251
|
Grazioli E, Dimauro I, Mercatelli N, Wang G, Pitsiladis Y, Di Luigi L, Caporossi D. Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics 2017; 18:802. [PMID: 29143608 PMCID: PMC5688489 DOI: 10.1186/s12864-017-4193-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modification refers to heritable changes in gene function that cannot be explained by alterations in the DNA sequence. The current literature clearly demonstrates that the epigenetic response is highly dynamic and influenced by different biological and environmental factors such as aging, nutrient availability and physical exercise. As such, it is well accepted that physical activity and exercise can modulate gene expression through epigenetic alternations although the type and duration of exercise eliciting specific epigenetic effects that can result in health benefits and prevent chronic diseases remains to be determined. This review highlights the most significant findings from epigenetic studies involving physical activity/exercise interventions known to benefit chronic diseases such as metabolic syndrome, diabetes, cancer, cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Grazioli
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Guan Wang
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Yannis Pitsiladis
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy.,FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
252
|
Lozano-Ureña A, Montalbán-Loro R, Ferguson-Smith AC, Ferrón SR. Genomic Imprinting and the Regulation of Postnatal Neurogenesis. Brain Plast 2017; 3:89-98. [PMID: 29765862 PMCID: PMC5928554 DOI: 10.3233/bpl-160041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Most genes required for mammalian development are expressed from both maternally and paternally inherited chromosomal homologues. However, there are a small number of genes known as “imprinted genes” that only express a single allele from one parent, which is repressed on the gene from the other parent. Imprinted genes are dependent on epigenetic mechanisms such as DNA methylation and post-translational modifications of the DNA-associated histone proteins to establish and maintain their parental identity. In the brain, multiple transcripts have been identified which show parental origin-specific expression biases. However, the mechanistic relationship with canonical imprinting is unknown. Recent studies on the postnatal neurogenic niches raise many intriguing questions concerning the role of genomic imprinting and gene dosage during postnatal neurogenesis, including how imprinted genes operate in concert with signalling cues to contribute to newborn neurons’ formation during adulthood. Here we have gathered the current knowledge on the imprinting process in the neurogenic niches. We also review the phenotypes associated with genetic mutations at particular imprinted loci in order to consider the impact of imprinted genes in the maintenance and/or differentiation of the neural stem cell pool in vivo and during brain tumour formation.
Collapse
Affiliation(s)
- Anna Lozano-Ureña
- ERI BiotecMed Departamento de Biología Celular, Universidad de Valencia, Spain
| | | | | | - Sacri R Ferrón
- ERI BiotecMed Departamento de Biología Celular, Universidad de Valencia, Spain
| |
Collapse
|
253
|
Liu C, Sun R, Huang J, Zhang D, Huang D, Qi W, Wang S, Xie F, Shen Y, Shen C. The BAF45D Protein Is Preferentially Expressed in Adult Neurogenic Zones and in Neurons and May Be Required for Retinoid Acid Induced PAX6 Expression. Front Neuroanat 2017; 11:94. [PMID: 29163067 PMCID: PMC5681484 DOI: 10.3389/fnana.2017.00094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/13/2017] [Indexed: 02/05/2023] Open
Abstract
Adult neurogenesis is important for the development of regenerative therapies for human diseases of the central nervous system (CNS) through the recruitment of adult neural stem cells (NSCs). NSCs are characterized by the capacity to generate neurons, astrocytes, and oligodendrocytes. To identify key factors involved in manipulating the adult NSC neurogenic fate thus has crucial implications for the clinical application. Here, we report that BAF45D is expressed in the subgranular zone (SGZ) of the dentate gyrus, the subventricular zone (SVZ) of the lateral ventricle, and the central canal (CC) of the adult spinal cord. Coexpression of BAF45D with glial fibrillary acidic protein (GFAP), a radial glial like cell marker protein, was identified in the SGZ, the SVZ and the adult spinal cord CC. Quantitative analysis data indicate that BAF45D is preferentially expressed in the neurogenic zone of the LV and the neurons of the adult CNS. Furthermore, during the neuroectoderm differentiation of H9 cells, BAF45D is required for the expression of PAX6, a neuroectoderm determinant that is also known to regulate the self-renewal and neuronal fate specification of adult neural stem/progenitor cells. Together, our results may shed new light on the expression of BAF45D in the adult neurogenic zones and the contribution of BAF45D to early neural development.
Collapse
Affiliation(s)
- Chao Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Histology and Embryology, Anhui Medical University, Hefei, China.,Institute of Stem Cell and Tissue Engineering, Anhui Medical University, Hefei, China
| | - Ruyu Sun
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Histology and Embryology, Anhui Medical University, Hefei, China.,Institute of Stem Cell and Tissue Engineering, Anhui Medical University, Hefei, China
| | - Jian Huang
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dijuan Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Histology and Embryology, Anhui Medical University, Hefei, China.,Institute of Stem Cell and Tissue Engineering, Anhui Medical University, Hefei, China
| | - Dake Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weiqin Qi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shenghua Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Histology and Embryology, Anhui Medical University, Hefei, China.,Institute of Stem Cell and Tissue Engineering, Anhui Medical University, Hefei, China
| | - Fenfen Xie
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Histology and Embryology, Anhui Medical University, Hefei, China.,Institute of Stem Cell and Tissue Engineering, Anhui Medical University, Hefei, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
254
|
Rodriguez RL, Albeck JG, Taha AY, Ori-McKenney KM, Recanzone GH, Stradleigh TW, Hernandez BC, Tang FYV, Chiang EPI, Cruz-Orengo L. Impact of diet-derived signaling molecules on human cognition: exploring the food-brain axis. NPJ Sci Food 2017; 1:2. [PMID: 31304244 PMCID: PMC6548416 DOI: 10.1038/s41538-017-0002-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 01/02/2023] Open
Abstract
The processes that define mammalian physiology evolved millions of years ago in response to ancient signaling molecules, most of which were acquired by ingestion and digestion. In this way, evolution inextricably linked diet to all major physiological systems including the nervous system. The importance of diet in neurological development is well documented, although the mechanisms by which diet-derived signaling molecules (DSMs) affect cognition are poorly understood. Studies on the positive impact of nutritive and non-nutritive bioactive molecules on brain function are encouraging but lack the statistical power needed to demonstrate strong positive associations. Establishing associations between DSMs and cognitive functions like mood, memory and learning are made even more difficult by the lack of robust phenotypic markers that can be used to accurately and reproducibly measure the effects of DSMs. Lastly, it is now apparent that processes like neurogenesis and neuroplasticity are embedded within layers of interlocked signaling pathways and gene regulatory networks. Within these interdependent pathways and networks, the various transducers of DSMs are used combinatorially to produce those emergent adaptive gene expression responses needed for stimulus-induced neurogenesis and neuroplasticity. Taken together, it appears that cognition is encoded genomically and modified by epigenetics and epitranscriptomics to produce complex transcriptional programs that are exquisitely sensitive to signaling molecules from the environment. Models for how DSMs mediate the interplay between the environment and various neuronal processes are discussed in the context of the food-brain axis.
Collapse
Affiliation(s)
- Raymond L. Rodriguez
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - John G. Albeck
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - Kassandra M. Ori-McKenney
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | - Gregg H. Recanzone
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
- Center for Neuroscience, College of Biological Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Tyler W. Stradleigh
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
- Center for Neuroscience, College of Biological Sciences, University of California, Davis, Davis, CA 95616 USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| | - Bronte C. Hernandez
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis, CA 95616 USA
| | | | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Lillian Cruz-Orengo
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
255
|
Konopko MA, Densmore AL, Krueger BK. Sexually Dimorphic Epigenetic Regulation of Brain-Derived Neurotrophic Factor in Fetal Brain in the Valproic Acid Model of Autism Spectrum Disorder. Dev Neurosci 2017; 39:507-518. [PMID: 29073621 PMCID: PMC6020162 DOI: 10.1159/000481134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023] Open
Abstract
Prenatal exposure to the antiepileptic, mood-stabilizing drug, valproic acid (VPA), increases the incidence of autism spectrum disorders (ASDs); in utero administration of VPA to pregnant rodents induces ASD-like behaviors such as repetitive, stereotyped activity, and decreased socialization. In both cases, males are more affected than females. We previously reported that VPA, administered to pregnant mice at gestational day 12.5, rapidly induces a transient, 6-fold increase in BDNF (brain-derived neurotrophic factor) protein and mRNA in the fetal brain. Here, we investigate sex differences in the induction of Bdnf expression by VPA as well as the underlying epigenetic mechanisms. We found no sex differences in the VPA stimulation of total brain Bdnf mRNA as indicated by probing for the BDNF protein coding sequence (exon 9); however, stimulation of individual transcripts containing two of the nine 5'-untranslated exons (5'UTEs) in Bdnf (exons 1 and 4) by VPA was greater in female fetal brains. These Bdnf transcripts have been associated with different cell types or subcellular compartments within neurons. Since VPA is a histone deacetylase inhibitor, covalent histone modifications at Bdnf 5'UTEs in the fetal brain were analyzed by chromatin immunoprecipitation. VPA increased the acetylation of multiple H3 and H4 lysine residues in the vicinity of exons 1, 2, 4, and 6; minimal differences between the sexes were observed. H3 lysine 4 trimethylation (H3K4me3) at those exons was also stimulated by VPA. Moreover, the VPA-induced increase in H3K4me3 at exons 1, 4, and 6 was significantly greater in females than in males, i.e., sexually dimorphic stimulation of H3K4me3 by VPA correlated with Bdnf transcripts containing exons 1 and 4, but not 6. Neither H3K27me3 nor cytosine methylation at any of the 117 CpGs in the vicinity of the transcription start sites of exons 1, 4, and 6 was affected by VPA. Thus, of the 6 epigenetic marks analyzed, only H3K4me3 can account for the sexually dimorphic expression of Bdnf transcripts induced by VPA in the fetal brain. Preferential expression of exon 1- and exon 4-Bdnf transcripts in females may contribute to sex differences in ASDs by protecting females from the adverse effects of genetic variants or environmental factors such as VPA on the developing brain.
Collapse
Affiliation(s)
- Melissa A Konopko
- Program in Neuroscience, University of Maryland Baltimore, 655 West Baltimore Street, Baltimore MD 21201
| | | | - Bruce K. Krueger
- Program in Neuroscience, University of Maryland Baltimore, 655 West Baltimore Street, Baltimore MD 21201
| |
Collapse
|
256
|
Yao B, Cheng Y, Wang Z, Li Y, Chen L, Huang L, Zhang W, Chen D, Wu H, Tang B, Jin P. DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat Commun 2017; 8:1122. [PMID: 29066820 PMCID: PMC5654764 DOI: 10.1038/s41467-017-01195-y] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/25/2017] [Indexed: 12/13/2022] Open
Abstract
Chemical modifications on DNA molecules, such as 5-methylcytosine and 5-hydroxymethylcytosine, play important roles in the mammalian brain. A novel DNA adenine modification, N(6)-methyladenine (6mA), has recently been found in mammalian cells. However, the presence and function(s) of 6mA in the mammalian brain remain unclear. Here we demonstrate 6mA dynamics in the mouse brain in response to environmental stress. We find that overall 6mA levels are significantly elevated upon stress. Genome-wide 6mA and transcriptome profiling reveal an inverse association between 6mA dynamic changes and a set of upregulated neuronal genes or downregulated LINE transposon expression. Genes bearing stress-induced 6mA changes significantly overlap with loci associated with neuropsychiatric disorders. These results suggest an epigenetic role for 6mA in the mammalian brain as well as its potential involvement in neuropsychiatric disorders. N6-methyladenine is a covalent epigenetic modification of the genome. Here, Yao and colleagues show that N6-methyladenine level in the mouse brain is dynamic following environmental stress, and the subsequent differential gene expression is correlated with LINE transposon expression.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ying Cheng
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhiqin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Li Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Health Outcomes Research and Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Luoxiu Huang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wenxin Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dahua Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA, 30322, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
257
|
Abstract
How nuclear architecture contributes to transcriptional regulation in neural progenitor cells (NeuPCs) is poorly understood. A study by Toda et al. (2017) now shows that the nuclear pore protein Nup153 associates with the Sox2 transcription factor in the regulation of NeuPC maintenance and neural fate.
Collapse
|
258
|
Christopher MA, Kyle SM, Katz DJ. Neuroepigenetic mechanisms in disease. Epigenetics Chromatin 2017; 10:47. [PMID: 29037228 PMCID: PMC5644115 DOI: 10.1186/s13072-017-0150-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Epigenetics allows for the inheritance of information in cellular lineages during differentiation, independent of changes to the underlying genetic sequence. This raises the question of whether epigenetic mechanisms also function in post-mitotic neurons. During the long life of the neuron, fluctuations in gene expression allow the cell to pass through stages of differentiation, modulate synaptic activity in response to environmental cues, and fortify the cell through age-related neuroprotective pathways. Emerging evidence suggests that epigenetic mechanisms such as DNA methylation and histone modification permit these dynamic changes in gene expression throughout the life of a neuron. Accordingly, recent studies have revealed the vital importance of epigenetic players in the central nervous system and during neurodegeneration. Here, we provide a review of several of these recent findings, highlighting novel functions for epigenetics in the fields of Rett syndrome, Fragile X syndrome, and Alzheimer’s disease research. Together, these discoveries underscore the vital importance of epigenetics in human neurological disorders.
Collapse
Affiliation(s)
- Michael A Christopher
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA.,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095-7239, USA
| | - Stephanie M Kyle
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA
| | - David J Katz
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
259
|
Encinas JM, Fitzsimons CP. Gene regulation in adult neural stem cells. Current challenges and possible applications. Adv Drug Deliv Rev 2017; 120:118-132. [PMID: 28751200 DOI: 10.1016/j.addr.2017.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Adult neural stem and progenitor cells (NSPCs) offer a unique opportunity for neural regeneration and niche modification in physiopathological conditions, harnessing the capability to modify from neuronal circuits to glial scar. Findings exposing the vast plasticity and potential of NSPCs have accumulated over the past years and we currently know that adult NSPCs can naturally give rise not only to neurons but also to astrocytes and reactive astrocytes, and eventually to oligodendrocytes through genetic manipulation. We can consider NSPCs as endogenous flexible tools to fight against neurodegenerative and neurological disorders and aging. In addition, NSPCs can be considered as active agents contributing to chronic brain alterations and as relevant cell populations to be preserved, so that their main function, neurogenesis, is not lost in damage or disease. Altogether we believe that learning to manipulate NSPC is essential to prevent, ameliorate or restore some of the cognitive deficits associated with brain disease and injury, and therefore should be considered as target for future therapeutic strategies. The first step to accomplish this goal is to target them specifically, by unveiling and understanding their unique markers and signaling pathways.
Collapse
Affiliation(s)
- Juan Manuel Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 205, 48170 Zamudio, Spain; Ikerbasque, The Basque Science Foundation, María Díaz de Haro 3, 6(th) Floor, 48013 Bilbao, Spain; University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Carlos P Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands.
| |
Collapse
|
260
|
Temporal Control of Mammalian Cortical Neurogenesis by m 6A Methylation. Cell 2017; 171:877-889.e17. [PMID: 28965759 DOI: 10.1016/j.cell.2017.09.003] [Citation(s) in RCA: 535] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
N6-methyladenosine (m6A), installed by the Mettl3/Mettl14 methyltransferase complex, is the most prevalent internal mRNA modification. Whether m6A regulates mammalian brain development is unknown. Here, we show that m6A depletion by Mettl14 knockout in embryonic mouse brains prolongs the cell cycle of radial glia cells and extends cortical neurogenesis into postnatal stages. m6A depletion by Mettl3 knockdown also leads to a prolonged cell cycle and maintenance of radial glia cells. m6A sequencing of embryonic mouse cortex reveals enrichment of mRNAs related to transcription factors, neurogenesis, the cell cycle, and neuronal differentiation, and m6A tagging promotes their decay. Further analysis uncovers previously unappreciated transcriptional prepatterning in cortical neural stem cells. m6A signaling also regulates human cortical neurogenesis in forebrain organoids. Comparison of m6A-mRNA landscapes between mouse and human cortical neurogenesis reveals enrichment of human-specific m6A tagging of transcripts related to brain-disorder risk genes. Our study identifies an epitranscriptomic mechanism in heightened transcriptional coordination during mammalian cortical neurogenesis.
Collapse
|
261
|
Efficient and Fast Differentiation of Human Neural Stem Cells from Human Embryonic Stem Cells for Cell Therapy. Stem Cells Int 2017; 2017:9405204. [PMID: 29075299 PMCID: PMC5624175 DOI: 10.1155/2017/9405204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/28/2017] [Accepted: 07/27/2017] [Indexed: 12/29/2022] Open
Abstract
Stem cell-based therapies have been used for repairing damaged brain tissue and helping functional recovery after brain injury. Aberrance neurogenesis is related with brain injury, and multipotential neural stem cells from human embryonic stem (hES) cells provide a great promise for cell replacement therapies. Optimized protocols for neural differentiation are necessary to produce functional human neural stem cells (hNSCs) for cell therapy. However, the qualified procedure is scarce and detailed features of hNSCs originated from hES cells are still unclear. In this study, we developed a method to obtain hNSCs from hES cells, by which we could harvest abundant hNSCs in a relatively short time. Then, we examined the expression of pluripotent and multipotent marker genes through immunostaining and confirmed differentiation potential of the differentiated hNSCs. Furthermore, we analyzed the mitotic activity of these hNSCs. In this report, we provided comprehensive features of hNSCs and delivered the knowledge about how to obtain more high-quality hNSCs from hES cells which may help to accelerate the NSC-based therapies in brain injury treatment.
Collapse
|
262
|
Toda T, Hsu JY, Linker SB, Hu L, Schafer ST, Mertens J, Jacinto FV, Hetzer MW, Gage FH. Nup153 Interacts with Sox2 to Enable Bimodal Gene Regulation and Maintenance of Neural Progenitor Cells. Cell Stem Cell 2017; 21:618-634.e7. [PMID: 28919367 DOI: 10.1016/j.stem.2017.08.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/17/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022]
Abstract
Neural progenitor cells (NeuPCs) possess a unique nuclear architecture that changes during differentiation. Nucleoporins are linked with cell-type-specific gene regulation, coupling physical changes in nuclear structure to transcriptional output; but, whether and how they coordinate with key fate-determining transcription factors is unclear. Here we show that the nucleoporin Nup153 interacts with Sox2 in adult NeuPCs, where it is indispensable for their maintenance and controls neuronal differentiation. Genome-wide analyses show that Nup153 and Sox2 bind and co-regulate hundreds of genes. Binding of Nup153 to gene promoters or transcriptional end sites correlates with increased or decreased gene expression, respectively, and inhibiting Nup153 expression alters open chromatin configurations at its target genes, disrupts genomic localization of Sox2, and promotes differentiation in vitro and a gliogenic fate switch in vivo. Together, these findings reveal that nuclear structural proteins may exert bimodal transcriptional effects to control cell fate.
Collapse
Affiliation(s)
- Tomohisa Toda
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jonathan Y Hsu
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sara B Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lauren Hu
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jerome Mertens
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Filipe V Jacinto
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
263
|
Mandal C, Halder D, Jung KH, Chai YG. In Utero Alcohol Exposure and the Alteration of Histone Marks in the Developing Fetus: An Epigenetic Phenomenon of Maternal Drinking. Int J Biol Sci 2017; 13:1100-1108. [PMID: 29104501 PMCID: PMC5666325 DOI: 10.7150/ijbs.21047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Ethanol is well known for its teratogenic effects during fetal development. Maternal alcohol consumption allows the developing fetus to experience the detrimental effects of alcohol exposure. Alcohol-mediated teratogenic effects can vary based on the dosage and the length of exposure. The specific mechanism of action behind this teratogenic effect is still unknown. Previous reports demonstrated that alcohol participates in epigenetic alterations, especially histone modifications during fetal development. Additional research is necessary to understand the correlation between major epigenetic events and alcohol-mediated teratogenesis such as that observed in fetal alcohol spectrum disorder (FASD). Here, we attempted to collect all the available information concerning alcohol-mediated histone modifications during gestational fetal development. We hope that this review will aid researchers to further examine the issues associated with ethanol exposure.
Collapse
Affiliation(s)
- Chanchal Mandal
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Debasish Halder
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea.,Institute of Natural Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea.,Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
264
|
Sokpor G, Xie Y, Rosenbusch J, Tuoc T. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders. Front Mol Neurosci 2017; 10:243. [PMID: 28824374 PMCID: PMC5540894 DOI: 10.3389/fnmol.2017.00243] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany
| | - Yuanbin Xie
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany
| | - Joachim Rosenbusch
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany
| | - Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the BrainGoettingen, Germany
| |
Collapse
|
265
|
Miranda-Morales E, Meier K, Sandoval-Carrillo A, Salas-Pacheco J, Vázquez-Cárdenas P, Arias-Carrión O. Implications of DNA Methylation in Parkinson's Disease. Front Mol Neurosci 2017; 10:225. [PMID: 28769760 PMCID: PMC5513956 DOI: 10.3389/fnmol.2017.00225] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
It has been 200 years since Parkinson’s disease (PD) was first described, yet many aspects of its etiopathogenesis remain unclear. PD is a progressive and complex neurodegenerative disorder caused by genetic and environmental factors including aging, nutrition, pesticides and exposure to heavy metals. DNA methylation may be altered in response to some of these factors; therefore, it is proposed that epigenetic mechanisms, particularly DNA methylation, can have a fundamental role in gene–environment interactions that are related with PD. Epigenetic changes in PD-associated genes are now widely studied in different populations, to discover the mechanisms that contribute to disease development and identify novel biomarkers for early diagnosis and future pharmacological treatment. While initial studies sought to find associations between promoter DNA methylation and the regulation of associated genes in PD brain tissue, more recent studies have described concordant DNA methylation patterns between blood and brain tissue DNA. These data justify the use of peripheral blood samples instead of brain tissue for epigenetic studies. Here, we summarize the current data about DNA methylation changes in PD and discuss the potential of DNA methylation as a potential biomarker for PD. Additionally, we discuss environmental and nutritional factors that have been implicated in DNA methylation. Although the search for significant DNA methylation changes and gene expression analyses of PD-associated genes have yielded inconsistent and contradictory results, epigenetic modifications remain under investigation for their potential to reveal the link between environmental risk factors and the development of PD.
Collapse
Affiliation(s)
- Ernesto Miranda-Morales
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea GonzálezMexico City, Mexico.,Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - Karin Meier
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Ada Sandoval-Carrillo
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - José Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea GonzálezMexico City, Mexico
| |
Collapse
|
266
|
The Role of Epigenetic Mechanisms in the Regulation of Gene Expression in the Nervous System. J Neurosci 2017; 36:11427-11434. [PMID: 27911745 DOI: 10.1523/jneurosci.2492-16.2016] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 11/21/2022] Open
Abstract
Neuroepigenetics is a newly emerging field in neurobiology that addresses the epigenetic mechanism of gene expression regulation in various postmitotic neurons, both over time and in response to environmental stimuli. In addition to its fundamental contribution to our understanding of basic neuronal physiology, alterations in these neuroepigenetic mechanisms have been recently linked to numerous neurodevelopmental, psychiatric, and neurodegenerative disorders. This article provides a selective review of the role of DNA and histone modifications in neuronal signal-induced gene expression regulation, plasticity, and survival and how targeting these mechanisms could advance the development of future therapies. In addition, we discuss a recent discovery on how double-strand breaks of genomic DNA mediate the rapid induction of activity-dependent gene expression in neurons.
Collapse
|
267
|
Li L, Zang L, Zhang F, Chen J, Shen H, Shu L, Liang F, Feng C, Chen D, Tao H, Xu T, Li Z, Kang Y, Wu H, Tang L, Zhang P, Jin P, Shu Q, Li X. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet 2017; 26:2398-2411. [PMID: 28398475 PMCID: PMC6192412 DOI: 10.1093/hmg/ddx128] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/12/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Fat mass and obesity-associated gene (FTO) is a member of the Fe (II)- and oxoglutarate-dependent AlkB dioxygenase family and is linked to both obesity and intellectual disability. The role of FTO in neurodevelopment and neurogenesis, however, remains largely unknown. Here we show that FTO is expressed in adult neural stem cells and neurons and displays dynamic expression during postnatal neurodevelopment. The loss of FTO leads to decreased brain size and body weight. We find that FTO deficiency could reduce the proliferation and neuronal differentiation of adult neural stem cells in vivo, which leads to impaired learning and memory. Given the role of FTO as a demethylase of N6-methyladenosine (m6A), we went on to perform genome-wide m6A profiling and observed dynamic m6A modification during postnatal neurodevelopment. The loss of FTO led to the altered expression of several key components of the brain derived neurotrophic factor pathway that were marked by m6A. These results together suggest FTO plays important roles in neurogenesis, as well as in learning and memory.
Collapse
Affiliation(s)
- Liping Li
- Institute of Genetics, College of Life Sciences, Zhejiang University,
Hangzhou 310058, China
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Liqun Zang
- Institute of Genetics, College of Life Sciences, Zhejiang University,
Hangzhou 310058, China
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta,
GA 30322, USA
| | - Junchen Chen
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Hui Shen
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Liqi Shu
- Department of Human Genetics, Emory University School of Medicine, Atlanta,
GA 30322, USA
- School of Medicine and Health Sciences, George Washington University,
Washington, DC 20037, USA
| | - Feng Liang
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Chunyue Feng
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
| | - Deng Chen
- State Key Laboratory of Medical Molecular Biology, Department of
Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of
Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005,
China
| | - Huikang Tao
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
| | - Tianlei Xu
- Department of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, GA 30322, USA
| | - Ziyi Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, GA 30322, USA
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta,
GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, GA 30322, USA
| | - Lichun Tang
- National Center for Protein Sciences Beijing, Life Sciences Park, Beijing
102206, China
| | - Pumin Zhang
- National Center for Protein Sciences Beijing, Life Sciences Park, Beijing
102206, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta,
GA 30322, USA
| | - Qiang Shu
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
| | - Xuekun Li
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| |
Collapse
|
268
|
Shevtsova O, Tan YF, Merkley CM, Winocur G, Wojtowicz JM. Early-Age Running Enhances Activity of Adult-Born Dentate Granule Neurons Following Learning in Rats. eNeuro 2017; 4:ENEURO.0237-17.2017. [PMID: 28824956 PMCID: PMC5560743 DOI: 10.1523/eneuro.0237-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Cognitive reserve, the brain's capacity to draw on enriching experiences during youth, is believed to protect against memory loss associated with a decline in hippocampal function, as seen in normal aging and neurodegenerative disease. Adult neurogenesis has been suggested as a specific mechanism involved in cognitive (or neurogenic) reserve. The first objective of this study was to compare learning-related neuronal activity in adult-born versus developmentally born hippocampal neurons in juvenile male rats that had engaged in extensive running activity during early development or reared in a standard laboratory environment. The second objective was to investigate the long-term effect of exercise in rats on learning and memory of a contextual fear (CF) response later in adulthood. These aims address the important question as to whether exercise in early life is sufficient to build a reserve that protects against the process of cognitive aging. The results reveal a long-term effect of early running on adult-born dentate granule neurons and a special role for adult-born neurons in contextual memory, in a manner that is consistent with the neurogenic reserve hypothesis.
Collapse
Affiliation(s)
- Olga Shevtsova
- Department of Physiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Yao-Fang Tan
- Department of Physiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Christina M. Merkley
- Department of Physiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Gordon Winocur
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario M6E2E1, Canada
- Department of Psychology, Trent University, Peterborough, K9J7B8, Canada
| | - J. Martin Wojtowicz
- Department of Physiology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| |
Collapse
|
269
|
Mandal C, Halder D, Jung KH, Chai YG. Gestational Alcohol Exposure Altered DNA Methylation Status in the Developing Fetus. Int J Mol Sci 2017; 18:ijms18071386. [PMID: 28657590 PMCID: PMC5535879 DOI: 10.3390/ijms18071386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022] Open
Abstract
Ethanol is well known as a teratogenic factor that is capable of inducing a wide range of developmental abnormalities if the developing fetus is exposed to it. Duration and dose are the critical parameters of exposure that affect teratogenic variation to the developing fetus. It is suggested that ethanol interferes with epigenetic processes especially DNA methylation. We aimed to organize all of the available information on the alteration of DNA methylation by ethanol in utero. Thus, we have summarized all published information regarding alcohol-mediated alterations in DNA methylation during gestation. We tried to arrange information in a way that anyone can easily find the alcohol exposure time, doses, sampling time, and major changes in genomic level. Manuscript texts will also represent the correlation between ethanol metabolites and subsequent changes in methylome patterns. We hope that this review will help future researchers to further examine the issues associated with ethanol exposure.
Collapse
Affiliation(s)
- Chanchal Mandal
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
| | - Debasish Halder
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
- Institute of Natural Science and Technology, Hanyang University, 15588 Ansan, Korea.
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
- Department of Bionanotechnology, Hanyang University, 04763 Seoul, Korea.
| |
Collapse
|
270
|
Yin R, Mo J, Dai J, Wang H. Nickel(II) Inhibits Tet-Mediated 5-Methylcytosine Oxidation by High Affinity Displacement of the Cofactor Iron(II). ACS Chem Biol 2017; 12:1494-1498. [PMID: 28467834 DOI: 10.1021/acschembio.7b00261] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ten-eleven translocation (Tet) family proteins are Fe(II)- and 2-oxoglutarate-dependent dioxygenases that regulate the dynamics of DNA methylation by catalyzing the oxidation of DNA 5-methylcytosine (5mC). To exert physiologically important functions, redox-active iron chelated in the catalytic center of Tet proteins directly involves the oxidation of the multiple substrates. To understand the function and interaction network of Tet dioxygenases, it is interesting to obtain high affinity and a specific inhibitor. Surprisingly, here we found that natural Ni(II) ion can bind to the Fe(II)-chelating motif (HXD) with an affinity of 7.5-fold as high as Fe(II). Consistently, we further found that Ni(II) ion can displace the cofactor Fe(II) of Tet dioxygenases and inhibit Tet-mediated 5mC oxidation activity with an estimated IC50 of 1.2 μM. Essentially, Ni(II) can be used as a high affinity and selective inhibitor to explore the function and dynamics of Tet proteins.
Collapse
Affiliation(s)
- Ruichuan Yin
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiezhen Mo
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiayin Dai
- Key
Laboratory of Animal Ecology and Conservation Biology, Institute of
Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hailin Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
271
|
Li Y, Jiao J. Histone chaperone HIRA regulates neural progenitor cell proliferation and neurogenesis via β-catenin. J Cell Biol 2017; 216:1975-1992. [PMID: 28515277 PMCID: PMC5496612 DOI: 10.1083/jcb.201610014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/31/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022] Open
Abstract
Histone cell cycle regulator (HIRA) is a histone chaperone and has been identified as an epigenetic regulator. Subsequent studies have provided evidence that HIRA plays key roles in embryonic development, but its function during early neurogenesis remains unknown. Here, we demonstrate that HIRA is enriched in neural progenitor cells, and HIRA knockdown reduces neural progenitor cell proliferation, increases terminal mitosis and cell cycle exit, and ultimately results in premature neuronal differentiation. Additionally, we demonstrate that HIRA enhances β-catenin expression by recruiting H3K4 trimethyltransferase Setd1A, which increases H3K4me3 levels and heightens the promoter activity of β-catenin. Significantly, overexpression of HIRA, HIRA N-terminal domain, or β-catenin can override neurogenesis abnormities caused by HIRA defects. Collectively, these data implicate that HIRA, cooperating with Setd1A, modulates β-catenin expression and then regulates neurogenesis. This finding represents a novel epigenetic mechanism underlying the histone code and has profound and lasting implications for diseases and neurobiology.
Collapse
Affiliation(s)
- Yanxin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
272
|
Ottoboni L, Merlini A, Martino G. Neural Stem Cell Plasticity: Advantages in Therapy for the Injured Central Nervous System. Front Cell Dev Biol 2017; 5:52. [PMID: 28553634 PMCID: PMC5427132 DOI: 10.3389/fcell.2017.00052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
The physiological and pathological properties of the neural germinal stem cell niche have been well-studied in the past 30 years, mainly in animals and within given limits in humans, and knowledge is available for the cyto-architectonic structure, the cellular components, the timing of development and the energetic maintenance of the niche, as well as for the therapeutic potential and the cross talk between neural and immune cells. In recent years we have gained detailed understanding of the potentiality of neural stem cells (NSCs), although we are only beginning to understand their molecular, metabolic, and epigenetic profile in physiopathology and, further, more can be invested to measure quantitatively the activity of those cells, to model in vitro their therapeutic responses or to predict interactions in silico. Information in this direction has been put forward for other organs but is still limited in the complex and very less accessible context of the brain. A comprehensive understanding of the behavior of endogenous NSCs will help to tune or model them toward a desired response in order to treat complex neurodegenerative diseases. NSCs have the ability to modulate multiple cellular functions and exploiting their plasticity might make them into potent and versatile cellular drugs.
Collapse
Affiliation(s)
- Linda Ottoboni
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteMilan, Italy
| | - Arianna Merlini
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteMilan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteMilan, Italy
| |
Collapse
|
273
|
Abstract
High-throughput technologies have revolutionized medical research. The advent of genotyping arrays enabled large-scale genome-wide association studies and methods for examining global transcript levels, which gave rise to the field of “integrative genetics”. Other omics technologies, such as proteomics and metabolomics, are now often incorporated into the everyday methodology of biological researchers. In this review, we provide an overview of such omics technologies and focus on methods for their integration across multiple omics layers. As compared to studies of a single omics type, multi-omics offers the opportunity to understand the flow of information that underlies disease.
Collapse
Affiliation(s)
- Yehudit Hasin
- Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095, USA.,Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095, USA
| | - Marcus Seldin
- Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095, USA
| | - Aldons Lusis
- Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology and Molecular Genetics, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095, USA. .,Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095, USA.
| |
Collapse
|
274
|
Fan X, Wheatley EG, Villeda SA. Mechanisms of Hippocampal Aging and the Potential for Rejuvenation. Annu Rev Neurosci 2017; 40:251-272. [PMID: 28441118 DOI: 10.1146/annurev-neuro-072116-031357] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The past two decades have seen remarkable progress in our understanding of the multifactorial drivers of hippocampal aging and cognitive decline. Recent findings have also raised the possibility of functional rejuvenation in the aged hippocampus. In this review, we aim to synthesize the mechanisms that drive hippocampal aging and evaluate critically the potential for rejuvenation. We discuss the functional changes in synaptic plasticity and regenerative potential of the aged hippocampus, followed by mechanisms of microglia aging, and assess the cross talk between these proaging processes. We then examine proyouth interventions that demonstrate significant promise in reversing age-related impairments in the hippocampus and, finally, attempt to look ahead toward novel therapeutics for brain aging.
Collapse
Affiliation(s)
- Xuelai Fan
- Department of Anatomy, University of California, San Francisco, California 94143; , , .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143
| | - Elizabeth G Wheatley
- Department of Anatomy, University of California, San Francisco, California 94143; , , .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143.,Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94143
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, California 94143; , , .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143.,Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94143
| |
Collapse
|
275
|
Weng YL, An R, Cassin J, Joseph J, Mi R, Wang C, Zhong C, Jin SG, Pfeifer GP, Bellacosa A, Dong X, Hoke A, He Z, Song H, Ming GL. An Intrinsic Epigenetic Barrier for Functional Axon Regeneration. Neuron 2017; 94:337-346.e6. [PMID: 28426967 PMCID: PMC6007997 DOI: 10.1016/j.neuron.2017.03.034] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 02/05/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
Mature neurons in the adult peripheral nervous system can effectively switch from a dormant state with little axonal growth to robust axon regeneration upon injury. The mechanisms by which injury unlocks mature neurons' intrinsic axonal growth competence are not well understood. Here, we show that peripheral sciatic nerve lesion in adult mice leads to elevated levels of Tet3 and 5-hydroxylmethylcytosine in dorsal root ganglion (DRG) neurons. Functionally, Tet3 is required for robust axon regeneration of DRG neurons and behavioral recovery. Mechanistically, peripheral nerve injury induces DNA demethylation and upregulation of multiple regeneration-associated genes in a Tet3- and thymine DNA glycosylase-dependent fashion in DRG neurons. In addition, Pten deletion-induced axon regeneration of retinal ganglion neurons in the adult CNS is attenuated upon Tet1 knockdown. Together, our study suggests an epigenetic barrier that can be removed by active DNA demethylation to permit axon regeneration in the adult mammalian nervous system.
Collapse
Affiliation(s)
- Yi-Lan Weng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ran An
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Jessica Cassin
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pre-doctoral Human Genetics Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica Joseph
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruifa Mi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chun Zhong
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seung-Gi Jin
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gerd P. Pfeifer
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Alfonso Bellacosa
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pre-doctoral Human Genetics Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
276
|
Fong BC, Slack RS. RB: An essential player in adult neurogenesis. NEUROGENESIS 2017; 4:e1270382. [PMID: 28229086 DOI: 10.1080/23262133.2016.1270382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/30/2016] [Accepted: 12/04/2016] [Indexed: 12/16/2022]
Abstract
The fundamental mechanisms underlying adult neurogenesis remain to be fully clarified. Members of the cell cycle machinery have demonstrated key roles in regulating adult neural stem cell (NSC) quiescence and the size of the adult-born neuronal population. The retinoblastoma protein, Rb, is known to possess CNS-specific requirements that are independent from its classical role as a tumor suppressor. The recent study by Vandenbosch et al. has clarified distinct requirements for Rb during adult neurogenesis, in the restriction of proliferation, as well as long-term adult-born neuronal survival. However, Rb is no longer believed to be the main cell cycle regulator maintaining the quiescence of adult NSCs. Future studies must consider Rb as part of a larger network of regulatory effectors, including the other members of the Rb family, p107 and p130. This will help elucidate the contribution of Rb and other pocket proteins in the context of adult neurogenesis, and define its crucial role in regulating the size and fate of the neurogenic niche.
Collapse
Affiliation(s)
- Bensun C Fong
- University of Ottawa Brain and Mind Research Institute, Department of Cellular & Molecular Medicine, University of Ottawa , Ottawa, ON, Canada
| | - Ruth S Slack
- University of Ottawa Brain and Mind Research Institute, Department of Cellular & Molecular Medicine, University of Ottawa , Ottawa, ON, Canada
| |
Collapse
|
277
|
Lens Biology is a Dimension of Neurobiology. Neurochem Res 2017; 42:933-942. [DOI: 10.1007/s11064-016-2156-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023]
|
278
|
Abstract
The re-emergence of Zika virus (ZIKV) and its suspected link with various disorders in newborns and adults led the World Health Organization to declare a global health emergency. In response, the stem cell field quickly established platforms for modeling ZIKV exposure using human pluripotent stem cell-derived neural progenitors and brain organoids, fetal tissues, and animal models. These efforts provided significant insight into cellular targets, pathogenesis, and underlying biological mechanisms of ZIKV infection as well as platforms for drug testing. Here we review the remarkable progress in stem cell-based ZIKV research and discuss current challenges and future opportunities.
Collapse
Affiliation(s)
- Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|