251
|
Beekman R, Chapaprieta V, Russiñol N, Vilarrasa-Blasi R, Verdaguer-Dot N, Martens JHA, Duran-Ferrer M, Kulis M, Serra F, Javierre BM, Wingett SW, Clot G, Queirós AC, Castellano G, Blanc J, Gut M, Merkel A, Heath S, Vlasova A, Ullrich S, Palumbo E, Enjuanes A, Martín-García D, Beà S, Pinyol M, Aymerich M, Royo R, Puiggros M, Torrents D, Datta A, Lowy E, Kostadima M, Roller M, Clarke L, Flicek P, Agirre X, Prosper F, Baumann T, Delgado J, López-Guillermo A, Fraser P, Yaspo ML, Guigó R, Siebert R, Martí-Renom MA, Puente XS, López-Otín C, Gut I, Stunnenberg HG, Campo E, Martin-Subero JI. The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nat Med 2018; 24:868-880. [PMID: 29785028 PMCID: PMC6363101 DOI: 10.1038/s41591-018-0028-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a frequent hematological neoplasm in which underlying epigenetic alterations are only partially understood. Here, we analyze the reference epigenome of seven primary CLLs and the regulatory chromatin landscape of 107 primary cases in the context of normal B cell differentiation. We identify that the CLL chromatin landscape is largely influenced by distinct dynamics during normal B cell maturation. Beyond this, we define extensive catalogues of regulatory elements de novo reprogrammed in CLL as a whole and in its major clinico-biological subtypes classified by IGHV somatic hypermutation levels. We uncover that IGHV-unmutated CLLs harbor more active and open chromatin than IGHV-mutated cases. Furthermore, we show that de novo active regions in CLL are enriched for NFAT, FOX and TCF/LEF transcription factor family binding sites. Although most genetic alterations are not associated with consistent epigenetic profiles, CLLs with MYD88 mutations and trisomy 12 show distinct chromatin configurations. Furthermore, we observe that non-coding mutations in IGHV-mutated CLLs are enriched in H3K27ac-associated regulatory elements outside accessible chromatin. Overall, this study provides an integrative portrait of the CLL epigenome, identifies extensive networks of altered regulatory elements and sheds light on the relationship between the genetic and epigenetic architecture of the disease.
Collapse
Affiliation(s)
- Renée Beekman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
| | - Vicente Chapaprieta
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Núria Russiñol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Vilarrasa-Blasi
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Núria Verdaguer-Dot
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Joost H A Martens
- Molecular Biology, NCMLS, FNWI, Radboud University, Nijmegen, The Netherlands
| | - Martí Duran-Ferrer
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Marta Kulis
- Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | - François Serra
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Structural Genomics Group, CNAG-CRG, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Biola M Javierre
- Nuclear Dynamics Program, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Steven W Wingett
- Nuclear Dynamics Program, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
| | - Ana C Queirós
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Julie Blanc
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marta Gut
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Angelika Merkel
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Simon Heath
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Vlasova
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and UPF, Barcelona, Spain
| | - Sebastian Ullrich
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and UPF, Barcelona, Spain
| | - Emilio Palumbo
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and UPF, Barcelona, Spain
| | - Anna Enjuanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
| | - David Martín-García
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
| | - Magda Pinyol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
| | - Marta Aymerich
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Unitat de Hematología, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Romina Royo
- Programa Conjunto de Biología Computacional, Barcelona Supercomputing Center (BSC), Institut de Recerca Biomèdica (IRB), Spanish National Bioinformatics Institute, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Puiggros
- Programa Conjunto de Biología Computacional, Barcelona Supercomputing Center (BSC), Institut de Recerca Biomèdica (IRB), Spanish National Bioinformatics Institute, Universitat de Barcelona, Barcelona, Spain
| | - David Torrents
- Programa Conjunto de Biología Computacional, Barcelona Supercomputing Center (BSC), Institut de Recerca Biomèdica (IRB), Spanish National Bioinformatics Institute, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Avik Datta
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK
| | - Ernesto Lowy
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK
| | - Myrto Kostadima
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK
| | - Maša Roller
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK
| | - Xabier Agirre
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Tycho Baumann
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Servicio de Hematología, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Julio Delgado
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Servicio de Hematología, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Armando López-Guillermo
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Servicio de Hematología, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Peter Fraser
- Nuclear Dynamics Program, Babraham Institute, Babraham Research Campus, Cambridge, UK
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | | | - Roderic Guigó
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and UPF, Barcelona, Spain
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm and University Hospital of Ulm, Ulm, Germany
| | - Marc A Martí-Renom
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Structural Genomics Group, CNAG-CRG, The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Carlos López-Otín
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Ivo Gut
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
- Hematopathology Section, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, Universitat de Barcelona, Barcelona, Spain.
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
252
|
Diamantopoulos MA, Tsiakanikas P, Scorilas A. Non-coding RNAs: the riddle of the transcriptome and their perspectives in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:241. [PMID: 30069443 DOI: 10.21037/atm.2018.06.10] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) constitute a heterogeneous group of RNA molecules in terms of biogenesis, biological function as well as length and structure. These biological molecules have gained attention recently as a potentially crucial layer of tumor cell progression or regulation. ncRNAs are expressed in a broad spectrum of tumors, and they play an important role not only in maintaining but also in promoting cancer development and progression. Recent discoveries have revealed that ncRNAs may act as key signal transduction mediators in tumor signaling pathways by interacting with RNA or proteins. These results reinforce the hypothesis, that ncRNAs constitute therapeutic targets, and point out their clinical potential as stratification markers. The major purpose of this review is to mention the emergence of the importance of ncRNAs, as molecules which are correlated with cancer, and to discuss their clinical implicit as prognostic diagnostic indicators, biomarkers, and therapeutic targets.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
253
|
Wang Z, Ng KS, Chen T, Kim TB, Wang F, Shaw K, Scott KL, Meric-Bernstam F, Mills GB, Chen K. Cancer driver mutation prediction through Bayesian integration of multi-omic data. PLoS One 2018; 13:e0196939. [PMID: 29738578 PMCID: PMC5940219 DOI: 10.1371/journal.pone.0196939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/23/2018] [Indexed: 01/23/2023] Open
Abstract
Identification of cancer driver mutations is critical for advancing cancer research and personalized medicine. Due to inter-tumor genetic heterogeneity, many driver mutations occur at low frequencies, which make it challenging to distinguish them from passenger mutations. Here, we show that a novel Bayesian hierarchical modeling approach, named rDriver can achieve enhanced prediction accuracy by identifying mutations that not only have high functional impact scores but also are associated with systemic variation in gene expression levels. In examining 3,080 tumor samples from 8 cancer types in The Cancer Genome Atlas, rDriver predicted 1,389 driver mutations. Compared with existing tools, rDriver identified more low frequency mutations associated with lineage specific functional properties, timing of occurrence and patient survival. Evaluation of rDriver predictions using engineered cell-line models resulted in a positive predictive value of 0.94 in PIK3CA genes. Our study highlights the importance of integrating multi-omic data in predicting cancer driver mutations and provides a statistically rigorous solution for cancer target discovery and development.
Collapse
Affiliation(s)
- Zixing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Institute for Personalized Cancer Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kwok-Shing Ng
- Institute for Personalized Cancer Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Tenghui Chen
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Tae-Beom Kim
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Fang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kenna Shaw
- Institute for Personalized Cancer Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kenneth L. Scott
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Funda Meric-Bernstam
- Institute for Personalized Cancer Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Investigational Cancer Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Gordon B. Mills
- Institute for Personalized Cancer Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Systems Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Institute for Personalized Cancer Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
254
|
Gao Y, Du X, Zeng J, Wu R, Chen Y, Li F, Li W, Zhou H, Yang Y, Pei Z. Prediction and identification of transcriptional regulatory elements at the lung cancer-specific DKK1 locus. Oncol Lett 2018; 16:137-144. [PMID: 29928394 PMCID: PMC6006444 DOI: 10.3892/ol.2018.8638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/23/2018] [Indexed: 12/29/2022] Open
Abstract
The glycoprotein dickkopf 1 (DKK1) is highly expressed in lung cancer cell lines and tissues. Our previous study demonstrated that DKK1 promoter activity is low in lung cancer cell lines. This may be because it lacks the necessary transcriptional regulatory elements (TREs) required for higher activity levels. However, it is difficult to computationally predict functionally significant TREs, as TREs from different locations can affect large segments of distant DNA. The Encyclopedia of DNA Elements project features multiple integrated technologies and approaches for the discovery and definition of functional elements, including enhancer elements and enhancer-blocking insulators. In the present study, DNase I hypersensitive sites and histone modifications of DKK1 were investigated in the A549 lung cancer cell line using the UCSC Genome Browser. A set of cis-acting enhancer elements were identified by a dual-luciferase reporter gene assay system to increase activity of the DKK1 promoter with lung cancer specificity. To the best of our knowledge, these data provide the first insight into the role of the DKK1 locus in lung cancer, and confirm the contribution of intronic cis-acting elements to the regulation of DKK1 expression, providing a new insight into gene regulation in lung cancer, which could inform the development of targeted therapy.
Collapse
Affiliation(s)
- Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xian Du
- Department of General Surgery II, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jing Zeng
- Department of Infection Control, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ruimin Wu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yijia Chen
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Fuyan Li
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wei Li
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hong Zhou
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yi Yang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhijun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
255
|
Backenroth D, He Z, Kiryluk K, Boeva V, Pethukova L, Khurana E, Christiano A, Buxbaum JD, Ionita-Laza I. FUN-LDA: A Latent Dirichlet Allocation Model for Predicting Tissue-Specific Functional Effects of Noncoding Variation: Methods and Applications. Am J Hum Genet 2018; 102:920-942. [PMID: 29727691 PMCID: PMC5986983 DOI: 10.1016/j.ajhg.2018.03.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/21/2018] [Indexed: 10/17/2022] Open
Abstract
We describe a method based on a latent Dirichlet allocation model for predicting functional effects of noncoding genetic variants in a cell-type- and/or tissue-specific way (FUN-LDA). Using this unsupervised approach, we predict tissue-specific functional effects for every position in the human genome in 127 different tissues and cell types. We demonstrate the usefulness of our predictions by using several validation experiments. Using eQTL data from several sources, including the GTEx project, Geuvadis project, and TwinsUK cohort, we show that eQTLs in specific tissues tend to be most enriched among the predicted functional variants in relevant tissues in Roadmap. We further show how these integrated functional scores can be used for (1) deriving the most likely cell or tissue type causally implicated for a complex trait by using summary statistics from genome-wide association studies and (2) estimating a tissue-based correlation matrix of various complex traits. We found large enrichment of heritability in functional components of relevant tissues for various complex traits, and FUN-LDA yielded higher enrichment estimates than existing methods. Finally, using experimentally validated functional variants from the literature and variants possibly implicated in disease by previous studies, we rigorously compare FUN-LDA with state-of-the-art functional annotation methods and show that FUN-LDA has better prediction accuracy and higher resolution than these methods. In particular, our results suggest that tissue- and cell-type-specific functional prediction methods tend to have substantially better prediction accuracy than organism-level prediction methods. Scores for each position in the human genome and for each ENCODE and Roadmap tissue are available online (see Web Resources).
Collapse
Affiliation(s)
- Daniel Backenroth
- Department of Biostatistics, Columbia University, New York, NY 10032, USA
| | - Zihuai He
- Department of Biostatistics, Columbia University, New York, NY 10032, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Valentina Boeva
- INSERM, U900, 75005 Paris, France; Institut Curie, Mines ParisTech, PSL Research University, 75005 Paris, France
| | - Lynn Pethukova
- Department of Epidemiology, Columbia University, New York, NY 10032, USA; Department of Dermatology, Columbia University, New York, NY 10032, USA
| | - Ekta Khurana
- Department of Physiology and Biophysics, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Angela Christiano
- Department of Dermatology, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Joseph D Buxbaum
- Departments of Psychiatry, Neuroscience, and Genetics and Genomic Sciences, Icahn School of Medicine at Mount SInai, New York, NY 10029, USA; Friedman Brain Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | |
Collapse
|
256
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
257
|
Chakravorty S, Hegde M. Inferring the effect of genomic variation in the new era of genomics. Hum Mutat 2018; 39:756-773. [PMID: 29633501 DOI: 10.1002/humu.23427] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/20/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
Accurate and detailed understanding of the effects of variants in the coding and noncoding regions of the genome is the next big challenge in the new genomic era of personalized medicine, especially to tackle newer findings of genetic and phenotypic heterogeneity of diseases. This is necessary to resolve the gene-variant-disease relationship, the pathogenic variant spectrum of genes, pathogenic variants with variable clinical consequences, and multiloci diseases. In turn, this will facilitate patient recruitment for relevant clinical trials. In this review, we describe the trends in research at the intersection of basic and clinical genomics aiming to (a) overcome molecular diagnostic challenges and increase the clinical utility of next-generation sequencing (NGS) platforms, (b) elucidate variants associated with disease, (c) determine overall genomic complexity including epistasis, complex inheritance patterns such as "synergistic heterozygosity," digenic/multigenic inheritance, modifier effect, and rare variant load. We describe the newly emerging field of integrated functional genomics, in vivo or in vitro large-scale functional approaches, statistical bioinformatics algorithms that support NGS genomics data to interpret variants for timely clinical diagnostics and disease management. Thus, facilitating the discovery of new therapeutic or biomarker options, and their roles in the future of personalized medicine.
Collapse
Affiliation(s)
- Samya Chakravorty
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building Suite 301, Atlanta, Georgia
| | - Madhuri Hegde
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building Suite 301, Atlanta, Georgia
| |
Collapse
|
258
|
Zhen JT, Syed J, Nguyen KA, Leapman MS, Agarwal N, Brierley K, Llor X, Hofstatter E, Shuch B. Genetic testing for hereditary prostate cancer: Current status and limitations. Cancer 2018; 124:3105-3117. [PMID: 29669169 DOI: 10.1002/cncr.31316] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
A significant proportion of prostate cancer diagnoses may be associated with a strong hereditary component. Men who have multiple single-gene polymorphisms and a family history of prostate cancer have a significantly greater risk of developing prostate cancer. Numerous single-gene alterations have been confirmed to increase the risk of prostate cancer. These include breast cancer genes 1 and 2 (BRCA1 and BRCA2, respectively), mutL homolog 1 (MLH1), mutS homologs 2 and 6 (MSH2 and MSH6, respectively), postmeiotic segregation increased 2 (PMS2), homeobox B13 (HOXB13), checkpoint kinase 2 (CHEK2), nibrin (NBN), BRCA1-interacting protein C-terminal helicase 1 (BRIP1), and ataxia telangiectasia mutated (ATM). Currently, there are no uniform guidelines on the definition of hereditary prostate cancer and genetic testing. With the advent of next-generation sequencing, which is capable of testing multiple genes simultaneously, and the approval of olaparib for BRCA1/BRCA2 or ATM-mutated, metastatic, castrate-resistant prostate cancer, it is being recognized that the results of genetic testing have an impact on therapeutic strategies. In this review, the authors examine the role of genetic counseling and testing, the challenges of insurance coverage for testing, the available germline and somatic testing panels, and the complexity of each testing method and its implications. Cancer 2018. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Jun Tu Zhen
- Frank H. Netter School of Medicine at Quinnipiac University, North Haven, Connecticut.,Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Jamil Syed
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Kevin Anh Nguyen
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Michael S Leapman
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Neeraj Agarwal
- Huntsman Cancer Center, University of Utah School of Medicine, Salt Lake City, Utah
| | - Karina Brierley
- Cancer Genetics and Prevention Program, Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Xavier Llor
- Cancer Genetics and Prevention Program, Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Erin Hofstatter
- Cancer Genetics and Prevention Program, Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Brian Shuch
- Department of Urology, Yale School of Medicine, New Haven, Connecticut.,Cancer Genetics and Prevention Program, Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
259
|
A global transcriptional network connecting noncoding mutations to changes in tumor gene expression. Nat Genet 2018; 50:613-620. [PMID: 29610481 PMCID: PMC5893414 DOI: 10.1038/s41588-018-0091-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
Although cancer genomes are replete with noncoding mutations, the effects of these mutations remain poorly characterized. Here we perform an integrative analysis of 930 tumor whole genomes and matched transcriptomes, identifying a network of 193 noncoding loci in which mutations disrupt target gene expression. These “somatic eQTLs” (expression Quantitative Trait Loci) are frequently mutated in specific cancer tissues, and the majority can be validated in an independent cohort of 3,382 tumors. Among these, we find that the effects of noncoding mutations on DAAM1, MTG2 and HYI transcription are recapitulated in multiple cancer cell lines, and that increasing DAAM1 expression leads to invasive cell migration. Collectively the noncoding loci converge on a set of core pathways, permitting a classification of tumors into pathway-based subtypes. The somatic eQTL network is disrupted in 88% of tumors, suggesting widespread impact of noncoding mutations in cancer.
Collapse
|
260
|
Lin C, Yang L. Long Noncoding RNA in Cancer: Wiring Signaling Circuitry. Trends Cell Biol 2018; 28:287-301. [PMID: 29274663 PMCID: PMC5869122 DOI: 10.1016/j.tcb.2017.11.008] [Citation(s) in RCA: 394] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs), which are encoded by a vast less explored region of the human genome, may hold missing drivers of cancer and have gained attention recently as a potentially crucial layer of cancer cell regulation. lncRNAs are aberrantly expressed in a broad spectrum of cancers, and they play key roles in promoting and maintaining tumor initiation and progression, demonstrating their clinical potential as biomarkers and therapeutic targets. Recent discoveries have revealed that lncRNAs act as key signal transduction mediators in cancer signaling pathways by interacting with proteins, RNA, and lipids. Here, we review the mechanisms by which lncRNAs regulate cellular responses to extracellular signals and discuss their clinical potential as diagnostic indicators, stratification markers, and therapeutic targets of combinatorial treatments.
Collapse
Affiliation(s)
- Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
261
|
Schuh A, Dreau H, Knight SJL, Ridout K, Mizani T, Vavoulis D, Colling R, Antoniou P, Kvikstad EM, Pentony MM, Hamblin A, Protheroe A, Parton M, Shah KA, Orosz Z, Athanasou N, Hassan B, Flanagan AM, Ahmed A, Winter S, Harris A, Tomlinson I, Popitsch N, Church D, Taylor JC. Clinically actionable mutation profiles in patients with cancer identified by whole-genome sequencing. Cold Spring Harb Mol Case Stud 2018; 4:a002279. [PMID: 29610388 PMCID: PMC5880257 DOI: 10.1101/mcs.a002279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/09/2018] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing (NGS) efforts have established catalogs of mutations relevant to cancer development. However, the clinical utility of this information remains largely unexplored. Here, we present the results of the first eight patients recruited into a clinical whole-genome sequencing (WGS) program in the United Kingdom. We performed PCR-free WGS of fresh frozen tumors and germline DNA at 75× and 30×, respectively, using the HiSeq2500 HTv4. Subtracted tumor VCFs and paired germlines were subjected to comprehensive analysis of coding and noncoding regions, integration of germline with somatically acquired variants, and global mutation signatures and pathway analyses. Results were classified into tiers and presented to a multidisciplinary tumor board. WGS results helped to clarify an uncertain histopathological diagnosis in one case, led to informed or supported prognosis in two cases, leading to de-escalation of therapy in one, and indicated potential treatments in all eight. Overall 26 different tier 1 potentially clinically actionable findings were identified using WGS compared with six SNVs/indels using routine targeted NGS. These initial results demonstrate the potential of WGS to inform future diagnosis, prognosis, and treatment choice in cancer and justify the systematic evaluation of the clinical utility of WGS in larger cohorts of patients with cancer.
Collapse
Affiliation(s)
- Anna Schuh
- Oxford Molecular Diagnostics Centre, Department of Oncology, University of Oxford, Oxford OX3 9DU, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford OX4 2PG, United Kingdom
| | - Helene Dreau
- Oxford Molecular Diagnostics Centre, Department of Oncology, University of Oxford, Oxford OX3 9DU, United Kingdom
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Samantha J L Knight
- Oxford NIHR Biomedical Research Centre, Oxford OX4 2PG, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Kate Ridout
- Oxford NIHR Biomedical Research Centre, Oxford OX4 2PG, United Kingdom
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Tuba Mizani
- Oxford Molecular Diagnostics Centre, Department of Oncology, University of Oxford, Oxford OX3 9DU, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford OX4 2PG, United Kingdom
| | - Dimitris Vavoulis
- Oxford NIHR Biomedical Research Centre, Oxford OX4 2PG, United Kingdom
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Richard Colling
- Oxford Molecular Diagnostics Centre, Department of Oncology, University of Oxford, Oxford OX3 9DU, United Kingdom
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Pavlos Antoniou
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
| | - Erika M Kvikstad
- Oxford NIHR Biomedical Research Centre, Oxford OX4 2PG, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Melissa M Pentony
- Oxford NIHR Biomedical Research Centre, Oxford OX4 2PG, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Angela Hamblin
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Andrew Protheroe
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, United Kingdom
| | - Marina Parton
- Breast Unit, Royal Marsden NHS Foundation Trust and Kingston NHS Foundation Trust, London SW3 6JJ, United Kingdom
| | - Ketan A Shah
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Zsolt Orosz
- Breast Unit, Royal Marsden NHS Foundation Trust and Kingston NHS Foundation Trust, London SW3 6JJ, United Kingdom
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Nick Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Bass Hassan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Adrienne M Flanagan
- University College London, Cancer Institute and Royal National Orthopaedic NHS Hospital, London WC1E 6BT, United Kingdom
| | - Ahmed Ahmed
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Stuart Winter
- Department of Ear Nose and Throat-Head and Neck Surgery, Oxford University Hospitals, Oxford OX3 9DU, United Kingdom
| | - Adrian Harris
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Ian Tomlinson
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Niko Popitsch
- The Children's Cancer Research Institute (CCRI), 1090 Vienna, Austria
| | - David Church
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Jenny C Taylor
- Oxford NIHR Biomedical Research Centre, Oxford OX4 2PG, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
262
|
Lackey L, Coria A, Woods C, McArthur E, Laederach A. Allele-specific SHAPE-MaP assessment of the effects of somatic variation and protein binding on mRNA structure. RNA (NEW YORK, N.Y.) 2018; 24:513-528. [PMID: 29317542 PMCID: PMC5855952 DOI: 10.1261/rna.064469.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 05/22/2023]
Abstract
The impact of inherited and somatic mutations on messenger RNA (mRNA) structure remains poorly understood. Recent technological advances that leverage next-generation sequencing to obtain experimental structure data, such as SHAPE-MaP, can reveal structural effects of mutations, especially when these data are incorporated into structure modeling. Here, we analyze the ability of SHAPE-MaP to detect the relatively subtle structural changes caused by single-nucleotide mutations. We find that allele-specific sorting greatly improved our detection ability. Thus, we used SHAPE-MaP with a novel combination of clone-free robotic mutagenesis and allele-specific sorting to perform a rapid, comprehensive survey of noncoding somatic and inherited riboSNitches in two cancer-associated mRNAs, TPT1 and LCP1 Using rigorous thermodynamic modeling of the Boltzmann suboptimal ensemble, we identified a subset of mutations that change TPT1 and LCP1 RNA structure, with approximately 14% of all variants identified as riboSNitches. To confirm that these in vitro structures were biologically relevant, we tested how dependent TPT1 and LCP1 mRNA structures were on their environments. We performed SHAPE-MaP on TPT1 and LCP1 mRNAs in the presence or absence of cellular proteins and found that both mRNAs have similar overall folds in all conditions. RiboSNitches identified within these mRNAs in vitro likely exist under biological conditions. Overall, these data reveal a robust mRNA structural landscape where differences in environmental conditions and most sequence variants do not significantly alter RNA structural ensembles. Finally, predicting riboSNitches in mRNAs from sequence alone remains particularly challenging; these data will provide the community with benchmarks for further algorithmic development.
Collapse
Affiliation(s)
- Lela Lackey
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Aaztli Coria
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Chanin Woods
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Evonne McArthur
- School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
263
|
Kim T, Croce CM. Long noncoding RNAs: Undeciphered cellular codes encrypting keys of colorectal cancer pathogenesis. Cancer Lett 2018; 417:89-95. [PMID: 29306015 PMCID: PMC5825189 DOI: 10.1016/j.canlet.2017.12.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/15/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022]
Abstract
Long noncoding RNAs are non-protein coding transcripts longer than 200 nucleotides in length. By the advance in genetic and bioinformatic technologies, the new genomic landscape including noncoding transcripts has been revealed. Despite their non-capacity to be translated into proteins, lncRNAs have a versatile functions through various mechanisms interacting with other cellular molecules including DNA, protein, and RNA. Recent research interest and endeavor have identified the functional role of lncRNAs in various diseases including cancer. Colorectal cancer (CRC) is not only one of the most frequent cancer but also one of the cancer types with remarkable achievements in lncRNA research. Of the numerous notable lncRNAs identified and characterized in CRC, we will focus on key lncRNAs with the high potential as CRC-specific biomarkers in this review.
Collapse
Affiliation(s)
- Taewan Kim
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
264
|
Singh B, Trincado JL, Tatlow PJ, Piccolo SR, Eyras E. Genome Sequencing and RNA-Motif Analysis Reveal Novel Damaging Noncoding Mutations in Human Tumors. Mol Cancer Res 2018; 16:1112-1124. [DOI: 10.1158/1541-7786.mcr-17-0601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/26/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022]
|
265
|
An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes. Br J Cancer 2018; 118:1107-1114. [PMID: 29559730 PMCID: PMC5931099 DOI: 10.1038/s41416-018-0030-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
Background Sequence variations in coding and non-coding regions of the genome can affect gene expression and signalling pathways, which in turn may influence disease outcome. Methods In this study, we integrated somatic mutations, gene expression and clinical data from 930 breast cancer patients included in the TCGA database. Genes associated with single mutations in molecular breast cancer subtypes were identified by the Mann-Whitney U-test and their prognostic value was evaluated by Kaplan-Meier and Cox regression analyses. Results were confirmed using gene expression profiles from the Metabric data set (n = 1988) and whole-genome sequencing data from the TCGA cohort (n = 117). Results The overall mutation rate in coding and non-coding regions were significantly higher in ER-negative/HER2-negative tumours (P = 2.8E–03 and P = 2.4E–07, respectively). Recurrent sequence variations were identified in non-coding regulatory regions of several cancer-associated genes, including NBPF1, PIK3CA and TP53. After multivariate regression analysis, gene signatures associated with three coding mutations (CDH1, MAP3K1 and TP53) and two non-coding variants (CRTC3 and STAG2) in cancer-related genes predicted prognosis in ER-positive/HER2-negative tumours. Conclusions These findings demonstrate that sequence alterations influence gene expression and oncogenic pathways, possibly affecting the outcome of breast cancer patients. Our data provide potential opportunities to identify non-coding variations with functional and clinical relevance in breast cancer.
Collapse
|
266
|
López-Lázaro M. The stem cell division theory of cancer. Crit Rev Oncol Hematol 2018; 123:95-113. [DOI: 10.1016/j.critrevonc.2018.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/13/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
|
267
|
Sokhi UK, Liber MP, Frye L, Park S, Kang K, Pannellini T, Zhao B, Norinsky R, Ivashkiv LB, Gong S. Dissection and function of autoimmunity-associated TNFAIP3 (A20) gene enhancers in humanized mouse models. Nat Commun 2018; 9:658. [PMID: 29440643 PMCID: PMC5811492 DOI: 10.1038/s41467-018-03081-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022] Open
Abstract
Enhancers regulate gene expression and have been linked with disease pathogenesis. Little is known about enhancers that regulate human disease-associated genes in primary cells relevant for pathogenesis. Here we use BAC transgenics and genome editing to dissect, in vivo and in primary immune cells, enhancers that regulate human TNFAIP3, which encodes A20 and is linked with autoimmune diseases. A20 expression is dependent on a topologically associating subdomain (sub-TAD) that harbors four enhancers, while another >20 enhancers in the A20 locus are redundant. This sub-TAD contains cell- and activation-specific enhancers, including an enhancer (termed TT>A) harboring a proposed causal SLE-associated SNV. Deletion of the sub-TAD or the TT>A enhancer results in enhanced inflammatory responses, autoantibody production, and inflammatory arthritis, thus establishing functional importance in vivo and linking enhancers with a specific disease phenotype. These findings provide insights into enhancers that regulate human A20 expression to prevent inflammatory pathology and autoimmunity. The human TNFAIP3 gene, which encodes for A20, is associated with autoimmune diseases. Here, the authors use BAC transgenics combined with CRISPR- and recombineering-mediated genome editing to dissect in vivo and in primary immune cells, the role of enhancers regulating TNFAIP3.
Collapse
Affiliation(s)
- Upneet K Sokhi
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Mark P Liber
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Laura Frye
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Sungho Park
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Kyuho Kang
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Tania Pannellini
- Research Division and Department of Pathology, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA
| | | | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA. .,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, 10065, USA. .,Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Shiaoching Gong
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA. .,Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
268
|
Catalano C, da Silva Filho MI, Frank C, Jiraskova K, Vymetalkova V, Levy M, Liska V, Vycital O, Naccarati A, Vodickova L, Hemminki K, Vodicka P, Weber ANR, Försti A. Investigation of single and synergic effects of NLRC5 and PD-L1 variants on the risk of colorectal cancer. PLoS One 2018; 13:e0192385. [PMID: 29408916 PMCID: PMC5800657 DOI: 10.1371/journal.pone.0192385] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/20/2018] [Indexed: 12/31/2022] Open
Abstract
Constitutive activation of interferon signaling pathways has been reported in colorectal cancer (CRC), leading to a strong CD8+ T cell response through stimulation of NLRC5 expression. Primed CD8+ T cell expansion, however, may be negatively regulated by PD-L1 expression. Additionally, aberrant PD-L1 expression enables cancer cells to escape the immune attack. Our study aimed to select potential regulatory variants in the NLRC5 and PD-L1 genes by using several online in silico tools, such as UCSC browser, HaploReg, Regulome DB, Gtex Portal, microRNA and transcription factor binding site prediction tools and to investigate their influence on CRC risk in a Czech cohort of 1424 CRC patients and 1114 healthy controls. Logistic regression analysis adjusted for age and gender reported a moderate association between rectal cancer risk and two NLRC5 SNPs, rs1684575 T>G (OR: 1.60, 95% CI: 1.13-2.27, recessive model) and rs3751710 (OR: 0.70, 95% CI: 0.51-0.96, dominant model). Given that a combination of genetic variants, rather than a single polymorphism, may explain better the genetic etiology of CRC, we studied the interplay between the variants within NLRC5, PD-L1 and the previously genotyped IFNGR1 and IFNGR2 variants, to evaluate their involvement in the risk of CRC development. Overall we obtained 18 pair-wise interactions within and between the NLRC5 ad PD-L1 genes and 6 more when IFNGR variants were added. Thirteen out of the 24 interactions were below the threshold for the FDR calculated and controlled at an arbitrary level q*<0.10. Furthermore, the interaction IFNGR2 rs1059293 C>T-NLRC5 rs289747 G>A (P<0.0001) remained statistically significant even after Bonferroni correction. Our data suggest that not only a single genetic variant but also an interaction between two or more variants within genes involved in immune regulation may play important roles in the onset of CRC, providing therefore novel biological information, which could eventually improve CRC risk management but also PD-1-based immunotherapy in CRC.
Collapse
Affiliation(s)
- Calogerina Catalano
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Christoph Frank
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katerina Jiraskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1 Medical Faculty, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1 Medical Faculty, Charles University, Prague, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Medical Faculty, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Vaclav Liska
- Department of Surgery, First Medical Faculty, Charles University and Thomayer Hospital, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University Prague, Pilsen, Czech Republic
| | - Ondrej Vycital
- Department of Surgery, First Medical Faculty, Charles University and Thomayer Hospital, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University Prague, Pilsen, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Molecular and Genetic Epidemiology, Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1 Medical Faculty, Charles University, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University Prague, Pilsen, Czech Republic
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1 Medical Faculty, Charles University, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University Prague, Pilsen, Czech Republic
| | - Alexander N. R. Weber
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| |
Collapse
|
269
|
Gan KA, Carrasco Pro S, Sewell JA, Fuxman Bass JI. Identification of Single Nucleotide Non-coding Driver Mutations in Cancer. Front Genet 2018; 9:16. [PMID: 29456552 PMCID: PMC5801294 DOI: 10.3389/fgene.2018.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Recent whole-genome sequencing studies have identified millions of somatic variants present in tumor samples. Most of these variants reside in non-coding regions of the genome potentially affecting transcriptional and post-transcriptional gene regulation. Although a few hallmark examples of driver mutations in non-coding regions have been reported, the functional role of the vast majority of somatic non-coding variants remains to be determined. This is because the few driver variants in each sample must be distinguished from the thousands of passenger variants and because the logic of regulatory element function has not yet been fully elucidated. Thus, variants prioritized based on mutational burden and location within regulatory elements need to be validated experimentally. This is generally achieved by combining assays that measure physical binding, such as chromatin immunoprecipitation, with those that determine regulatory activity, such as luciferase reporter assays. Here, we present an overview of in silico approaches used to prioritize somatic non-coding variants and the experimental methods used for functional validation and characterization.
Collapse
Affiliation(s)
- Kok A Gan
- Department of Biology, Boston University, Boston, MA, United States
| | | | - Jared A Sewell
- Department of Biology, Boston University, Boston, MA, United States
| | | |
Collapse
|
270
|
Hu X, Sood AK, Dang CV, Zhang L. The role of long noncoding RNAs in cancer: the dark matter matters. Curr Opin Genet Dev 2018; 48:8-15. [PMID: 29054012 PMCID: PMC5869075 DOI: 10.1016/j.gde.2017.10.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Sequencing technology has facilitated a new era of cancer research, especially in cancer genomics. Using next-generation sequencing, thousands of long noncoding RNAs (lncRNAs) have been identified as abnormally altered in the cancer genome or differentially expressed in tumor tissues. These lncRNAs are associated with imbalanced gene regulation and aberrant biological processes that contribute to malignant transformation. The functions and therapeutic potential of cancer-related lncRNAs have attracted considerable interest in the past few years. Although few lncRNAs have been well-characterized, researchers have recently made impressive progress in understanding lncRNAs and their novel functions, such as regulation of gene expression, metabolism and DNA repair. These latest findings reinforce the crucial roles of lncRNAs in cancer initiation and development, as well as their possible clinical applications.
Collapse
Affiliation(s)
- Xiaowen Hu
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anil K. Sood
- Center for RNA Interference and Non-coding RNA, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chi V. Dang
- Wistar Institute, Philadelphia, PA 19104, USA
- Ludwig Institute for Cancer Research, New York, NY 10017, USA
| | - Lin Zhang
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
271
|
Laumont CM, Perreault C. Exploiting non-canonical translation to identify new targets for T cell-based cancer immunotherapy. Cell Mol Life Sci 2018; 75:607-621. [PMID: 28823056 PMCID: PMC11105255 DOI: 10.1007/s00018-017-2628-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023]
Abstract
Cryptic MHC I-associated peptides (MAPs) are produced via two mechanisms: translation of protein-coding genes in non-canonical reading frames and translation of allegedly non-coding sequences. In general, cryptic MAPs are coded by relatively short open reading frames whose translation can be regulated at the level of initiation, elongation or termination. In contrast to conventional MAPs, the processing of cryptic MAPs is frequently proteasome independent. The existence of cryptic MAPs derived from allegedly non-coding regions enlarges the scope of CD8 T cell immunosurveillance from a mere ~2% to as much as ~75% of the human genome. Considering that 99% of cancer-specific mutations are located in those allegedly non-coding regions, cryptic MAPs could furthermore represent a particularly rich source of tumor-specific antigens. However, extensive proteogenomic analyses will be required to determine the breath as well as the temporal and spatial plasticity of the cryptic MAP repertoire in normal and neoplastic cells.
Collapse
Affiliation(s)
- Céline M Laumont
- Institute for Research in Immunology and Cancer, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada.
- Division of Hematology, Hôpital Maisonneuve-Rosemont, 5415 de l'Assomption Boulevard, Montreal, QC, H1T 2M4, Canada.
| |
Collapse
|
272
|
lncRNA Gene Signatures for Prediction of Breast Cancer Intrinsic Subtypes and Prognosis. Genes (Basel) 2018; 9:genes9020065. [PMID: 29373522 PMCID: PMC5852561 DOI: 10.3390/genes9020065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/23/2017] [Accepted: 01/15/2018] [Indexed: 01/04/2023] Open
Abstract
Background: Breast cancer is intrinsically heterogeneous and is commonly classified into four main subtypes associated with distinct biological features and clinical outcomes. However, currently available data resources and methods are limited in identifying molecular subtyping on protein-coding genes, and little is known about the roles of long non-coding RNAs (lncRNAs), which occupies 98% of the whole genome. lncRNAs may also play important roles in subgrouping cancer patients and are associated with clinical phenotypes. Methods: The purpose of this project was to identify lncRNA gene signatures that are associated with breast cancer subtypes and clinical outcomes. We identified lncRNA gene signatures from The Cancer Genome Atlas (TCGA )RNAseq data that are associated with breast cancer subtypes by an optimized 1-Norm SVM feature selection algorithm. We evaluated the prognostic performance of these gene signatures with a semi-supervised principal component (superPC) method. Results: Although lncRNAs can independently predict breast cancer subtypes with satisfactory accuracy, a combined gene signature including both coding and non-coding genes will give the best clinically relevant prediction performance. We highlighted eight potential biomarkers (three from coding genes and five from non-coding genes) that are significantly associated with survival outcomes. Conclusion: Our proposed methods are a novel means of identifying subtype-specific coding and non-coding potential biomarkers that are both clinically relevant and biologically significant.
Collapse
|
273
|
Morfouace M, Hewitt SM, Salgado R, Hartmann K, Litiere S, Tejpar S, Golfinopoulos V, Lively T, Thurin M, Conley B, Lacombe D. A transatlantic perspective on the integration of immuno-oncology prognostic and predictive biomarkers in innovative clinical trial design. Semin Cancer Biol 2018; 52:158-165. [PMID: 29307568 DOI: 10.1016/j.semcancer.2018.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/11/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Immuno-therapeutics aim to activate the body's own immune system against cancer and are one of the most promising cancer treatment strategies, but currently limited by a variable response rate. Biomarkers may help to distinguish those patients most likely to respond to therapy; they may also help guide clinical decision making for combination therapies, dosing schedules, and determining progression versus relapse. However, there is a need to confirm such biomarkers in preferably prospective clinical trials before they can be used in practice. Accordingly, it is essential that clinical trials for immuno-therapeutics incorporate biomarkers. Here, focusing on the specific setting of immune therapies, we discuss both the scientific and logistical hurdles to identifying potential biomarkers and testing them in clinical trials.
Collapse
Affiliation(s)
| | - S M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda MD, USA
| | - R Salgado
- EORTC Pathobiology Group, Breast Cancer Translational Research Laboratory, Jules Bordet Institute, Brussels, Belgium; Translational Breast Cancer Genomic and Therapeutics Laboratory, Peter Mac Callum Cancer Center, Victoria, Australia, Australia; Department of Pathology, GZA, Antwerp, Belgium
| | | | - S Litiere
- EORTC Headquarters, Brussels, Belgium
| | - S Tejpar
- Molecular Digestive Oncology Unit, University Hospital Gasthuisberg, Leuven, Belgium
| | | | - T Lively
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, DHHS,9609 Medical Center Drive, Bethesda, MD 20892 USA
| | - M Thurin
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, DHHS,9609 Medical Center Drive, Bethesda, MD 20892 USA
| | - B Conley
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, DHHS,9609 Medical Center Drive, Bethesda, MD 20892 USA
| | - D Lacombe
- EORTC Headquarters, Brussels, Belgium
| |
Collapse
|
274
|
Zheng P, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med Res Rev 2018; 38:325-376. [PMID: 28862319 PMCID: PMC5763363 DOI: 10.1002/med.21463] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022]
Abstract
To date, five cancer treatment modalities have been defined. The three traditional modalities of cancer treatment are surgery, radiotherapy, and conventional chemotherapy, and the two modern modalities include molecularly targeted therapy (the fourth modality) and immunotherapy (the fifth modality). The cardiotoxicity associated with conventional chemotherapy and radiotherapy is well known. Similar adverse cardiac events are resurging with the fourth modality. Aside from the conventional and newer targeted agents, even the most newly developed, immune-based therapeutic modalities of anticancer treatment (the fifth modality), e.g., immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy, have unfortunately led to potentially lethal cardiotoxicity in patients. Cardiac complications represent unresolved and potentially life-threatening conditions in cancer survivors, while effective clinical management remains quite challenging. As a consequence, morbidity and mortality related to cardiac complications now threaten to offset some favorable benefits of modern cancer treatments in cancer-related survival, regardless of the oncologic prognosis. This review focuses on identifying critical research-practice gaps, addressing real-world challenges and pinpointing real-time insights in general terms under the context of clinical cardiotoxicity induced by the fourth and fifth modalities of cancer treatment. The information ranges from basic science to clinical management in the field of cardio-oncology and crosses the interface between oncology and onco-pharmacology. The complexity of the ongoing clinical problem is addressed at different levels. A better understanding of these research-practice gaps may advance research initiatives on the development of mechanism-based diagnoses and treatments for the effective clinical management of cardiotoxicity.
Collapse
Affiliation(s)
- Ping‐Pin Zheng
- Cardio‐Oncology Research GroupErasmus Medical CenterRotterdamthe Netherlands
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Jin Li
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Johan M Kros
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
275
|
Lee PH, Lee C, Li X, Wee B, Dwivedi T, Daly M. Principles and methods of in-silico prioritization of non-coding regulatory variants. Hum Genet 2018; 137:15-30. [PMID: 29288389 PMCID: PMC5892192 DOI: 10.1007/s00439-017-1861-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
Over a decade of genome-wide association, studies have made great strides toward the detection of genes and genetic mechanisms underlying complex traits. However, the majority of associated loci reside in non-coding regions that are functionally uncharacterized in general. Now, the availability of large-scale tissue and cell type-specific transcriptome and epigenome data enables us to elucidate how non-coding genetic variants can affect gene expressions and are associated with phenotypic changes. Here, we provide an overview of this emerging field in human genomics, summarizing available data resources and state-of-the-art analytic methods to facilitate in-silico prioritization of non-coding regulatory mutations. We also highlight the limitations of current approaches and discuss the direction of much-needed future research.
Collapse
Affiliation(s)
- Phil H Lee
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St, Boston, MA, 02114, USA.
- Quantitative Genomics Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Christian Lee
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St, Boston, MA, 02114, USA
- Department of Life Sciences, Harvard University, Cambridge, MA, USA
| | - Xihao Li
- Quantitative Genomics Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brian Wee
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St, Boston, MA, 02114, USA
| | - Tushar Dwivedi
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St, Boston, MA, 02114, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Mark Daly
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, 185 Cambridge St, Boston, MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
276
|
Bruno W, Andreotti V, Bisio A, Pastorino L, Fornarini G, Sciallero S, Bianchi-Scarrà G, Inga A, Ghiorzo P. Functional analysis of a CDKN2A 5'UTR germline variant associated with pancreatic cancer development. PLoS One 2017; 12:e0189123. [PMID: 29216274 PMCID: PMC5720692 DOI: 10.1371/journal.pone.0189123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
CDKN2A coding region germline variants are associated with pancreatic adenocarcinoma (PC) susceptibility. Recently, we described functional germline 5’UTR CDKN2A variants from melanoma patients affecting the post-transcriptional regulation of p16INK4a mRNA that is dependent, at least in part, on an Internal Ribosome Entry Site (IRES) in the 5’UTR region. Here we describe a 5’UTR c.-201_-198delinsCTTT CDKN2A variant (frequency 0.0028 based on 350 PC patients), which seems to be private to PC, since it has never been found in public databases nor in thousands of melanoma patients tested. Functional analyses confirmed IRES activity of the 5’UTR in BX-PC3 PC cells and revealed a functional impact of the identified variant. Using gene reporter assays we observed reduced translation potential in cells treated with the mTOR inhibitor Torin1, a condition that favors the assessment of IRES activity. At the endogenous gene level we quantified allelic imbalance among polysome-associated mRNAs using a patient-derived cell line heterozygous for the c.-201_-198delinsCTTT. Overall, we conclude that this very rare private variant can be considered a potential mutation, specifically associated with PC. Our data indicate that sequencing of the entire 5'UTR of CDKN2A should be included in routine screening of PC cases with suspected inherited susceptibility.
Collapse
Affiliation(s)
- William Bruno
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessandra Bisio
- Centre for Integrative Biology (CIBIO) and University of Trento, Trento, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | | | | | - Giovanna Bianchi-Scarrà
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Inga
- Centre for Integrative Biology (CIBIO) and University of Trento, Trento, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
- * E-mail:
| |
Collapse
|
277
|
Soh KP, Szczurek E, Sakoparnig T, Beerenwinkel N. Predicting cancer type from tumour DNA signatures. Genome Med 2017; 9:104. [PMID: 29183400 PMCID: PMC5706302 DOI: 10.1186/s13073-017-0493-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022] Open
Abstract
Background Establishing the cancer type and site of origin is important in determining the most appropriate course of treatment for cancer patients. Patients with cancer of unknown primary, where the site of origin cannot be established from an examination of the metastatic cancer cells, typically have poor survival. Here, we evaluate the potential and limitations of utilising gene alteration data from tumour DNA to identify cancer types. Methods Using sequenced tumour DNA downloaded via the cBioPortal for Cancer Genomics, we collected the presence or absence of calls for gene alterations for 6640 tumour samples spanning 28 cancer types, as predictive features. We employed three machine-learning techniques, namely linear support vector machines with recursive feature selection, L1-regularised logistic regression and random forest, to select a small subset of gene alterations that are most informative for cancer-type prediction. We then evaluated the predictive performance of the models in a comparative manner. Results We found the linear support vector machine to be the most predictive model of cancer type from gene alterations. Using only 100 somatic point-mutated genes for prediction, we achieved an overall accuracy of 49.4±0.4 % (95 % confidence interval). We observed a marked increase in the accuracy when copy number alterations are included as predictors. With a combination of somatic point mutations and copy number alterations, a mere 50 genes are enough to yield an overall accuracy of 77.7±0.3 %. Conclusions A general cancer diagnostic tool that utilises either only somatic point mutations or only copy number alterations is not sufficient for distinguishing a broad range of cancer types. The combination of both gene alteration types can dramatically improve the performance. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0493-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kee Pang Soh
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland.,Saw Swee Hock School of Public Health, National University of Singapore, Tahir Foundation Building, 12 Science Drive 2 MD1, Singapore, 117549, Singapore
| | - Ewa Szczurek
- Institute of Informatics, University of Warsaw, Banacha 2, Warsaw, 02-097, Poland
| | - Thomas Sakoparnig
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, 4056, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, 4058, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, 4058, Switzerland. .,SIB Swiss Institute of Bioinformatics, Basel, 4058, Switzerland.
| |
Collapse
|
278
|
Functional germline variants as potential co-oncogenes. NPJ Breast Cancer 2017; 3:46. [PMID: 29177190 PMCID: PMC5700137 DOI: 10.1038/s41523-017-0051-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022] Open
Abstract
Germline variants that affect the expression or function of proteins contribute to phenotypic variation in humans and likely determine individual characteristics and susceptibility to diseases including cancer. A number of high penetrance germline variants that increase cancer risk have been identified and studied, but germline functional polymorphisms are not typically considered in the context of cancer biology, where the focus is primarily on somatic mutations. Yet, there is evidence from familial cancers indicating that specific cancer subtypes tend to arise in carriers of high-risk germline variants (e.g., triple negative breast cancers in mutated BRCA carriers), which suggests that pre-existing germline variants may determine which complementary somatic driver mutations are needed to drive tumorigenesis. Recent genome sequencing studies of large breast cancer cohorts reported only a handful of highly recurrent driver mutations, suggesting that different oncogenic events drive individual cancers. Here, we propose that germline polymorphisms can function as oncogenic modifiers, or co-oncogenes, and these determine what complementary subsequent somatic events are required for full malignant transformation. Therefore, we propose that germline aberrations should be considered together with somatic mutations to determine what genes drive cancer and how they may be targeted.
Collapse
|
279
|
Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 2017; 19:143-157. [PMID: 29138516 DOI: 10.1038/nrm.2017.104] [Citation(s) in RCA: 912] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long intergenic non-coding RNA (lincRNA) genes have diverse features that distinguish them from mRNA-encoding genes and exercise functions such as remodelling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Some genes currently annotated as encoding lincRNAs include small open reading frames (smORFs) and encode functional peptides and thus may be more properly classified as coding RNAs. lincRNAs may broadly serve to fine-tune the expression of neighbouring genes with remarkable tissue specificity through a diversity of mechanisms, highlighting our rapidly evolving understanding of the non-coding genome.
Collapse
Affiliation(s)
- Julia D Ransohoff
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Yuning Wei
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, California 94304, USA
| |
Collapse
|
280
|
Broeckx BJG, Derrien T, Mottier S, Wucher V, Cadieu E, Hédan B, Le Béguec C, Botherel N, Lindblad-Toh K, Saunders JH, Deforce D, André C, Peelman L, Hitte C. An exome sequencing based approach for genome-wide association studies in the dog. Sci Rep 2017; 7:15680. [PMID: 29142306 PMCID: PMC5688105 DOI: 10.1038/s41598-017-15947-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWAS) are widely used to identify loci associated with phenotypic traits in the domestic dog that has emerged as a model for Mendelian and complex traits. However, a disadvantage of GWAS is that it always requires subsequent fine-mapping or sequencing to pinpoint causal mutations. Here, we performed whole exome sequencing (WES) and canine high-density (cHD) SNP genotyping of 28 dogs from 3 breeds to compare the SNP and linkage disequilibrium characteristics together with the power and mapping precision of exome-guided GWAS (EG-GWAS) versus cHD-based GWAS. Using simulated phenotypes, we showed that EG-GWAS has a higher power than cHD to detect associations within target regions and less power outside target regions, with power being influenced further by sample size and SNP density. We analyzed two real phenotypes (hair length and furnishing), that are fixed in certain breeds to characterize mapping precision of the known causal mutations. EG-GWAS identified the associated exonic and 3'UTR variants within the FGF5 and RSPO2 genes, respectively, with only a few samples per breed. In conclusion, we demonstrated that EG-GWAS can identify loci associated with Mendelian phenotypes both within and across breeds.
Collapse
Affiliation(s)
- Bart J G Broeckx
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Thomas Derrien
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Stéphanie Mottier
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Valentin Wucher
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Edouard Cadieu
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Benoît Hédan
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Céline Le Béguec
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Nadine Botherel
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jimmy H Saunders
- Department of Medical Imaging and Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Catherine André
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christophe Hitte
- Institut de Génétique et Développement de Rennes, CNRS-URM6290, Université Rennes1, Rennes, France.
| |
Collapse
|
281
|
Anwar SL, Wulaningsih W, Watkins J. Profile of the breast cancer susceptibility marker rs4245739 identifies a role for miRNAs. Cancer Biol Med 2017; 14:387-395. [PMID: 29372105 PMCID: PMC5785168 DOI: 10.20892/j.issn.2095-3941.2017.0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To determine the influence of the single nucleotide polymorphism (SNP) rs4245739 on the binding and expression of microRNAs and subsequent MDM4 expression and the correlation of these factors with clinical determinants of ER-negative breast cancers. METHODS FindTar and miRanda were used to detect the manner in which potential microRNAs are affected by the SNP rs4245739-flanking sequence. RNA sequencing data for ER-negative breast cancer from The Cancer Genome Atlas (TCGA) were used to compare the expression of miR-184, miR-191, miR-193a, miR-378, and MDM4 in different rs4245739 genotypes. RESULTS Comparison of ER-negative cancer patients with and without the expression of miR-191 as well as profile microRNAs (miR-184, miR-191, miR-193a and miR-378 altogether) can differentiate the expression of MDM4 among different rs4245739 genotypes. Although simple genotyping alone did not reveal significant clinical relationships, the combination of genotyping and microRNA profiles was able to significantly differentiate individuals with larger tumor size and lower number of involved lymph nodes (P < 0.05) in the risk group (A allele). CONCLUSIONS We present two novel methods to analyze SNPs within 3'UTRs that use: (i) a single miRNA marker expression and (ii) an expression profile of miRNAs predicted to bind to the SNP region. We demonstrate that the application of these two methods, in particular the miRNA profile approach, permits detection of new molecular and clinical features related to the rs4245739 variant in ER-negative breast cancer.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- PILAR Research Network, Cambridgeshire CB1 2JD, UK
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wahyu Wulaningsih
- PILAR Research Network, Cambridgeshire CB1 2JD, UK
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Division of Hemato-Oncology, Department of Internal Medicine, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Johnathan Watkins
- PILAR Research Network, Cambridgeshire CB1 2JD, UK
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
282
|
Ramaker RC, Savic D, Hardigan AA, Newberry K, Cooper GM, Myers RM, Cooper SJ. A genome-wide interactome of DNA-associated proteins in the human liver. Genome Res 2017; 27:1950-1960. [PMID: 29021291 PMCID: PMC5668951 DOI: 10.1101/gr.222083.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
Large-scale efforts like the ENCODE Project have made tremendous progress in cataloging the genomic binding patterns of DNA-associated proteins (DAPs), such as transcription factors (TFs). However, most chromatin immunoprecipitation-sequencing (ChIP-seq) analyses have focused on a few immortalized cell lines whose activities and physiology differ in important ways from endogenous cells and tissues. Consequently, binding data from primary human tissue are essential to improving our understanding of in vivo gene regulation. Here, we identify and analyze more than 440,000 binding sites using ChIP-seq data for 20 DAPs in two human liver tissue samples. We integrated binding data with transcriptome and phased WGS data to investigate allelic DAP interactions and the impact of heterozygous sequence variation on the expression of neighboring genes. Our tissue-based data set exhibits binding patterns more consistent with liver biology than cell lines, and we describe uses of these data to better prioritize impactful noncoding variation. Collectively, our rich data set offers novel insights into genome function in human liver tissue and provides a valuable resource for assessing disease-related disruptions.
Collapse
Affiliation(s)
- Ryne C Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Daniel Savic
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Andrew A Hardigan
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Kimberly Newberry
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| |
Collapse
|
283
|
Pan Y, Mao Y, Jin R, Jiang L. Crosstalk between the Notch signaling pathway and non-coding RNAs in gastrointestinal cancers. Oncol Lett 2017; 15:31-40. [PMID: 29285185 DOI: 10.3892/ol.2017.7294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
The Notch signaling pathway is one of the main signaling pathways that mediates direct contact between cells, and is essential for normal development. It regulates various cellular processes, including cell proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. It additionally serves an important function in tumor progression. Non-coding RNAs mainly include small microRNAs, long non-coding RNAs and circular RNAs. At present, a large body of literature supports the biological significance of non-coding RNAs in tumor progression. It is also becoming increasingly evident that cross-talk exists between Notch signaling and non-coding RNAs. The present review summarizes the current knowledge of Notch-mediated gastrointestinal cancer cell processes, and the effect of the crosstalk between the three major types of non-coding RNAs and the Notch signaling pathway on the fate of gastrointestinal cancer cells.
Collapse
Affiliation(s)
- Yangyang Pan
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuyan Mao
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rong Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
284
|
|
285
|
Halperin RF, Carpten JD, Manojlovic Z, Aldrich J, Keats J, Byron S, Liang WS, Russell M, Enriquez D, Claasen A, Cherni I, Awuah B, Oppong J, Wicha MS, Newman LA, Jaigge E, Kim S, Craig DW. A method to reduce ancestry related germline false positives in tumor only somatic variant calling. BMC Med Genomics 2017; 10:61. [PMID: 29052513 PMCID: PMC5649057 DOI: 10.1186/s12920-017-0296-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Significant clinical and research applications are driving large scale adoption of individualized tumor sequencing in cancer in order to identify tumors-specific mutations. When a matched germline sample is available, somatic mutations may be identified using comparative callers. However, matched germline samples are frequently not available such as with archival tissues, which makes it difficult to distinguish somatic from germline variants. While population databases may be used to filter out known germline variants, recent studies have shown private germline variants result in an inflated false positive rate in unmatched tumor samples, and the number germline false positives in an individual may be related to ancestry. METHODS First, we examined the relationship between the germline false positives and ancestry. Then we developed and implemented a tumor only caller (LumosVar) that leverages differences in allelic frequency between somatic and germline variants in impure tumors. We used simulated data to systematically examine how copy number alterations, tumor purity, and sequencing depth should affect the sensitivity of our caller. Finally, we evaluated the caller on real data. RESULTS We find the germline false-positive rate is significantly higher for individuals of non-European Ancestry largely due to the limited diversity in public polymorphism databases and due to population-specific characteristics such as admixture or recent expansions. Our Bayesian tumor only caller (LumosVar) is able to greatly reduce false positives from private germline variants, and our sensitivity is similar to predictions based on simulated data. CONCLUSIONS Taken together, our results suggest that studies of individuals of non-European ancestry would most benefit from our approach. However, high sensitivity requires sufficiently impure tumors and adequate sequencing depth. Even in impure tumors, there are copy number alterations that result in germline and somatic variants having similar allele frequencies, limiting the sensitivity of the approach. We believe our approach could greatly improve the analysis of archival samples in a research setting where the normal is not available.
Collapse
Affiliation(s)
- Rebecca F Halperin
- Center for Translational Innovation, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - John D Carpten
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA.
| | - Zarko Manojlovic
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Jessica Aldrich
- Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jonathan Keats
- Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Sara Byron
- Center for Translational Innovation, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Winnie S Liang
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Megan Russell
- Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Daniel Enriquez
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ana Claasen
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Irene Cherni
- Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | | | | | | | | | - Seungchan Kim
- Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - David W Craig
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA. .,Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
286
|
Sandoval-Bórquez A, Polakovicova I, Carrasco-Véliz N, Lobos-González L, Riquelme I, Carrasco-Avino G, Bizama C, Norero E, Owen GI, Roa JC, Corvalán AH. MicroRNA-335-5p is a potential suppressor of metastasis and invasion in gastric cancer. Clin Epigenetics 2017; 9:114. [PMID: 29075357 PMCID: PMC5645854 DOI: 10.1186/s13148-017-0413-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Multiple aberrant microRNA expression has been reported in gastric cancer. Among them, microRNA-335-5p (miR-335), a microRNA regulated by DNA methylation, has been reported to possess both tumor suppressor and tumor promoter activities. Results Herein, we show that miR-335 levels are reduced in gastric cancer and significantly associate with lymph node metastasis, depth of tumor invasion, and ultimately poor patient survival in a cohort of Amerindian/Hispanic patients. In two gastric cancer cell lines AGS and, Hs 746T the exogenous miR-335 decreases migration, invasion, viability, and anchorage-independent cell growth capacities. Performing a PCR array on cells transfected with miR-335, 19 (30.6%) out of 62 genes involved in metastasis and tumor invasion showed decreased transcription levels. Network enrichment analysis narrowed these genes to nine (PLAUR, CDH11, COL4A2, CTGF, CTSK, MMP7, PDGFA, TIMP1, and TIMP2). Elevated levels of PLAUR, a validated target gene, and CDH11 were confirmed in tumors with low expression of miR-335. The 3′UTR of CDH11 was identified to be directly targeted by miR-335. Downregulation of miR-335 was also demonstrated in plasma samples from gastric cancer patients and inversely correlated with DNA methylation of promoter region (Z = 1.96, p = 0.029). DNA methylation, evaluated by methylation-specific PCR assay, was found in plasma from 23 (56.1%) out of 41 gastric cancer patients but in only 9 (30%) out of 30 healthy donors (p = 0.029, Pearson’s correlation). Taken in consideration, our results of the association with depth of invasion, lymph node metastasis, and poor prognosis together with functional assays on cell migration, invasion, and tumorigenicity are in accordance with the downregulation of miR-335 in gastric cancer. Conclusions Comprehensive evaluation of metastasis and invasion pathway identified a subset of associated genes and confirmed PLAUR and CDH11, both targets of miR-335, to be overexpressed in gastric cancer tissues. DNA methylation of miR-335 may be a promissory strategy for non-invasive approach to gastric cancer. Electronic supplementary material The online version of this article (10.1186/s13148-017-0413-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandra Sandoval-Bórquez
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Carrasco-Véliz
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Química, Faculty of Science, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Fundación Ciencia y Vida, Parque Biotecnológico, Santiago, Chile
| | - Ismael Riquelme
- Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Carrasco-Avino
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carolina Bizama
- Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Norero
- Esophagogastric Surgery Unit, Hospital Dr. Sótero del Río, Santiago, Chile.,Digestive Surgery Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Roa
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
287
|
Chaterji S, Ahn EH, Kim DH. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics 2017; 7:4445-4469. [PMID: 29158838 PMCID: PMC5695142 DOI: 10.7150/thno.18456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.
Collapse
|
288
|
Wilkins OM, Titus AJ, Gui J, Eliot M, Butler RA, Sturgis EM, Li G, Kelsey KT, Christensen BC. Genome-scale identification of microRNA-related SNPs associated with risk of head and neck squamous cell carcinoma. Carcinogenesis 2017; 38:986-993. [PMID: 28582492 PMCID: PMC5862295 DOI: 10.1093/carcin/bgx056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polymorphisms in microRNAs and their target sites can disrupt microRNA-dependent gene regulation, and have been associated with cancer susceptibility. However, genome-scale analyses of microRNA-related genetic variation in cancer are lacking. We tested the associations of ~40 000 common [minor allele frequency (MAF) ≥5%], microRNA-related single nucleotide polymorphisms (miR-SNPs), with risk of head and neck squamous cell carcinoma (HNSCC) in a discovery population, and validated selected loci in an independent population among a total of 2198 cases and 2180 controls. Joint analyses across the discovery and validation populations revealed six novel miR-SNP associations with risk of HNSCC. An upstream variant of MIR548H4 (rs7834169), replicated its association with overall HNSCC risk as well as risk of oral cavity cancer. Four other variants were specifically associated with oral cavity cancer risk (rs16914640, rs1134367, rs7306991 and rs1373756). 3'UTR variant of HADH, rs221347 and rs4975616, located within known cancer risk locus 5p15.33, were specific to risk of laryngeal cancer. High confidence predicted microRNA binding sites were identified for CLEC2D, LOC37443, KDM8 and HADH overlapping rs16914640, rs7306991, rs1134367 and rs221347, respectively. Furthermore, we identified several microRNA interactions with KDM8 and HADH predicted to be disrupted by genetic variation at rs1134367 and rs221347. These results suggest microRNA-related genetic variation may contribute to the genetic susceptibility of HNSCC, and that more powerful evaluation of this class of genetic variation and their relationship with cancer risk is warranted.
Collapse
Affiliation(s)
| | | | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Melissa Eliot
- Department of Epidemiology, Brown University, Providence, RI 02912, USA
| | - Rondi A Butler
- Department of Epidemiology, Brown University, Providence, RI 02912, USA
| | - Erich M Sturgis
- Department of Head and Neck Surgery
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, TX 77030, USA
| | - Guojun Li
- Department of Head and Neck Surgery
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, TX 77030, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Brock C Christensen
- Department of Epidemiology
- Department of Molecular and Systems Biology and
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
289
|
Li Z, Abraham BJ, Berezovskaya A, Farah N, Liu Y, Leon T, Fielding A, Tan SH, Sanda T, Weintraub AS, Li B, Shen S, Zhang J, Mansour MR, Young RA, Look AT. APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL. Leukemia 2017; 31:2057-2064. [PMID: 28260788 PMCID: PMC5629363 DOI: 10.1038/leu.2017.75] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/27/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Oncogenic driver mutations are those that provide a proliferative or survival advantage to neoplastic cells, resulting in clonal selection. Although most cancer-causing mutations have been detected in the protein-coding regions of the cancer genome; driver mutations have recently also been discovered within noncoding genomic sequences. Thus, a current challenge is to gain precise understanding of how these unique genomic elements function in cancer pathogenesis, while clarifying mechanisms of gene regulation and identifying new targets for therapeutic intervention. Here we report a C-to-T single nucleotide transition that occurs as a somatic mutation in noncoding sequences 4 kb upstream of the transcriptional start site of the LMO1 oncogene in primary samples from patients with T-cell acute lymphoblastic leukaemia. This single nucleotide alteration conforms to an APOBEC-like cytidine deaminase mutational signature, and generates a new binding site for the MYB transcription factor, leading to the formation of an aberrant transcriptional enhancer complex that drives high levels of expression of the LMO1 oncogene. Since APOBEC-signature mutations are common in a broad spectrum of human cancers, we suggest that noncoding nucleotide transitions such as the one described here may activate potent oncogenic enhancers not only in T-lymphoid cells but in other cell lineages as well.
Collapse
Affiliation(s)
- Z Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - B J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - A Berezovskaya
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - N Farah
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Y Liu
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - T Leon
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - A Fielding
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - S H Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - T Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - A S Weintraub
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - B Li
- Department of Hematology and Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Shen
- Department of Hematology and Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - M R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - R A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A T Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Children’s Hospital, Boston, MA, USA
| |
Collapse
|
290
|
Genetic susceptibility in childhood acute lymphoblastic leukemia. Med Oncol 2017; 34:179. [PMID: 28905228 DOI: 10.1007/s12032-017-1038-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/05/2017] [Indexed: 12/27/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy and a leading cause of death due to disease in children. The genetic basis of ALL susceptibility has been supported by its association with certain congenital disorders and, more recently, by several genome-wide association studies (GWAS). These GWAS identified common variants in ARID5B, IKZF1, CEBPE, CDKN2A, PIP4K2A, LHPP and ELK3 influencing ALL risk. However, the risk variants of these SNPs were not validated in all populations, suggesting that some of the loci could be population specific. On the other hand, the currently identified risk SNPs in these genes only account for 19% of the additive heritable risk. This estimation indicates that additional susceptibility variants could be discovered. In this review, we will provide an overview of the most important findings carried out in genetic susceptibility of childhood ALL in all GWAS and subsequent studies and we will also point to future directions that could be explored in the near future.
Collapse
|
291
|
Lee HK, Willi M, Wang C, Yang CM, Smith HE, Liu C, Hennighausen L. Functional assessment of CTCF sites at cytokine-sensing mammary enhancers using CRISPR/Cas9 gene editing in mice. Nucleic Acids Res 2017; 45:4606-4618. [PMID: 28334928 PMCID: PMC5416830 DOI: 10.1093/nar/gkx185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/15/2017] [Indexed: 01/05/2023] Open
Abstract
The zinc finger protein CTCF has been invoked in establishing boundaries between genes, thereby controlling spatial and temporal enhancer activities. However, there is limited genetic evidence to support the concept that these boundaries restrict the search space of enhancers. We have addressed this question in the casein locus containing five mammary and two non-mammary genes under the control of at least seven putative enhancers. We have identified two CTCF binding sites flanking the locus and two associated with a super-enhancer. Individual deletion of these sites from the mouse genome did not alter expression of any of the genes. However, deletion of the border CTCF site separating the Csn1s1 mammary enhancer from neighboring genes resulted in the activation of Sult1d1 at a distance of more than 95 kb but not the more proximal and silent Sult1e1 gene. Loss of this CTCF site led to de novo interactions between the Sult1d1 promoter and several enhancers in the casein locus. Our study demonstrates that only one out of the four CTCF sites in the casein locus had a measurable in vivo activity. Studies on additional loci are needed to determine the biological role of CTCF sites associated with enhancers.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Department of Cell and Developmental Biology & Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | - Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Chul Min Yang
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Harold E Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core,National Heart Lung and Blood Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
292
|
Liu Y, Walavalkar NM, Dozmorov MG, Rich SS, Civelek M, Guertin MJ. Identification of breast cancer associated variants that modulate transcription factor binding. PLoS Genet 2017; 13:e1006761. [PMID: 28957321 PMCID: PMC5619690 DOI: 10.1371/journal.pgen.1006761] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/12/2017] [Indexed: 01/11/2023] Open
Abstract
Genome-wide association studies (GWAS) have discovered thousands loci associated with disease risk and quantitative traits, yet most of the variants responsible for risk remain uncharacterized. The majority of GWAS-identified loci are enriched for non-coding single-nucleotide polymorphisms (SNPs) and defining the molecular mechanism of risk is challenging. Many non-coding causal SNPs are hypothesized to alter transcription factor (TF) binding sites as the mechanism by which they affect organismal phenotypes. We employed an integrative genomics approach to identify candidate TF binding motifs that confer breast cancer-specific phenotypes identified by GWAS. We performed de novo motif analysis of regulatory elements, analyzed evolutionary conservation of identified motifs, and assayed TF footprinting data to identify sequence elements that recruit TFs and maintain chromatin landscape in breast cancer-relevant tissue and cell lines. We identified candidate causal SNPs that are predicted to alter TF binding within breast cancer-relevant regulatory regions that are in strong linkage disequilibrium with significantly associated GWAS SNPs. We confirm that the TFs bind with predicted allele-specific preferences using CTCF ChIP-seq data. We used The Cancer Genome Atlas breast cancer patient data to identify ANKLE1 and ZNF404 as the target genes of candidate TF binding site SNPs in the 19p13.11 and 19q13.31 GWAS-identified loci. These SNPs are associated with the expression of ZNF404 and ANKLE1 in breast tissue. This integrative analysis pipeline is a general framework to identify candidate causal variants within regulatory regions and TF binding sites that confer phenotypic variation and disease risk.
Collapse
Affiliation(s)
- Yunxian Liu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ninad M. Walavalkar
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United Statess of America
| | - Michael J. Guertin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
293
|
Kalender Atak Z, Imrichova H, Svetlichnyy D, Hulselmans G, Christiaens V, Reumers J, Ceulemans H, Aerts S. Identification of cis-regulatory mutations generating de novo edges in personalized cancer gene regulatory networks. Genome Med 2017; 9:80. [PMID: 28854983 PMCID: PMC5575942 DOI: 10.1186/s13073-017-0464-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023] Open
Abstract
The identification of functional non-coding mutations is a key challenge in the field of genomics. Here we introduce μ-cisTarget to filter, annotate and prioritize cis-regulatory mutations based on their putative effect on the underlying "personal" gene regulatory network. We validated μ-cisTarget by re-analyzing the TAL1 and LMO1 enhancer mutations in T-ALL, and the TERT promoter mutation in melanoma. Next, we re-sequenced the full genomes of ten cancer cell lines and used matched transcriptome data and motif discovery to identify master regulators with de novo binding sites that result in the up-regulation of nearby oncogenic drivers. μ-cisTarget is available from http://mucistarget.aertslab.org .
Collapse
Affiliation(s)
- Zeynep Kalender Atak
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hana Imrichova
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Dmitry Svetlichnyy
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joke Reumers
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Hugo Ceulemans
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
294
|
Wang Y, Guo Z, Zhao Y, Jin Y, An L, Wu B, Liu Z, Chen X, Chen X, Zhou H, Wang H, Zhang W. Genetic polymorphisms of lncRNA-p53 regulatory network genes are associated with concurrent chemoradiotherapy toxicities and efficacy in nasopharyngeal carcinoma patients. Sci Rep 2017; 7:8320. [PMID: 28814798 PMCID: PMC5559481 DOI: 10.1038/s41598-017-08890-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/14/2017] [Indexed: 02/08/2023] Open
Abstract
The relevance of the transcription factor p53 in cancer is inarguable, and numerous lncRNAs are involved in the p53 regulatory network as either regulators or effectors, triggering a transcriptional response that causes either cell arrest or apoptosis following DNA damage in a p53-dependent manner. Despite the fact that the therapeutic response is improved in NPC, heterogeneity among people remains with regard to the susceptibility of adverse effects and the efficacy of treatments. Therefore, we analysed eight potentially functional SNPs of five genes in the lncRNA-p53 regulatory network in a discovery cohort of 505 NPC patients. By performing multivariate logistic regression, the impact of genetic variations on the efficacy and risk of CRT-induced toxicities was investigated. The most dramatic finding was that the MEG3 rs10132552 CC genotype had a greater than three-fold increased risk of developing grade 3-4 anaemia (OR = 3.001, 95%CI = 1.355-6.646, P = 0.007). Furthermore, the rs10132552 CT genotype had a better response to treatment (OR = 0.261, 95%CI = 0.089-0.770, P = 0.015). Individuals carrying LINC-ROR rs2027701 with one or two variant alleles had significant associations with a reduced risk of neutropaenia (OR = 0.503, 95%CI = 0.303-0.835, P = 0.008). In conclusion, our results suggested that genetic polymorphisms of the lncRNA-p53 regulatory network could play a potential role in reducing treatment-related toxicities and improving outcomes for NPC patients.
Collapse
Affiliation(s)
- Youhong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China
| | - Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China
| | - Yu Zhao
- Department of Radiation Oncology, Hunan Provincial Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University; Hunan Key Laboratory of Translational Radiation Oncology, ChangSha, 410013, P.R. China
| | - Yi Jin
- Department of Radiation Oncology, Hunan Provincial Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University; Hunan Key Laboratory of Translational Radiation Oncology, ChangSha, 410013, P.R. China
| | - Liang An
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China
| | - Bin Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, 410008, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China
| | - Hui Wang
- Department of Radiation Oncology, Hunan Provincial Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University; Hunan Key Laboratory of Translational Radiation Oncology, ChangSha, 410013, P.R. China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.
| |
Collapse
|
295
|
Integrative whole-genome sequence analysis reveals roles of regulatory mutations in BCL6 and BCL2 in follicular lymphoma. Sci Rep 2017; 7:7040. [PMID: 28765546 PMCID: PMC5539289 DOI: 10.1038/s41598-017-07226-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/27/2017] [Indexed: 02/02/2023] Open
Abstract
The contribution of mutations in regulatory regions to tumorigenesis has been the subject of many recent studies. We propose a new framework for integrative analysis of genome-wide sequencing data by considering diverse genetic information. This approach is applied to study follicular lymphoma (FL), a disease for which little is known about the contribution of regulatory gene mutations. Results from a test FL cohort revealed three novel highly recurrent regulatory mutation blocks near important genes implicated in FL, BCL6 and BCL2. Similar findings were detected in a validation FL cohort. We also found transcription factors (TF) whose binding may be disturbed by these mutations in FL: disruption of FOX TF family near the BCL6 promoter may result in reduced BCL6 expression, which then increases BCL2 expression over that caused by BCL2 gene translocation. Knockdown experiments of two TF hits (FOXD2 or FOXD3) were performed in human B lymphocytes verifying that they modulate BCL6/BCL2 according to the computationally predicted effects of the SNVs on TF binding. Overall, our proposed integrative analysis facilitates non-coding driver identification and the new findings may enhance the understanding of FL.
Collapse
|
296
|
Vodicka P, Pardini B, Vymetalkova V, Naccarati A. Polymorphisms in Non-coding RNA Genes and Their Targets Sites as Risk Factors of Sporadic Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 937:123-49. [PMID: 27573898 DOI: 10.1007/978-3-319-42059-2_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a complex disease that develops as a consequence of both genetic and environmental risk factors in interplay with epigenetic mechanisms, such as microRNAs (miRNAs). CRC cases are predominantly sporadic in which the disease develops with no apparent hereditary syndrome. The last decade has seen the progress of genome-wide association studies (GWAS) that allowed the discovery of several genetic regions and variants associated with weak effects on sporadic CRC. Collectively these variants may enable a more accurate prediction of an individual's risk to the disease and its prognosis. However, the number of variants contributing to CRC is still not fully explored.SNPs in genes encoding the miRNA sequence or in 3'UTR regions of the corresponding binding sites may affect miRNA transcription, miRNA processing, and/or the fidelity of the miRNA-mRNA interaction. These variants could plausibly impact miRNA expression and target mRNA translation into proteins critical for cellular integrity, differentiation, and proliferation.In the present chapter, we describe the different aspects of variations related to miRNAs and other non-coding RNAs (ncRNAs) and evidence from studies investigating these candidate genetic alterations in support to their role in CRC development and progression.
Collapse
Affiliation(s)
- Pavel Vodicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic. .,Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic. .,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic.
| | - Barbara Pardini
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic.,Human Genetics Foundation - Torino (HuGeF), via Nizza 52, 10126, Turin, Italy
| | - Veronika Vymetalkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic.,Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Alessio Naccarati
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic.,Human Genetics Foundation - Torino (HuGeF), via Nizza 52, 10126, Turin, Italy
| |
Collapse
|
297
|
Yi S, Sahni N. Regulome networks and mutational landscape in liver cancer: An informative path to precision medicine. Hepatology 2017; 66:280-282. [PMID: 28422313 PMCID: PMC6129387 DOI: 10.1002/hep.29220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/03/2017] [Accepted: 04/13/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Song Yi
- Department of Systems Biology, The University of Texas MD
Anderson Cancer Center, Houston, TX 77030, USA,Correspondence should be addressed to Song
Yi () and Nidhi Sahni
()
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD
Anderson Cancer Center, Houston, TX 77030, USA,Graduate Program in Structural and Computational Biology
and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA,Correspondence should be addressed to Song
Yi () and Nidhi Sahni
()
| |
Collapse
|
298
|
Romanel A, Garritano S, Stringa B, Blattner M, Dalfovo D, Chakravarty D, Soong D, Cotter KA, Petris G, Dhingra P, Gasperini P, Cereseto A, Elemento O, Sboner A, Khurana E, Inga A, Rubin MA, Demichelis F. Inherited determinants of early recurrent somatic mutations in prostate cancer. Nat Commun 2017; 8:48. [PMID: 28663546 PMCID: PMC5491529 DOI: 10.1038/s41467-017-00046-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is a highly heritable molecularly and clinically heterogeneous disease. To discover germline events involved in prostate cancer predisposition, we develop a computational approach to nominate heritable facilitators of somatic genomic events in the context of the androgen receptor signaling. Here, we use a ranking score and benign prostate transcriptomes to identify a non-coding polymorphic regulatory element at 7p14.3 that associates with DNA repair and hormone-regulated transcript levels and with an early recurrent prostate cancer-specific somatic mutation in the Speckle-Type POZ protein (SPOP) gene. The locus shows allele-specific activity that is concomitantly modulated by androgen receptor and by CCAAT/enhancer-binding protein (C/EBP) beta (CEBPB). Deletion of this locus via CRISPR-Cas9 leads to deregulation of the genes predicted to interact with the 7p14.3 locus by Hi-C chromosome conformation capture data. This study suggests that a polymorphism at 7p14.3 may predispose to SPOP mutant prostate cancer subclass through a hormone-dependent DNA damage response. Prostate cancer is a heterogeneous disease, and many cases show somatic mutations of SPOP. Here, the authors show that a non-coding polymorphic regulatory element at 7p14.3 may predispose to SPOP mutant prostate cancer subclass through a hormone dependent DNA damage response.
Collapse
Affiliation(s)
- Alessandro Romanel
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Sonia Garritano
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Blerta Stringa
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Mirjam Blattner
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Davide Dalfovo
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Dimple Chakravarty
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA
| | - David Soong
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kellie A Cotter
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA
| | - Gianluca Petris
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Priyanka Dhingra
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Paola Gasperini
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Anna Cereseto
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA
| | - Ekta Khurana
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Alberto Inga
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Mark A Rubin
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.,Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Francesca Demichelis
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy. .,Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA.
| |
Collapse
|
299
|
|
300
|
Abstract
Transcriptomics technologies are the techniques used to study an organism's transcriptome, the sum of all of its RNA transcripts. The information content of an organism is recorded in the DNA of its genome and expressed through transcription. Here, mRNA serves as a transient intermediary molecule in the information network, whilst noncoding RNAs perform additional diverse functions. A transcriptome captures a snapshot in time of the total transcripts present in a cell. The first attempts to study the whole transcriptome began in the early 1990s, and technological advances since the late 1990s have made transcriptomics a widespread discipline. Transcriptomics has been defined by repeated technological innovations that transform the field. There are two key contemporary techniques in the field: microarrays, which quantify a set of predetermined sequences, and RNA sequencing (RNA-Seq), which uses high-throughput sequencing to capture all sequences. Measuring the expression of an organism's genes in different tissues, conditions, or time points gives information on how genes are regulated and reveals details of an organism's biology. It can also help to infer the functions of previously unannotated genes. Transcriptomic analysis has enabled the study of how gene expression changes in different organisms and has been instrumental in the understanding of human disease. An analysis of gene expression in its entirety allows detection of broad coordinated trends which cannot be discerned by more targeted assays.
Collapse
Affiliation(s)
- Rohan Lowe
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Neil Shirley
- ARC Centre of Excellence in Plant Cell Walls, University of Adelaide, Adelaide, Australia
| | - Mark Bleackley
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Stephen Dolan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Shafee
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
- * E-mail:
| |
Collapse
|