251
|
Benefit of transferred mutations is better predicted by the fitness of recipients than by their ecological or genetic relatedness. Proc Natl Acad Sci U S A 2016; 113:5047-52. [PMID: 27091964 DOI: 10.1073/pnas.1524988113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of a mutation depends on its interaction with the genetic background in which it is assessed. Studies in experimental systems have demonstrated that such interactions are common among beneficial mutations and often follow a pattern consistent with declining evolvability of more fit genotypes. However, these studies generally examine the consequences of interactions between a small number of focal mutations. It is not clear, therefore, that findings can be extrapolated to natural populations, where new mutations may be transferred between genetically divergent backgrounds. We build on work that examined interactions between four beneficial mutations selected in a laboratory-evolved population of Escherichia coli to test how they interact with the genomes of diverse natural isolates of the same species. We find that the fitness effect of transferred mutations depends weakly on the genetic and ecological similarity of recipient strains relative to the donor strain in which the mutations were selected. By contrast, mutation effects were strongly inversely correlated to the initial fitness of the recipient strain. That is, there was a pattern of diminishing returns whereby fit strains benefited proportionally less from an added mutation. Our results strengthen the view that the fitness of a strain can be a major determinant of its ability to adapt. They also support a role for barriers of transmission, rather than differential selection of transferred DNA, as an explanation of observed phylogenetically determined patterns of restricted recombination among E. coli strains.
Collapse
|
252
|
Mingma R, Duangmal K, Také A, Inahashi Y, O¯mura S, Takahashi Y, Matsumoto A. Proposal of Sphaerimonospora cavernae gen. nov., sp. nov. and transfer of Microbispora mesophila ( Zhang et al., 1998 ) to Sphaerimonospora mesophila comb. nov. and Microbispora thailandensis ( Duangmal et al., 2012 ) to Sphaerimonospora thailandensis comb. nov. Int J Syst Evol Microbiol 2016; 66:1735-1744. [DOI: 10.1099/ijsem.0.000935] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ratchanee Mingma
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kannika Duangmal
- Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Akira Také
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Inahashi
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Satoshi O¯mura
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yo¯ko Takahashi
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Atsuko Matsumoto
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
253
|
Gnat S, Małek W, Oleńska E, Wdowiak-Wróbel S, Kalita M, Rogalski J, Wójcik M. Multilocus sequence analysis supports the taxonomic position of Astragalus glycyphyllos symbionts based on DNA–DNA hybridization. Int J Syst Evol Microbiol 2016; 66:1906-1912. [DOI: 10.1099/ijsem.0.000862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Sebastian Gnat
- Department of Veterinary Microbiology, University of Life Sciences, 13 Akademicka st., 20-950 Lublin, Poland
| | - Wanda Małek
- Department of Genetics and Microbiology, University of Maria Curie-Sklodowska, 19 Akademicka st., 20-033 Lublin, Poland
| | - Ewa Oleńska
- Department of Genetics and Evolution, University of Bialystok, 1J Ciolkowskiego st., 15-245 Bialystok, Poland
| | - Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, University of Maria Curie-Sklodowska, 19 Akademicka st., 20-033 Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, University of Maria Curie-Sklodowska, 19 Akademicka st., 20-033 Lublin, Poland
| | - Jerzy Rogalski
- Department of Biochemistry, University of Maria Curie-Sklodowska, 19 Akademicka st., 20-033 Lublin, Poland
| | - Magdalena Wójcik
- Department of Genetics and Microbiology, University of Maria Curie-Sklodowska, 19 Akademicka st., 20-033 Lublin, Poland
| |
Collapse
|
254
|
Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R, Redondo-Nieto M. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex. PLoS One 2016; 11:e0150183. [PMID: 26915094 PMCID: PMC4767706 DOI: 10.1371/journal.pone.0150183] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/10/2016] [Indexed: 01/22/2023] Open
Abstract
The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
| | - Jan P. Meier-Kolthoff
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
- * E-mail:
| |
Collapse
|
255
|
Analysis of the bacterial strains using Biolog plates in the contaminated soil from Riyadh community. Saudi J Biol Sci 2016; 24:901-906. [PMID: 28490963 PMCID: PMC5415123 DOI: 10.1016/j.sjbs.2016.01.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 11/23/2022] Open
Abstract
Routine manufacture, detonation and disposal of explosives in land and groundwater have resulted in complete pollution. Explosives are xenobiotic compounds, being toxic to biological systems, and their recalcitrance leads to persistence in the environment. The methods currently used for the remediation of explosive contaminated sites are expensive and can result in the formation of toxic products. The present study aimed to investigate the bacterial strains using the Biolog plates in the soil from the Riyadh community. The microbial strains were isolated using the spread plate technique and were identified using the Biolog method. In this study we have analyzed from bacterial families of soil samples, obtained from the different sites in 5 regions at Explosive Institute. Our results conclude that Biolog MicroPlates were developed for the rapid identification of bacterial isolates by sole-carbon source utilization and can be used for the identification of bacteria. Out of five communities, only four families of bacteria indicate that the microbial community lacks significant diversity in region one from the Riyadh community in Saudi Arabia. More studies are needed to be carried out in different regions to validate our results.
Collapse
|
256
|
Louca S, Doebeli M. Transient dynamics of competitive exclusion in microbial communities. Environ Microbiol 2015; 18:1863-74. [DOI: 10.1111/1462-2920.13058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Stilianos Louca
- Biodiversity Research Centre; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Michael Doebeli
- Department of Zoology; University of British Columbia; Vancouver BC V6T 1Z4 Canada
- Department of Mathematics; University of British Columbia; Vancouver BC V6T 1Z2 Canada
| |
Collapse
|
257
|
Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa. Syst Appl Microbiol 2015; 38:545-54. [DOI: 10.1016/j.syapm.2015.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022]
|
258
|
Delamuta JRM, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS, Martínez-Romero E, Hungria M. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 2015; 65:4424-4433. [PMID: 26362866 DOI: 10.1099/ijsem.0.000592] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Biological nitrogen fixation is a key process for agricultural production and environmental sustainability, but there are comparatively few studies of symbionts of tropical pasture legumes, as well as few described species of the genus Bradyrhizobium, although it is the predominant rhizobial genus in the tropics. A detailed polyphasic study was conducted with two strains of the genus Bradyrhizobium used in commercial inoculants for tropical pastures in Brazil, CNPSo 1112T, isolated from perennial soybean (Neonotonia wightii), and CNPSo 2833T, from desmodium (Desmodium heterocarpon). Based on 16S-rRNA gene phylogeny, both strains were grouped in the Bradyrhizobium elkanii superclade, but were not clearly clustered with any known species. Multilocus sequence analysis of three (glnII, gyrB and recA) and five (plus atpD and dnaK) housekeeping genes confirmed that the strains are positioned in two distinct clades. Comparison with intergenic transcribed spacer sequences of type strains of described species of the genus Bradyrhizobium showed similarity lower than 93.1 %, and differences were confirmed by BOX-PCR analysis. Nucleotide identity of three housekeeping genes with type strains of described species ranged from 88.1 to 96.2 %. Average nucleotide identity of genome sequences showed values below the threshold for distinct species of the genus Bradyrhizobium ( < 90.6 %), and the value between the two strains was also below this threshold (91.2 %). Analysis of nifH and nodC gene sequences positioned the two strains in a clade distinct from other species of the genus Bradyrhizobium. Morphophysiological, genotypic and genomic data supported the description of two novel species in the genus Bradyrhizobium, Bradyrhizobium tropiciagri sp. nov. (type strain CNPSo 1112T = SMS 303T = BR 1009T = SEMIA 6148T = LMG 28867T) and Bradyrhizobium embrapense sp. nov. (type strain CNPSo 2833T = CIAT 2372T = BR 2212T = SEMIA 6208T = U674T = LMG 2987).
Collapse
Affiliation(s)
- Jakeline Renata Marçon Delamuta
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil
- Universidade Estadual de Londrina, Department of Microbiology, C.P. 10.011, 86057-970 Londrina, Paraná, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Mariangela Hungria
- Universidade Estadual de Londrina, Department of Microbiology, C.P. 10.011, 86057-970 Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil
| |
Collapse
|
259
|
Migration and horizontal gene transfer divide microbial genomes into multiple niches. Nat Commun 2015; 6:8924. [PMID: 26592443 PMCID: PMC4673824 DOI: 10.1038/ncomms9924] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/16/2015] [Indexed: 02/01/2023] Open
Abstract
Horizontal gene transfer is central to microbial evolution, because it enables genetic regions to spread horizontally through diverse communities. However, how gene transfer exerts such a strong effect is not understood. Here we develop an eco-evolutionary model and show how genetic transfer, even when rare, can transform the evolution and ecology of microbes. We recapitulate existing models, which suggest that asexual reproduction will overpower horizontal transfer and greatly limit its effects. We then show that allowing immigration completely changes these predictions. With migration, the rates and impacts of horizontal transfer are greatly increased, and transfer is most frequent for loci under positive natural selection. Our analysis explains how ecologically important loci can sweep through competing strains and species. In this way, microbial genomes can evolve to become ecologically diverse where different genomic regions encode for partially overlapping, but distinct, ecologies. Under these conditions ecological species do not exist, because genes, not species, inhabit niches. Horizontal gene transfer is central to microbial evolution. Here, the authors develop an eco-evolutionary model and show that migration can greatly promote horizontal gene transfer, which explains how ecologically-important loci can sweep through the species in a microbial community.
Collapse
|
260
|
Arnoldt H, Strogatz SH, Timme M. Toward the Darwinian transition: Switching between distributed and speciated states in a simple model of early life. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052909. [PMID: 26651764 DOI: 10.1103/physreve.92.052909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 06/05/2023]
Abstract
It has been hypothesized that in the era just before the last universal common ancestor emerged, life on earth was fundamentally collective. Ancient life forms shared their genetic material freely through massive horizontal gene transfer (HGT). At a certain point, however, life made a transition to the modern era of individuality and vertical descent. Here we present a minimal model for stochastic processes potentially contributing to this hypothesized "Darwinian transition." The model suggests that HGT-dominated dynamics may have been intermittently interrupted by selection-driven processes during which genotypes became fitter and decreased their inclination toward HGT. Stochastic switching in the population dynamics with three-point (hypernetwork) interactions may have destabilized the HGT-dominated collective state and essentially contributed to the emergence of vertical descent and the first well-defined species in early evolution. A systematic nonlinear analysis of the stochastic model dynamics covering key features of evolutionary processes (such as selection, mutation, drift and HGT) supports this view. Our findings thus suggest a viable direction out of early collective evolution, potentially enabling the start of individuality and vertical Darwinian evolution.
Collapse
Affiliation(s)
- Hinrich Arnoldt
- Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Steven H Strogatz
- Department of Mathematics, Cornell University, Ithaca, New York 14853, USA
| | - Marc Timme
- Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Institute for Nonlinear Dynamics, Faculty of Physics, Georg August University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
261
|
Avershina E, Rudi K. Confusion about the species richness of human gut microbiota. Benef Microbes 2015; 6:657-9. [DOI: 10.3920/bm2015.0007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A key message from a range of high profile next generation sequencing studies on the human microbiota is that it composes a tremendously rich community of more than 1000 species within each one of us. Although more recent studies have shown estimates of between 100 and 200 species per individual, this has not yet been made clear in the literature. Currently, the most widely accepted estimate of species richness is therefore five to ten times too high. Here, we will review the different estimates of species richness in the literature, address potential sources of artefacts, the reluctance to correct these, and provide suggestions for future directions.
Collapse
Affiliation(s)
- E. Avershina
- Department of Chemistry, Biotechnology and Food Science, Norwegian University for Life Sciences, 1430 Ås, Norway
| | - K. Rudi
- Department of Chemistry, Biotechnology and Food Science, Norwegian University for Life Sciences, 1430 Ås, Norway
| |
Collapse
|
262
|
Travers MA, Boettcher Miller K, Roque A, Friedman CS. Bacterial diseases in marine bivalves. J Invertebr Pathol 2015. [DOI: 10.1016/j.jip.2015.07.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
263
|
Sommer MOA. Advancing gut microbiome research using cultivation. Curr Opin Microbiol 2015; 27:127-32. [PMID: 26401902 DOI: 10.1016/j.mib.2015.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/26/2023]
Abstract
Culture-independent approaches have driven the field of microbiome research and illuminated intricate relationships between the gut microbiota and human health. However, definitively associating phenotypes to specific strains or elucidating physiological interactions is challenging for metagenomic approaches. Recently a number of new approaches to gut microbiota cultivation have emerged through the integration of high-throughput phylogenetic mapping and new simplified cultivation methods. These methodologies are described along with their potential use within microbiome research. Deployment of novel cultivation approaches should enable improved studies of xenobiotic tolerance and modification phenotypes and allow a drastic expansion of the gut microbiota reference genome catalogues. Furthermore, the new cultivation methods should facilitate systematic studies of the causal relationship between constituents of the microbiota and human health accelerating new probiotic development.
Collapse
Affiliation(s)
- Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Hørsholm, Denmark.
| |
Collapse
|
264
|
Abstract
What are species? How do they arise? These questions are not easy to answer and have been particularly controversial in microbiology. Yet, for those microbiologists studying environmental questions or dealing with clinical issues, the ability to name and recognize species, widely considered the fundamental units of ecology, can be practically useful. On a more fundamental level, the speciation problem, the focus here, is more mechanistic and conceptual. What is the origin of microbial species, and what evolutionary and ecological mechanisms keep them separate once they begin to diverge? To what extent are these mechanisms universal across diverse types of microbes, and more broadly across the entire the tree of life? Here, we propose that microbial speciation must be viewed in light of gene flow, which defines units of genetic similarity, and of natural selection, which defines units of phenotype and ecological function. We discuss to what extent ecological and genetic units overlap to form cohesive populations in the wild, based on recent evolutionary modeling and population genomics studies. These studies suggest a continuous "speciation spectrum," which microbial populations traverse in different ways depending on their balance of gene flow and natural selection.
Collapse
Affiliation(s)
- B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal QC H3C 3J7, Canada
| | - Martin F Polz
- Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
265
|
Postec A, Quéméneur M, Bes M, Mei N, Benaïssa F, Payri C, Pelletier B, Monnin C, Guentas-Dombrowsky L, Ollivier B, Gérard E, Pisapia C, Gérard M, Ménez B, Erauso G. Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period. Front Microbiol 2015; 6:857. [PMID: 26379636 PMCID: PMC4551099 DOI: 10.3389/fmicb.2015.00857] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/06/2015] [Indexed: 01/10/2023] Open
Abstract
Active carbonate chimneys from the shallow marine serpentinizing Prony Hydrothermal Field were sampled 3 times over a 6 years period at site ST09. Archaeal and bacterial communities composition was investigated using PCR-based methods (clone libraries, Denaturating Gel Gradient Electrophoresis, quantitative PCR) targeting 16S rRNA genes, methyl coenzyme M reductase A and dissimilatory sulfite reductase subunit B genes. Methanosarcinales (Euryarchaeota) and Thaumarchaea were the main archaeal members. The Methanosarcinales, also observed by epifluorescent microscopy and FISH, consisted of two phylotypes that were previously solely detected in two other serpentinitzing ecosystems (The Cedars and Lost City Hydrothermal Field). Surprisingly, members of the hyperthermophilic order Thermococcales were also found which may indicate the presence of a hot subsurface biosphere. The bacterial community mainly consisted of Firmicutes, Chloroflexi, Alpha-, Gamma-, Beta-, and Delta-proteobacteria and of the candidate division NPL-UPA2. Members of these taxa were consistently found each year and may therefore represent a stable core of the indigenous bacterial community of the PHF chimneys. Firmicutes isolates representing new bacterial taxa were obtained by cultivation under anaerobic conditions. Our study revealed diverse microbial communities in PHF ST09 related to methane and sulfur compounds that share common populations with other terrestrial or submarine serpentinizing ecosystems.
Collapse
Affiliation(s)
- Anne Postec
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| | - Marianne Quéméneur
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| | - Méline Bes
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| | - Nan Mei
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| | - Fatma Benaïssa
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| | - Claude Payri
- Institut pour la Recherche et le Développement Centre de NouméaNouméa-Nouvelle-Calédonie, France
| | - Bernard Pelletier
- Institut pour la Recherche et le Développement Centre de NouméaNouméa-Nouvelle-Calédonie, France
| | - Christophe Monnin
- Géosciences Environnement Toulouse, Université de Toulouse/Centre National de la Recherche Scientifique/IRDToulouse, France
| | - Linda Guentas-Dombrowsky
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
- Institut pour la Recherche et le Développement Centre de NouméaNouméa-Nouvelle-Calédonie, France
| | - Bernard Ollivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| | - Emmanuelle Gérard
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR7154Paris, France
| | - Céline Pisapia
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR7154Paris, France
| | - Martine Gérard
- Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie CurieParis, France
| | - Bénédicte Ménez
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR7154Paris, France
| | - Gaël Erauso
- Aix-Marseille Université, Centre National de la Recherche Scientifique/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography, UM 110Marseille, France
| |
Collapse
|
266
|
Flandrois JP, Perrière G, Gouy M. leBIBIQBPP: a set of databases and a webtool for automatic phylogenetic analysis of prokaryotic sequences. BMC Bioinformatics 2015; 16:251. [PMID: 26264559 PMCID: PMC4531848 DOI: 10.1186/s12859-015-0692-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/31/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Estimating the phylogenetic position of bacterial and archaeal organisms by genetic sequence comparisons is considered as the gold-standard in taxonomy. This is also a way to identify the species of origin of the sequence. The quality of the reference database used in such analyses is crucial: the database must reflect the up-to-date bacterial nomenclature and accurately indicate the species of origin of its sequences. DESCRIPTION leBIBI(QBPP) is a web tool taking as input a series of nucleotide sequences belonging to one of a set of reference markers (e.g., SSU rRNA, rpoB, groEL2) and automatically retrieving closely related sequences, aligning them, and performing phylogenetic reconstruction using an approximate maximum likelihood approach. The system returns a set of quality parameters and, if possible, a suggested taxonomic assigment for the input sequences. The reference databases are extracted from GenBank and present four degrees of stringency, from the "superstringent" degree (one type strain per species) to the loosely parsed degree ("lax" database). A set of one hundred to more than a thousand sequences may be analyzed at a time. The speed of the process has been optimized through careful hardware selection and database design. CONCLUSION leBIBI(QBPP) is a powerful tool helping biologists to position bacterial or archaeal sequence commonly used markers in a phylogeny. It is a diagnostic tool for clinical, industrial and environmental microbiology laboratory, as well as an exploratory tool for more specialized laboratories. Its main advantages, relatively to comparable systems are: i) the use of a broad set of databases covering diverse markers with various degrees of stringency; ii) the use of an approximate Maximum Likelihood approach for phylogenetic reconstruction; iii) a speed compatible with on-line usage; and iv) providing fully documented results to help the user in decision making.
Collapse
Affiliation(s)
- Jean-Pierre Flandrois
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard - Lyon 1, 43 bd. du 11 Novembre 1918, Villeurbanne, 69622, France.
| | - Guy Perrière
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard - Lyon 1, 43 bd. du 11 Novembre 1918, Villeurbanne, 69622, France.
| | - Manolo Gouy
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard - Lyon 1, 43 bd. du 11 Novembre 1918, Villeurbanne, 69622, France.
| |
Collapse
|
267
|
Liu Y, Lai Q, Du J, Shao Z. Reclassification of Bacillus invictae as a later heterotypic synonym of Bacillus altitudinis. Int J Syst Evol Microbiol 2015; 65:2769-2773. [DOI: 10.1099/ijs.0.000336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to reclarify the taxonomic status of strain Bacillus invictae Bi.FFUP1
T by performing comparative analyses with the other four type strains within the Bacillus pumilus group. The digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strains B. invictae Bi.FFUP1
T ( = DSMZ 26896T = MCCC 1A07089T), B. altitudinis 41KF2bT ( = DSMZ 21631T = MCCC 1A06452T), B. safensis FO-36bT ( = DSMZ 19292T = MCCC 1A6451T), B. pumilus ATCC 7061T ( = DSMZ 27T = MCCC 1A06453T) and B. xiamenensis HYC-10T ( = MCCC 1A00008T) were, respectively, 82.90 % and 98.10 %, which are greater than the thresholds for bacterial species delineation, suggesting that they should belong to the same species, while the dDDH and ANI values between strain B. invictae DSMZ 26896T and the other three type strains within the B. pumilus group were below the respective thresholds of 70 % and 95 %. Meanwhile, B. invictae DSMZ 26896T and B. altitudinis 41KF2bT shared 98.7 % gyrB gene sequence similarity based on resequencing, whereas strain B. invictae DSMZ 26896T shared low similarities ( < 95 %) with the other three type strains. In addition, in comparison with those from the other three type strains, phenotypic data of B. invictae DSMZ 26896T and B. altitudinis 41KF2bT, including API 20NE, API ZYM, Biolog GN2 and API 50CHB tests, showed slight differences. The data from these combined genotypic and phenotypic analyses suggest that Bacillus invictae Branquinho et al. 2014 should be regarded as a later heterotypic synonym of Bacillus altitudinis
Shivaji et al. 2006.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Qiliang Lai
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Juan Du
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| |
Collapse
|
268
|
Ersoy Omeroglu E. Determination of the Genetic Diversity of Different Bioluminescent Bacteria by Pulsed-Field Gel Electrophoresis (PFGE). Jundishapur J Microbiol 2015; 8:e28378. [PMID: 26421141 PMCID: PMC4584076 DOI: 10.5812/jjm.28378v2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/26/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022] Open
Abstract
Background: There are 4 different genera (i.e. Vibrio, Aliivibrio, Photobacterium, and Shewanella) in the new classification of bioluminescent bacteria. The mechanism of bioluminescence has yet to be fully elucidated. Therefore, the determination of physiological and genetic characteristics of bioluminescent bacteria isolated from different sources is very important. Pulsed-Field Gel Electrophoresis (PFGE) has the highest discriminatory power among the different molecular typing methods for the investigation of the clonal relationships between bacteria. For the PFGE analysis of bioluminescent bacteria, the NotI-HF™ is the method of choice among the restriction enzymes. Objectives: The present study aimed to determine genetic relatedness via PFGE in 41 bioluminescent bacteria (belonging to 10 different species) isolated and identified from various marine sources. Materials and Methods: Different bioluminescent bacteria (i.e. Vibrio gigantis, V. azureus, V. harveyi, V. lentus, V. crassostreae, V. orientalis, Aliivibrio logei, A. fischeri, Shewanella woodyi, and Photobacterium kishitanii) were analyzed by PFGE using the NotI-HF™ restriction enzyme. The whole DNA of the strains embedded into the agarose plugs was digested with enzyme at 37°C for 30 minutes. CHEF-Mapper PFGE system was used for electrophoresis and band profile of the strains for the NotI-HF™ restriction enzyme were analyzed by Bio-Profil-1D++ software (Vilber Lourmat) at 10% homology coefficient. Results: Although all experiments were performed three times, four of forty-one bioluminescent strains (V. gigantis E-16, H-16 and S3W46 strains and A. fischeri E-4 strain) could not be typed by PFGE technique with NotI-HF™ enzyme. While only two strains (V. crassostreae H-12 and H-19 strains) were exhibiting same band pattern profiles (100% genome homology), thirty-six different PFGE band patterns were obtained. Pattern homologies changed between 66% - 92%, 73% - 83% and 49% - 100% for V. gigantis, V. harveyi and other strains, respectively. Conclusions: The obtained results revealed that there has been a high rate of genetic diversity in bioluminescent strains isolated from Gulf of Izmir and V. lentus and V. crassostreae strains could be also bioluminescent for the first report. At the same time, PFGE analysis of bioluminescent bacteria including four different genera and ten different species were shown for the first time by this study. It is considered that data acquired by this study will contribute evolution and mechanism of bioluminescence to further works to be done.
Collapse
Affiliation(s)
- Esra Ersoy Omeroglu
- Biology Department, Faculty of Science, Basic and Industrial Microbiology Section, Ege University, Bornova-Izmir, Turkey
- Corresponding author: Esra Ersoy Omeroglu, Biology Department, Faculty of Science, Basic and Industrial Microbiology Section, Ege University, Bornova-Izmir, Turkey. Tel: +90-2323112811, Fax: +90-2323881036, E-mail:
| |
Collapse
|
269
|
Determination of the Genetic Diversity of Different Bioluminescent Bacteria by Pulsed-Field Gel Electrophoresis (PFGE). Jundishapur J Microbiol 2015. [DOI: 10.5812/jjm.28378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
270
|
Sizova MV, Chilaka A, Earl AM, Doerfert SN, Muller PA, Torralba M, McCorrison JM, Durkin AS, Nelson KE, Epstein SS. High-quality draft genome sequences of five anaerobic oral bacteria and description of Peptoanaerobacter stomatis gen. nov., sp. nov., a new member of the family Peptostreptococcaceae. Stand Genomic Sci 2015. [PMID: 26221418 PMCID: PMC4517659 DOI: 10.1186/s40793-015-0027-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Here we report a summary classification and the features of five anaerobic oral bacteria from the family Peptostreptococcaceae. Bacterial strains were isolated from human subgingival plaque. Strains ACC19a, CM2, CM5, and OBRC8 represent the first known cultivable members of “yet uncultured” human oral taxon 081; strain AS15 belongs to “cultivable” human oral taxon 377. Based on 16S rRNA gene sequence comparisons, strains ACC19a, CM2, CM5, and OBRC8 are distantly related to Eubacteriumyurii subs. yurii and Filifactor alocis, with 93.2 – 94.4 % and 85.5 % of sequence identity, respectively. The genomes of strains ACC19a, CM2, CM5, OBRC8 and AS15 are 2,541,543; 2,312,592; 2,594,242; 2,553,276; and 2,654,638 bp long. The genomes are comprised of 2277, 1973, 2325, 2277, and 2308 protein-coding genes and 54, 57, 54, 36, and 28 RNA genes, respectively. Based on the distinct characteristics presented here, we suggest that strains ACC19a, CM2, CM5, and OBRC8 represent a novel genus and species within the family Peptostreptococcaceae, for which we propose the name Peptoanaerobacter stomatis gen. nov., sp. nov. The type strain is strain ACC19aT (=HM-483T; =DSM 28705T; =ATCC BAA-2665T).
Collapse
Affiliation(s)
- Maria V Sizova
- Northeastern University, 360 Huntington Avenue, Boston, MA USA
| | - Amanda Chilaka
- Northeastern University, 360 Huntington Avenue, Boston, MA USA
| | - Ashlee M Earl
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA USA
| | | | - Paul A Muller
- Northeastern University, 360 Huntington Avenue, Boston, MA USA
| | - Manolito Torralba
- J. Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD USA
| | | | - A Scott Durkin
- J. Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD USA
| | - Karen E Nelson
- J. Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD USA
| | - Slava S Epstein
- Northeastern University, 360 Huntington Avenue, Boston, MA USA
| |
Collapse
|
271
|
Rosen MJ, Davison M, Bhaya D, Fisher DS. Microbial diversity. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science 2015; 348:1019-23. [PMID: 26023139 DOI: 10.1126/science.aaa4456] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extensive fine-scale genetic diversity is found in many microbial species across varied environments, but for most, the evolutionary scenarios that generate the observed variation remain unclear. Deep sequencing of a thermophilic cyanobacterial population and analysis of the statistics of synonymous single-nucleotide polymorphisms revealed a high rate of homologous recombination and departures from neutral drift consistent with the effects of genetic hitchhiking. A sequenced isolate genome resembled an unlinked random mixture of the allelic diversity at the sampled loci. These observations suggested a quasisexual microbial population that occupies a broad ecological niche, with selection driving frequencies of alleles rather than whole genomes.
Collapse
Affiliation(s)
- Michael J Rosen
- Applied Physics Department, Stanford University, Stanford, CA 94305, USA
| | - Michelle Davison
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Daniel S Fisher
- Applied Physics Department, Stanford University, Stanford, CA 94305, USA. Bioengineering Department, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
272
|
Fischer-Le Saux M, Bonneau S, Essakhi S, Manceau C, Jacques MA. Aggressive Emerging Pathovars of Xanthomonas arboricola Represent Widespread Epidemic Clones Distinct from Poorly Pathogenic Strains, as Revealed by Multilocus Sequence Typing. Appl Environ Microbiol 2015; 81:4651-68. [PMID: 25934623 PMCID: PMC4551192 DOI: 10.1128/aem.00050-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/25/2015] [Indexed: 12/11/2022] Open
Abstract
Deep and comprehensive knowledge of the genetic structure of pathogenic species is the cornerstone on which the design of precise molecular diagnostic tools is built. Xanthomonas arboricola is divided into pathovars, some of which are classified as quarantine organisms in many countries and are responsible for diseases on nut and stone fruit trees that have emerged worldwide. Recent taxonomic studies of the genus Xanthomonas showed that strains isolated from other hosts should be classified in X. arboricola, extending the host range of the species. To investigate the genetic structure of X. arboricola and the genetic relationships between highly pathogenic strains and strains apparently not relevant to plant health, we conducted multilocus sequence analyses on a collection of strains representative of the known diversity of the species. Most of the pathovars were clustered in separate monophyletic groups. The pathovars pruni, corylina, and juglandis, responsible for pandemics in specific hosts, were highly phylogenetically related and clustered in three distinct clonal complexes. In contrast, strains with no or uncertain pathogenicity were represented by numerous unrelated singletons scattered in the phylogenic tree. Depending on the pathovar, intra- and interspecies recombination played contrasting roles in generating nucleotide polymorphism. This work provides a population genetics framework for molecular epidemiological surveys of emerging plant pathogens within X. arboricola. Based on our results, we propose to reclassify three former pathovars of Xanthomonas campestris as X. arboricola pv. arracaciae comb. nov., X. arboricola pv. guizotiae comb. nov., and X. arboricola pv. zantedeschiae comb. nov. An emended description of X. arboricola Vauterin et al. 1995 is provided.
Collapse
Affiliation(s)
- Marion Fischer-Le Saux
- INRA, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Université d'Angers, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Agrocampus Ouest, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Sophie Bonneau
- INRA, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Université d'Angers, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Agrocampus Ouest, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Salwa Essakhi
- INRA, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Université d'Angers, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Agrocampus Ouest, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Charles Manceau
- INRA, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Université d'Angers, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Agrocampus Ouest, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Marie-Agnès Jacques
- INRA, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Université d'Angers, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Agrocampus Ouest, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| |
Collapse
|
273
|
Rouli L, Merhej V, Fournier PE, Raoult D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect 2015; 7:72-85. [PMID: 26442149 PMCID: PMC4552756 DOI: 10.1016/j.nmni.2015.06.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/16/2015] [Indexed: 01/18/2023] Open
Abstract
The bacterial pangenome was introduced in 2005 and, in recent years, has been the subject of many studies. Thanks to progress in next-generation sequencing methods, the pangenome can be divided into two parts, the core (common to the studied strains) and the accessory genome, offering a large panel of uses. In this review, we have presented the analysis methods, the pangenome composition and its application as a study of lifestyle. We have also shown that the pangenome may be used as a new tool for redefining the pathogenic species. We applied this to the Escherichia coli and Shigella species, which have been a subject of controversy regarding their taxonomic and pathogenic position. Pangenome is a new way of studying pathogenic bacteria. Pangenome can be used as a taxonomic tool. This review describes pangenome in the world of pathogenic bacteria.
Collapse
Affiliation(s)
- L Rouli
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - V Merhej
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - P-E Fournier
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| | - D Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13005 Marseille, France
| |
Collapse
|
274
|
Implications of Genome-Based Discrimination between Clostridium botulinum Group I and Clostridium sporogenes Strains for Bacterial Taxonomy. Appl Environ Microbiol 2015; 81:5420-9. [PMID: 26048939 DOI: 10.1128/aem.01159-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023] Open
Abstract
Taxonomic classification of Clostridium botulinum is based on the production of botulinum neurotoxin (BoNT), while closely related, nontoxic organisms are classified as Clostridium sporogenes. However, this taxonomic organization does not accurately mirror phylogenetic relationships between these species. A phylogenetic reconstruction using 2,016 orthologous genes shared among strains of C. botulinum group I and C. sporogenes clearly separated these two species into discrete clades which showed ∼93% average nucleotide identity (ANI) between them. Clustering of strains based on the presence of variable orthologs revealed 143 C. sporogenes clade-specific genetic signatures, a subset of which were further evaluated for their ability to correctly classify a panel of presumptive C. sporogenes strains by PCR. Genome sequencing of several C. sporogenes strains lacking these signatures confirmed that they clustered with C. botulinum strains in a core genome phylogenetic tree. Our analysis also identified C. botulinum strains that contained C. sporogenes clade-specific signatures and phylogenetically clustered with C. sporogenes strains. The genome sequences of two bont/B2-containing strains belonging to the C. sporogenes clade contained regions with similarity to a bont-bearing plasmid (pCLD), while two different strains belonging to the C. botulinum clade carried bont/B2 on the chromosome. These results indicate that bont/B2 was likely acquired by C. sporogenes strains through horizontal gene transfer. The genome-based classification of these species used to identify candidate genes for the development of rapid assays for molecular identification may be applicable to additional bacterial species that are challenging with respect to their classification.
Collapse
|
275
|
Zhang XX, Gao JS, Cao YH, Sheirdil RA, Wang XC, Zhang L. Rhizobium oryzicola sp. nov., potential plant-growth-promoting endophytic bacteria isolated from rice roots. Int J Syst Evol Microbiol 2015; 65:2931-2936. [PMID: 26016492 DOI: 10.1099/ijs.0.000358] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial strains ZYY136(T) and ZYY9 were isolated from surface-sterilized rice roots from a long-term experiment of rice-rice--Astragalus sinicus rotation. The 16S rRNA gene sequences of strains ZYY136(T) and ZYY9 showed the highest similarity, of 97.0%, to Rhizobium tarimense PL-41(T). Sequence analysis of the housekeeping genes recA, thrC and atpD clearly differentiated the isolates from currently described species of the genus Rhizobium. The DNA-DNA relatedness value between ZYY136(T) and ZYY9 was 82.3%, and ZYY136(T) showed 34.0% DNA-DNA relatedness with the most closely related type strain, R. tarimense PL-41(T). The DNA G+C content of strain ZYY136(T) was 58.1 mol%. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0 and C16 : 0 3-OH. Strains ZYY136(T) and ZYY9 could be differentiated from the previously defined species of the genus Rhizobium by several phenotypic characteristics. Therefore, we conclude that strains ZYY136(T) and ZYY9 represent a novel species of the genus Rhizobium, for which the name Rhizobium oryzicola sp. nov. is proposed (type strain ZYY136(T) = ACCC 05753(T) = KCTC 32088(T)).
Collapse
Affiliation(s)
- Xiao-Xia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Ju-Sheng Gao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.,Qiyang Agro-ecosystem of National Field Experimental Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, PR China
| | - Yan-Hua Cao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Rizwan Ali Sheirdil
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.,Department of Soil Science and Soil Water Conservation, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Xiu-Cheng Wang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Lei Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| |
Collapse
|
276
|
A database for the taxonomic and phylogenetic identification of the genus Bradyrhizobium using multilocus sequence analysis. BMC Genomics 2015; 16 Suppl 5:S10. [PMID: 26040196 PMCID: PMC4460661 DOI: 10.1186/1471-2164-16-s5-s10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Biological nitrogen fixation, with an emphasis on the legume-rhizobia symbiosis, is a key process for agriculture and the environment, allowing the replacement of nitrogen fertilizers, reducing water pollution by nitrate as well as emission of greenhouse gases. Soils contain numerous strains belonging to the bacterial genus Bradyrhizobium, which establish symbioses with a variety of legumes. However, due to the high conservation of Bradyrhizobium 16S rRNA genes - considered as the backbone of the taxonomy of prokaryotes - few species have been delineated. The multilocus sequence analysis (MLSA) methodology, which includes analysis of housekeeping genes, has been shown to be promising and powerful for defining bacterial species, and, in this study, it was applied to Bradyrhizobium, species, increasing our understanding of the diversity of nitrogen-fixing bacteria. Description Classification of bacteria of agronomic importance is relevant to biodiversity, as well as to biotechnological manipulation to improve agricultural productivity. We propose the construction of an online database that will provide information and tools using MLSA to improve phylogenetic and taxonomic characterization of Bradyrhizobium, allowing the comparison of genomic sequences with those of type and representative strains of each species. Conclusion A database for the taxonomic and phylogenetic identification of the Bradyrhizobium, genus, using MLSA, will facilitate the use of biological data available through an intuitive web interface. Sequences stored in the on-line database can be compared with multiple sequences of other strains with simplicity and agility through multiple alignment algorithms and computational routines integrated into the database. The proposed database and software tools are available at http://mlsa.cnpso.embrapa.br, and can be used, free of charge, by researchers worldwide to classify Bradyrhizobium, strains; the database and software can be applied to replicate the experiments presented in this study as well as to generate new experiments. The next step will be expansion of the database to include other rhizobial species.
Collapse
|
277
|
Gupta A, Sharma VK. Using the taxon-specific genes for the taxonomic classification of bacterial genomes. BMC Genomics 2015; 16:396. [PMID: 25990029 PMCID: PMC4438512 DOI: 10.1186/s12864-015-1542-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/17/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The correct taxonomic assignment of bacterial genomes is a primary and challenging task. With the availability of whole genome sequences, the gene content based approaches appear promising in inferring the bacterial taxonomy. The complete genome sequencing of a bacterial genome often reveals a substantial number of unique genes present only in that genome which can be used for its taxonomic classification. RESULTS In this study, we have proposed a comprehensive method which uses the taxon-specific genes for the correct taxonomic assignment of existing and new bacterial genomes. The taxon-specific genes identified at each taxonomic rank have been successfully used for the taxonomic classification of 2,342 genomes present in the NCBI genomes, 36 newly sequenced genomes, and 17 genomes for which the complete taxonomy is not yet known. This approach has been implemented for the development of a tool 'Microtaxi' which can be used for the taxonomic assignment of complete bacterial genomes. CONCLUSION The taxon-specific gene based approach provides an alternate valuable methodology to carry out the taxonomic classification of newly sequenced or existing bacterial genomes.
Collapse
Affiliation(s)
- Ankit Gupta
- MetaInformatics Laboratory, Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India.
| | - Vineet K Sharma
- MetaInformatics Laboratory, Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India.
| |
Collapse
|
278
|
Papke RT, Corral P, Ram-Mohan N, de la Haba RR, Sánchez-Porro C, Makkay A, Ventosa A. Horizontal gene transfer, dispersal and haloarchaeal speciation. Life (Basel) 2015; 5:1405-26. [PMID: 25997110 PMCID: PMC4500145 DOI: 10.3390/life5021405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/28/2022] Open
Abstract
The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria.
Collapse
Affiliation(s)
- R. Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (N.R.-M.); (A.M.)
- Author to whom correspondence should be addressed; E-Mail:
| | - Paulina Corral
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| | - Nikhil Ram-Mohan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (N.R.-M.); (A.M.)
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| | - Andrea Makkay
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (N.R.-M.); (A.M.)
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, University of Seville, 41004 Seville, Spain; E-Mails: (P.C.); (R.R.H.); (C.S.-P.); (A.V.)
| |
Collapse
|
279
|
Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38:237-45. [PMID: 25959541 DOI: 10.1016/j.syapm.2015.03.007] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 11/17/2022]
Abstract
To obtain a higher resolution of the phylogenetic relationships of species within a genus or genera within a family, multilocus sequence analysis (MLSA) is currently a widely used method. In MLSA studies, partial sequences of genes coding for proteins with conserved functions ('housekeeping genes') are used to generate phylogenetic trees and subsequently deduce phylogenies. However, MLSA is not only suggested as a phylogenetic tool to support and clarify the resolution of bacterial species with a higher resolution, as in 16S rRNA gene-based studies, but has also been discussed as a replacement for DNA-DNA hybridization (DDH) in species delineation. Nevertheless, despite the fact that MLSA has become an accepted and widely used method in prokaryotic taxonomy, no common generally accepted recommendations have been devised to date for either the whole area of microbial taxonomy or for taxa-specific applications of individual MLSA schemes. The different ways MLSA is performed can vary greatly for the selection of genes, their number, and the calculation method used when comparing the sequences obtained. Here, we provide an overview of the historical development of MLSA and critically review its current application in prokaryotic taxonomy by highlighting the advantages and disadvantages of the method's numerous variations. This provides a perspective for its future use in forthcoming genome-based genotypic taxonomic analyses.
Collapse
Affiliation(s)
- Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany.
| |
Collapse
|
280
|
Ellegaard KM, Tamarit D, Javelind E, Olofsson TC, Andersson SGE, Vásquez A. Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genomics 2015; 16:284. [PMID: 25880915 PMCID: PMC4449606 DOI: 10.1186/s12864-015-1476-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/23/2015] [Indexed: 01/09/2023] Open
Abstract
Background In the honeybee Apis mellifera, the bacterial gut community is consistently colonized by eight distinct phylotypes of bacteria. Managed bee colonies are of considerable economic interest and it is therefore important to elucidate the diversity and role of this microbiota in the honeybee. In this study, we have sequenced the genomes of eleven strains of lactobacilli and bifidobacteria isolated from the honey crop of the honeybee A. mellifera. Results Single gene phylogenies confirmed that the isolated strains represent the diversity of lactobacilli and bifidobacteria in the gut, as previously identified by 16S rRNA gene sequencing. Core genome phylogenies of the lactobacilli and bifidobacteria further indicated extensive divergence between strains classified as the same phylotype. Phylotype-specific protein families included unique surface proteins. Within phylotypes, we found a remarkably high level of gene content diversity. Carbohydrate metabolism and transport functions contributed up to 45% of the accessory genes, with some genomes having a higher content of genes encoding phosphotransferase systems for the uptake of carbohydrates than any previously sequenced genome. These genes were often located in highly variable genomic segments that also contained genes for enzymes involved in the degradation and modification of sugar residues. Strain-specific gene clusters for the biosynthesis of exopolysaccharides were identified in two phylotypes. The dynamics of these segments contrasted with low recombination frequencies and conserved gene order structures for the core genes. Hits for CRISPR spacers were almost exclusively found within phylotypes, suggesting that the phylotypes are associated with distinct phage populations. Conclusions The honeybee gut microbiota has been described as consisting of a modest number of phylotypes; however, the genomes sequenced in the current study demonstrated a very high level of gene content diversity within all three described phylotypes of lactobacilli and bifidobacteria, particularly in terms of metabolic functions and surface structures, where many features were strain-specific. Together, these results indicate niche differentiation within phylotypes, suggesting that the honeybee gut microbiota is more complex than previously thought. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1476-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Husargatan 3, SE-751 24, Uppsala, Sweden.
| | - Daniel Tamarit
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Husargatan 3, SE-751 24, Uppsala, Sweden.
| | - Emelie Javelind
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Husargatan 3, SE-751 24, Uppsala, Sweden.
| | - Tobias C Olofsson
- Department of Laboratory Medicine, Medical Microbiology, Lund University, Medicon Village, Scheelevägen 2, SE-223 62, Lund, Sweden.
| | - Siv G E Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Husargatan 3, SE-751 24, Uppsala, Sweden.
| | - Alejandra Vásquez
- Department of Laboratory Medicine, Medical Microbiology, Lund University, Medicon Village, Scheelevägen 2, SE-223 62, Lund, Sweden.
| |
Collapse
|
281
|
Expanding the species and chemical diversity of Penicillium section Cinnamopurpurea. PLoS One 2015; 10:e0121987. [PMID: 25853891 PMCID: PMC4390383 DOI: 10.1371/journal.pone.0121987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022] Open
Abstract
A set of isolates very similar to or potentially conspecific with an unidentified Penicillium isolate NRRL 735, was assembled using a BLAST search of ITS similarity among described (GenBank) and undescribed Penicillium isolates in our laboratories. DNA was amplified from six loci of the assembled isolates and sequenced. Two species in section Cinnamopurpurea are self-compatible sexual species, but the asexual species had polymorphic loci suggestive of sexual reproduction and variation in conidium size suggestive of ploidy level differences typical of heterothallism. Accordingly we use genealogical concordance analysis, a technique valid only in heterothallic organisms, for putatively asexual species. Seven new species were revealed in the analysis and are described here. Extrolite analysis showed that two of the new species, P. colei and P. monsserratidens produce the mycotoxin citreoviridin that has demonstrated pharmacological activity against human lung tumors. These isolates could provide leads in pharmaceutical research.
Collapse
|
282
|
Characterization of the dominant bacterial communities during storage of Norway lobster and Norway lobster tails ( Nephrops norvegicus ) based on 16S rDNA analysis by PCR-DGGE. Food Microbiol 2015; 46:132-138. [DOI: 10.1016/j.fm.2014.06.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 11/18/2022]
|
283
|
Ziegler D, Pothier JF, Ardley J, Fossou RK, Pflüger V, de Meyer S, Vogel G, Tonolla M, Howieson J, Reeve W, Perret X. Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Appl Microbiol Biotechnol 2015; 99:5547-62. [PMID: 25776061 DOI: 10.1007/s00253-015-6515-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/19/2015] [Accepted: 02/28/2015] [Indexed: 01/25/2023]
Abstract
Accurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures. Here, we report on the development of a MALDI-TOF RNB-specific spectral database built on whole cell MS fingerprints of 116 strains representing the major rhizobial genera. In addition to this RNB-specific module, which was successfully tested on unknown field isolates, a subset of 13 ribosomal proteins extracted from genome data was found to be sufficient for the reliable identification of nodule isolates to rhizobial species as shown in the putatively ascribed ribosomal protein masses (PARPM) database. These results reveal that data gathered from genome sequences can be used to expand spectral libraries to aid the accurate identification of bacterial species by MALDI-TOF MS.
Collapse
Affiliation(s)
- Dominik Ziegler
- Department of Botany and Plant Biology, Microbiology Unit, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME JOURNAL 2015; 9:968-79. [PMID: 25325381 PMCID: PMC4817710 DOI: 10.1038/ismej.2014.195] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/02/2014] [Accepted: 09/07/2014] [Indexed: 02/06/2023]
Abstract
Molecular microbial ecology investigations often employ large marker gene datasets, for example, ribosomal RNAs, to represent the occurrence of single-cell genomes in microbial communities. Massively parallel DNA sequencing technologies enable extensive surveys of marker gene libraries that sometimes include nearly identical sequences. Computational approaches that rely on pairwise sequence alignments for similarity assessment and de novo clustering with de facto similarity thresholds to partition high-throughput sequencing datasets constrain fine-scale resolution descriptions of microbial communities. Minimum Entropy Decomposition (MED) provides a computationally efficient means to partition marker gene datasets into 'MED nodes', which represent homogeneous operational taxonomic units. By employing Shannon entropy, MED uses only the information-rich nucleotide positions across reads and iteratively partitions large datasets while omitting stochastic variation. When applied to analyses of microbiomes from two deep-sea cryptic sponges Hexadella dedritifera and Hexadella cf. dedritifera, MED resolved a key Gammaproteobacteria cluster into multiple MED nodes that are specific to different sponges, and revealed that these closely related sympatric sponge species maintain distinct microbial communities. MED analysis of a previously published human oral microbiome dataset also revealed that taxa separated by less than 1% sequence variation distributed to distinct niches in the oral cavity. The information theory-guided decomposition process behind the MED algorithm enables sensitive discrimination of closely related organisms in marker gene amplicon datasets without relying on extensive computational heuristics and user supervision.
Collapse
Affiliation(s)
- A Murat Eren
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Hilary G Morrison
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Pamela J Lescault
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Julie Reveillaud
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Joseph H Vineis
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Mitchell L Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
285
|
Helbling DE, Johnson DR, Lee TK, Scheidegger A, Fenner K. A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. WATER RESEARCH 2015; 70:471-484. [PMID: 25594727 DOI: 10.1016/j.watres.2014.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/20/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
The rates at which wastewater treatment plant (WWTP) microbial communities biotransform specific substrates can differ by orders of magnitude among WWTP communities. Differences in taxonomic compositions among WWTP communities may predict differences in the rates of some types of biotransformations. In this work, we present a novel framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. We selected ten WWTPs with substantial variation in their environmental and operational metrics and measured the in situ ammonia biotransformation rate constants in nine of them. We isolated total RNA from samples from each WWTP and analyzed 16S rRNA sequence reads. We then developed multivariate models between the measured abundances of specific bacterial 16S rRNA sequence reads and the ammonia biotransformation rate constants. We constructed model scenarios that systematically explored the effects of model regularization, model linearity and non-linearity, and aggregation of 16S rRNA sequences into operational taxonomic units (OTUs) as a function of sequence dissimilarity threshold (SDT). A large percentage (greater than 80%) of model scenarios resulted in well-performing and significant models at intermediate SDTs of 0.13-0.14 and 0.26. The 16S rRNA sequences consistently selected into the well-performing and significant models at those SDTs were classified as Nitrosomonas and Nitrospira groups. We then extend the framework by applying it to the biotransformation rate constants of ten micropollutants measured in batch reactors seeded with the ten WWTP communities. We identified phylogenetic groups that were robustly selected into all well-performing and significant models constructed with biotransformation rates of isoproturon, propachlor, ranitidine, and venlafaxine. These phylogenetic groups can be used as predictive biomarkers of WWTP microbial community activity towards these specific micropollutants. This work is an important step towards developing tools to predict biotransformation rates in WWTPs based on taxonomic composition.
Collapse
Affiliation(s)
- Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - David R Johnson
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Tae Kwon Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Andreas Scheidegger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
286
|
Duval D, Galinier R, Mouahid G, Toulza E, Allienne JF, Portela J, Calvayrac C, Rognon A, Arancibia N, Mitta G, Théron A, Gourbal B. A novel bacterial pathogen of Biomphalaria glabrata: a potential weapon for schistosomiasis control? PLoS Negl Trop Dis 2015; 9:e0003489. [PMID: 25719489 PMCID: PMC4342248 DOI: 10.1371/journal.pntd.0003489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Schistosomiasis is the second-most widespread tropical parasitic disease after malaria. Various research strategies and treatment programs for achieving the objective of eradicating schistosomiasis within a decade have been recommended and supported by the World Health Organization. One of these approaches is based on the control of snail vectors in endemic areas. Previous field studies have shown that competitor or predator introduction can reduce snail numbers, but no systematic investigation has ever been conducted to identify snail microbial pathogens and evaluate their molluscicidal effects. METHODOLOGY/PRINCIPAL FINDINGS In populations of Biomphalaria glabrata snails experiencing high mortalities, white nodules were visible on snail bodies. Infectious agents were isolated from such nodules. Only one type of bacteria, identified as a new species of Paenibacillus named Candidatus Paenibacillus glabratella, was found, and was shown to be closely related to P. alvei through 16S and Rpob DNA analysis. Histopathological examination showed extensive bacterial infiltration leading to overall tissue disorganization. Exposure of healthy snails to Paenibacillus-infected snails caused massive mortality. Moreover, eggs laid by infected snails were also infected, decreasing hatching but without apparent effects on spawning. Embryonic lethality was correlated with the presence of pathogenic bacteria in eggs. CONCLUSIONS/SIGNIFICANCE This is the first account of a novel Paenibacillus strain, Ca. Paenibacillus glabratella, as a snail microbial pathogen. Since this strain affects both adult and embryonic stages and causes significant mortality, it may hold promise as a biocontrol agent to limit schistosomiasis transmission in the field.
Collapse
Affiliation(s)
- David Duval
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
- * E-mail:
| | - Richard Galinier
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Gabriel Mouahid
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Jean François Allienne
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Julien Portela
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Christophe Calvayrac
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Laboratoire de Chimie des Biomolécules et de l’Environnement (LCBE, EA 4215), Perpignan, France
| | - Anne Rognon
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Nathalie Arancibia
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Guillaume Mitta
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - André Théron
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Benjamin Gourbal
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
287
|
Gaget V, Welker M, Rippka R, de Marsac NT. A polyphasic approach leading to the revision of the genus Planktothrix (Cyanobacteria) and its type species, P. agardhii, and proposal for integrating the emended valid botanical taxa, as well as three new species, Planktothrix paucivesiculata sp. nov.ICNP, Planktothrix tepida sp. nov.ICNP, and Planktothrix serta sp. nov.ICNP, as genus and species names with nomenclatural standing under the ICNP. Syst Appl Microbiol 2015; 38:141-58. [PMID: 25757799 DOI: 10.1016/j.syapm.2015.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
Abstract
Twenty strains of Planktothrix and five of 'Oscillatoria' were characterized by a polyphasic approach, for clarification of their taxonomic relationships. Emphasis was given to the strains (17) of the Pasteur Culture Collection of Cyanobacteria (PCC). Phenotypic characters analyzed comprised morphology, phycobiliprotein composition, temperature and salinity tolerance. The gvpA gas vesicle gene was detected by PCR in all strains, and transmission electron microscopy confirmed gas vesicle formation in the strains of 'Oscillatoria'. MALDI-TOF mass spectrometry revealed 13 chemotypes, nine of which produce microcystins. A multi-locus sequence typing (MLST) analysis was conducted using individual and concatenated nucleotide sequences of the 16S rDNA, internal transcribed spacer (ITS), gyrB, rpoC1 and rpoB. The results highlighted an unexpected diversity within the genus Planktothrix, showing that the five strains of 'Oscillatoria' need to be included in this taxon. Consequently, the genus consists of seven phylogenetic clusters, three of which represent new species, named Planktothrix paucivesiculata sp. nov.ICNP (type strain: PCC 8926T), Planktothrix tepida sp. nov.ICNP (type strain: PCC 9214T) and Planktothrix serta sp. nov.ICNP (type strain: PCC 8927T). These, together with the emended genus Planktothrix and its type species P. agardhii, valid taxa under the ICN, are described/re-described for gaining nomenclatural standing under the ICNP.
Collapse
MESH Headings
- Cluster Analysis
- Cyanobacteria/classification
- Cyanobacteria/cytology
- Cyanobacteria/genetics
- Cyanobacteria/physiology
- Cytoplasmic Vesicles/ultrastructure
- DNA Gyrase/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- DNA-Directed RNA Polymerases/genetics
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Multilocus Sequence Typing
- Phycobiliproteins/analysis
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Salinity
- Sequence Analysis, DNA
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Temperature
- Terminology as Topic
Collapse
Affiliation(s)
- Virginie Gaget
- Institut Pasteur, Unité des Cyanobactéries, Centre National de la Recherche Scientifique (CNRS) Unité de Recherche Associée (URA) 2172, 75724 Paris Cedex 15, France; Centre d'Analyse Environnementales, Bât. Dufy, 1 place de Turenne, 94417 Saint-Maurice Cedex, France.
| | - Martin Welker
- AnagnosTec GmbH, Am Mühlenberg 11, 14476 Potsdam-Golm, Germany
| | - Rosmarie Rippka
- Institut Pasteur, Unité des Cyanobactéries, Centre National de la Recherche Scientifique (CNRS) Unité de Recherche Associée (URA) 2172, 75724 Paris Cedex 15, France
| | - Nicole Tandeau de Marsac
- Institut Pasteur, Unité des Cyanobactéries, Centre National de la Recherche Scientifique (CNRS) Unité de Recherche Associée (URA) 2172, 75724 Paris Cedex 15, France
| |
Collapse
|
288
|
Whitman WB. Genome sequences as the type material for taxonomic descriptions of prokaryotes. Syst Appl Microbiol 2015; 38:217-22. [PMID: 25769508 DOI: 10.1016/j.syapm.2015.02.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/28/2022]
Abstract
Genome sequencing of type strains promises to revolutionize prokaryotic systematics by greatly improving the identification of species, elucidating the functional properties of taxonomic groups, and resolving many of the ambiguities in the phylogeny of the higher taxa. Genome sequences could also serve as the type material for naming prokaryotic taxa, which will greatly expand the nomenclature governed by the Bacteriological Code to include many fastidious and uncultured organisms and endosymbionts of great biological interest.
Collapse
Affiliation(s)
- William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
289
|
The fur gene as a new phylogenetic marker for Vibrionaceae species identification. Appl Environ Microbiol 2015; 81:2745-52. [PMID: 25662978 DOI: 10.1128/aem.00058-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial taxonomy is essential in all areas of microbial science. The 16S rRNA gene sequence is one of the main phylogenetic species markers; however, it does not provide discrimination in the family Vibrionaceae, where other molecular techniques allow better interspecies resolution. Although multilocus sequence analysis (MLSA) has been used successfully in the identification of Vibrio species, the technique has several limitations. They include the fact that several locus amplifications and sequencing have to be performed, which still sometimes lead to doubtful identifications. Using an in silico approach based on genomes from 103 Vibrionaceae strains, we demonstrate here the high resolution of the fur gene in the identification of Vibrionaceae species and its usefulness as a phylogenetic marker. The fur gene showed within-species similarity higher than 95%, and the relationships inferred from its use were in agreement with those observed for 16S rRNA analysis and MLSA. Furthermore, we developed a fur PCR sequencing-based method that allowed identification of Vibrio species. The discovery of the phylogenetic power of the fur gene and the development of a PCR method that can be used in amplification and sequencing of the gene are of general interest whether for use alone or together with the previously suggested loci in an MLSA.
Collapse
|
290
|
Salisediminibacterium haloalkalitolerans sp. nov., isolated from Lonar soda lake, India, and a proposal for reclassification of Bacillus locisalis as Salisediminibacterium locisalis comb. nov., and the emended description of the genus Salisediminibacterium and of the species Salisediminibacterium halotolerans. Arch Microbiol 2015; 197:553-60. [DOI: 10.1007/s00203-015-1081-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
291
|
Timilsina S, Jibrin MO, Potnis N, Minsavage GV, Kebede M, Schwartz A, Bart R, Staskawicz B, Boyer C, Vallad GE, Pruvost O, Jones JB, Goss EM. Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of Xanthomonas gardneri. Appl Environ Microbiol 2015; 81:1520-9. [PMID: 25527544 PMCID: PMC4309686 DOI: 10.1128/aem.03000-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/14/2014] [Indexed: 01/29/2023] Open
Abstract
Four Xanthomonas species are known to cause bacterial spot of tomato and pepper, but the global distribution and genetic diversity of these species are not well understood. A collection of bacterial spot-causing strains from the Americas, Africa, Southeast Asia, and New Zealand were characterized for genetic diversity and phylogenetic relationships using multilocus sequence analysis of six housekeeping genes. By examining strains from different continents, we found unexpected phylogeographic patterns, including the global distribution of a single multilocus haplotype of X. gardneri, possible regional differentiation in X. vesicatoria, and high species diversity on tomato in Africa. In addition, we found evidence of multiple recombination events between X. euvesicatoria and X. perforans. Our results indicate that there have been shifts in the species composition of bacterial spot pathogen populations due to the global spread of dominant genotypes and that recombination between species has generated genetic diversity in these populations.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Mustafa O. Jibrin
- Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria
| | - Neha Potnis
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Gerald V. Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Misrak Kebede
- Plant Pathology Department, School of Plant Science, Haramaya University, Dire Dawa, Ethiopia
| | - Allison Schwartz
- Department of Plant and Microbial Biology, University of California—Berkeley, California, USA
| | | | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California—Berkeley, California, USA
| | - Claudine Boyer
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Saint Pierre, La Réunion, France
| | - Gary E. Vallad
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Saint Pierre, La Réunion, France
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Erica M. Goss
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
292
|
Shao S, Lai Q, Liu Q, Wu H, Xiao J, Shao Z, Wang Q, Zhang Y. Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813T encoding two distinct T3SS and three T6SS gene clusters: Propose a novel species as Edwardsiella anguillarum sp. nov. Syst Appl Microbiol 2015; 38:36-47. [DOI: 10.1016/j.syapm.2014.10.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/20/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
|
293
|
Hermes G, Zoetendal E, Smidt H. Molecular ecological tools to decipher the role of our microbial mass in obesity. Benef Microbes 2015; 6:61-81. [DOI: 10.3920/bm2014.0016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
After birth, our gastrointestinal (GI) tract is colonised by a highly complex assemblage of microbes, collectively termed the GI microbiota, that develops intimate interactions with our body. Recent evidence indicates that the GI microbiota and its products may contribute to the development of obesity and related diseases. This, coupled with the current worldwide epidemic of obesity, has moved microbiome research into the spotlight of attention. Although the main cause of obesity and its associated metabolic complications is excess caloric intake compared with expenditure, differences in GI tract microbial ecology between individuals might be an important biomarker, mediator or new therapeutic target. This can be investigated using a diverse set of complementary so called -omics technologies, such as 16S ribosomal RNA gene-targeted composition profiling, metabolomics, metagenomics, metatranscriptomics and metaproteomics. This review aims to describe the different molecular approaches and their contributions to our understanding of the role of the GI microbiota in host energy homeostasis. Correspondingly, we highlight their respective strengths, but also try to create awareness for their specific limitations. However, it is currently still unclear which bacterial groups play a role in the development of obesity in humans. This might partly be explained by the heterogeneity in genotype, lifestyle, diet and the complex ethology of obesity and its associated metabolic disorders (OAMD). Nevertheless, recent research on this matter has shown a conceptual shift by focusing on more homogenous subpopulations, through the use of both anthropometric (weight, total body fat) as well as biochemical variables (insulin resistance, hyperlipidaemia) to define categories. Combined with technological advances, recent data suggests that an OAMD associated microbiota can be characterised by a potential pro-inflammatory composition, with less potential for the production of short chain fatty acids and butyrate in particular.
Collapse
Affiliation(s)
- G.D.A. Hermes
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - E.G. Zoetendal
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - H. Smidt
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| |
Collapse
|
294
|
Hashemi-Shahraki A, Bostanabad SZ, Heidarieh P, Sheikhi N, Biranvand M, Alavi SM, Titov LP, Khosravi AD, Nojoumi SA. Species Spectrum of <I>Nocardia</I> spp. Isolated from Suspected Tuberculosis Patients. Health (London) 2015. [DOI: 10.4236/health.2015.77100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
295
|
Bull CT, Koike ST. Practical benefits of knowing the enemy: modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant-pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:157-80. [PMID: 26002289 DOI: 10.1146/annurev-phyto-080614-120122] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Knowing the identity of bacterial plant pathogens is essential to strategic and sustainable disease management in agricultural systems. This knowledge is critical for growers, diagnosticians, extension agents, and others dealing with crops. However, such identifications are linked to bacterial taxonomy, a complicated and changing discipline that depends on methods and information that are often not used by those who are diagnosing field problems. Modern molecular tools for fingerprinting and sequencing allow for pathogen identification in the absence of distinguishing or conveniently tested phenotypic characteristics. These methods are also useful in studying the etiology and epidemiology of phytopathogenic bacteria from epidemics, as was done in numerous studies conducted in California's Salinas Valley. Multilocus and whole-genome sequence analyses are becoming the cornerstones of studies of microbial diversity and bacterial taxonomy. Whole-genome sequence analysis needs to become adequately accessible, automated, and affordable in order to be used routinely for identification and epidemiology. The power of molecular tools in accurately identifying bacterial pathogenesis is therefore of value to the farmer, diagnostician, phytobacteriologist, and taxonomist.
Collapse
Affiliation(s)
- Carolee T Bull
- United States Department of Agriculture, Agricultural Research Service, Salinas, California 93905;
| | | |
Collapse
|
296
|
Ferrera I, Mas J, Taberna E, Sanz J, Sánchez O. Biological support media influence the bacterial biofouling community in reverse osmosis water reclamation demonstration plants. BIOFOULING 2015; 31:173-180. [PMID: 25706000 DOI: 10.1080/08927014.2015.1012640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The diversity of the bacterial community developed in different stages of two reverse osmosis (RO) water reclamation demonstration plants designed in a wastewater treatment plant (WWTP) in Tarragona (Spain) was characterized by applying 454-pyrosequencing of the 16S rRNA gene. The plants were fed by secondary treated effluent to a conventional pretreatment train prior to the two-pass RO system. Plants differed in the material used in the filtration process, which was sand in one demonstration plant and Scandinavian schists in the second plant. The results showed the presence of a highly diverse and complex community in the biofilms, mainly composed of members of the Betaproteobacteria and Bacteroidetes in all stages, with the presence of some typical wastewater bacteria, suggesting a feed water origin. Community similarities analyses revealed that samples clustered according to filter type, highlighting the critical influence of the biological supporting medium in biofilm community structure.
Collapse
Affiliation(s)
- Isabel Ferrera
- a Departament de Biologia Marina i Oceanografia , Institut de Ciències del Mar, ICM-CSIC , Barcelona , Spain
| | | | | | | | | |
Collapse
|
297
|
Pyogranulomatous pneumonia in goats caused by an undescribed Porphyromonas species, "Porphyromonas katsikii". J Clin Microbiol 2014; 53:795-8. [PMID: 25540395 DOI: 10.1128/jcm.02682-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A yet-undescribed bacterial species, tentatively named "Porphyromonas katsikii," was isolated from individuals of a small goat herd with pyogranulomatous pneumonia during an outbreak of acute respiratory disease. The isolated bacteria grew in the form of black-pigmented colonies after 14 days of incubation under anaerobic conditions at 37°C on a tryptic soy blood agar medium. The bacteria were identified as a yet-undescribed Porphyromonas species by determination of the nucleotide sequence of the rrs 16S rRNA gene, and this species was tentatively named Porphyromonas katsikii. PCR amplification with specific primers for this yet-undescribed species revealed the presence of P. katsikii in the lung tissue of all affected animals, while no PCR signals were evidenced from the lungs of healthy goats or from goats with pasteurellosis caused by Mannheimia haemolytica. These data indicate P. katsikii as the causative agent of acute respiratory distress. P. katsikii is phylogenetically related to Porphyromonas somerae and Porphyromonas levii, which cause pathologies in humans and animals, respectively. P. katsikii was not detected by PCR from samples of the gingival pockets or of the faces of healthy goats.
Collapse
|
298
|
Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol 2014; 197:359-70. [PMID: 25533848 DOI: 10.1007/s00203-014-1071-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. Its cornerstone, the prokaryote species has been re-evaluated twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. Ultimately, we will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.
Collapse
|
299
|
Urbanczyk H, Ogura Y, Hayashi T. Contrasting inter- and intraspecies recombination patterns in the "Harveyi clade" vibrio collected over large spatial and temporal scales. Genome Biol Evol 2014; 7:71-80. [PMID: 25527835 PMCID: PMC4316622 DOI: 10.1093/gbe/evu269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recombination plays an important role in the divergence of bacteria, but the frequency of interspecies and intraspecies recombination events remains poorly understood. We investigated recombination events that occurred within core genomes of 35 Vibrio strains (family Vibrionaceae, Gammaproteobacteria), from six closely related species in the so-called “Harveyi clade.” The strains were selected from a collection of strains isolated in the last 90 years, from various environments worldwide. We found a close relationship between the number of interspecies recombination events within core genomes of the 35 strains and the overall genomic identity, as inferred from calculations of the average nucleotide identity. The relationship between the overall nucleotide identity and the number of detected interspecies recombination events was comparable when analyzing strains isolated over 80 years apart, from different hemispheres, or from different ecologies, as well as in strains isolated from the same geographic location within a short time frame. We further applied the same method of detecting recombination events to analyze 11 strains of Vibrio campbellii, and identified disproportionally high number of intraspecies recombination events within the core genomes of some, but not all, strains. The high number of recombination events was detected between V. campbellii strains that have significant temporal (over 18 years) and geographical (over 10,000 km) differences in their origins of isolation. Results of this study reveal a remarkable stability of Harveyi clade species, and give clues about the origins and persistence of species in the clade.
Collapse
Affiliation(s)
- Henryk Urbanczyk
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Japan
| | - Yoshitoshi Ogura
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Japan Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| | - Tetsuya Hayashi
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Japan Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
300
|
Marcelletti S, Scortichini M. Definition of Plant-Pathogenic Pseudomonas Genomospecies of the Pseudomonas syringae Complex Through Multiple Comparative Approaches. PHYTOPATHOLOGY 2014; 104:1274-1282. [PMID: 24875383 DOI: 10.1094/phyto-12-13-0344-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A total of 34 phytopathogenic strain genomes belonging to the Pseudomonas syringae species complex and related species, including many pathotype strains, were assessed using average nucleotide identity (ANI) analysis. Their taxonomic relationships were consistently confirmed by the tetranucleotide frequency correlation coefficient (TETRA) values, multilocus sequence typing analysis (MLSA) performed with seven housekeeping genes, using both maximum likelihood and Bayesian methods, and split consensus network analyses. The ANI, MLSA, and split consensus analyses provided consistent and identical results. We confirmed the occurrence of the well-demarcated genomospecies inferred sensu Gardan et al. using DNA-DNA hybridization and ribotyping analyses. However, some P. syringae strains of the pathovars morsprunorum and lachrymans were placed in different genomospecies in our analyses. Genomospecies 1, 2, 4, 6, and 9 resulted well demarcated, whereas strains of genomospecies 3 and 8 had ANI values between 95 and 96% in some cases, confirming that this threshold reveals very closely related species that might represent cases of splitting entities or the convergence of different species to the same ecological niche. This study confirms the robustness of the combination of genomic and phylogenetic approaches in revealing taxonomic relationships among closely related bacterial strains and provides the basis for a further reliable demarcation of the phytopathogenic Pseudomonas species. Within each species, the pathovars might represent distinct ecological units. The possibility of performing extensive and standardized host range and phenotypic tests with many strains of different pathovars can assist phytobacteriologists for better determining the boundaries of these ecological units.
Collapse
|