251
|
Chen Q, Ji H, Lin Y, Chen Z, Liu Y, Jin L, Peng R. LncRNAs regulate ferroptosis to affect diabetes and its complications. Front Physiol 2022; 13:993904. [PMID: 36225311 PMCID: PMC9548856 DOI: 10.3389/fphys.2022.993904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide, the rapid increase in the incidence of diabetes and its complications poses a serious threat to human health. Ferroptosis, which is a new nonapoptotic form of cell death, has been proven to be closely related to the occurrence and development of diabetes and its complications. In recent years, lncRNAs have been confirmed to be involved in the occurrence and development of diabetes and play an important role in regulating ferroptosis. An increasing number of studies have shown that lncRNAs can affect the occurrence and development of diabetes and its complications by regulating ferroptosis. Therefore, lncRNAs have great potential as therapeutic targets for regulating ferroptosis-mediated diabetes and its complications. This paper reviewed the potential impact and regulatory mechanism of ferroptosis on diabetes and its complications, focusing on the effects of lncRNAs on the occurrence and development of ferroptosis-mediated diabetes and its complications and the regulation of ferroptosis-inducing reactive oxygen species, the key ferroptosis regulator Nrf2 and the NF-κB signaling pathway to provide new therapeutic strategies for the development of lncRNA-regulated ferroptosis-targeted drugs to treat diabetes.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hao Ji
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yue Lin
- Department of Emergency, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University and Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zheyan Chen
- Department of Plastic Surgery, Wenzhou People’s Hospital, The Third Affiliated Hospital of Shanghai University and Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Yinai Liu
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Libo Jin, ; Renyi Peng,
| | - Renyi Peng
- Institute of Life Sciences and Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Libo Jin, ; Renyi Peng,
| |
Collapse
|
252
|
Zhang G, Fang Y, Li X, Zhang Z. Ferroptosis: A novel therapeutic strategy and mechanism of action in glioma. Front Oncol 2022; 12:947530. [PMID: 36185243 PMCID: PMC9520297 DOI: 10.3389/fonc.2022.947530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is the most common malignant tumor of the central nervous system and resistance is easily developed to chemotherapy drugs during the treatment process, resulting in high mortality and short survival in glioma patients. Novel therapeutic approaches are urgently needed to improve the therapeutic efficacy of chemotherapeutic drugs and to improve the prognosis of patients with glioma. Ferroptosis is a novel regulatory cell death mechanism that plays a key role in cancer, neurodegenerative diseases, and other diseases. Studies have found that ferroptosis-related regulators are closely related to the survival of patients with glioma, and induction of ferroptosis can improve glioma resistance to chemotherapy drugs. Therefore, induction of tumor cell ferroptosis may be an effective therapeutic strategy for glioma. This review summarizes the relevant mechanisms of ferroptosis, systematically summarizes the key role of ferroptosis in the treatment of glioma and outlines the relationship between ferroptosis-related ncRNAs and the progression of glioma.
Collapse
|
253
|
Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol 2022; 13:910292. [PMID: 36105219 PMCID: PMC9465090 DOI: 10.3389/fphar.2022.910292] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The activation of ferroptosis is a new effective way to treat drug-resistant solid tumors. Ferroptosis is an iron-mediated form of cell death caused by the accumulation of lipid peroxides. The intracellular imbalance between oxidant and antioxidant due to the abnormal expression of multiple redox active enzymes will promote the produce of reactive oxygen species (ROS). So far, a few pathways and regulators have been discovered to regulate ferroptosis. In particular, the cystine/glutamate antiporter (System Xc−), glutathione peroxidase 4 (GPX4) and glutathione (GSH) (System Xc−/GSH/GPX4 axis) plays a key role in preventing lipid peroxidation-mediated ferroptosis, because of which could be inhibited by blocking System Xc−/GSH/GPX4 axis. This review aims to present the current understanding of the mechanism of ferroptosis based on the System Xc−/GSH/GPX4 axis in the treatment of drug-resistant solid tumors.
Collapse
Affiliation(s)
- Feng-Jiao Li
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hui-Zhi Long
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
- *Correspondence: Li-Chen Gao,
| |
Collapse
|
254
|
Wang Z, Wu S, Zhu C, Shen J. The role of ferroptosis in esophageal cancer. Cancer Cell Int 2022; 22:266. [PMID: 35999642 PMCID: PMC9396912 DOI: 10.1186/s12935-022-02685-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Esophageal cancer is one of the most common cancers with high mortality rate around the world. Although the treatment strategy of this disease has made great progress, the prognosis of advanced patients is not ideal. Ferroptosis, a novel regulatory cell death model, that is different from traditional apoptosis and characterized by increased Fenton reaction mediated by intracellular free iron and lipid peroxidation of cell membrane. Ferroptosis has been proved to be closely linked to a variety of diseases, especially cancer. This review aims to summarize the core mechanism of ferroptosis in esophageal cancer, the regulation of ferroptosis signaling pathway and its current application. At the same time, we emphasize the potential and prospect of ferroptosis in the treatment of esophageal cancer. Collectively, targeting ferroptosis pathway may provide new insights into the diagnosis, treatment and prognosis of esophageal cancer.
Collapse
Affiliation(s)
- Zimin Wang
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Sikai Wu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Chengchu Zhu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China. .,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China.
| | - Jianfei Shen
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China. .,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China.
| |
Collapse
|
255
|
Zhuo S, He G, Chen T, Li X, Liang Y, Wu W, Weng L, Feng J, Gao Z, Yang K. Emerging role of ferroptosis in glioblastoma: Therapeutic opportunities and challenges. Front Mol Biosci 2022; 9:974156. [PMID: 36060242 PMCID: PMC9428609 DOI: 10.3389/fmolb.2022.974156] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant craniocerebral tumor. The treatment of this cancer is difficult due to its high heterogeneity and immunosuppressive microenvironment. Ferroptosis is a newly found non-apoptotic regulatory cell death process that plays a vital role in a variety of brain diseases, including cerebral hemorrhage, neurodegenerative diseases, and primary or metastatic brain tumors. Recent studies have shown that targeting ferroptosis can be an effective strategy to overcome resistance to tumor therapy and immune escape mechanisms. This suggests that combining ferroptosis-based therapies with other treatments may be an effective strategy to improve the treatment of GBM. Here, we critically reviewed existing studies on the effect of ferroptosis on GBM therapies such as chemotherapy, radiotherapy, immunotherapy, and targeted therapy. In particular, this review discussed the potential of ferroptosis inducers to reverse drug resistance and enhance the sensitivity of conventional cancer therapy in combination with ferroptosis. Finally, we highlighted the therapeutic opportunities and challenges facing the clinical application of ferroptosis-based therapies in GBM. The data generated here provide new insights and directions for future research on the significance of ferroptosis-based therapies in GBM.
Collapse
Affiliation(s)
- Shenghua Zhuo
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guiying He
- Department of Neurology, Shenzhen Sixth People’s Hospital, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Taixue Chen
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiang Li
- Department of Neurology, Shenzhen Sixth People’s Hospital, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yunheng Liang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenkai Wu
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lingxiao Weng
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jigao Feng
- Department of Neurosurgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Kun Yang, ; Zhenzhong Gao, ; Jigao Feng,
| | - Zhenzhong Gao
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Kun Yang, ; Zhenzhong Gao, ; Jigao Feng,
| | - Kun Yang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Kun Yang, ; Zhenzhong Gao, ; Jigao Feng,
| |
Collapse
|
256
|
Lu M, Zhou Y, Sun L, Shafi S, Ahmad N, Sun M, Dong J. The molecular mechanisms of ferroptosis and its role in glioma progression and treatment. Front Oncol 2022; 12:917537. [PMID: 36091118 PMCID: PMC9450584 DOI: 10.3389/fonc.2022.917537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Ferroptosis is one of the programmed modes of cell death that has attracted widespread attention recently and is capable of influencing the developmental course and prognosis of many tumors. Glioma is one of the most common primary tumors of the central nervous system, but effective treatment options are very limited. Ferroptosis plays a critical role in the glioma progression, affecting tumor cell proliferation, angiogenesis, tumor necrosis, and shaping the immune-resistant tumor microenvironment. Inducing ferroptosis has emerged as an attractive strategy for glioma. In this paper, we review ferroptosis-related researches on glioma progression and treatment.
Collapse
Affiliation(s)
- Mengyang Lu
- Noncoding RNA and Cancer Lab, Faculty of Life Sciences, Shanghai University, Shanghai, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yuanshuai Zhou
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Linjuan Sun
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shaheryar Shafi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Nafees Ahmad
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Minxuan Sun
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Minxuan Sun, ; Jun Dong,
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Minxuan Sun, ; Jun Dong,
| |
Collapse
|
257
|
Ke K, Li L, Lu C, Zhu Q, Wang Y, Mou Y, Wang H, Jin W. The crosstalk effect between ferrous and other ions metabolism in ferroptosis for therapy of cancer. Front Oncol 2022; 12:916082. [PMID: 36033459 PMCID: PMC9413412 DOI: 10.3389/fonc.2022.916082] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Ferroptosis is an iron-dependent cell death process characterized by excessive accumulation of reactive oxygen species and lipid peroxidation. The elucidation of ferroptosis pathways may lead to novel cancer therapies. Current evidence suggests that the mechanism of ferroptosis can be summarized as oxidative stress and antioxidant defense mechanisms. During this process, ferrous ions play a crucial role in cellular oxidation, plasma membrane damage, reactive oxygen species removal imbalance and lipid peroxidation. Although, disregulation of intracellular cations (Fe2+, Ca2+, Zn2+, etc.) and anions (Cl-, etc.) have been widely reported to be involved in ferroptosis, their specific regulatory mechanisms have not been established. To further understand the crosstalk effect between ferrous and other ions in ferroptosis, we reviewed the ferroptosis process from the perspective of ions metabolism. In addition, the role of ferrous and other ions in tumor therapy is briefly summarized.
Collapse
Affiliation(s)
- Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li Li
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chao Lu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qicong Zhu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yuanyu Wang
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Huiju Wang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Weiwei Jin, ; Huiju Wang,
| | - Weiwei Jin
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Weiwei Jin, ; Huiju Wang,
| |
Collapse
|
258
|
Lei J, Song S, Chen Z, Shu S, Liu Q, Hu W. The protective mechanism of protein kinase R to inhibit neuronal ferroptosis in cerebral injury from subarachnoid hemorrhage. Brain Behav 2022; 12:e2722. [PMID: 35894766 PMCID: PMC9392539 DOI: 10.1002/brb3.2722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the role and mechanism of protein kinase R (PKR) in subarachnoid hemorrhage (SAH)-mediated ferroptosis. METHODS A rat SAH model was constructed and treated with PKR inhibitor C16 to observe SAH and neurological impairment in rats and to detect malonaldehyde (MDA), iron ions content, ferritin heavy polypeptide 1 (FTH1) and glutathione peroxidase 4 (GPX4), and other related ferroptosis indicators in brain tissue. RNA sequencing analysis was used to investigate the mechanism of PKR, affecting the ferroptosis network of SAH. RESULTS SAH caused severe fundic hemorrhage, neurological impairment, MDA and iron ion accumulation, and significant decrease in GPX4 and FTH1 levels in rats. C16 treatment significantly improved the above signs caused by SAH. By RNA-seq analysis, brain tissue of SAH-treated rats with SAH and C16 differentially expressed mRNA target genes enriched in stress response and organic developmental signaling pathways. CONCLUSION Inhibition of PKR may improve cerebral injury after SAH by inhibiting ferroptosis, and RNA sequencing staged its mechanism of action may be related to the stress response.
Collapse
Affiliation(s)
- Jianwei Lei
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuxin Song
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhihua Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Sihong Shu
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Liu
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Hu
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
259
|
Salehabadi A, Farkhondeh T, Harifi-Mood MS, Aschner M, Samarghandian S. Role of Nrf2 in bisphenol effects: a review study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55457-55472. [PMID: 35680748 DOI: 10.1007/s11356-022-20996-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols (BPs), the main endocrine-disrupting chemicals used in polycarbonate plastics, epoxy-phenol resins, and some other manufacturers, have been interestingly focused to find their toxic effects in recent years. Due to the strong relation between bisphenols and some crucial receptors such as ERs, AR, glucocorticoid receptor, THRs, ERRs, hPXR, AhR, and etcetera, the disrupting and oncogenic role of these chemicals on reproductive, respiratory, and circulatory systems and a broad group of body tissues have been investigated. BPs induce oxidant enzymes, exert antioxidant enzymes from body cells, and result in the expression of proinflammatory genes, leading to cell apoptosis and inflammation. To maintain the homeostasis of human body cells, Nrf2, the key regulator of oxidative stress (Ashrafizadeh et al., 2020a; Ashrafizadeh et al., 2020c; Boroumand et al., 2018), confronts BP-induced ROS and RNS through the activation of antioxidant enzymes such as SOD1/2, CAT, GSH, GPX, HO-1, and etcetera. Chemicals and drugs such as LUT, NAC, GEN, L-NMMA, Ph2Se2, and GE can regulate the interactions between BPs and Nrf2. Despite the vital role of controlled levels of Nrf2 as an anti-inflammatory and antiapoptotic element, the uncontrolled activity of this transcription factor could lead to cell proliferation and tumorigenesis through NQO1, SLC7a11, Gclm, HMOX1, NQO1 gene activation, and some other genes. To avoid the excessive activity of Nrf2, some protein complexes like CUL3-RBX1-Keap1 (as the primary regulator), β-TrCP, and WDR23 regulate Nrf2's function. It is necessary to note that BPA, as the most famous member, is further reviewed due to its resemblance to the bisphenol family to each other.
Collapse
Affiliation(s)
- Amin Salehabadi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209 1300 Morris Park Avenue, Bronx, NY, USA
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
260
|
Heurtaux T, Bouvier DS, Benani A, Helgueta Romero S, Frauenknecht KBM, Mittelbronn M, Sinkkonen L. Normal and Pathological NRF2 Signalling in the Central Nervous System. Antioxidants (Basel) 2022; 11:1426. [PMID: 35892629 PMCID: PMC9394413 DOI: 10.3390/antiox11081426] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.
Collapse
Affiliation(s)
- Tony Heurtaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - David S. Bouvier
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Sergio Helgueta Romero
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - Katrin B. M. Frauenknecht
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
- Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
| |
Collapse
|
261
|
Lv Y, Feng Q, Zhang Z, Zheng P, Zhu D, Lin Q, Chen S, Mao Y, Xu Y, Ji M, Xu J, He G. Low ferroptosis score predicts chemotherapy responsiveness and immune-activation in colorectal cancer. Cancer Med 2022; 12:2033-2045. [PMID: 35855531 PMCID: PMC9883409 DOI: 10.1002/cam4.4956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Existing studies for ferroptosis and prognosis in colorectal cancer (CRC) were limited. In this study, we aim to investigate the prognostic role of ferroptosis markers in patients with CRC and exploration of its micro-environmental distributions. METHODS Immunohistochemical staining was performed for CRC patients' tissue microarray. Selection and prognostic validation of markers were based on mRNA data from the cancer genome atlas (TCGA) database. Gene Set Enrichment Analysis (GSEA) was performed to indicate relative immune landmarks and hallmarks. Ferroptosis and immune contexture were examined by CIBERSORT. Survival outcomes were analyzed by Kaplan-Meier analysis and cox analysis. RESULTS A panel of 42 genes was selected. Through mRNA expression difference and prognosis analysis, GPX4, NOX1 and ACSL4 were selected as candidate markers. By IHC, increased GPX4, decreased NOX1 and decreased FACL4 indicate poor prognosis and worse clinical characteristics. Ferroptosis score based on GPX4, NOX1 and ACSL4 was constructed and validated with high C-index. Low ferroptosis score can also demonstrate the better progression free survival and better adjuvant chemotherapy (ACT) responsiveness. Moreover, tumor with low ferroptosis score tend to be infiltrated with more CD4+ T cells, CD8+ T cells and less M1 macrophage. Finally, we found that IFN-γ was potentially the central molecule at the crossroad between ferroptosis and onco-immune response. CONCLUSION Ferroptosis plays important role on CRC tumor progression, ACT response and prognosis. Ferroptosis contributes to immune-supportive responses and IFN-γ was the central molecule for this process.
Collapse
Affiliation(s)
- Yang Lv
- Department of General SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina,Colorectal Cancer CenterZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Qing‐Yang Feng
- Department of General SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina,Colorectal Cancer CenterZhongshan Hospital, Fudan UniversityShanghaiChina,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive SurgeryShanghaiChina
| | - Zhi‐Yuan Zhang
- Department of General SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina,Colorectal Cancer CenterZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Peng Zheng
- Department of General SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina,Colorectal Cancer CenterZhongshan Hospital, Fudan UniversityShanghaiChina,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive SurgeryShanghaiChina
| | - De‐xiang Zhu
- Department of General SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina,Colorectal Cancer CenterZhongshan Hospital, Fudan UniversityShanghaiChina,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive SurgeryShanghaiChina
| | - Qi Lin
- Department of General SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina,Colorectal Cancer CenterZhongshan Hospital, Fudan UniversityShanghaiChina,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive SurgeryShanghaiChina
| | - Si‐min Chen
- Department of PathologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yi‐Hao Mao
- Department of General SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina,Colorectal Cancer CenterZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yu‐Qiu Xu
- Department of General SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina,Colorectal Cancer CenterZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Mei‐ling Ji
- Department of General SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina,Colorectal Cancer CenterZhongshan Hospital, Fudan UniversityShanghaiChina,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive SurgeryShanghaiChina
| | - Jian‐Min Xu
- Department of General SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina,Colorectal Cancer CenterZhongshan Hospital, Fudan UniversityShanghaiChina,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive SurgeryShanghaiChina
| | - Guo‐dong He
- Department of General SurgeryZhongshan Hospital, Fudan UniversityShanghaiChina,Colorectal Cancer CenterZhongshan Hospital, Fudan UniversityShanghaiChina,Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive SurgeryShanghaiChina
| |
Collapse
|
262
|
Sun D, Cui S, Ma H, Zhu P, Li N, Zhang X, Zhang L, Xuan L, Li J. Salvianolate ameliorates renal tubular injury through the Keap1/Nrf2/ARE pathway in mouse kidney ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115331. [PMID: 35489662 DOI: 10.1016/j.jep.2022.115331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute kidney injury (AKI) is a common clinical disease characterized by rapid loss of renal function. Salvianolate is a prescribed Chinese medicine derived from traditional Chinese medicine Salvia miltiorrhiza bunge that possesses many pharmacological effects, the active components extracted from Salvia miltiorrhiza bunge have been proved to protect ischemia-reperfusion (I/R)-AKI. AIM OF THE STUDY This study aims to validate the therapeutic effect of SAL on I/R-AKI, and explore its potential pharmacological mechanism. MATERIALS AND METHODS Mice were pretreated with/without salvianolate (10, 30, and 90 mg/kg) before renal ischemia-reperfusion operation. Serum creatinine, BUN, and H&E staining were performed to evaluate renal function. Immunofluorescence analysis was conducted to measure renal tubular injury including inflammatory factors and peroxide level. Apoptosis of the kidney tissues was determined by TUNEL assay. Keap1-Nrf2-ARE and apoptosis signaling pathways were measured by Western blot, RT-PCR, and YO-PRO-1 staining in kidneys or NRK52E cells. RESULTS Pretreatment with SAL effectively alleviated renal function and ameliorated epithelial tubular injury, oxidative stress, and inflammatory response. Furthermore, the mechanistic study demonstrated that the SAL exerts anti-apoptotic effects through activation of the Keap1-Nrf2-ARE signaling pathway in renal tubular cells. CONCLUSION These findings indicate the therapeutic benefit of salvianolate in the protection of renal injury from ischemia-reperfusion, and strengthen the evidence for the AKI treatment strategy by the anti-oxidative stress response, suggesting that SAL may be a potential agent for the treatment of AKI.
Collapse
Affiliation(s)
- Dan Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shichao Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haijian Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Pengfei Zhu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ni Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lina Zhang
- Shanghai Green Valley Pharmaceutical Co.,Ltd, Shanghai, China
| | - Lijiang Xuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
263
|
High levels of NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/MRP1 upregulation. Cell Death Dis 2022; 13:591. [PMID: 35803910 PMCID: PMC9270336 DOI: 10.1038/s41419-022-05044-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Glioblastoma patients have a poor prognosis mainly due to temozolomide (TMZ) resistance. NRF2 is an important transcript factor involved in chemotherapy resistance due to its protective role in the transcription of genes involved in cellular detoxification and prevention of cell death processes, such as ferroptosis. However, the relation between NRF2 and iron-dependent cell death in glioma is still poorly understood. Therefore, in this study, we analyzed the role of NRF2 in ferroptosis modulation in glioblastoma cells. Two human glioblastoma cell lines (U251MG and T98G) were examined after treatment with TMZ, ferroptosis inducers (Erastin, RSL3), and ferroptosis inhibitor (Ferrostatin-1). Our results demonstrated that T98G was more resistant to chemotherapy compared to U251MG and showed elevated levels of NRF2 expression. Interestingly, T98G revealed higher sensitivity to ferroptosis, and significant GSH depletion upon system xc- blockage. NRF2 silencing in T98G cells (T98G-shNRF2) significantly reduced the viability upon TMZ treatment. On the other hand, T98G-shNRF2 was resistant to ferroptosis and reverted intracellular GSH levels, indicating that NRF2 plays a key role in ferroptosis induction through GSH modulation. Moreover, silencing of ABCC1, a well-known NRF2 target that diminishes GSH levels, has demonstrated a similar collateral sensitivity. T98G-siABCC1 cells were more sensitive to TMZ and resistant to Erastin. Furthermore, we found that NRF2 positively correlates with ABCC1 expression in tumor tissues of glioma patients, which can be associated with tumor aggressiveness, drug resistance, and poor overall survival. Altogether, our data indicate that high levels of NRF2 result in collateral sensitivity on glioblastoma via the expression of its pro-ferroptotic target ABCC1, which contributes to GSH depletion when the system xc- is blocked by Erastin. Thus, ferroptosis induction could be an important therapeutic strategy to reverse drug resistance in gliomas with high NRF2 and ABCC1 expression.
Collapse
|
264
|
Yang Q, Yan R, Mo Y, Xia H, Deng H, Wang X, Li C, Kato K, Zhang H, Jin T, Zhang J, An Y. The Potential Key Role of the NRF2/NQO1 Pathway in the Health Effects of Arsenic Pollution on SCC. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138118. [PMID: 35805773 PMCID: PMC9265438 DOI: 10.3390/ijerph19138118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023]
Abstract
Arsenic is widely present in nature and is a common environmental poison that seriously damages human health. Chronic exposure to arsenic is a major environmental poisoning factor that promotes cell proliferation and leads to malignant transformation. However, its molecular mechanism remains unclear. In this study, we found that arsenite can promote the transformation of immortalized human keratinocyte cells (HaCaT) from the G0/G1 phase to S phase and demonstrated malignant phenotypes. This phenomenon is accompanied by obviously elevated levels of NRF2, NQO1, Cyclin E, and Cyclin-dependent kinase 2 (CDK2). Silencing the NRF2 expression with small interfering RNA (siRNA) in arsenite-transformed (T-HaCaT) cells was shown to reverse the malignant phenotype. Furthermore, the siRNA silencing of NQO1 significantly decreased the levels of the cyclin E-CDK2 complex, inhibiting the G0/G1 to S phase cell cycle progression and transformation to the T-HaCaT phenotypes. Thus, we hypothesized that the NRF2/NQO1 pathway played a key role in the arsenite-induced malignancy of HaCaT cells. By increasing the expression of Cyclin E-CDK2, the NRF2/NQO1 pathway can affect cell cycle progression and cell proliferation. A new common health effect mechanism of arsenic carcinogenesis has been identified; thus, it would contribute to the development of novel treatments to prevent and treat skin cancer caused by arsenic.
Collapse
Affiliation(s)
- Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Yuemei Mo
- Physical Examination Department, Center for Disease Control and Prevention of Suzhou Industrial Park, Suzhou 215100, China;
| | - Haixuan Xia
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Hanyi Deng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Xiaojuan Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Chunchun Li
- Changzhou Wujin District Center for Disease Control and Prevention, Changzhou 213164, China;
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan;
| | - Hengdong Zhang
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210028, China;
- Jiangsu Preventive Medicine Association, Nanjing 210009, China
| | - Tingxu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (T.J.); (Y.A.)
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
- Correspondence: (T.J.); (Y.A.)
| |
Collapse
|
265
|
Yang J, Sun X, Huang N, Li P, He J, Jiang L, Zhang X, Han S, Xin H. Entacapone alleviates acute kidney injury by inhibiting ferroptosis. FASEB J 2022; 36:e22399. [PMID: 35691001 DOI: 10.1096/fj.202200241rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022]
Abstract
Acute kidney injury (AKI) is a common clinical problem and an efficacious treatment is lacking. Ferroptosis, a newly discovered type of programmed cell death, has been reported to alleviate renal tubular injury in ischemia/reperfusion-induced acute kidney injury (I/R-AKI). Entacapone is a specific inhibitor of catechol-O-methyltransferase, which is used as an adjuvant drug against Parkinson's disease. We demonstrated that entacapone prevents renal I/R injury by inhibiting ferroptosis. Compared with a sham group, entacapone treatment mitigated I/R-induced pathological alterations, improved renal function, and inhibited ferroptosis. In HK-2 cells, entacapone treatment significantly reduced the lipid peroxidation and iron accumulation induced by the ferroptosis inducers erastin and RSL3, and significantly regulated expression of ferroptosis-related proteins. Entacapone upregulates p62 expression and affects the p62-KEAP1-NRF2 pathway, thereby upregulating nuclear translocation of NRF2. This action results in increased expression of the downstream SLC7A11, and significant suppression of oxidative stress and ferroptosis. Our results identify entacapone as a ferroptosis inhibitor that enhances antioxidant capacity. Entacapone may serve as a novel strategy to improve treatment of, and recovery from, I/R-AKI.
Collapse
Affiliation(s)
- Jiahong Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Ning Huang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiaqi He
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lan Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Shu Han
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
266
|
Lai Y, Zeng F, Chen Z, Feng M, Huang Y, Qiu P, Zeng L, Ke Y, Deng G, Gao J. Shikonin Could Be Used to Treat Tubal Pregnancy via Enhancing Ferroptosis Sensitivity. Drug Des Devel Ther 2022; 16:2083-2099. [PMID: 35800255 PMCID: PMC9255906 DOI: 10.2147/dddt.s364441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Albeit oxidative stress has been implied in the pathogenesis of tubal pregnancy (TP), there are scant data to suggest that ferroptosis occurs in TP. Shikonin plays a pivotal role in redox status, but whether it can regulate ferroptosis to treat TP remains unknown. Methods We collected and analyzed ferroptosis-related indices from the villous tissue (VT) of women suffering from TP and from women with a normal pregnancy. In vitro, we used shikonin and/or RAS-selective lethal 3 (RSL3) to intervene HTR-8/SVneo cells and further detected ferroptosis indices and cell functions. Finally, the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) is pharmacologically activated to explore the effect of Nrf2 on shikonin regulating ferroptosis. Results Increased malondialdehyde content, reduced levels of glutathione and glutathione peroxidase (GPx), and upregulated protein expression which promoted ferroptosis were observed in the VT of TP patients, suggesting that ferroptosis occurred during TP. In vitro, shikonin enhanced ferroptosis sensitivity in HTR-8/SVneo cells induced by RSL3 via amplifying lipid peroxidation, which mainly included increasing cellular reactive oxygen species (ROS), lipid ROS and Fe2+ level. RSL3 and/or shikonin inhibited Nrf2 and downregulated protein expression of SLC7A11 and GPx4 caused by RSL3 + shikonin co-treatment, which could be reversed under activation of Nrf2. Hence, shikonin facilitated lipid peroxidation by inhibiting Nrf2 signaling. Additionally, shikonin and/or RSL3 potently inhibited the invasion and migration of HTR-8/SVneo cells. Conclusion This study firstly showed that ferroptosis may be involved in TP pathogenesis and shikonin potentially targeted ferroptosis to treat TP.
Collapse
Affiliation(s)
- Yuling Lai
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, People’s Republic of China
| | - Fuling Zeng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhenyue Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Min Feng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yanxi Huang
- Department of Gynaecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Pin Qiu
- Department of Gynaecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Lihua Zeng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yan Ke
- Department of Gynaecology, Shenzhen Chinese and Western Medicine Hospital, Shenzhen, People’s Republic of China
| | - Gaopi Deng
- Department of Gynaecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jie Gao
- Department of Gynaecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Correspondence: Jie Gao; Gaopi Deng, Email ;
| |
Collapse
|
267
|
Ye J, Chen X, Jiang X, Dong Z, Hu S, Xiao M. RNA demethylase ALKBH5 regulates hypopharyngeal squamous cell carcinoma ferroptosis by posttranscriptionally activating NFE2L2/NRF2 in an m 6 A-IGF2BP2-dependent manner. J Clin Lab Anal 2022; 36:e24514. [PMID: 35689537 PMCID: PMC9279968 DOI: 10.1002/jcla.24514] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background Having emerged as the most abundant posttranscriptional internal mRNA modification in eukaryotes, N6‐methyladenosine (m6A) has attracted tremendous scientific interest in recent years. However, the functional importance of the m6A methylation machinery in ferroptosis regulation in hypopharyngeal squamous cell carcinoma (HPSCC) remains unclear. Methods We herein performed bioinformatic analysis, cell biological analyses, transcriptome‐wide m6A sequencing (m6A‐seq, MeRIP‐seq), RNA sequencing (RNA‐seq), and RNA immunoprecipitation sequencing (RIP‐seq), followed by m6A dot blot, MeRIP‐qPCR, RIP‐qPCR, and dual‐luciferase reporter assays. Results The results revealed that ALKBH5‐mediated m6A demethylation led to the posttranscriptional inhibition of NFE2L2/NRF2, which is crucial for the regulation of antioxidant molecules in cells, at two m6A residues in the 3′‐UTR. Knocking down ALKBH5 subsequently increased the expression of NFE2L2/NRF2 and increased the resistance of HPSCC cells to ferroptosis. In addition, m6A‐mediated NFE2L2/NRF2 stabilization was dependent on the m6A reader IGF2BP2. We suggest that ALKBH5 dysregulates NFE2L2/NRF2 expression in HPSCC through an m6A‐IGF2BP2‐dependent mechanism. Conclusion Together, these results have revealed an association between the ALKBH5‐NFE2L2/NRF2 axis and ferroptosis, providing insight into the functional importance of reversible mRNA m6A methylation and its modulators in HPSCC.
Collapse
Affiliation(s)
- Jing Ye
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Chen
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohua Jiang
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhihuai Dong
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sunhong Hu
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mang Xiao
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
268
|
Wu J, Zhang L, Wu S, Liu Z. Ferroptosis: Opportunities and Challenges in Treating Endometrial Cancer. Front Mol Biosci 2022; 9:929832. [PMID: 35847989 PMCID: PMC9284435 DOI: 10.3389/fmolb.2022.929832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis, a new way of cell death, is involved in many cancers. A growing number of studies have focused on the unique role of ferroptosis on endometrial cancer. In this study, we made a comprehensive review of the relevant articles published to get deep insights in the association of ferroptosis with endometrial cancer and to present a summary of the roles of different ferroptosis-associated genes. Accordingly, we made an evaluation of the relationships between the ferroptosis-associated genes and TNM stage, tumor grade, histological type, primary therapy outcome, invasion and recurrence of tumor, and accessing the different prognosis molecular typing based on ferroptosis-associated genes. In addition, we presented an introduction of the common drugs, which targeted ferroptosis in endometrial cancer. In so doing, we clarified the opportunities and challenges of ferroptosis activator application in treating endometrial cancer, with a view to provide a novel approach to the disease.
Collapse
Affiliation(s)
- Jianfa Wu
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Zhang
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Suqin Wu
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Suqin Wu, ; Zhou Liu,
| | - Zhou Liu
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Suqin Wu, ; Zhou Liu,
| |
Collapse
|
269
|
BH3 mimetic drugs cooperate with Temozolomide, JQ1 and inducers of ferroptosis in killing glioblastoma multiforme cells. Cell Death Differ 2022; 29:1335-1348. [PMID: 35332309 DOI: 10.1038/s41418-022-00977-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer, with treatment options often constrained due to inherent resistance of malignant cells to conventional therapy. We investigated the impact of triggering programmed cell death (PCD) by using BH3 mimetic drugs in human GBM cell lines. We demonstrate that co-targeting the pro-survival proteins BCL-XL and MCL-1 was more potent at killing six GBM cell lines compared to conventional therapy with Temozolomide or the bromodomain inhibitor JQ1 in vitro. Enhanced cell killing was observed in U251 and SNB-19 cells in response to dual treatment with TMZ or JQ1 combined with a BCL-XL inhibitor, compared to single agent treatment. This was reflected in abundant cleavage/activation of caspase-3 and cleavage of PARP1, markers of apoptosis. U251 and SNB-19 cells were more readily killed by a combination of BH3 mimetics targeting BCL-XL and MCL-1 as opposed to dual treatment with the BCL-2 inhibitor Venetoclax and a BCL-XL inhibitor. The combined loss of BAX and BAK, the essential executioners of intrinsic apoptosis, rendered U251 and SNB-19 cells refractory to any of the drug combinations tested, demonstrating that apoptosis is responsible for their killing. In an orthotopic mouse model of GBM, we demonstrate that the BCL-XL inhibitor A1331852 can penetrate the brain, with A1331852 detected in both tumour and healthy brain regions. We also investigated the impact of combining small molecule inducers of ferroptosis, erastin and RSL3, with BH3 mimetic drugs. We found that a BCL-XL or an MCL-1 inhibitor potently cooperates with inducers of ferroptosis in killing U251 cells. Overall, these findings demonstrate the potential of dual targeting of distinct PCD signalling pathways in GBM and may guide the utility of BCL-XL inhibitors and inducers of ferroptosis with standard of care treatment for improved therapies for GBM.
Collapse
|
270
|
Wang Y, Shen Z, Zhao S, Huang D, Wang X, Wu Y, Pei C, Shi S, Jia N, He Y, Wang Z. Sipeimine ameliorates PM2.5-induced lung injury by inhibiting ferroptosis via the PI3K/Akt/Nrf2 pathway: A network pharmacology approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113615. [PMID: 35567927 DOI: 10.1016/j.ecoenv.2022.113615] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) exposure can cause lung injury and a large number of respiratory diseases. Sipeimine is a steroidal alkaloid isolated from Fritillaria roylei which has been associated with anti-inflammatory, antitussive and antiasthmatic properties. In this study, we explored the potential effects of sipeimine against PM2.5-induced lung injury in Sprague Dawley rats. Sipeimine alleviated lung injury caused by PM2.5 and decreased pulmonary edema, inflammation and the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the bronchoalveolar lavage fluid. In addition, sipeimine upregulated the glutathione (GSH) expression and downregulated the expression of 4-hydroxynonenal (4-HNE), tissue iron and malondialdehyde (MDA). The downregulation of proteins involved in ferroptosis, including nuclear factor E2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), heme oxygenase-1 (HO-1) and solute carrier family 7 member 11 (SLC7A11) was reversed by sipeimine. The administration of RSL3, a potent ferroptosis-triggering agent, blocked the effects of sipeimine. Using network pharmacology, we found that the effects of sipeimine were presumably mediated through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. A PI3K inhibitor (LY294002) blocked the PI3K/Akt signaling pathway and reversed the effects of sipeimine. Overall, this study suggested that the protective effect of sipeimine against PM2.5-induced lung injury was mainly mediated through the PI3K/Akt pathway, ultimately leading to a reduction in ferroptosis.
Collapse
Affiliation(s)
- Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| |
Collapse
|
271
|
Ferrada L, Barahona MJ, Salazar K, Godoy AS, Vera M, Nualart F. Pharmacological targets for the induction of ferroptosis: Focus on Neuroblastoma and Glioblastoma. Front Oncol 2022; 12:858480. [PMID: 35898880 PMCID: PMC9313589 DOI: 10.3389/fonc.2022.858480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/19/2022] [Indexed: 11/19/2022] Open
Abstract
Neuroblastomas are the main extracranial tumors that affect children, while glioblastomas are the most lethal brain tumors, with a median survival time of less than 12 months, and the prognosis of these tumors is poor due to multidrug resistance. Thus, the development of new therapies for the treatment of these types of tumors is urgently needed. In this context, a new type of cell death with strong antitumor potential, called ferroptosis, has recently been described. Ferroptosis is molecularly, morphologically and biochemically different from the other types of cell death described to date because it continues in the absence of classical effectors of apoptosis and does not require the necroptotic machinery. In contrast, ferroptosis has been defined as an iron-dependent form of cell death that is inhibited by glutathione peroxidase 4 (GPX4) activity. Interestingly, ferroptosis can be induced pharmacologically, with potential antitumor activity in vivo and eventual application prospects in translational medicine. Here, we summarize the main pathways of pharmacological ferroptosis induction in tumor cells known to date, along with the limitations of, perspectives on and possible applications of this in the treatment of these tumors.
Collapse
Affiliation(s)
- Luciano Ferrada
- Center for Advanced Microscopy CMA BIO BIO, University of Concepción, Concepcion, Chile
- *Correspondence: Francisco Nualart, ; Luciano Ferrada,
| | - María José Barahona
- Center for Advanced Microscopy CMA BIO BIO, University of Concepción, Concepcion, Chile
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Katterine Salazar
- Center for Advanced Microscopy CMA BIO BIO, University of Concepción, Concepcion, Chile
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Alejandro S. Godoy
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Matias Vera
- Center for Advanced Microscopy CMA BIO BIO, University of Concepción, Concepcion, Chile
| | - Francisco Nualart
- Center for Advanced Microscopy CMA BIO BIO, University of Concepción, Concepcion, Chile
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
- *Correspondence: Francisco Nualart, ; Luciano Ferrada,
| |
Collapse
|
272
|
The Role of SLC7A11 in Cancer: Friend or Foe? Cancers (Basel) 2022; 14:cancers14133059. [PMID: 35804831 PMCID: PMC9264807 DOI: 10.3390/cancers14133059] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
SLC7A11 controls the uptake of extracellular cystine in exchange for glutamate at a ratio of 1:1, and it is overexpressed in a variety of tumours. Accumulating evidence has shown that the expression of SLC7A11 is fine-tuned at multiple levels, and plays diverse functional and pharmacological roles in tumours, such as cellular redox homeostasis, cell growth and death, and cell metabolism. Many reports have suggested that the inhibition of SLC7A11 expression and activity is favourable for tumour therapy; thus, SLC7A11 is regarded as a potential therapeutic target. However, emerging evidence also suggests that on some occasions, the inhibition of SLC7A11 is beneficial to the survival of cancer cells, and confers the development of drug resistance. In this review, we first briefly introduce the biological properties of SLC7A11, including its structure and physiological functions, and further summarise its regulatory network and potential regulators. Then, focusing on its role in cancer, we describe the relationships of SLC7A11 with tumourigenesis, survival, proliferation, metastasis, and therapeutic resistance in more detail. Finally, since SLC7A11 has been linked to cancer through multiple approaches, we propose that its contribution and regulatory mechanism require further elucidation. Thus, more personalised therapeutic strategies should be adapted when targeting SLC7A11.
Collapse
|
273
|
Ferroptosis Modulation: Potential Therapeutic Target for Glioblastoma Treatment. Int J Mol Sci 2022; 23:ijms23136879. [PMID: 35805884 PMCID: PMC9266903 DOI: 10.3390/ijms23136879] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme is a lethal disease and represents the most common and severe type of glioma. Drug resistance and the evasion of cell death are the main characteristics of its malignancy, leading to a high percentage of disease recurrence and the patients’ low survival rate. Exploiting the modulation of cell death mechanisms could be an important strategy to prevent tumor development and reverse the high mortality and morbidity rates in glioblastoma patients. Ferroptosis is a recently described type of cell death, which is characterized by iron accumulation, high levels of polyunsaturated fatty acid (PUFA)-containing phospholipids, and deficiency in lipid peroxidation repair. Several studies have demonstrated that ferroptosis has a potential role in cancer treatment and could be a promising approach for glioblastoma patients. Thus, here, we present an overview of the mechanisms of the iron-dependent cell death and summarize the current findings of ferroptosis modulation on glioblastoma including its non-canonical pathway. Moreover, we focused on new ferroptosis-inducing compounds for glioma treatment, and we highlight the key ferroptosis-related genes to glioma prognosis, which could be further explored. Thereby, understanding how to trigger ferroptosis in glioblastoma may provide promising pharmacological targets and indicate new therapeutic approaches to increase the survival of glioblastoma patients.
Collapse
|
274
|
Xin Q, Ji Q, Zhang Y, Ma W, Tian B, Liu Y, Chen Y, Wang F, Zhang R, Wang X, Yuan J. Aberrant ROS Served as an Acquired Vulnerability of Cisplatin-Resistant Lung Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1112987. [PMID: 35770045 PMCID: PMC9236771 DOI: 10.1155/2022/1112987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022]
Abstract
Lung cancer has become a global health issue in recent decades. Approximately 80-85% of cases are non-small-cell lung cancer (NSCLC). Despite the high rate of resistance, cisplatin-base chemotherapy is still the main treatment for NSCLC patients. Thus, overcoming cisplatin resistance is urgently needed in NSCLC therapy. In this study, we identify NADPH metabolism and reactive oxygen species (ROS) levels as the main causes accounting for cisplatin resistance. Based on a small panel consisting of common chemotherapy drugs or compounds, APR-246 is proved to be an effective compound targeting cisplatin-resistant NSCLC cells. APR-246 specially inhibits proliferation and colony formation of cisplatin-resistant cells. In details, APR-246 can significantly cause G0/G1 accumulation and S phase arrest of cisplatin resistant cells and gives rise to severe mitochondria dysfunction as well as elevated apoptosis. Further study proves that it is the aberrant ROS levels as well as NRF2/SLC7A11/GSH axis dysfunction accounting for the specific antitumor effects of APR-246. Scavenging ROS with N-acetylcysteine (NAC) disrupts the inhibitory effect of APR-246 on cisplatin-resistant cells. Mechanistically, NRF2 is specifically degraded by the proteasome following its own ubiquitylation in APR-246-treated cisplatin-resistant cells, which in turn decreases NRF2/SLC7A11/GSH axis activity. Our study provides new insights into the biology driving cisplatin resistance of lung cancer and highlights APR-246 as a potential therapeutic reagent for overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Qian Xin
- Central Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Qinghong Ji
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Ying Zhang
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Weihong Ma
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Baoqing Tian
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yanli Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yunsong Chen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ran Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jupeng Yuan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|
275
|
Li D, Pi W, Sun Z, Liu X, Jiang J. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 2022; 153:113279. [PMID: 35738177 DOI: 10.1016/j.biopha.2022.113279] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
Heart disease is the leading cause of death worldwide. Cardiomyopathy is a disease characterized by the heart muscle damage, resulting heart in a structurally and functionally change, as well as heart failure and sudden cardiac death. The key pathogenic factor of cardiomyopathy is the loss of cardiomyocytes, but the related molecular mechanisms remain unclear. Ferroptosis is a newly discovered regulated form of cell death, characterized by iron accumulation and lipid peroxidation during cell death. Recent studies have shown that ferroptosis plays an important regulatory roles in the occurrence and development of many heart diseases such as myocardial ischemia/reperfusion injury, cardiomyopathy and heart failure. However, the systemic association of ferroptosis and cardiomyopathy remains largely unknown and needs to be elucidated. In this review, we provide an overview of the molecular mechanisms of ferroptosis and its role in individual cardiomyopathies, highlight that targeting ferroptosis maybe a potential therapeutic strategy for cardiomyopathy therapy in the future.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
276
|
Zhang Y, Li M, Guo Y, Liu S, Tao Y. The Organelle-Specific Regulations and Epigenetic Regulators in Ferroptosis. Front Pharmacol 2022; 13:905501. [PMID: 35784729 PMCID: PMC9247141 DOI: 10.3389/fphar.2022.905501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is fairly different from other types of cell-death in biochemical processes, morphological changes and genetics as a special programmed cell-death. Here we summarize the current literatures on ferroptosis, including the cascade reaction of key material metabolism in the process, dysfunction of organelles, the relationship between different organelles and the way positive and negative key regulatory factors to affect ferroptosis in the epigenetic level. Based on material metabolism or epigenetic regulation, it is obvious that the regulatory network of ferroptosis is interrelated and complex.
Collapse
Affiliation(s)
- Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingrui Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yiming Guo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongguang Tao,
| |
Collapse
|
277
|
Fan R, Sun Y, Wang M, Wang Q, Jiang A, Yang T. New Insights on Ferroptosis and Gynecological Malignancies. Front Mol Biosci 2022; 9:921298. [PMID: 35775079 PMCID: PMC9237217 DOI: 10.3389/fmolb.2022.921298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is a new type of cell death different from apoptosis and necrosis, which can regulate the accumulation of lipid peroxidation through different pathways, ultimately leading to cell death. An increasing number of studies have revealed that the relationship between ferroptosis and cancer is extremely complex, which holds promise as a new treatment. In gynecological malignancies, ferroptosis has been found to have excellent antitumor activity, which can regulate the proliferation, metastasis and radiochemotherapy resistance. With the continuous progress of research, nanodrugs, gene therapy and other new therapeutic techniques for inducing ferroptosis have been proposed. However, the study of ferroptosis in gynecological malignancies is still in its infancy, and further research is needed to design safe and effective cancer therapies based on ferroptosis. This article reviews the mechanism of ferroptosis and the latest research progress and prospects in gynecological malignancies.
Collapse
|
278
|
Zaugg J, Solenthaler F, Albrecht C. Materno-fetal iron transfer and the emerging role of ferroptosis pathways. Biochem Pharmacol 2022; 202:115141. [PMID: 35700759 DOI: 10.1016/j.bcp.2022.115141] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
A successful pregnancy and the birth of a healthy baby depend to a great extent on the controlled supply of essential nutrients via the placenta. Iron is essential for mitochondrial energy supply and oxygen distribution via the blood. However, its high reactivity requires tightly regulated transport processes. Disturbances of maternal-fetal iron transfer during pregnancy can aggravate or lead to severe pathological consequences for the mother and the fetus with lifelong effects. Furthermore, high intracellular iron levels due to disturbed gestational iron homeostasis have recently been associated with the non-apoptotic cell death pathway called ferroptosis. Therefore, the investigation of transplacental iron transport mechanisms, their physiological regulation and potential risks are of high clinical importance. The present review summarizes the current knowledge on principles and regulatory mechanisms underlying materno-fetal iron transport and gives insight into common pregnancy conditions in which iron homeostasis is disturbed. Moreover, the significance of the newly emerging ferroptosis pathway and its impact on the regulation of placental iron homeostasis, oxidative stress and gestational diseases will be discussed.
Collapse
Affiliation(s)
- Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Switzerland
| | - Fabia Solenthaler
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Switzerland
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Switzerland.
| |
Collapse
|
279
|
Wang S, Wei W, Ma N, Qu Y, Liu Q. Molecular mechanisms of ferroptosis and its role in prostate cancer therapy. Crit Rev Oncol Hematol 2022; 176:103732. [PMID: 35697233 DOI: 10.1016/j.critrevonc.2022.103732] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is a highly prevalent disease that affects men's health worldwide and is the second most common malignancy in males. Ferroptosis is a novel form of programmed cell death characterized by iron overload and the accumulation of lipid peroxidation, which differs from the regulated cell death modes of necrosis, apoptosis, and autophagy. Substantial progress has been achieved in researching the occurrence and regulatory mechanisms of ferroptosis, which is closely associated with cancer initiation, progression, and suppression and is expected to become a new breakthrough point in the PCa treatment. This review will summarize the mechanisms involved in PCa, and we detail the molecular mechanisms of ferroptosis and its role in PCa treatment.
Collapse
Affiliation(s)
- Shaokun Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130001, China
| | - Wei Wei
- Department of Urology, The First Hospital of Jilin University, Changchun 130001, China
| | - Ning Ma
- Department of Urology, The First Hospital of Jilin University, Changchun 130001, China
| | - Yongliang Qu
- Department of Urology, The First Hospital of Jilin University, Changchun 130001, China
| | - Qiuju Liu
- Cancer Center, Department of Hematology, The First Hospital of Jilin University, Changchun 130001, China.
| |
Collapse
|
280
|
Gao M, Fan K, Chen Y, Zhang G, Chen J, Zhang Y. Understanding the mechanistic regulation of ferroptosis in cancer: gene matters. J Genet Genomics 2022; 49:913-926. [PMID: 35697272 DOI: 10.1016/j.jgg.2022.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 12/28/2022]
Abstract
Ferroptosis has emerged as a crucial regulated cell death involved in a variety of physiological processes or pathological diseases, such as tumor suppression. Though initially being found from anti-cancer drug screening and considered not essential as apoptosis for growth and development, numerous studies have demonstrated that ferroptosis is tightly regulated by key genetic pathways and/or genes, including several tumor suppressors and oncogenes. In this review, we will first introduce the basic concepts of ferroptosis, characterized by the features of non-apoptotic, iron-dependent and overwhelmed accumulation of lipid peroxides, and the underlying regulated circuits are considered to be pro-ferroptotic pathways. Then we discuss several established lipid peroxidation defending systems within cells, including SLC7A11/GPX4, FSP1/CoQ, GCH1/BH4, and mitochondria DHODH/CoQ, all of which serve as anti-ferroptoic pathways to prevent ferroptosis. Moreover, we provide a comprehensive summary of the genetic regulation of ferroptosis via targeting the above-mentioned pro-ferroptotic or anti-ferroptotic pathways. The regulation of pro- and anti-ferroptotic pathways gives rise to more specific responses to the tumor cells in a context-dependent manner, highlighting the unceasing study and deeper understanding of mechanistic regulation of ferroptosis for the purpose of applying ferroptosis induction in cancer therapy.
Collapse
Affiliation(s)
- Min Gao
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Kexin Fan
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yuhan Chen
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Chen
- Department of Obstetrics, New Changan International Maternity Hospital, Xi'an, Shaanxi 710001, China; Shaanxi Stem Cell Engineering Application Technology Research Center, Shaanxi Jiuzhou Biomedical Technology Group Co., Ltd. Xi'an, Shaanxi 710065, China.
| | - Yilei Zhang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
281
|
miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:366-386. [PMID: 35505963 PMCID: PMC9035384 DOI: 10.1016/j.omtn.2022.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/27/2022] [Indexed: 01/18/2023]
Abstract
Lung adenocarcinoma (LUAD) is one of the most common malignancies worldwide. Combination chemotherapy with cisplatin (CDDP) plus pemetrexed (PEM) remains the predominant therapeutic regimen; however, chemoresistance greatly limits its curative potential. Here, through CRISPR-Cas9 screening, we identified miR-6077 as a key driver of CDDP/PEM resistance in LUAD. Functional experiments verified that ectopic overexpression of miR-6077 desensitized LUAD cells to CDDP/PEM in both cell lines and patient-derived xenograft models. Through RNA sequencing in cells and single-cell sequencing of samples from patients with CDDP/PEM treatments, we observed CDDP/PEM-induced upregulation of CDKN1A and KEAP1, which in turn activated cell-cycle arrest and ferroptosis, respectively, thus leading to cell death. Through miRNA pull-down, we identified and validated that miR-6077 targets CDKN1A and KEAP1. Furthermore, we demonstrated that miR-6077 protects LUAD cells from cell death induced by CDDP/PEM via CDKN1A-CDK1-mediated cell-cycle arrest and KEAP1-NRF2-SLC7A11/NQO1-mediated ferroptosis, thus resulting in chemoresistance in multiple LUAD cells both in vitro and in vivo. Moreover, we found that GMDS-AS1 and LINC01128 sensitized LUAD cells to CDDP/PEM by sponging miR-6077. Collectively, these results imply the critical role of miR-6077 in LUAD’s sensitivity to CDDP/PEM, thus providing a novel therapeutic strategy for overcoming chemoresistance in clinical practice.
Collapse
|
282
|
Roles and Mechanisms of Regulated Necrosis in Corneal Diseases: Progress and Perspectives. J Ophthalmol 2022; 2022:2695212. [PMID: 35655803 PMCID: PMC9152437 DOI: 10.1155/2022/2695212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Regulated necrosis is defined as cell death characterized by loss of the cell membrane integrity and release of the cytoplasmic content. It contributes to the development and progression of some diseases, including ischemic stroke injury, liver diseases, hypertension, and cancer. Various forms of regulated necrosis, particularly pyroptosis, necroptosis, and ferroptosis, have been implicated in the pathogenesis of corneal disease. Regulated necrosis of corneal cells enhances inflammatory reactions in the adjacent corneal tissues, leading to recurrence and aggravation of corneal disease. In this review, we summarize the molecular mechanisms of pyroptosis, necroptosis, and ferroptosis in corneal diseases and discuss the roles of regulated necrosis in inflammation regulation, tissue repair, and corneal disease outcomes.
Collapse
|
283
|
Apatinib Induces Ferroptosis of Glioma Cells through Modulation of the VEGFR2/Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9925919. [PMID: 35602105 PMCID: PMC9117021 DOI: 10.1155/2022/9925919] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/31/2021] [Accepted: 04/09/2022] [Indexed: 02/07/2023]
Abstract
Background Glioma is a common tumor that originated from the brain, and molecular targeted therapy is one of the important treatment modalities of glioma. Apatinib is a small-molecule tyrosine kinase inhibitor, which is widely used for the treatment of glioma. However, the underlying molecular mechanism has remained elusive. Recently, emerging evidence has proved the remarkable anticancer effects of ferroptosis. In this study, a new ferroptosis-related mechanism of apatinib inhibiting proliferation of glioma cells was investigated, which facilitated further study on inhibitory effects of apatinib on cancer cells. Methods Human glioma U251 and U87 cell lines and normal astrocytes were treated with apatinib. Ferroptosis, cell cycle, apoptosis, and proliferation were determined. A nude mouse xenograft model was constructed, and tumor growth rate was detected. Tumor tissues were collected to estimate ferroptosis levels and to identify the relevant pathways after treatment with apatinib. Results Treatment with apatinib could induce loss of cell viability of glioma cells, but not of normal astrocytes, through eliciting ferroptosis in vitro and in vivo. It was also revealed that apatinib triggered ferroptosis of glioma cells via inhibiting the activation of nuclear factor erythroid 2-related factor 2/vascular endothelial growth factor receptor 2 (Nrf2/VEFGR2) pathway. The overexpression of Nrf2 rescued the therapeutic effects of apatinib. Conclusion Our study proved that treatment with apatinib could restrain proliferation of glioma cells through induction of ferroptosis via inhibiting the activation of VEGFR2/Nrf2/Keap1 pathway. Overexpression of Nrf2 could counteract the induction of ferroptosis by apatinib.
Collapse
|
284
|
Ferroptosis - A new target of osteoporosis. Exp Gerontol 2022; 165:111836. [DOI: 10.1016/j.exger.2022.111836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022]
|
285
|
Koppula P, Lei G, Zhang Y, Yan Y, Mao C, Kondiparthi L, Shi J, Liu X, Horbath A, Das M, Li W, Poyurovsky MV, Olszewski K, Gan B. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat Commun 2022; 13:2206. [PMID: 35459868 PMCID: PMC9033817 DOI: 10.1038/s41467-022-29905-1] [Citation(s) in RCA: 262] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/06/2022] [Indexed: 12/31/2022] Open
Abstract
Targeting ferroptosis, a unique cell death modality triggered by unrestricted lipid peroxidation, in cancer therapy is hindered by our incomplete understanding of ferroptosis mechanisms under specific cancer genetic contexts. KEAP1 (kelch-like ECH associated protein 1) is frequently mutated or inactivated in lung cancers, and KEAP1 mutant lung cancers are refractory to most therapies, including radiotherapy. In this study, we identify ferroptosis suppressor protein 1 (FSP1, also known as AIFM2) as a transcriptional target of nuclear factor erythroid 2-related factor 2 (NRF2) and reveal that the ubiquinone (CoQ)-FSP1 axis mediates ferroptosis- and radiation- resistance in KEAP1 deficient lung cancer cells. We further show that pharmacological inhibition of the CoQ-FSP1 axis sensitizes KEAP1 deficient lung cancer cells or patient-derived xenograft tumors to radiation through inducing ferroptosis. Together, our study identifies CoQ-FSP1 as a key downstream effector of KEAP1-NRF2 pathway and as a potential therapeutic target for treating KEAP1 mutant lung cancers.
Collapse
Affiliation(s)
- Pranavi Koppula
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuelong Yan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Jiejun Shi
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amber Horbath
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Molina Das
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | | | - Kellen Olszewski
- Kadmon Corporation, LLC, New York, NY, 10016, USA
- The Barer Institute, Philadelphia, PA, 19104, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
286
|
Zhao J, Wang Y, Tao L, Chen L. Iron Transporters and Ferroptosis in Malignant Brain Tumors. Front Oncol 2022; 12:861834. [PMID: 35530363 PMCID: PMC9071296 DOI: 10.3389/fonc.2022.861834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Malignant brain tumors represent approximately 1.5% of all malignant tumors. The survival rate among patients is relatively low and the mortality rate of pediatric brain tumors ranks first among all childhood malignant tumors. At present malignant brain tumors remain incurable. Although some tumors can be treated with surgery and chemotherapy, new treatment strategies are urgent owing to the poor clinical prognosis. Iron is an essential trace element in many biological processes of the human body. Iron transporters play a crucial role in iron absorption and transport. Ferroptosis, an iron-dependent form of nonapoptotic cell death, is characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS) derived from iron metabolism. Recently, compelling evidence has shown that inducing ferroptosis of tumor cells is a potential therapeutic strategy. In this review, we will briefly describe the significant regulatory factors of ferroptosis, iron, its absorption and transport under physiological conditions, especially the function of iron transporters. Then we will summarize the relevant mechanisms of ferroptosis and its role in malignant brain tumors, wherein the role of transporters is not to be ignored. Finally, we will introduce the current research progress in the treatment of malignant brain tumors by inducing ferroptosis in order to explain the current biological principles of potential treatment targets and treatment strategies for malignant brain tumors.
Collapse
Affiliation(s)
- Jingyu Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Yaqi Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Lei Tao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ligong Chen,
| |
Collapse
|
287
|
Feng Q, Yu X, Qiao Y, Pan S, Wang R, Zheng B, Wang H, Ren KD, Liu H, Yang Y. Ferroptosis and Acute Kidney Injury (AKI): Molecular Mechanisms and Therapeutic Potentials. Front Pharmacol 2022; 13:858676. [PMID: 35517803 PMCID: PMC9061968 DOI: 10.3389/fphar.2022.858676] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI), a common and serious clinical kidney syndrome with high incidence and mortality, is caused by multiple pathogenic factors, such as ischemia, nephrotoxic drugs, oxidative stress, inflammation, and urinary tract obstruction. Cell death, which is divided into several types, is critical for normal growth and development and maintaining dynamic balance. Ferroptosis, an iron-dependent nonapoptotic type of cell death, is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. Recently, growing evidence demonstrated the important role of ferroptosis in the development of various kidney diseases, including renal clear cell carcinoma, diabetic nephropathy, and AKI. However, the exact mechanism of ferroptosis participating in the initiation and progression of AKI has not been fully revealed. Herein, we aim to systematically discuss the definition of ferroptosis, the associated mechanisms and key regulators, and pharmacological progress and summarize the most recent discoveries about the role and mechanism of ferroptosis in AKI development. We further conclude its potential therapeutic strategies in AKI.
Collapse
Affiliation(s)
- Qi Feng
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyue Yu
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjin Qiao
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Wang
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zheng
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Wang
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
288
|
High Level of Uric Acid Promotes Atherosclerosis by Targeting NRF2-Mediated Autophagy Dysfunction and Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9304383. [PMID: 35480874 PMCID: PMC9038411 DOI: 10.1155/2022/9304383] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
Atherosclerotic vascular disease (ASVD) is the leading cause of death worldwide. Hyperuricemia is the fourth risk factor for atherosclerosis after hypertension, diabetes, and hyperlipidemia. The mechanism of hyperuricemia affecting the occurrence and development of atherosclerosis has not been fully elucidated. Mononuclear macrophages play critical roles in all stages of atherosclerosis. Studies have confirmed that both hyperuricemia and ferroptosis promote atherosclerosis, but whether high level of uric acid (HUA) promotes atherosclerosis by regulating ferroptosis in macrophages remains unclear. We found that HUA significantly promoted the development of atherosclerotic plaque and downregulated the protein level of the NRF2/SLC7A11/GPX4 signaling pathway in ApoE−/− mice. Next, we evaluated the effect of HUA and ferroptosis inhibitor ferrostatin-1 (Fer-1) treatment on the formation of macrophage-derived foam cells. HUA promoted the formation of foam cells, decreased cell viability, and increased iron accumulation and lipid peroxidation in macrophages treated with oxidized low-density lipoprotein (oxLDL); these effects were reversed by Fer-1 treatment. Mechanistically, HUA significantly inhibited autophagy and the protein level of the NRF2/SLC7A11/GPX4 signaling pathway. Fer-1 activated autophagy and upregulated the level of ferroptosis-associated proteins. Moreover, an NRF2 inducer (tertbutyl hydroquinone (TBHQ)) and autophagy activator (rapamycin (RAPA)) could reverse the inhibitory effect of HUA on foam cell survival. Our results suggest that HUA-induced ferroptosis of macrophages is involved in the formation of atherosclerotic plaques. More importantly, enhancing autophagy and inhibiting ferroptosis by activating NRF2 may alleviate HUA-induced atherosclerosis. These findings might contribute to a deeper understanding of the role of HUA in the pathogenesis of atherosclerosis and provide a therapeutic target for ASVD associated with hyperuricemia.
Collapse
|
289
|
Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, Zhou Z. Role and Mechanism of Ferroptosis in Neurological Diseases. Mol Metab 2022; 61:101502. [PMID: 35447365 PMCID: PMC9170779 DOI: 10.1016/j.molmet.2022.101502] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background Ferroptosis, as a new form of cell death, is different from other cell deaths such as autophagy or senescence. Ferroptosis involves in the pathophysiological progress of several diseases, including cancers, cardiovascular diseases, nervous system diseases, and kidney damage. Since oxidative stress and iron deposition are the broad pathological features of neurological diseases, the role of ferroptosis in neurological diseases has been widely explored. Scope of review Ferroptosis is mainly characterized by changes in iron homeostasis, iron-dependent lipid peroxidation, and glutamate toxicity accumulation, of which can be specifically reversed by ferroptosis inducers or inhibitors. The ferroptosis is mainly regulated by the metabolism of iron, lipids and amino acids through System Xc−, voltage-dependent anion channels, p53, p62-Keap1-Nrf2, mevalonate and other pathways. This review also focus on the regulatory pathways of ferroptosis and its research progress in neurological diseases. Major conclusions The current researches of ferroptosis in neurological diseases mostly focus on the key pathways of ferroptosis. At the same time, ferroptosis was found playing a bidirectional regulation role in neurological diseases. Therefore, the specific regulatory mechanisms of ferroptosis in neurological diseases still need to be further explored to provide new perspectives for the application of ferroptosis in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Mengmeng Ou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Ying Jiang
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Yingying Ji
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Qin Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Zhiqiang Du
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Haohao Zhu
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Zhenhe Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
290
|
Lee DS, Kim JE. P2X7 Receptor Augments LPS-Induced Nitrosative Stress by Regulating Nrf2 and GSH Levels in the Mouse Hippocampus. Antioxidants (Basel) 2022; 11:antiox11040778. [PMID: 35453462 PMCID: PMC9025791 DOI: 10.3390/antiox11040778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
P2X7 receptor (P2X7R) regulates inducible nitric oxide synthase (iNOS) expression/activity in response to various harmful insults. Since P2X7R deletion paradoxically decreases the basal glutathione (GSH) level in the mouse hippocampus, it is likely that P2X7R may increase the demand for GSH for the maintenance of the intracellular redox state or affect other antioxidant defense systems. Therefore, the present study was designed to elucidate whether P2X7R affects nuclear factor-erythroid 2-related factor 2 (Nrf2) activity/expression and GSH synthesis under nitrosative stress in response to lipopolysaccharide (LPS)-induced neuroinflammation. In the present study, P2X7R deletion attenuated iNOS upregulation and Nrf2 degradation induced by LPS. Compatible with iNOS induction, P2X7R deletion decreased S-nitrosylated (SNO)-cysteine production under physiological and post-LPS treated conditions. P2X7R deletion also ameliorated the decreases in GSH, glutathione synthetase, GS and ASCT2 levels concomitant with the reduced S-nitrosylations of GS and ASCT2 following LPS treatment. Furthermore, LPS upregulated cystine:glutamate transporter (xCT) and glutaminase in P2X7R+/+ mice, which were abrogated by P2X7R deletion. LPS did not affect GCLC level in both P2X7R+/+ and P2X7R−/− mice. Therefore, our findings indicate that P2X7R may augment LPS-induced neuroinflammation by leading to Nrf2 degradation, aberrant glutamate-glutamine cycle and impaired cystine/cysteine uptake, which would inhibit GSH biosynthesis. Therefore, we suggest that the targeting of P2X7R, which would exert nitrosative stress with iNOS in a positive feedback manner, may be one of the important therapeutic strategies of nitrosative stress under pathophysiological conditions.
Collapse
|
291
|
Lu Z, Liu Z, Fang B. Propofol protects cardiomyocytes from doxorubicin-induced toxic injury by activating the nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4 signaling pathways. Bioengineered 2022; 13:9145-9155. [PMID: 35363601 PMCID: PMC9161918 DOI: 10.1080/21655979.2022.2036895] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Propofol offers important protective effects in ischemia/reperfusion-induced cardiomyocyte injury, but its specific mechanisms in doxorubicin (DOX)-induced cardiotoxicity have not been investigated. In this paper, we attempted to explore the effects of propofol on DOX-induced human cardiomyocyte injury and its related mechanisms. H9c2 cell viability was assessed by cell counting kit-8 and lactate dehydrogenase assay kit. Nuclear factor erythroid 2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPx4) signaling pathway-related protein levels were measured by Western blot. Ferroptosis was evaluated by corresponding kits and Western blot and apoptosis was detected by CCK-8, terminal deoxynucleotidyl transferase dUTP nick-end labeling and Western blot. Oxidative stress was assessed by reactive oxygen species kit and the commercial kits, and inflammation response was analyzed by enzyme-linked immunosorbent assay and Western blot. The results showed that propofol attenuated DOX-induced cytotoxicity and activated Nrf2/GPx4 signaling pathways in H9c2 cells. In addition, propofol also alleviated DOX-induced ferroptosis, increased cell viability and inhibited apoptosis, oxidative stress and inflammatory responses in H9c2 cells through activation of Nrf2/GPx4 signaling pathways. In summary, propofol provides the protection against DOX-induced cardiomyocyte injury by activating Nrf2/GPx4 signaling, providing a new approach and theoretical basis for the repair of cardiomyocytes.
Collapse
Affiliation(s)
- Ziyun Lu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiyi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bei Fang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
292
|
Molecular mechanisms of reactive oxygen species in regulated cell deaths: Impact of ferroptosis in cancer therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
293
|
Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. Monitoring the induction of ferroptosis following dissociation in human embryonic stem cells. J Biol Chem 2022; 298:101855. [PMID: 35337799 PMCID: PMC9034286 DOI: 10.1016/j.jbc.2022.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/18/2023] Open
Abstract
Human embryonic stem cells (hESCs) are vulnerable to cell death upon dissociation. Thus, dissociation is an obstacle in culturing, maintaining, and differentiating of hESCs. To date, apoptosis has become the focus of research into the nature of cell death triggered by cellular detachment; it remains baffling whether another form of cell death can occur upon dissociation in hESCs. Here, we demonstrate that iron accumulation and subsequently lipid peroxidation are responsible for dissociation-mediated hESC death. Moreover, we found that a decrease of glutathione peroxidase 4 because of iron accumulation promotes ferroptosis. Inhibition of lipid peroxidation (ferrostatin-1) or chelating iron (deferoxamine) largely suppresses iron accumulation-induced ferroptosis in dissociated hESCs. The results show that P53 mediates the dissociation-induced ferroptosis in hESCs, which is suppressed by pifithrin α. Multiple genes involved in ferroptosis are regulated by the nuclear factor erythroid 2-related factor 2 (Nrf2). In this study, solute carrier family 7 member 11 and glutathione peroxidase 4 are involved in GSH synthesis decreased upon dissociation as a target of Nrf2. In conclusion, our study demonstrates that iron accumulation as a consequence of cytoskeleton disruption appears as a pivotal factor in the initiation of ferroptosis in dissociated hESCs. Nrf2 inhibits ferroptosis via its downstream targets. Our study suggests that the antiferroptotic target might be a good candidate for the maintenance of hESCs.
Collapse
Affiliation(s)
- Shahnaz Babaei-Abraki
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
294
|
Guo N, Chen Y, Zhang Y, Deng Y, Zeng F, Li X. Potential Role of APEX1 During Ferroptosis. Front Oncol 2022; 12:798304. [PMID: 35311089 PMCID: PMC8927806 DOI: 10.3389/fonc.2022.798304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Ferroptosis is a recently discovered category of programmed cell death. It is much different from other types of cell death such as apoptosis, necrosis and autophagy. The main pathological feature of ferroptosis is the accumulation of iron-dependent lipid peroxidation. The typical changes in the morphological features of ferroptosis include cell volume shrinkage and increased mitochondrial membrane area. The mechanisms of ferroptosis may be mainly related to lipid peroxidation accumulation, imbalance in amino acid antioxidant system, and disturbance of iron metabolism. Besides, hypoxia-inducible factor (HIF), nuclear factor-E2-related factor 2 (Nrf2), and p53 pathway have been demonstrated to be involved in ferroptosis. At present, the molecular mechanisms of ferroptosis pathway are still unmapped. In this review, an outlook has been put forward about the crucial role of apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) in the regulation of ferroptosis. APEX1 plays an important role in the regulation of intracellular redox balance and can be used as a potential inhibitor of ferroptotic cell death. Bioinformatics analysis indicated that the mRNA level of APEX1 is decreased in cases of ferroptosis triggered by erastin. Besides, it was found that there was a significant correlation between APEX1 and genes in the ferroptosis pathway. We have discussed the possibility to employ APEX1 inducers or inhibitors in the regulation of ferroptosis as a new strategy for the treatment of various human diseases.
Collapse
Affiliation(s)
- Nan Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yan Chen
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yonghao Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
295
|
Jing T, Guo Y, Wei Y. Carboxymethylated pachyman induces ferroptosis in ovarian cancer by suppressing NRF1/HO‑1 signaling. Oncol Lett 2022; 23:161. [PMID: 35399331 PMCID: PMC8987927 DOI: 10.3892/ol.2022.13281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
Carboxymethylated pachyman (CMP) is characterized by immune regulatory, antitumor and antioxidant activities. However, whether CMP contributes to the treatment of ovarian cancer has yet to be explored. The role of CMP in ovarian cancer cell death was analyzed using CCK-8 and flow cytometry assays. The data showed that CMP induced ovarian cancer cell death in a dose-dependent manner. Furthermore, CMP-induced cell death could be largely reversed by preincubation with ferrostatin-1 (Fer-1) but not 3-methyladenine or necrostatin-1. Reverse transcription-quantitative PCR analysis indicated that CMP significantly increased prostaglandin-endoperoxide synthase 2 (PTGS2) and Chac glutathione specific γ-glutamylcyclotransferase 1 (CHAC1) mRNA levels, but preincubation with Fer-1 obviously reduced PTGS2 and CHAC1 mRNA levels in SKOV3 and Hey cells. The intracellular levels of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and Fe2+ were then quantified The data showed that 100 and 200 µg/ml CMP enhanced the production of SOD, MDA and Fe2+ but decreased GSH levels in SKOV3 and HEY cells. These data indicated that CMP could induce ferroptosis in ovarian cancer cells. More importantly, in vitro and in vivo studies indicated that CMP significantly suppressed nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), cystine/glutamate antiporter system X(c)(−) (xCT) and glutathione peroxidase 4 (GPX4) expression in ovarian cancer cells and tumors. In conclusion, the present study showed novel data that CMP could induce ferroptotic death in ovarian cancer cells by suppressing Nrf2/HO-1/xCT/GPX4. All these findings indicate that CMP may have great potential in anti-ovarian cancer cell therapy by inducing ferroptosis.
Collapse
Affiliation(s)
- Tiantian Jing
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Yanli Guo
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Yanqiu Wei
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| |
Collapse
|
296
|
Forcina GC, Pope L, Murray M, Dong W, Abu-Remaileh M, Bertozzi CR, Dixon SJ. Ferroptosis regulation by the NGLY1/NFE2L1 pathway. Proc Natl Acad Sci U S A 2022; 119:e2118646119. [PMID: 35271393 PMCID: PMC8931371 DOI: 10.1073/pnas.2118646119] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
SignificanceFerroptosis is an oxidative form of cell death whose biochemical regulation remains incompletely understood. Cap'n'collar (CNC) transcription factors including nuclear factor erythroid-2-related factor 1 (NFE2L1/NRF1) and NFE2L2/NRF2 can both regulate oxidative stress pathways but are each regulated in a distinct manner, and whether these two transcription factors can regulate ferroptosis independent of one another is unclear. We find that NFE2L1 can promote ferroptosis resistance, independent of NFE2L2, by maintaining the expression of glutathione peroxidase 4 (GPX4), a key protein that prevents lethal lipid peroxidation. NFE2L2 can also promote ferroptosis resistance but does so through a distinct mechanism that appears independent of GPX4 protein expression. These results suggest that NFE2L1 and NFE2L2 independently regulate ferroptosis.
Collapse
Affiliation(s)
| | - Lauren Pope
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Carolyn R. Bertozzi
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Scott J. Dixon
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
297
|
Li D, Liu X, Pi W, Zhang Y, Yu L, Xu C, Sun Z, Jiang J. Fisetin Attenuates Doxorubicin-Induced Cardiomyopathy In Vivo and In Vitro by Inhibiting Ferroptosis Through SIRT1/Nrf2 Signaling Pathway Activation. Front Pharmacol 2022; 12:808480. [PMID: 35273493 PMCID: PMC8902236 DOI: 10.3389/fphar.2021.808480] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic that is used extensively for the management of carcinoma; however, its clinical application is limited due to its serious cardiotoxic side effects. Ferroptosis represents iron-dependent and reactive oxygen species (ROS)-related cell death and has been proven to contribute to the progression of DOX-induced cardiomyopathy. Fisetin is a natural flavonoid that is abundantly present in fruits and vegetables. It has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity in experimental rats. However, the underlying mechanisms remain unknown. The present study investigated the cardioprotective role of fisetin and the underlying molecular mechanism through experiments in the DOX-induced cardiomyopathy rat and H9c2 cell models. The results revealed that fisetin treatment could markedly abate DOX-induced cardiotoxicity by alleviating cardiac dysfunction, ameliorating myocardial fibrosis, mitigating cardiac hypertrophy in rats, and attenuating ferroptosis of cardiomyocytes by reversing the decline in the GPX4 level. Mechanistically, fisetin exerted its antioxidant effect by reducing the MDA and lipid ROS levels and increasing the glutathione (GSH) level. Moreover, fisetin exerted its protective effect by increasing the SIRT1 expression and the Nrf2 mRNA and protein levels and its nuclear translocation, which resulted in the activation of its downstream genes such as HO-1 and FTH1. Selective inhibition of SIRT1 attenuated the protective effects of fisetin in the H9c2 cells, which in turn decreased the GSH and GPX4 levels, as well as Nrf2, HO-1, and FTH1 expressions. In conclusion, fisetin exerts its therapeutic effects against DOX-induced cardiomyopathy by inhibiting ferroptosis via SIRT1/Nrf2 signaling pathway activation.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Department of Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Linhai, China
| | - Yang Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Lei Yu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Cheng Xu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
298
|
Jin T, Chen C. Umbelliferone delays the progression of diabetic nephropathy by inhibiting ferroptosis through activation of the Nrf-2/HO-1 pathway. Food Chem Toxicol 2022; 163:112892. [PMID: 35278496 DOI: 10.1016/j.fct.2022.112892] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ferroptosis is a novel form of lipid reactive oxygen species and iron dependent cell death, and it has been shown to be involved in renal tubular injury in diabetic mice. Nrf2 plays an important role in regulating lipid peroxidation and is closely related to ferroptosis. Umbelliferone has antioxidant, anti-glycation and protective effects on diabetic mice. However, the potential mechanisms and underlying effects of these effects in diabetic nephropathy (DN) remain to be investigated. METHODS 10-week-old male C57BLKS/J db/db, C57BLKS/J db/m mice and HK-2 cells cultured with high glucose were used as experimental objects in this study. ROS levels, GSH, MDA and iron content were detected. RESULTS We found that Umbelliferone can significantly improve the renal pathological damage and ROS accumulation of db/db mice, and inhibit ferroptosis, such as the down-regulation of ACSL4 and the up-regulation of GPX4. Meanwhile, Nrf2 and HO-1 expression were up-regulated. We demonstrated that knockdown of Nrf2 blocked the inhibitory effect of Umbelliferone on ferroptosis in renal tubule cells induced by high glucose. CONCLUSION These results suggest that Umbelliferone has a protective effect on DN, possibly by activating the Nrf2/HO-1 pathway, thus attenuating the level of high glucose-induced ferroptosis.
Collapse
Affiliation(s)
- Tong Jin
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
299
|
Zhang J, Gao RF, Li J, Yu KD, Bi KX. Alloimperatorin activates apoptosis, ferroptosis and oxeiptosis to inhibit the growth and invasion of breast cancer cells in vitro. Biochem Cell Biol 2022; 100:213-222. [PMID: 35263194 DOI: 10.1139/bcb-2021-0399] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Breast cancer is the most common malignant tumour in women. Our research on alloimperatorin from Angelica dahurica showed that alloimperatorin inhibited breast cancer cell viability in a concentration- and time-dependent manner; it also showed that apoptosis and ferroptosis inhibitors significantly weakened the anti-survival effect of alloimperatorin. Alloimperatorin clearly induced breast cancer cell apoptosis and increased the activities of Caspase-3, Caspase-8, Caspase-9 and PARP; it also caused significant mitochondrial shrinkage, promoted the accumulation of Fe2+, ROS and MDA, and significantly reduced mRNA and protein expression levels of SLC7A11 and GPX4, indicating that alloimperatorin induces ferroptosis. In addition, alloimperatorin significantly promoted Keap1 expression; although it did not affect the expression of PGAM5 and AIFM1, it significantly reduced the phosphorylation level of AIFM1. After downregulating the expression of Keap1, PGAM5 or AIFM1, the inhibitory effect of alloimperatorin on cell viability was significantly weakened, indicating that alloimperatorin regulates the Keap1/PGAM5/AIFM1 pathway to promote oxeiptosis. Alloimperatorin significantly inhibited the invasion of breast cancer cells, while Keap1 siRNA or GPX4 overexpression vectors significantly enhanced cell invasion and effectively reversed the anti-invasive effect of alloimperatorin. Therefore, alloimperatorin induces breast cancer cell apoptosis, ferroptosis and oxeiptosis, thereby inhibiting cell growth and invasion.
Collapse
Affiliation(s)
- Jing Zhang
- Shanxi Provincial People's Hospital, Department of General Surgery, 29# shuangtasi Street, Yingze District, Taiyuan 030012, Shanxi Province, PRC., Taiyuan, China;
| | - Run-Fang Gao
- Shanxi Provincial People's Hospital, Department of General Surgery, Taiyuan, China;
| | - Jie Li
- Shanxi Provincial People's Hospital, Department of General Surgery, Taiyuan, China;
| | - Ke-da Yu
- Fudan University Shanghai Cancer Center, 89667, Shanghai, Shanghai, China;
| | - Kai-Xin Bi
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| |
Collapse
|
300
|
Guo Y, Lu C, Hu K, Cai C, Wang W. Ferroptosis in Cardiovascular Diseases: Current Status, Challenges, and Future Perspectives. Biomolecules 2022; 12:biom12030390. [PMID: 35327582 PMCID: PMC8945958 DOI: 10.3390/biom12030390] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases (CVDs) are still a major cause of global mortality and disability, seriously affecting people’s lives. Due to the severity and complexity of these diseases, it is important to find new regulatory mechanisms to treat CVDs. Ferroptosis is a new kind of regulatory cell death currently being investigated. Increasing evidence showed that ferroptosis plays an important role in CVDs, such as in ischemia/reperfusion injury, heart failure, cardiomyopathy, and atherosclerosis. Protecting against CVDs by targeting ferroptosis is a promising approach; therefore, in this review, we summarized the latest regulatory mechanism of ferroptosis and the current studies related to each CVD, followed by critical perspectives on the ferroptotic treatment of CVDs and the future direction of this intriguing biology.
Collapse
Affiliation(s)
- Yi Guo
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
| | - Chanjun Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
| | - Ke Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
- Correspondence: ; Tel.: +86-180-7170-5166
| |
Collapse
|