hyaluronan (HA) Immobilized on Surfaces via Self-Assembled Monolayers of HA-Binding Peptide Modulates Endothelial Cell Spreading and Migration through Focal Adhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25792-25804. [PMID: 34037376 DOI: 10.1021/acsami.1c05574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The extracellular matrix (ECM) modulates a multitude of cell functions, and this regulation is provided by key ECM components forming a complex network. Hyaluronic acid (HA) is an abundant component of the ECM that binds to proteins and influences various activities of endothelial cells (ECs). Although the effect of soluble HA on cell spreading has been studied, the impact of peptide-bound HA has not yet been investigated in great detail. We aim to comprehensively study the roles of immobilized HA on the regulation of EC behavior compared to the more conventional use of soluble HA. A 2D model surface formed by self-assembled monolayers (SAMs) of a HA-binding peptide (Pep-1) is used as an anchor for HA immobilization. Mixed SAMs, consisting of thiolated Pep-1 and 1-octanethiol, are prepared and characterized by using ellipsometry and contact angle measurement. Full density Pep-1 SAMs are more hydrophilic and bind more HA than mixed SAMs. Cell spreading and migration are enhanced by immobilized low molecular weight (LMW) HA, which also facilitates cell alignment and elongation under laminar flow conditions and potentially drives directional migration. This effect is not mediated by the expression of CD44, and immobilized LMW HA is found to accelerate the assembly of focal adhesions. Such biomimetic surfaces provide new insights into the role of HA in regulating the spreading and phenotype of endothelial cells.
Collapse
Affiliation(s)
- Xinqing Pang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Weiqi Li
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Lan Chang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Julien E Gautrot
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Wen Wang
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, U.K
| |
Collapse
|
263
|
Vernon RB, Gooden MD, Chan CK, Workman G, Obika M, Wight TN. Autocrine Hyaluronan Influences Sprouting and Lumen Formation During HUVEC Tubulogenesis In Vitro. J Histochem Cytochem 2021; 69:415-428. [PMID: 34080894 DOI: 10.1369/00221554211022703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although many studies have focused on a role for hyaluronan (HA) of interstitial extracellular matrix (presumably produced by non-vascular "stromal" cells) in regulating vascular growth, we herein examine the influence of "autocrine HA" produced by vascular endothelial cells themselves on tubulogenesis, using human umbilical vein endothelial cells (HUVECs) in angiogenic and vasculogenic three-dimensional collagen gel cultures. Relative to unstimulated controls, tubulogenic HUVECs upregulated HAS2 mRNA and increased the synthesis of cell-associated HA (but not HA secreted into media). Confocal microscopy/immunofluorescence on cultures fixed with neutral-buffered 10% formalin (NBF) revealed cytoplasmic HAS2 in HUVEC cords and tubes. Cultures fixed with NBF (with cetylpyridinium chloride added to retain HA), stained for HA using "affinity fluorescence" (biotinylated HA-binding protein with streptavidin-fluor), and viewed by confocal microscopy showed HA throughout tube lumens, but little/no HA on the abluminal sides of the tubes or in the surrounding collagen gel. Lumen formation in angiogenic and vasculogenic cultures was strongly suppressed by metabolic inhibitors of HA synthesis (mannose and 4-methylumbelliferone). Hyaluronidase strongly inhibited lumen formation in angiogenic cultures, but not in vasculogenic cultures (where developing lumens are not open to culture medium). Collectively, our results point to a role for autocrine, luminal HA in microvascular sprouting and lumen development. (J Histochem Cytochem 69: 415-428, 2021).
Collapse
Affiliation(s)
- Robert B Vernon
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Michel D Gooden
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Christina K Chan
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Gail Workman
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Masanari Obika
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Thomas N Wight
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| |
Collapse
|
264
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021. [DOI: 10.3390/cancers13112759
expr 955442319 + 839973387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
265
|
So JS, Kim H, Han KS. Mechanisms of Invasion in Glioblastoma: Extracellular Matrix, Ca 2+ Signaling, and Glutamate. Front Cell Neurosci 2021; 15:663092. [PMID: 34149360 PMCID: PMC8206529 DOI: 10.3389/fncel.2021.663092] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant form of primary brain tumor with a median survival time of 14–16 months in GBM patients. Surgical treatment with chemotherapy and radiotherapy may help increase survival by removing GBM from the brain. However, complete surgical resection to eliminate GBM is almost impossible due to its high invasiveness. When GBM cells migrate to the brain, they interact with various cells, including astrocytes, neurons, endothelial cells, and the extracellular matrix (ECM). They can also make their cell body shrink to infiltrate into narrow spaces in the brain; thereby, they can invade regions of the brain and escape from surgery. Brain tumor cells create an appropriate microenvironment for migration and invasion by modifying and degrading the ECM. During those processes, the Ca2+ signaling pathway and other signaling cascades mediated by various ion channels contribute mainly to gene expression, motility, and invasion of GBM cells. Furthermore, GBM cells release glutamate, affecting migration via activation of ionotropic glutamate receptors in an autocrine manner. This review focuses on the cellular mechanisms of glioblastoma invasion and motility related to ECM, Ca2+ signaling, and glutamate. Finally, we discuss possible therapeutic interventions to inhibit invasion by GBM cells.
Collapse
Affiliation(s)
- Jae-Seon So
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, South Korea
| | - Hyeono Kim
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, South Korea
| | - Kyung-Seok Han
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, South Korea
| |
Collapse
|
266
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021; 13:cancers13112759. [PMID: 34199373 PMCID: PMC8199582 DOI: 10.3390/cancers13112759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Local and distant metastasis of patients affected by squamous cell carcinoma of the upper aerodigestive tract predicts poor prognosis. In the latest years, the introduction of new therapeutic approaches, including targeted and immune therapies, has improved the overall survival. However, a large number of these patients do not benefit from these treatments. Thus, the identification of suitable prognostic and predictive biomarkers, as well as the discovery of new therapeutic targets have emerged as a crucial clinical need. In this context, the extracellular matrix represents a suitable target for the development of such therapeutic tools. In fact, the extracellular matrix is composed by complex molecules able to interact with a plethora of receptors and growth factors, thus modulating the dynamic crosstalk between cancer cells and the tumor microenvironment. In this review, we summarize the current knowledge of the role of the extracellular matrix in affecting squamous cell carcinoma growth and dissemination. Despite extracellular matrix is known to affect the development of many cancer types, only a restricted number of these molecules have been recognized to impact on squamous cell carcinoma progression. Thus, we consider that a thorough analysis of these molecules may be key to develop new potential therapeutic targets/biomarkers. Abstract Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
267
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
268
|
Liao HX, Zhang ZH, Chen HL, Huang YM, Liu ZL, Huang J. CircHYBID regulates hyaluronan metabolism in chondrocytes via hsa-miR-29b-3p/TGF-β1 axis. Mol Med 2021; 27:56. [PMID: 34058990 PMCID: PMC8165762 DOI: 10.1186/s10020-021-00319-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Hyaluronan (HA) metabolism by chondrocytes is important for cartilage development and homeostasis. However, information about the function of circular RNAs (circRNAs) in HA metabolism is limited. We therefore profiled the role of the novel HA-related circRNA circHYBID in the progression of osteoarthritis (OA). Methods CircHYBID function in HA metabolism in chondrocytes was investigated using gain-of-function experiments, and circHYBID mechanism was confirmed via bioinformatics analysis and luciferase assays. The expression of circHYBID–hsa-miR-29b-3p–transforming growth factor (TGF)-β1 axis was examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. CircHYBID, TGF-β1, and HA levels in cartilage samples were evaluated using qRT-PCR and pathological examination. Enzyme-linked immunosorbent assay was used to assess HA accumulation in chondrocyte supernatant. Results CircHYBID expression was significantly downregulated in damaged cartilage samples compared with that in the corresponding intact cartilage samples. CircHYBID expression was positively correlated with alcian blue score. Interleukin-1β stimulation in chondrocytes downregulated circHYBID expression and decreased HA accumulation. Gain-of-function experiments revealed that circHYBID overexpression in chondrocytes increased HA accumulation by regulating HA synthase 2 and HYBID expression. Further mechanism analysis showed that circHYBID upregulated TGF-β1 expression by sponging hsa-miR-29b-3p. Conclusions Our results describe a novel HA-related circRNA that could promote HA synthesis and accumulation. The circHYBID–hsa-miR-29b-3p–TGF-β1 axis may play a powerful regulatory role in HA metabolism and OA progression. Thus, these findings will provide new perspectives for studies on OA pathogenesis, and circHYBID may serve as a potential target for OA therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00319-x.
Collapse
Affiliation(s)
- Hong-Xing Liao
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China.
| | - Zhi-Hui Zhang
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| | - Hui-Lin Chen
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| | - Ying-Mei Huang
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| | - Zhan-Liang Liu
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| | - Jian Huang
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| |
Collapse
|
269
|
Atkinson B, Woodland E. Embryo Glue: The Use of Hyaluronan in Embryo Transfer Media. Semin Reprod Med 2021; 39:24-26. [PMID: 34034352 DOI: 10.1055/s-0041-1730415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
EmbryoGlue is available to patients at many in vitro fertilization clinics, usually at an additional cost. The efficacy of hyaluronan-enriched transfer medium (HETM) is supported by moderate quality evidence that indicates a significant improvement in clinical outcomes such as live birth rates for patients, including poorer prognosis women (i.e., maternal age factor [>35 years] and recurrent implantation failure). An increased multiple pregnancy rate has been reported with the use of HETM; therefore, a single embryo transfer policy should be considered in conjunction with the use of EmbryoGlue. There is no evidence to suggest that HETM has any detrimental impact, and therefore the use of HETM in clinics may be justified for a specific demographic of patients. Further robust evidence, in the form of meta-analyses or large-scale randomized controlled trials, is needed to build a sufficient consensus regarding the benefit of hyaluronan supplementation in embryo transfer media.
Collapse
Affiliation(s)
- Beth Atkinson
- Biomedical Sciences, Clinical Embryology and ART, The Hewitt Fertility Centre, Liverpool Women's Hospital, Liverpool, United Kingdom
| | - Emma Woodland
- Molecular and Cellular Biology, Clinical Embryology, Salisbury Fertility Centre, Salisbury District Hospital, Salisbury, United Kingdom
| |
Collapse
|
270
|
Jung E, Lee J, Lee Y, Seon S, Park M, Song C, Lee D. Tumor-Targeting H 2O 2-Responsive Photosensitizing Nanoparticles with Antiangiogenic and Immunogenic Activities for Maximizing Anticancer Efficacy of Phototherapy. ACS APPLIED BIO MATERIALS 2021; 4:4450-4461. [PMID: 35006857 DOI: 10.1021/acsabm.1c00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) uses photosensitizers and light to kill cancer cells and has become a promising therapeutic modality because of advantages such as minimal invasiveness and high cancer selectivity. However, PTT or PDT as a single treatment modality has insufficient therapeutic efficacy. Moreover, oxygen consumption by PDT activates angiogenic factors and leads to cancer recurrence and progression. Therefore, the therapeutic outcomes of phototherapy would be maximized by employing photosensitizers for concurrent PTT and PDT and suppressing angiogenic factors. Therefore, integrating photosensitive agents and antiangiogenic agents in a single nanoplatform would be a promising strategy to maximize the therapeutic efficacy of phototherapy. In this study, we developed hyaluronic acid-coated fluorescent boronated polysaccharide (HA-FBM) nanoparticles as a combination therapeutic agent for phototherapy and antiangiogenic therapy. Upon a single near-infrared laser irradiation, HA-FBM nanoparticles generated heat and singlet oxygen simultaneously to kill cancer cells and also induced immunogenic cancer cell death. Beside their fundamental roles as photosensitizers, HA-FBM nanoparticles exerted antiangiogenic effects by suppressing the vascular endothelial growth factor (VEGF) and cancer cell migration. In a mouse xenograft model, intravenously injected HA-FBM nanoparticles targeted tumors by binding CD44-overexpressing cancer cells and suppressed angiogenic VEGF expression. Upon laser irradiation, HA-FBM nanoparticles remarkably eradicated tumors and increased anticancer immunity. Given their synergistic effects of phototherapy and antiangiogenic therapy from tumor-targeting HA-FBM nanoparticles, we believe that integrating the photosensitizers and antiangiogenic agents into a single nanoplatform presents an attractive strategy to maximize the anticancer therapeutic efficacy of phototherapy.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Jeonghun Lee
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yeongjong Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Semee Seon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Miran Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Chulgyu Song
- Department of Electronics Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea.,Department of Polymer Nano Science and Technology, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
271
|
Gao N, Fan B, Li L, Sun X, Wang X, Ma H, Wei Q, Ju H. Label-Free Antifouling Photoelectrochemical Sensing Strategy for Detecting Breast Tumor Cells Based on Ligand-Receptor Interactions. ACS APPLIED BIO MATERIALS 2021; 4:4479-4485. [PMID: 35006860 DOI: 10.1021/acsabm.1c00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomarker expression both on the cell surface and in serum is directly related to the pathological process of tumor. Based on the interaction between the ligand and the protein receptor, a label-free photoelectrochemical (PEC) biosensing interface with good antifouling ability was proposed for tumor cell detection. TiO2 nanotube (NT) arrays were used as the substrate to enhance the ability of the biosensor to capture the target. Mercapto-terminated 8-arm poly(ethylene glycol) was introduced onto the electrode surface by the deposition of Au nanoparticles on TiO2 NTs, creating an antifouling molecular layer. The recognition ligand hyaluronic acid (HA) was functionalized by dopamine and introduced onto the sensing surface based on the unique chelating interaction between the catechol group and the titanium atom. Benefitting from the specific recognition of HA with CD44 and the 3D porous structures of NTs, the constructed PEC biosensor showed excellent abilities toward the detection of MDA-MB-231 breast tumor cells and the soluble form of CD44. The ligand-receptor PEC sensing strategy has promising potential for the detection of tumor cells and protein biomarkers.
Collapse
Affiliation(s)
- Ning Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Bobo Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Li Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiaojun Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
272
|
Polani F, Grierson PM, Lim KH. Stroma-targeting strategies in pancreatic cancer: Past lessons, challenges and prospects. World J Gastroenterol 2021; 27:2105-2121. [PMID: 34025067 PMCID: PMC8117738 DOI: 10.3748/wjg.v27.i18.2105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to emerge as the second leading cause of cancer-related death after 2030. Extreme treatment resistance is perhaps the most significant factor that underlies the poor prognosis of PDAC. To date, combination chemotherapy remains the mainstay of treatment for most PDAC patients. Compared to other cancer types, treatment response of PDAC tumors to similar chemotherapy regimens is clearly much lower and shorter-lived. Aside from typically harboring genetic alterations that to date remain un-druggable and are drivers of treatment resistance, PDAC tumors are uniquely characterized by a densely fibrotic stroma that has well-established roles in promoting cancer progression and treatment resistance. However, emerging evidence also suggests that indiscriminate targeting and near complete depletion of stroma may promote PDAC aggressiveness and lead to detrimental outcomes. These conflicting results undoubtedly warrant the need for a more in-depth understanding of the heterogeneity of tumor stroma in order to develop modulatory strategies in favor of tumor suppression. The advent of novel techniques including single cell RNA sequencing and multiplex immunohistochemistry have further illuminated the complex heterogeneity of tumor cells, stromal fibroblasts, and immune cells. This new knowledge is instrumental for development of more refined therapeutic strategies that can ultimately defeat this disease. Here, we provide a concise review on lessons learned from past stroma-targeting strategies, new challenges revealed from recent preclinical and clinical studies, as well as new prospects in the treatment of PDAC.
Collapse
Affiliation(s)
- Faran Polani
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, United States
| |
Collapse
|
273
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
274
|
Quan H, Fan L, Huang Y, Xia X, He Y, Liu S, Yu J. Hyaluronic acid-decorated carborane-TAT conjugation nanomicelles: A potential boron agent with enhanced selectivity of tumor cellular uptake. Colloids Surf B Biointerfaces 2021; 204:111826. [PMID: 33984611 DOI: 10.1016/j.colsurfb.2021.111826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
Boron neutron capture therapy (BNCT) has received widespread attention as a new type of radiation therapy. The main problem encountered in BNCT is insufficient tumor cellular uptake of boron agents. In this study, cell-penetrating peptide TAT-conjugated o-carborane was synthesized. The conjugation can self-assemble to form positively charged carborane-TAT micelles, and then adsorb negatively charged hyaluronic acid (HA) to give core-shell structured carborane-TAT@HA micelles. Carborane-TAT@HA micelles exhibits a large amount of boron uptake at the tumor tissue through the enhanced permeability and retention (EPR) effect and the ability of HA to bind to CD44 receptors. Carborane-TAT@HA was wrapped by the HA shell during systemic circulation to avoid non-specific uptake of TAT with normal cells, while tumor microenvironment-responsive shedding of HA shell could expose Carborane-TAT to penetrate the cell membrane into tumor cells. Experiments have proved the enhanced selectivity of tumor cellular uptake of the boron drug, displayed excellent drug delivery potential, and can meet the basic requirements of BNCT.
Collapse
Affiliation(s)
- Hao Quan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Li Fan
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Yushu Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Xiaoyan Xia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Yang He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China.
| |
Collapse
|
275
|
Kyriakidis C, Lali F, Greco KV, García-Gareta E. Chronic Leg Ulcers: Are Tissue Engineering and Biomaterials Science the Solution? Bioengineering (Basel) 2021; 8:bioengineering8050062. [PMID: 34068781 PMCID: PMC8150748 DOI: 10.3390/bioengineering8050062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
Chronic leg ulcers (CLUs) are full thickness wounds that usually occur between the ankle and knee, fail to heal after 3 months of standard treatment, or are not entirely healed at 12 months. CLUs present a considerable burden on patients, subjecting them to severe pain and distress, while healthcare systems suffer immense costs and loss of resources. The poor healing outcome of the standard treatment of CLUs generates an urgent clinical need to find effective solutions for these wounds. Tissue Engineering and Biomaterials Science offer exciting prospects for the treatment of CLUs, using a broad range of skin substitutes or scaffolds, and dressings. In this review, we summarize and discuss the various types of scaffolds used clinically in the treatment of CLUs. Their structure and therapeutic effects are described, and for each scaffold type representative examples are discussed, supported by clinical trials. Silver dressings are also reviewed due to their reported benefits in the healing of leg ulcers, as well as recent studies on new dermal scaffolds, reporting on clinical results where available. We conclude by arguing there is a further need for tissue-engineered products specifically designed and bioengineered to treat these wounds and we propose a series of properties that a biomaterial for CLUs should possess, with the intention of focusing efforts on finding an effective treatment.
Collapse
Affiliation(s)
- Christos Kyriakidis
- Regenerative Biomaterials Group, The RAFT Institute & The Griffin Institute, Northwick Park and Saint Mark’s Hospital, London HA1 3UJ, UK;
| | - Ferdinand Lali
- The Griffin Institute, Northwick Park and Saint Mark’s Hospital, London HA1 3UJ, UK; (F.L.); (K.V.G.)
- Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, London NW3 2QG, UK
| | - Karin Vicente Greco
- The Griffin Institute, Northwick Park and Saint Mark’s Hospital, London HA1 3UJ, UK; (F.L.); (K.V.G.)
- Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, London NW3 2QG, UK
| | - Elena García-Gareta
- Regenerative Biomaterials Group, The RAFT Institute & The Griffin Institute, Northwick Park and Saint Mark’s Hospital, London HA1 3UJ, UK;
- Division of Biomaterials and Tissue Engineering, Royal Free Hospital Campus, Eastman Dental Institute, University College London, London NW3 2QG, UK
- Correspondence: ; Tel.: +44-0-20-3958-0500
| |
Collapse
|
276
|
Wang S, Zhang CH, Zhang P, Chen S, Song ZL, Chen J, Zeng R. Rational design of a HA-AuNPs@AIED nanoassembly for activatable fluorescence detection of HAase and imaging in tumor cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2030-2036. [PMID: 33955975 DOI: 10.1039/d0ay02130j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aggregation induced emission (AIE) dots have gained broad attention in fluorescence bioimaging and biosensors in virtue of their distinctive optical properties of splendid biocompatibility, high brightness and good photostability. However, the application of AIE dots in sensing and imaging of enzymes in cells remains at an early stage and needs to be further explored. In this report, we proposed a novel AIE-dot-based nanoprobe for hyaluronidase (HAase) detection using a simple electrostatic self-assembly of AIE dots with gold nanoparticles functionalized using hyaluronic acid (HA-AuNPs), named HA-AuNPs@AIEDs. The fluorescence of AIE dots can be obviously quenched by HA-AuNPs via fluorescence resonance energy transfer (FRET). HAase could degrade HA into small pieces and thus induce disassembly of AuNPs and AIEDs, accompanied by fluorescence recovery of AIEDs. The as-prepared nanoprobe exhibited high sensitivity, excellent selectivity, wide response range and desirable anti-interference for quantitative sensing of HAase in vitro. The detection limit was down to 0.0072 U mL-1. Moreover, the nanoprobe displayed good biocompatibility and excellent photostability, and thus offered a practicable "turn-on" strategy for specific, high-contrast fluorescence imaging of HAase in live tumor cells. The AIE-based nanoprobe may provide a novel universal platform for recognition and imaging of HAase in tumors, and may be beneficial for related biological research.
Collapse
Affiliation(s)
- Shenglan Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | | | | | | | | | | | | |
Collapse
|
277
|
Dorandish S, Williams A, Atali S, Sendo S, Price D, Thompson C, Guthrie J, Heyl D, Evans HG. Regulation of amyloid-β levels by matrix metalloproteinase-2/9 (MMP2/9) in the media of lung cancer cells. Sci Rep 2021; 11:9708. [PMID: 33958632 PMCID: PMC8102533 DOI: 10.1038/s41598-021-88574-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, we set out to identify regulators of intact amyloid-β40/42 (Aβ) levels in A549 (p53 wild-type) and H1299 (p53-null) lung cancer cell media. Higher Aβ levels were detected in the media of A549 than H1299 cells without or with treatment with 4-methylumbelliferone (4-MU) and/or the anti-CD44 antibody (5F12). Using inhibitors, we found that PI3K, AKT, and NFκB are likely involved in regulating Aβ levels in the media. However, increased Aβ levels that more closely resembled those found upon 4-MU co-treatment resulted from MMP2/9 inhibition, suggesting that MMP2/9 maybe the main contributors to regulation of Aβ levels in the media. Differences in Aβ levels might be accounted for, in part, by p53 since blocking p53 function in A549 cells resulted in decreased Aβ levels, increased MMP2/9 levels, increased PI3K/AKT activities and the phospho/total NFκB ratio. Using siRNA targeted against MMP2 or MMP9, we found increased Aβ levels in the media, however, MMP2 knockdown led to Aβ levels closely mimicking those detected by co-treatment with 4-MU. Cell viability or apoptosis upon treatment with either MMP2 or MMP9 siRNA along with Aβ immunodepletion, showed that MMP2 is the predominant regulator of the cytotoxic effects induced by Aβ in lung cancer cells.
Collapse
Affiliation(s)
- Sadaf Dorandish
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Asana Williams
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sarah Atali
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sophia Sendo
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deanna Price
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Colton Thompson
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Jeffrey Guthrie
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deborah Heyl
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA.
| |
Collapse
|
278
|
Amorim S, Pashkuleva I, Reis CA, Reis RL, Pires RA. Tunable layer-by-layer films containing hyaluronic acid and their interactions with CD44. J Mater Chem B 2021; 8:3880-3885. [PMID: 32222753 DOI: 10.1039/d0tb00407c] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report on the development of layer-by-layer (LbL) constructs whose viscoelastic properties and bioactivity can be finely tuned by using polyanions of different size and/or crosslinking. As a polyanion we used hyaluronic acid (HA) - a multi-signaling biomolecule whose bioactivity depends on its molecular weight. We investigated the interplay between the mechanical properties of the LbL systems built using HA of different sizes and the specific HA-mediated biochemical interactions. We characterized the assembled materials and their interactions with CD44, the main HA receptor, by Quartz Crystal Microbalance with Dissipation (QCM-D), Surface Plasmon Resonance (SPR) and Atomic Force Microscopy (AFM). We observed that the presence of CD44 resulted in the disruption of the non-crosslinked multilayers, while crosslinked films remain stable and bind CD44 in a HA molecular weight and charge specific fashion.
Collapse
Affiliation(s)
- Sara Amorim
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Celso A Reis
- i3S, University of Porto, Portugal and IPATIMUP, Porto, Portugal and Department of Pathology and Oncology, Faculty of Medicine, Porto University, Portugal and Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
279
|
Baljinnyam T, Radnaa E, Ouellette CM, Nelson C, Niimi Y, Andersen CR, Popov V, Lee JW, Prough DS, Enkhbaatar P. High molecular weight sodium hyaluronate improves survival of syndecan-1-deficient septic mice by inhibiting neutrophil migration. PLoS One 2021; 16:e0250327. [PMID: 33930030 PMCID: PMC8087021 DOI: 10.1371/journal.pone.0250327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
METHODS Sepsis was induced by cotton smoke inhalation followed by intranasal administration of Pseudomonas aeruginosa in female (> 6 months) Balb/c and syndecan-1 knockout mice. Survival of mice, lung capillary endothelial glycocalyx integrity, lung water content, and vascular hyper-permeability were determined with or without HMW-SH treatment in these mice. Effects of HMW-SH on endothelial permeability and neutrophil migration were tested in in vitro setting. RESULTS In septic wildtype mice, we found a severely damaged pulmonary microvascular endothelial glycocalyx and elevated levels of shed syndecan-1 in the circulation. These changes were associated with significantly increased pulmonary vascular permeability. In septic syndecan-1 knockout mice, extravascular lung water content was higher, and early death was observed. The administration of HMW-SH significantly reduced mortality and lung water content in septic syndecan-1 knockout mice, but not in septic wildtype mice. In in vitro setting, HMW-SH inhibited neutrophil migration and reduced cultured endothelial cell permeability increases. However, these effects were reversed by the addition of recombinant syndecan-1 ectodomain. CONCLUSIONS HMW-SH reduced lung tissue damage and mortality in the absence of syndecan-1 protein, possibly by reducing vascular hyper-permeability and neutrophil migration. Our results further suggest that increased shed syndecan-1 protein levels are linked with the inefficiency of HMW-SH in septic wildtype mice.
Collapse
Affiliation(s)
- Tuvshintugs Baljinnyam
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Casey M. Ouellette
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christina Nelson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yosuke Niimi
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Clark R. Andersen
- Department of Biostatistics, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Vsevolod Popov
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jae-Woo Lee
- Department of Anesthesia, UCSF School of Medicine, San-Francisco, California, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
280
|
Mo C, Xiang L, Chen Y. Advances in Injectable and Self-healing Polysaccharide Hydrogel Based on the Schiff Base Reaction. Macromol Rapid Commun 2021; 42:e2100025. [PMID: 33876841 DOI: 10.1002/marc.202100025] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Indexed: 12/17/2022]
Abstract
Injectable hydrogel possesses great application potential in disease treatment and tissue engineering, but damage to gel often occurs due to the squeezing pressure from injection devices and the mechanical forces from limb movement, and leads to the rapid degradation of gel matrix and the leakage of the load material. The self-healing injectable hydrogels can overcome these drawbacks via automatically repairing gel structural defects and restoring gel function. The polysaccharide hydrogels constructed through the Schiff base reaction own advantages including simple fabrication, injectability, and self-healing under physiological conditions, and therefore have drawn extensive attention and investigation recently. In this short review, the preparation and self-healing properties of the polysaccharide hydrogels that is established on the Schiff base reaction are focused on and their biological applications in drug delivery and cell therapy are discussed.
Collapse
Affiliation(s)
- Chunxiang Mo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Li Xiang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
281
|
Proteoglycans contribute to the functional integrity of the glomerular endothelial cell surface layer and are regulated in diabetic kidney disease. Sci Rep 2021; 11:8487. [PMID: 33875683 PMCID: PMC8055884 DOI: 10.1038/s41598-021-87753-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/01/2021] [Indexed: 01/15/2023] Open
Abstract
All capillary endothelia, including those of the glomeruli, have a luminal cell surface layer (ESL) consisting of glycoproteins, glycolipids, proteoglycans (PGs) and glycosaminoglycans. Previous results have demonstrated that an intact ESL is necessary for a normal filtration barrier and damage to the ESL coupled to proteinuria is seen for example in diabetic kidney disease (DKD). We used the principles of ion exchange chromatography in vivo to elute the highly negatively charged components of the ESL with a 1 M NaCl solution in rats. Ultrastructural morphology and renal function were analyzed and 17 PGs and hyaluronan were identified in the ESL. The high salt solution reduced the glomerular ESL thickness, led to albuminuria and reduced GFR. To assess the relevance of ESL in renal disease the expression of PGs in glomeruli from DKD patients in a next generation sequencing cohort was investigated. We found that seven of the homologues of the PGs identified in the ESL from rats were differently regulated in patients with DKD compared to healthy subjects. The results show that proteoglycans and glycosaminoglycans are essential components of the ESL, maintaining the permselective properties of the glomerular barrier and thus preventing proteinuria.
Collapse
|
282
|
Derkacz A, Olczyk P, Jura-Półtorak A, Olczyk K, Komosinska-Vassev K. The Diagnostic Usefulness of Circulating Profile of Extracellular Matrix Components: Sulfated Glycosaminoglycans (sGAG), Hyaluronan (HA) and Extracellular Part of Syndecan-1 (sCD138) in Patients with Crohn's Disease and Ulcerative Colitis. J Clin Med 2021; 10:jcm10081722. [PMID: 33923501 PMCID: PMC8073401 DOI: 10.3390/jcm10081722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
The described research focused on the diagnostic usefulness of sulfated glycosaminoglycans (sGAG), hyaluronan (HA), and extracellular part of syndecan-1 (sCD138) as new markers related to extracellular matrix (ECM) remodeling in the intestine during the two most common forms of inflammatory bowel diseases (IBD), i.e., ulcerative colitis (UC) and Crohn’ disease (CD). Inflammatory markers belonging to ECM components were assessed in serum of patients with IBD using an immunoenzymatic method (HA and sCD138) and a method based on the reaction with dimethylmethylene blue (sulfated GAG). Measurements were carried out twice: at baseline and after one year of therapy with prednisone (patients with CD) or adalimumab (patients with UC). No quantitative changes were observed in serum sGAG, HA, and sCD138 concentrations between patients newly diagnosed with CD and the healthy group. In the case of patients with UC, the parameter which significantly differentiated healthy subjects and patients with IBD before biological therapy was HA. Significant correlation between serum HA level and inflammation activity, expressed as Mayo score, was also observed in patients with UC. Moreover, the obtained results have confirmed that steroid therapy with prednisone significantly influenced the circulating profile of all examined ECM components (sGAG, HA, and sCD138), whereas adalimumab therapy in patients with UC led to a significant change in only circulating sGAG levels. Moreover, the significant differences in serum HA levels between patients with UC and CD indicate that quantification of circulating HA may be useful in the differential diagnosis of CD and UC.
Collapse
Affiliation(s)
- Alicja Derkacz
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.D.); (A.J.-P.); (K.O.)
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Agnieszka Jura-Półtorak
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.D.); (A.J.-P.); (K.O.)
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.D.); (A.J.-P.); (K.O.)
| | - Katarzyna Komosinska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.D.); (A.J.-P.); (K.O.)
- Correspondence: ; Tel.: +48-32-364-1150
| |
Collapse
|
283
|
Koltai T, Reshkin SJ, Carvalho TMA, Cardone RA. Targeting the Stromal Pro-Tumoral Hyaluronan-CD44 Pathway in Pancreatic Cancer. Int J Mol Sci 2021; 22:3953. [PMID: 33921242 PMCID: PMC8069142 DOI: 10.3390/ijms22083953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. Present-day treatments have not shown real improvements in reducing the high mortality rate and the short survival of the disease. The average survival is less than 5% after 5 years. New innovative treatments are necessary to curtail the situation. The very dense pancreatic cancer stroma is a barrier that impedes the access of chemotherapeutic drugs and at the same time establishes a pro-proliferative symbiosis with the tumor, thus targeting the stroma has been suggested by many authors. No ideal drug or drug combination for this targeting has been found as yet. With this goal in mind, here we have explored a different complementary treatment based on abundant previous publications on repurposed drugs. The cell surface protein CD44 is the main receptor for hyaluronan binding. Many malignant tumors show over-expression/over-activity of both. This is particularly significant in pancreatic cancer. The independent inhibition of hyaluronan-producing cells, hyaluronan synthesis, and/or CD44 expression, has been found to decrease the tumor cell's proliferation, motility, invasion, and metastatic abilities. Targeting the hyaluronan-CD44 pathway seems to have been bypassed by conventional mainstream oncological practice. There are existing drugs that decrease the activity/expression of hyaluronan and CD44: 4-methylumbelliferone and bromelain respectively. Some drugs inhibit hyaluronan-producing cells such as pirfenidone. The association of these three drugs has never been tested either in the laboratory or in the clinical setting. We present a hypothesis, sustained by hard experimental evidence, suggesting that the simultaneous use of these nontoxic drugs can achieve synergistic or added effects in reducing invasion and metastatic potential, in PDAC. A non-toxic, low-cost scheme for inhibiting this pathway may offer an additional weapon for treating pancreatic cancer.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| |
Collapse
|
284
|
A new m6A methylation-related gene signature for prognostic value in patient with urothelial carcinoma of the bladder. Biosci Rep 2021; 41:228170. [PMID: 33779704 PMCID: PMC8035626 DOI: 10.1042/bsr20204456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bladder cancer (BC) is one of the most common malignant urological cancer in the world. Because of its characteristic of easy-recurrence and muscle-invasive, advances in our genetic understanding of bladder cancer should be translated into prognostic indicators. METHODS We investigated 16 m6A RNA methylation regulators from The Cancer Genome Atlas (TCGA) database and The Human Protein Atlas (HPA) database. The expression profile, clinical application as well as prognostic value of these genes in UC were investigated. Moreover, we further explored the correlation between RNA methylation genes and biological functions, pathways and immune status. RESULTS Five m6A-related genes (HNRNPC, YTHDF2, YTHDF1, HNRNPA2B1, METTL3) up-regulated in UC tissues, while three regulators (ZC3H13, METTL16, FTO) down-regulated in UC. FTO and YTHDF2 show biomarker potential for the prognosis of UC patients. In addition, these identified genes may related with essential functions and core molecular pathways. CONCLUSIONS Our research shows that two m6A RNA methylation regulators can serve as reliable prognostic biomarkers of UC, which might be exerted as potential targets of therapeutic strategies.
Collapse
|
285
|
Cui X, Huang C, Chen Z, Zhang M, Liu C, Su K, Wang J, Li L, Wang R, Li B, Chen D, Ruan C, Wang D, Lu WW, Pan H. Hyaluronic acid facilitates bone repair effects of calcium phosphate cement by accelerating osteogenic expression. Bioact Mater 2021; 6:3801-3811. [PMID: 33937587 PMCID: PMC8058907 DOI: 10.1016/j.bioactmat.2021.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Calcium phosphate cements (CPC) are widely anticipated to be an optimum bone repair substitute due to its satisfied biocompatibility and degradability, suitable to be used in minimally invasive treatment of bone defects. However the clinical application of CPC is still not satisfied by its poor cohesiveness and mechanical properties, in particular its osteoinductivity. Hyaluronic acid reinforced calcium phosphate cements (HA/CPC) showed extroadinary potential not only enhancing the compressive strength of the cements but also significantly increasing its osteoinductivity. In our study, the compressive strength of HA/CPC increased significantly when the cement was added 1% hyaluronic acid (denoted as 1-HA/CPC). In the meantime, hyaluronic acid obviously promoted ALP activity, osteogenic related protein and mRNA expression of hBMSCs (human bone marrow mesenchymal stem cells) in vitro, cement group of HA/CPC with 4% hyaluronic acid adding (denoted as 4-HA/CPC) showed optimal enhancement in hBMSCs differentiation. After being implanted in rat tibial defects, 4-HA/CPC group exhibited better bone repair ability and bone growth promoting factors, comparing to pure CPC and 1-HA/CPC groups. The underlying biological mechanism of this stimulation for HA/CPC may be on account of higher osteogenic promoting factors secretion and osteogenic genes expression with hyaluronic acid incorporation. These results indicate that hyaluronic acid is a highly anticipated additive to improve physicochemical properties and osteoinductivity performance of CPCs for minimally invasive healing of bone defects.
Collapse
Affiliation(s)
- Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Chengcheng Huang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Zhizhen Chen
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Meng Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Chunyu Liu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Kun Su
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Jianyun Wang
- Shenzhen Healthemes Biotechnology Co. Ltd, Shenzhen, 518102, PR China
| | - Li Li
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker, Liuzhou, 545005, PR China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering Beijing, Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Bing Li
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker, Liuzhou, 545005, PR China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering Beijing, Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Changshun Ruan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Deping Wang
- Schools of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - William W Lu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China.,Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| |
Collapse
|
286
|
Hsu HH, Ko PL, Wu HM, Lin HC, Wang CK, Tung YC. Study 3D Endothelial Cell Network Formation under Various Oxygen Microenvironment and Hydrogel Composition Combinations Using Upside-Down Microfluidic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006091. [PMID: 33480473 DOI: 10.1002/smll.202006091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Formation of 3D networks is a crucial process for endothelial cells during development of primary blood vessels under both normal and pathological conditions. In order to investigate effects of oxygen microenvironment and matrix composition on the 3D network formation, an upside-down microfluidic cell culture device capable of generating oxygen gradients is developed in this paper. In cell experiments, network formation of human umbilical vein endothelial cells (HUVECs) within fibrinogen-based hydrogels with different concentrations of hyaluronic acid (HA) is systematically studied. In addition, five different oxygen microenvironments (uniform normoxia, 5%, and 1% O2 ; oxygen gradients under normoxia and 5% O2 ) are also applied for the cell culture. The generated oxygen gradients are characterized based on fluorescence lifetime measurements. The experimental results show increased 3D cell network length when the cells are cultured under the oxygen gradients within the hydrogels with the HA addition suggesting their roles in promoting network formation. Furthermore, the formed networks tend to align along the direction of the oxygen gradients indicating the presence of gradient-driven cellular response. The results demonstrate that the developed upside-down microfluidic device can provide an advanced platform to investigate 3D cell culture under the controlled oxygen microenvironments for various biomedical studies in vitro.
Collapse
Affiliation(s)
- Heng-Hua Hsu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ping-Liang Ko
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Department of Mechanical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsiao-Mei Wu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsi-Chieh Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chien-Kai Wang
- Department of Mechanical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
- College of Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan
| |
Collapse
|
287
|
Dastych M, Hubatka F, Turanek-Knotigova P, Masek J, Kroupa R, Raška M, Turanek J, Prochazka L. Overexpression of CD44v8-10 in Colon Polyps-A Possible Key to Early Diagnosis. Pathol Oncol Res 2021; 27:614281. [PMID: 34257584 PMCID: PMC8262190 DOI: 10.3389/pore.2021.614281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/26/2021] [Indexed: 01/10/2023]
Abstract
Background and aims: The majority of colorectal cancers arise from detectable adenomatous or serrated lesions. Here we demonstrate how deregulated alternative splicing of CD44 gene in diseased colon mucosa results in downregulation of standard isoform of CD44 gene (CD44s) and upregulation of variant isoform CD44v8-10. Our aim is to show that upregulation of CD44v8-10 isoform is a possible marker of precancerous lesion in human colon. Methods: We analysed pairs of fresh biopsy specimen of large intestine in a cohort of 50 patients. We studied and compared alternative splicing profile of CD44 gene in colon polyps and adjoined healthy colon mucosa. We performed end-point and qRT PCR, western blotting, IHC staining and flow cytometry analyses. Results: We detected more than five-fold overexpression of CD44v8-10 isoform and almost twenty-fold downregulation of standard isoform CD44s in colon polyps compared to adjoined healthy tissue with p = 0.018 and p < 0.001 in a cohort of 50 patients. Our results also show that aberrant splicing of CD44 occurs in both biologically distinct subtypes of colorectal adenoma possibly in ESRP-1 specific manner. Conclusion: 92% of the colon polyp positive patients overexpressed CD44v8-10 isoform in their colon polyps while only 36% of them had positive fecal occult blood test which is currently a standard non-invasive screening technique. Impact: We believe that our results are important for further steps leading to application of CD44v8-10 isoform as a biomarker of colorectal precancerosis in non-invasive detection. Early detection of colon precancerosis means successful prevention of colorectal carcinoma.
Collapse
Affiliation(s)
- Milan Dastych
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine Masaryk University Brno, Brno, Czech Republic
| | - Frantisek Hubatka
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic.,C2P NEXARS, Campus Science Park, Brno, Czech Republic
| | - Pavlina Turanek-Knotigova
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic.,C2P NEXARS, Campus Science Park, Brno, Czech Republic
| | - Josef Masek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Radek Kroupa
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine Masaryk University Brno, Brno, Czech Republic
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jaroslav Turanek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic.,C2P NEXARS, Campus Science Park, Brno, Czech Republic.,Faculty of Medicine in Hradec Kralove, Institute of Hygiene and Preventive Medicine, Charles University, Hradec Kralove, Czech Republic.,Institute of Physics of the Czech Academy of Sciences, Prague 8, Czech Republic
| | - Lubomir Prochazka
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
288
|
Gomari MM, Farsimadan M, Rostami N, Mahmoudi Z, Fadaie M, Farhani I, Tarighi P. CD44 polymorphisms and its variants, as an inconsistent marker in cancer investigations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108374. [PMID: 34083044 DOI: 10.1016/j.mrrev.2021.108374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/23/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Among cell surface markers, CD44 is considered the main marker for identifying and isolating the cancer stem cells (CSCs) among other cells and has attracted significant attention in a variety of research areas. Many studies have shown the essential roles of CD44 in initiation, metastasis, and tumorigenesis in different types of cancer; however, the validity of CD44 as a therapeutic or diagnostic target has not been fully confirmed in some other studies. Whereas the association of specific single nucleotide polymorphisms (SNPs) in the CD44 gene and related variants with cancer risk have been observed in clinical investigations, the significance of these findings remains controversial. Here, we aimed to provide an up-to-date overview of recent studies on the association of CD44 polymorphisms and its variants with different kinds of cancer to determine whether or not it can be used as an appropriate candidate for cancer tracking.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Zahra Mahmoudi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ibrahim Farhani
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
289
|
Zhao X, Hu DA, Wu D, He F, Wang H, Huang L, Shi D, Liu Q, Ni N, Pakvasa M, Zhang Y, Fu K, Qin KH, Li AJ, Hagag O, Wang EJ, Sabharwal M, Wagstaff W, Reid RR, Lee MJ, Wolf JM, El Dafrawy M, Hynes K, Strelzow J, Ho SH, He TC, Athiviraham A. Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021; 9:603444. [PMID: 33842441 PMCID: PMC8026885 DOI: 10.3389/fbioe.2021.603444] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage, especially articular cartilage, is a unique connective tissue consisting of chondrocytes and cartilage matrix that covers the surface of joints. It plays a critical role in maintaining joint durability and mobility by providing nearly frictionless articulation for mechanical load transmission between joints. Damage to the articular cartilage frequently results from sport-related injuries, systemic diseases, degeneration, trauma, or tumors. Failure to treat impaired cartilage may lead to osteoarthritis, affecting more than 25% of the adult population globally. Articular cartilage has a very low intrinsic self-repair capacity due to the limited proliferative ability of adult chondrocytes, lack of vascularization and innervation, slow matrix turnover, and low supply of progenitor cells. Furthermore, articular chondrocytes are encapsulated in low-nutrient, low-oxygen environment. While cartilage restoration techniques such as osteochondral transplantation, autologous chondrocyte implantation (ACI), and microfracture have been used to repair certain cartilage defects, the clinical outcomes are often mixed and undesirable. Cartilage tissue engineering (CTE) may hold promise to facilitate cartilage repair. Ideally, the prerequisites for successful CTE should include the use of effective chondrogenic factors, an ample supply of chondrogenic progenitors, and the employment of cell-friendly, biocompatible scaffold materials. Significant progress has been made on the above three fronts in past decade, which has been further facilitated by the advent of 3D bio-printing. In this review, we briefly discuss potential sources of chondrogenic progenitors. We then primarily focus on currently available chondrocyte-friendly scaffold materials, along with 3D bioprinting techniques, for their potential roles in effective CTE. It is hoped that this review will serve as a primer to bring cartilage biologists, synthetic chemists, biomechanical engineers, and 3D-bioprinting technologists together to expedite CTE process for eventual clinical applications.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Ofir Hagag
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Eric J. Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
290
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
291
|
Two-dimensional LDH nanodisks modified with hyaluronidase enable enhanced tumor penetration and augmented chemotherapy. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9933-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
292
|
The Secreted Protein C10orf118 Is a New Regulator of Hyaluronan Synthesis Involved in Tumour-Stroma Cross-Talk. Cancers (Basel) 2021; 13:cancers13051105. [PMID: 33807583 PMCID: PMC7961460 DOI: 10.3390/cancers13051105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Hyaluronan is a main glycosaminoglycan in extracellular matrix with an important role in breast cancer progression. Alterations in its synthesis and size may affect tu-mour growth and metastasis. Communication between stromal and breast cancer cells consists of the secretion of factors that provoke a series of cell signalling that influence cell fate and tis-sue microenvironment, by favouring tumour cell survival and motility. Here, we present the c10orf118 protein expressed in high amounts by breast tumour cells as a new regulator in hya-luronan synthesis. This protein is found both in Golgi and secreted in the extracellular matrix, whereas its role is still unknown. The secreted c10orf118 is found to induce hyaluronan synthase 2 in normal fibroblasts. Importantly, high expression of c10orf118 is positively correlated to pa-tient’s survival and to a low metastasis. Abstract Interaction between cancer cells and their microenvironment is central in defining the fate of cancer development. Tumour cells secrete signals (cytokines, chemokines, growth factors) that modify the surrounding area, while the niche supplies structures and activities necessary for tumour maintenance and growth. Hyaluronan (HA) is a glycosaminoglycan that constitute cancer cell niche and is known to influence tumour functions such as proliferation, migration and neoangiogenesis. The knowledge of the factors regulating HA synthesis and size is crucial in understanding the mechanisms sustaining tumour development. Here we show that a yet uncharacterized protein secreted by breast tumour cell lines, named c10orf118 (accession number NM_018017 in NCBI/BLAST, and Q7z3E2 according to the Uniprot identifier), with a predicted length of 898 amino acids, can induce the secretion of HA by stromal fibroblasts through the up-regulation of the hyaluronan synthase 2 gene (HAS2). Intracellularly, this protein is localized in the Golgi apparatus with a possible role in vesicle maturation and transport. The expression of c10orf118 was verified in breast cancer patient specimens and was found to be associated with the presence of estrogen receptor that characterizes a good patient survival. We suggest c10orf118 as a new player that influences the HA amount in breast cancer microenvironment and is associated with low aggressiveness of cancer.
Collapse
|
293
|
N-Glycosylation can selectively block or foster different receptor-ligand binding modes. Sci Rep 2021; 11:5239. [PMID: 33664400 PMCID: PMC7933184 DOI: 10.1038/s41598-021-84569-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
While DNA encodes protein structure, glycans provide a complementary layer of information to protein function. As a prime example of the significance of glycans, the ability of the cell surface receptor CD44 to bind its ligand, hyaluronan, is modulated by N-glycosylation. However, the details of this modulation remain unclear. Based on atomistic simulations and NMR, we provide evidence that CD44 has multiple distinct binding sites for hyaluronan, and that N-glycosylation modulates their respective roles. We find that non-glycosylated CD44 favors the canonical sub-micromolar binding site, while glycosylated CD44 binds hyaluronan with an entirely different micromolar binding site. Our findings show (for the first time) how glycosylation can alter receptor affinity by shielding specific regions of the host protein, thereby promoting weaker binding modes. The mechanism revealed in this work emphasizes the importance of glycosylation in protein function and poses a challenge for protein structure determination where glycosylation is usually neglected.
Collapse
|
294
|
McKeown-Longo PJ, Higgins PJ. Hyaluronan, Transforming Growth Factor β, and Extra Domain A-Fibronectin: A Fibrotic Triad. Adv Wound Care (New Rochelle) 2021; 10:137-152. [PMID: 32667849 DOI: 10.1089/wound.2020.1192] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Inflammation is a critical aspect of injury repair. Nonresolving inflammation, however, is perpetuated by the local generation of extracellular matrix-derived damage-associated molecular pattern molecules (DAMPs), such as the extra domain A (EDA) isoform of fibronectin and hyaluronic acid (HA) that promote the eventual acquisition of a fibrotic response. DAMPs contribute to the inflammatory environment by engaging Toll-like, integrin, and CD44 receptors while stimulating transforming growth factor (TGF)-β signaling to activate a fibroinflammatory genomic program leading to the development of chronic disease. Recent Advances: Signaling through TLR4, CD44, and the TGF-β pathways impact the amplitude and duration of the innate immune response to endogenous DAMPs synthesized in the context of tissue injury. New evidence indicates that crosstalk among these three networks regulates phase transitions as well as the repertoire of expressed genes in the wound healing program determining, thereby, repair outcomes. Clarifying the molecular mechanisms underlying pathway integration is necessary for the development of novel therapeutics to address the spectrum of fibroproliferative diseases that result from maladaptive tissue repair. Critical Issues: There is an increasing appreciation for the role of DAMPs as causative factors in human fibroinflammatory disease regardless of organ site. Defining the involved intermediates essential for the development of targeted therapies is a daunting effort, however, since various classes of DAMPs activate different direct and indirect signaling pathways. Cooperation between two matrix-derived DAMPs, HA, and the EDA isoform of fibronectin, is discussed in this review as is their synergy with the TGF-β network. This information may identify nodes of signal intersection amenable to therapeutic intervention. Future Directions: Clarifying mechanisms underlying the DAMP/growth factor signaling nexus may provide opportunities to engineer the fibroinflammatory response to injury and, thereby, wound healing outcomes. The identification of shared and unique DAMP/growth factor-activated pathways is critical to the design of optimized tissue repair therapies while preserving the host response to bacterial pathogens.
Collapse
Affiliation(s)
- Paula J. McKeown-Longo
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paul J. Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
295
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
296
|
Brundel DH, Feeney OM, Nowell CJ, Suys EJ, Gracia G, Kaminskas LM, McIntosh MM, Kang DW, Porter CJ. Depolymerization of hyaluronan using PEGylated human recombinant hyaluronidase promotes nanoparticle tumor penetration. Nanomedicine (Lond) 2021; 16:275-292. [PMID: 33560142 DOI: 10.2217/nnm-2020-0433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Delivery of nanoparticles (NPs) to tumors can be impeded by high levels of hyaluronan (HA) in the stroma. Enzymatic depolymerization of HA with PEGylated hyaluronidase (PEGPH20) improves the delivery of antibodies to tumors. However, it is unknown whether NP delivery is enhanced by this strategy. Methods: The impact of PEGPH20 pretreatment on the uptake and tumor penetration of model PEGylated polystyrene NPs was studied in mice with orthotopic breast cancers. Results: Tumor oxygenation and NP penetration, but not overall tumor uptake, of 50 nm NPs, was significantly enhanced by PEGPH20 pre-administration. Conclusion: PEGPH20 has the potential to improve intratumoral penetration of NP-based drug delivery systems and enhance access to cancer cells in poorly vascularized regions of the tumor.
Collapse
Affiliation(s)
- Daniel Hs Brundel
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Orlagh M Feeney
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Cameron J Nowell
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Estelle Ja Suys
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Gracia Gracia
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, QLD, St Lucia, 4072, Australia
| | - Michelle M McIntosh
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - David W Kang
- Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA
| | - Christopher Jh Porter
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
297
|
Kolapalli SP, Kumaraswamy SB, Mortha KK, Thomas A, Banerjee SD. UNIVmAb reactive albumin associated hyaladherin as a potential biomarker for colorectal cancer. Cancer Biomark 2021; 30:55-62. [PMID: 32924984 DOI: 10.3233/cbm-191260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer; cancer biomarker discovery is important for disease detection and management. It is known that hyaluronic acid and its receptors are ubiquitously expressed in almost all human tissues. Earlier we have shown that a monoclonal antibody H11B2C2, presently known as UNIVmAb, reactive hyaladherin expressed in multiple human cancers mainly using immunohistochemistry. However, the nature of the antigen and its sequence homology are not known. In the current study, a comprehensive investigation was performed to explore the nature of the antigen and its homology using both biochemical and proteomic analysis. Our results showed that UNIVmAb reactive 57 kDa antigen was overexpressed in advanced grade colorectal cancer tissues compared to benign and its hyperplasia. Biochemical investigations including biotinylated hyaluronic acid-pulldown, Immunoprecipitation, HA-oligo competition experiments confirmed that the UNIVmAb reactive 57 kDa antigen is a member of hyaladherin. Further Proteomic analysis showed that the antigen has homology with IGHG1 (Igγ-1 chain C region), a possible IgG superfamily, and is associated with human serum albumin.
Collapse
Affiliation(s)
- Srinivasa Prasad Kolapalli
- Preethi Center of Oncology, Vattavyalil Cancer Trust, Mysore, Karnataka, India.,Department of Studies in Biochemistry, University of Mysore, Mysore, Karnataka, India
| | - Sunil B Kumaraswamy
- Preethi Center of Oncology, Vattavyalil Cancer Trust, Mysore, Karnataka, India.,Department of Studies in Biochemistry, University of Mysore, Mysore, Karnataka, India
| | - Karuna Kumar Mortha
- Department of Studies in Biochemistry, University of Mysore, Mysore, Karnataka, India
| | - Anil Thomas
- Preethi Center of Oncology, Vattavyalil Cancer Trust, Mysore, Karnataka, India
| | - Shib Das Banerjee
- Preethi Center of Oncology, Vattavyalil Cancer Trust, Mysore, Karnataka, India.,Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
298
|
Roy HS, Singh R, Ghosh D. Recent advances in nanotherapeutic strategies that target nitric oxide pathway for preventing cartilage degeneration. Nitric Oxide 2021; 109-110:1-11. [PMID: 33571602 DOI: 10.1016/j.niox.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is an important inflammatory mediator involved in the development and progression of osteoarthritis (OA). Increased production of NO in the affected joints promote cartilage damage. As NO synthesis is catalysed by the inducible NO synthase (iNOS) enzyme, iNOS inhibition serves as an attractive therapeutic target to prevent NO release. Despite a number of direct and indirect iNOS inhibitor molecules demonstrating chondro-protective effect, none have reached the clinic. Its limited bioavailability and adverse side effects served as a deterrent for pursuing clinical trials in OA patients. With the advent of nanotechnology, interest in targeting NO for preventing cartilage degeneration has revived. In this article, we discuss the limitations of the existing molecules and provide an insight on recent nanotechnology-based strategies that have been explored for the diagnosis and inhibition of NO in OA. These approaches hold promise in reviving the hitherto under explored potential of targeting NO to address OA.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Rupali Singh
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India.
| |
Collapse
|
299
|
Hashemzadeh MR, Taghavizadeh Yazdi ME, Amiri MS, Mousavi SH. Stem cell therapy in the heart: Biomaterials as a key route. Tissue Cell 2021; 71:101504. [PMID: 33607524 DOI: 10.1016/j.tice.2021.101504] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases are one of the main concerns, nowadays causing a high rate of mortality in the world. The majority of conventional treatment protects the heart from failure progression. As a novel therapeutic way, Regenerative medicine in the heart includes cellular and noncellular approaches. Despite the irrefutable privileges of noncellular aspects such as administration of exosomes, utilizing of miRNAs, and growth factors, they cannot reverse necrotic or ischemic myocardium, hence recruiting of stem cells to help regenerative therapy in the heart seems indispensable. Stem cell lineages are varied and divided into two main groups namely pluripotent and adult stem cells. Not only has each of which own regenerative capacity, benefits, and drawbacks, but their turnover also close correlates with the target organ and/or tissue as well as the stage and level of failure. In addition to inefficient tissue integration due to the defects in delivering methods and poor retention of transplanted cells, the complexity of the heart and its movement also make more rigorous the repair process. Hence, utilizing biomaterials can make a key route to tackle such obstacles. In this review, we evaluate some natural products which can help stem cells in regenerative medicine of the cardiovascular system.
Collapse
Affiliation(s)
- Mohammad Reza Hashemzadeh
- Department of Stem Cells and Regenerative Medicine, Royesh Stem Cell Biotechnology Institute, Mashhad, Iran; Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
300
|
Kiyokawa J, Kawamura Y, Ghouse SM, Acar S, Barçın E, Martínez-Quintanilla J, Martuza RL, Alemany R, Rabkin SD, Shah K, Wakimoto H. Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma. Clin Cancer Res 2021; 27:889-902. [PMID: 33257429 PMCID: PMC7854507 DOI: 10.1158/1078-0432.ccr-20-2400] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Extracellular matrix (ECM) component hyaluronan (HA) facilitates malignant phenotypes of glioblastoma (GBM), however, whether HA impacts response to GBM immunotherapies is not known. Herein, we investigated whether degradation of HA enhances oncolytic virus immunotherapy for GBM. EXPERIMENTAL DESIGN Presence of HA was examined in patient and murine GBM. Hyaluronidase-expressing oncolytic adenovirus, ICOVIR17, and its parental virus, ICOVIR15, without transgene, were tested to determine if they increased animal survival and modulated the immune tumor microenvironment (TME) in orthotopic GBM. HA regulation of NF-κB signaling was examined in virus-infected murine macrophages. We combined ICOVIR17 with PD-1 checkpoint blockade and assessed efficacy and determined mechanistic contributions of tumor-infiltrating myeloid and T cells. RESULTS Treatment of murine orthotopic GBM with ICOVIR17 increased tumor-infiltrating CD8+ T cells and macrophages, and upregulated PD-L1 on GBM cells and macrophages, leading to prolonged animal survival, compared with control virus ICOVIR15. High molecular weight HA inhibits adenovirus-induced NF-κB signaling in macrophages in vitro, linking HA degradation to macrophage activation. Combining ICOVIR17 with anti-PD-1 antibody further extended the survival of GBM-bearing mice, achieving long-term remission in some animals. Mechanistically, CD4+ T cells, CD8+ T cells, and macrophages all contributed to the combination therapy that induced tumor-associated proinflammatory macrophages and tumor-specific T-cell cytotoxicity locally and systemically. CONCLUSIONS Our studies are the first to show that immune modulatory ICOVIR17 has a dual role of mediating degradation of HA within GBM ECM and subsequently modifying the immune landscape of the TME, and offers a mechanistic combination immunotherapy with PD-L1/PD-1 blockade that remodels innate and adaptive immune cells.
Collapse
Affiliation(s)
- Juri Kiyokawa
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Yoichiro Kawamura
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Shanawaz M Ghouse
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Simge Acar
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Erinç Barçın
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Jordi Martínez-Quintanilla
- Stem Cells and Cancer Laboratory, Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Robert L Martuza
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts
| | - Ramon Alemany
- ProCure Program, Catalan Institute of Oncology - ICO and Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Samuel D Rabkin
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts
| | - Khalid Shah
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts.
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts.
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|