251
|
Koppula P, Lei G, Zhang Y, Yan Y, Mao C, Kondiparthi L, Shi J, Liu X, Horbath A, Das M, Li W, Poyurovsky MV, Olszewski K, Gan B. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat Commun 2022; 13:2206. [PMID: 35459868 PMCID: PMC9033817 DOI: 10.1038/s41467-022-29905-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/06/2022] [Indexed: 12/31/2022] Open
Abstract
Targeting ferroptosis, a unique cell death modality triggered by unrestricted lipid peroxidation, in cancer therapy is hindered by our incomplete understanding of ferroptosis mechanisms under specific cancer genetic contexts. KEAP1 (kelch-like ECH associated protein 1) is frequently mutated or inactivated in lung cancers, and KEAP1 mutant lung cancers are refractory to most therapies, including radiotherapy. In this study, we identify ferroptosis suppressor protein 1 (FSP1, also known as AIFM2) as a transcriptional target of nuclear factor erythroid 2-related factor 2 (NRF2) and reveal that the ubiquinone (CoQ)-FSP1 axis mediates ferroptosis- and radiation- resistance in KEAP1 deficient lung cancer cells. We further show that pharmacological inhibition of the CoQ-FSP1 axis sensitizes KEAP1 deficient lung cancer cells or patient-derived xenograft tumors to radiation through inducing ferroptosis. Together, our study identifies CoQ-FSP1 as a key downstream effector of KEAP1-NRF2 pathway and as a potential therapeutic target for treating KEAP1 mutant lung cancers.
Collapse
Affiliation(s)
- Pranavi Koppula
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuelong Yan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Jiejun Shi
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amber Horbath
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Molina Das
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | | | - Kellen Olszewski
- Kadmon Corporation, LLC, New York, NY, 10016, USA
- The Barer Institute, Philadelphia, PA, 19104, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
252
|
Zhao J, Wang Y, Tao L, Chen L. Iron Transporters and Ferroptosis in Malignant Brain Tumors. Front Oncol 2022; 12:861834. [PMID: 35530363 PMCID: PMC9071296 DOI: 10.3389/fonc.2022.861834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Malignant brain tumors represent approximately 1.5% of all malignant tumors. The survival rate among patients is relatively low and the mortality rate of pediatric brain tumors ranks first among all childhood malignant tumors. At present malignant brain tumors remain incurable. Although some tumors can be treated with surgery and chemotherapy, new treatment strategies are urgent owing to the poor clinical prognosis. Iron is an essential trace element in many biological processes of the human body. Iron transporters play a crucial role in iron absorption and transport. Ferroptosis, an iron-dependent form of nonapoptotic cell death, is characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS) derived from iron metabolism. Recently, compelling evidence has shown that inducing ferroptosis of tumor cells is a potential therapeutic strategy. In this review, we will briefly describe the significant regulatory factors of ferroptosis, iron, its absorption and transport under physiological conditions, especially the function of iron transporters. Then we will summarize the relevant mechanisms of ferroptosis and its role in malignant brain tumors, wherein the role of transporters is not to be ignored. Finally, we will introduce the current research progress in the treatment of malignant brain tumors by inducing ferroptosis in order to explain the current biological principles of potential treatment targets and treatment strategies for malignant brain tumors.
Collapse
Affiliation(s)
- Jingyu Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Yaqi Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Lei Tao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ligong Chen,
| |
Collapse
|
253
|
Feng Q, Yu X, Qiao Y, Pan S, Wang R, Zheng B, Wang H, Ren KD, Liu H, Yang Y. Ferroptosis and Acute Kidney Injury (AKI): Molecular Mechanisms and Therapeutic Potentials. Front Pharmacol 2022; 13:858676. [PMID: 35517803 PMCID: PMC9061968 DOI: 10.3389/fphar.2022.858676] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI), a common and serious clinical kidney syndrome with high incidence and mortality, is caused by multiple pathogenic factors, such as ischemia, nephrotoxic drugs, oxidative stress, inflammation, and urinary tract obstruction. Cell death, which is divided into several types, is critical for normal growth and development and maintaining dynamic balance. Ferroptosis, an iron-dependent nonapoptotic type of cell death, is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. Recently, growing evidence demonstrated the important role of ferroptosis in the development of various kidney diseases, including renal clear cell carcinoma, diabetic nephropathy, and AKI. However, the exact mechanism of ferroptosis participating in the initiation and progression of AKI has not been fully revealed. Herein, we aim to systematically discuss the definition of ferroptosis, the associated mechanisms and key regulators, and pharmacological progress and summarize the most recent discoveries about the role and mechanism of ferroptosis in AKI development. We further conclude its potential therapeutic strategies in AKI.
Collapse
Affiliation(s)
- Qi Feng
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyue Yu
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjin Qiao
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Wang
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zheng
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Wang
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
254
|
High Level of Uric Acid Promotes Atherosclerosis by Targeting NRF2-Mediated Autophagy Dysfunction and Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9304383. [PMID: 35480874 PMCID: PMC9038411 DOI: 10.1155/2022/9304383] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
Atherosclerotic vascular disease (ASVD) is the leading cause of death worldwide. Hyperuricemia is the fourth risk factor for atherosclerosis after hypertension, diabetes, and hyperlipidemia. The mechanism of hyperuricemia affecting the occurrence and development of atherosclerosis has not been fully elucidated. Mononuclear macrophages play critical roles in all stages of atherosclerosis. Studies have confirmed that both hyperuricemia and ferroptosis promote atherosclerosis, but whether high level of uric acid (HUA) promotes atherosclerosis by regulating ferroptosis in macrophages remains unclear. We found that HUA significantly promoted the development of atherosclerotic plaque and downregulated the protein level of the NRF2/SLC7A11/GPX4 signaling pathway in ApoE−/− mice. Next, we evaluated the effect of HUA and ferroptosis inhibitor ferrostatin-1 (Fer-1) treatment on the formation of macrophage-derived foam cells. HUA promoted the formation of foam cells, decreased cell viability, and increased iron accumulation and lipid peroxidation in macrophages treated with oxidized low-density lipoprotein (oxLDL); these effects were reversed by Fer-1 treatment. Mechanistically, HUA significantly inhibited autophagy and the protein level of the NRF2/SLC7A11/GPX4 signaling pathway. Fer-1 activated autophagy and upregulated the level of ferroptosis-associated proteins. Moreover, an NRF2 inducer (tertbutyl hydroquinone (TBHQ)) and autophagy activator (rapamycin (RAPA)) could reverse the inhibitory effect of HUA on foam cell survival. Our results suggest that HUA-induced ferroptosis of macrophages is involved in the formation of atherosclerotic plaques. More importantly, enhancing autophagy and inhibiting ferroptosis by activating NRF2 may alleviate HUA-induced atherosclerosis. These findings might contribute to a deeper understanding of the role of HUA in the pathogenesis of atherosclerosis and provide a therapeutic target for ASVD associated with hyperuricemia.
Collapse
|
255
|
Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, Zhou Z. Role and Mechanism of Ferroptosis in Neurological Diseases. Mol Metab 2022; 61:101502. [PMID: 35447365 PMCID: PMC9170779 DOI: 10.1016/j.molmet.2022.101502] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background Ferroptosis, as a new form of cell death, is different from other cell deaths such as autophagy or senescence. Ferroptosis involves in the pathophysiological progress of several diseases, including cancers, cardiovascular diseases, nervous system diseases, and kidney damage. Since oxidative stress and iron deposition are the broad pathological features of neurological diseases, the role of ferroptosis in neurological diseases has been widely explored. Scope of review Ferroptosis is mainly characterized by changes in iron homeostasis, iron-dependent lipid peroxidation, and glutamate toxicity accumulation, of which can be specifically reversed by ferroptosis inducers or inhibitors. The ferroptosis is mainly regulated by the metabolism of iron, lipids and amino acids through System Xc−, voltage-dependent anion channels, p53, p62-Keap1-Nrf2, mevalonate and other pathways. This review also focus on the regulatory pathways of ferroptosis and its research progress in neurological diseases. Major conclusions The current researches of ferroptosis in neurological diseases mostly focus on the key pathways of ferroptosis. At the same time, ferroptosis was found playing a bidirectional regulation role in neurological diseases. Therefore, the specific regulatory mechanisms of ferroptosis in neurological diseases still need to be further explored to provide new perspectives for the application of ferroptosis in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Mengmeng Ou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Ying Jiang
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Yingying Ji
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Qin Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Zhiqiang Du
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Haohao Zhu
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Zhenhe Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
256
|
Lee DS, Kim JE. P2X7 Receptor Augments LPS-Induced Nitrosative Stress by Regulating Nrf2 and GSH Levels in the Mouse Hippocampus. Antioxidants (Basel) 2022; 11:antiox11040778. [PMID: 35453462 PMCID: PMC9025791 DOI: 10.3390/antiox11040778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
P2X7 receptor (P2X7R) regulates inducible nitric oxide synthase (iNOS) expression/activity in response to various harmful insults. Since P2X7R deletion paradoxically decreases the basal glutathione (GSH) level in the mouse hippocampus, it is likely that P2X7R may increase the demand for GSH for the maintenance of the intracellular redox state or affect other antioxidant defense systems. Therefore, the present study was designed to elucidate whether P2X7R affects nuclear factor-erythroid 2-related factor 2 (Nrf2) activity/expression and GSH synthesis under nitrosative stress in response to lipopolysaccharide (LPS)-induced neuroinflammation. In the present study, P2X7R deletion attenuated iNOS upregulation and Nrf2 degradation induced by LPS. Compatible with iNOS induction, P2X7R deletion decreased S-nitrosylated (SNO)-cysteine production under physiological and post-LPS treated conditions. P2X7R deletion also ameliorated the decreases in GSH, glutathione synthetase, GS and ASCT2 levels concomitant with the reduced S-nitrosylations of GS and ASCT2 following LPS treatment. Furthermore, LPS upregulated cystine:glutamate transporter (xCT) and glutaminase in P2X7R+/+ mice, which were abrogated by P2X7R deletion. LPS did not affect GCLC level in both P2X7R+/+ and P2X7R−/− mice. Therefore, our findings indicate that P2X7R may augment LPS-induced neuroinflammation by leading to Nrf2 degradation, aberrant glutamate-glutamine cycle and impaired cystine/cysteine uptake, which would inhibit GSH biosynthesis. Therefore, we suggest that the targeting of P2X7R, which would exert nitrosative stress with iNOS in a positive feedback manner, may be one of the important therapeutic strategies of nitrosative stress under pathophysiological conditions.
Collapse
|
257
|
Lu Z, Liu Z, Fang B. Propofol protects cardiomyocytes from doxorubicin-induced toxic injury by activating the nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4 signaling pathways. Bioengineered 2022; 13:9145-9155. [PMID: 35363601 PMCID: PMC9161918 DOI: 10.1080/21655979.2022.2036895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Propofol offers important protective effects in ischemia/reperfusion-induced cardiomyocyte injury, but its specific mechanisms in doxorubicin (DOX)-induced cardiotoxicity have not been investigated. In this paper, we attempted to explore the effects of propofol on DOX-induced human cardiomyocyte injury and its related mechanisms. H9c2 cell viability was assessed by cell counting kit-8 and lactate dehydrogenase assay kit. Nuclear factor erythroid 2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPx4) signaling pathway-related protein levels were measured by Western blot. Ferroptosis was evaluated by corresponding kits and Western blot and apoptosis was detected by CCK-8, terminal deoxynucleotidyl transferase dUTP nick-end labeling and Western blot. Oxidative stress was assessed by reactive oxygen species kit and the commercial kits, and inflammation response was analyzed by enzyme-linked immunosorbent assay and Western blot. The results showed that propofol attenuated DOX-induced cytotoxicity and activated Nrf2/GPx4 signaling pathways in H9c2 cells. In addition, propofol also alleviated DOX-induced ferroptosis, increased cell viability and inhibited apoptosis, oxidative stress and inflammatory responses in H9c2 cells through activation of Nrf2/GPx4 signaling pathways. In summary, propofol provides the protection against DOX-induced cardiomyocyte injury by activating Nrf2/GPx4 signaling, providing a new approach and theoretical basis for the repair of cardiomyocytes.
Collapse
Affiliation(s)
- Ziyun Lu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiyi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bei Fang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
258
|
Molecular mechanisms of reactive oxygen species in regulated cell deaths: Impact of ferroptosis in cancer therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
259
|
Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. Monitoring the induction of ferroptosis following dissociation in human embryonic stem cells. J Biol Chem 2022; 298:101855. [PMID: 35337799 PMCID: PMC9034286 DOI: 10.1016/j.jbc.2022.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/18/2023] Open
Abstract
Human embryonic stem cells (hESCs) are vulnerable to cell death upon dissociation. Thus, dissociation is an obstacle in culturing, maintaining, and differentiating of hESCs. To date, apoptosis has become the focus of research into the nature of cell death triggered by cellular detachment; it remains baffling whether another form of cell death can occur upon dissociation in hESCs. Here, we demonstrate that iron accumulation and subsequently lipid peroxidation are responsible for dissociation-mediated hESC death. Moreover, we found that a decrease of glutathione peroxidase 4 because of iron accumulation promotes ferroptosis. Inhibition of lipid peroxidation (ferrostatin-1) or chelating iron (deferoxamine) largely suppresses iron accumulation-induced ferroptosis in dissociated hESCs. The results show that P53 mediates the dissociation-induced ferroptosis in hESCs, which is suppressed by pifithrin α. Multiple genes involved in ferroptosis are regulated by the nuclear factor erythroid 2-related factor 2 (Nrf2). In this study, solute carrier family 7 member 11 and glutathione peroxidase 4 are involved in GSH synthesis decreased upon dissociation as a target of Nrf2. In conclusion, our study demonstrates that iron accumulation as a consequence of cytoskeleton disruption appears as a pivotal factor in the initiation of ferroptosis in dissociated hESCs. Nrf2 inhibits ferroptosis via its downstream targets. Our study suggests that the antiferroptotic target might be a good candidate for the maintenance of hESCs.
Collapse
Affiliation(s)
- Shahnaz Babaei-Abraki
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
260
|
Guo N, Chen Y, Zhang Y, Deng Y, Zeng F, Li X. Potential Role of APEX1 During Ferroptosis. Front Oncol 2022; 12:798304. [PMID: 35311089 PMCID: PMC8927806 DOI: 10.3389/fonc.2022.798304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Ferroptosis is a recently discovered category of programmed cell death. It is much different from other types of cell death such as apoptosis, necrosis and autophagy. The main pathological feature of ferroptosis is the accumulation of iron-dependent lipid peroxidation. The typical changes in the morphological features of ferroptosis include cell volume shrinkage and increased mitochondrial membrane area. The mechanisms of ferroptosis may be mainly related to lipid peroxidation accumulation, imbalance in amino acid antioxidant system, and disturbance of iron metabolism. Besides, hypoxia-inducible factor (HIF), nuclear factor-E2-related factor 2 (Nrf2), and p53 pathway have been demonstrated to be involved in ferroptosis. At present, the molecular mechanisms of ferroptosis pathway are still unmapped. In this review, an outlook has been put forward about the crucial role of apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) in the regulation of ferroptosis. APEX1 plays an important role in the regulation of intracellular redox balance and can be used as a potential inhibitor of ferroptotic cell death. Bioinformatics analysis indicated that the mRNA level of APEX1 is decreased in cases of ferroptosis triggered by erastin. Besides, it was found that there was a significant correlation between APEX1 and genes in the ferroptosis pathway. We have discussed the possibility to employ APEX1 inducers or inhibitors in the regulation of ferroptosis as a new strategy for the treatment of various human diseases.
Collapse
Affiliation(s)
- Nan Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yan Chen
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yonghao Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
261
|
Jing T, Guo Y, Wei Y. Carboxymethylated pachyman induces ferroptosis in ovarian cancer by suppressing NRF1/HO‑1 signaling. Oncol Lett 2022; 23:161. [PMID: 35399331 PMCID: PMC8987927 DOI: 10.3892/ol.2022.13281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
Carboxymethylated pachyman (CMP) is characterized by immune regulatory, antitumor and antioxidant activities. However, whether CMP contributes to the treatment of ovarian cancer has yet to be explored. The role of CMP in ovarian cancer cell death was analyzed using CCK-8 and flow cytometry assays. The data showed that CMP induced ovarian cancer cell death in a dose-dependent manner. Furthermore, CMP-induced cell death could be largely reversed by preincubation with ferrostatin-1 (Fer-1) but not 3-methyladenine or necrostatin-1. Reverse transcription-quantitative PCR analysis indicated that CMP significantly increased prostaglandin-endoperoxide synthase 2 (PTGS2) and Chac glutathione specific γ-glutamylcyclotransferase 1 (CHAC1) mRNA levels, but preincubation with Fer-1 obviously reduced PTGS2 and CHAC1 mRNA levels in SKOV3 and Hey cells. The intracellular levels of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and Fe2+ were then quantified The data showed that 100 and 200 µg/ml CMP enhanced the production of SOD, MDA and Fe2+ but decreased GSH levels in SKOV3 and HEY cells. These data indicated that CMP could induce ferroptosis in ovarian cancer cells. More importantly, in vitro and in vivo studies indicated that CMP significantly suppressed nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), cystine/glutamate antiporter system X(c)(−) (xCT) and glutathione peroxidase 4 (GPX4) expression in ovarian cancer cells and tumors. In conclusion, the present study showed novel data that CMP could induce ferroptotic death in ovarian cancer cells by suppressing Nrf2/HO-1/xCT/GPX4. All these findings indicate that CMP may have great potential in anti-ovarian cancer cell therapy by inducing ferroptosis.
Collapse
Affiliation(s)
- Tiantian Jing
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Yanli Guo
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Yanqiu Wei
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| |
Collapse
|
262
|
Forcina GC, Pope L, Murray M, Dong W, Abu-Remaileh M, Bertozzi CR, Dixon SJ. Ferroptosis regulation by the NGLY1/NFE2L1 pathway. Proc Natl Acad Sci U S A 2022; 119:e2118646119. [PMID: 35271393 PMCID: PMC8931371 DOI: 10.1073/pnas.2118646119] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
SignificanceFerroptosis is an oxidative form of cell death whose biochemical regulation remains incompletely understood. Cap'n'collar (CNC) transcription factors including nuclear factor erythroid-2-related factor 1 (NFE2L1/NRF1) and NFE2L2/NRF2 can both regulate oxidative stress pathways but are each regulated in a distinct manner, and whether these two transcription factors can regulate ferroptosis independent of one another is unclear. We find that NFE2L1 can promote ferroptosis resistance, independent of NFE2L2, by maintaining the expression of glutathione peroxidase 4 (GPX4), a key protein that prevents lethal lipid peroxidation. NFE2L2 can also promote ferroptosis resistance but does so through a distinct mechanism that appears independent of GPX4 protein expression. These results suggest that NFE2L1 and NFE2L2 independently regulate ferroptosis.
Collapse
Affiliation(s)
| | - Lauren Pope
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Carolyn R. Bertozzi
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Scott J. Dixon
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
263
|
Li D, Liu X, Pi W, Zhang Y, Yu L, Xu C, Sun Z, Jiang J. Fisetin Attenuates Doxorubicin-Induced Cardiomyopathy In Vivo and In Vitro by Inhibiting Ferroptosis Through SIRT1/Nrf2 Signaling Pathway Activation. Front Pharmacol 2022; 12:808480. [PMID: 35273493 PMCID: PMC8902236 DOI: 10.3389/fphar.2021.808480] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic that is used extensively for the management of carcinoma; however, its clinical application is limited due to its serious cardiotoxic side effects. Ferroptosis represents iron-dependent and reactive oxygen species (ROS)-related cell death and has been proven to contribute to the progression of DOX-induced cardiomyopathy. Fisetin is a natural flavonoid that is abundantly present in fruits and vegetables. It has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity in experimental rats. However, the underlying mechanisms remain unknown. The present study investigated the cardioprotective role of fisetin and the underlying molecular mechanism through experiments in the DOX-induced cardiomyopathy rat and H9c2 cell models. The results revealed that fisetin treatment could markedly abate DOX-induced cardiotoxicity by alleviating cardiac dysfunction, ameliorating myocardial fibrosis, mitigating cardiac hypertrophy in rats, and attenuating ferroptosis of cardiomyocytes by reversing the decline in the GPX4 level. Mechanistically, fisetin exerted its antioxidant effect by reducing the MDA and lipid ROS levels and increasing the glutathione (GSH) level. Moreover, fisetin exerted its protective effect by increasing the SIRT1 expression and the Nrf2 mRNA and protein levels and its nuclear translocation, which resulted in the activation of its downstream genes such as HO-1 and FTH1. Selective inhibition of SIRT1 attenuated the protective effects of fisetin in the H9c2 cells, which in turn decreased the GSH and GPX4 levels, as well as Nrf2, HO-1, and FTH1 expressions. In conclusion, fisetin exerts its therapeutic effects against DOX-induced cardiomyopathy by inhibiting ferroptosis via SIRT1/Nrf2 signaling pathway activation.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Department of Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Linhai, China
| | - Yang Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Lei Yu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Cheng Xu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
264
|
Jin T, Chen C. Umbelliferone delays the progression of diabetic nephropathy by inhibiting ferroptosis through activation of the Nrf-2/HO-1 pathway. Food Chem Toxicol 2022; 163:112892. [PMID: 35278496 DOI: 10.1016/j.fct.2022.112892] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ferroptosis is a novel form of lipid reactive oxygen species and iron dependent cell death, and it has been shown to be involved in renal tubular injury in diabetic mice. Nrf2 plays an important role in regulating lipid peroxidation and is closely related to ferroptosis. Umbelliferone has antioxidant, anti-glycation and protective effects on diabetic mice. However, the potential mechanisms and underlying effects of these effects in diabetic nephropathy (DN) remain to be investigated. METHODS 10-week-old male C57BLKS/J db/db, C57BLKS/J db/m mice and HK-2 cells cultured with high glucose were used as experimental objects in this study. ROS levels, GSH, MDA and iron content were detected. RESULTS We found that Umbelliferone can significantly improve the renal pathological damage and ROS accumulation of db/db mice, and inhibit ferroptosis, such as the down-regulation of ACSL4 and the up-regulation of GPX4. Meanwhile, Nrf2 and HO-1 expression were up-regulated. We demonstrated that knockdown of Nrf2 blocked the inhibitory effect of Umbelliferone on ferroptosis in renal tubule cells induced by high glucose. CONCLUSION These results suggest that Umbelliferone has a protective effect on DN, possibly by activating the Nrf2/HO-1 pathway, thus attenuating the level of high glucose-induced ferroptosis.
Collapse
Affiliation(s)
- Tong Jin
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
265
|
Zhang J, Gao RF, Li J, Yu KD, Bi KX. Alloimperatorin activates apoptosis, ferroptosis and oxeiptosis to inhibit the growth and invasion of breast cancer cells in vitro. Biochem Cell Biol 2022; 100:213-222. [PMID: 35263194 DOI: 10.1139/bcb-2021-0399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Breast cancer is the most common malignant tumour in women. Our research on alloimperatorin from Angelica dahurica showed that alloimperatorin inhibited breast cancer cell viability in a concentration- and time-dependent manner; it also showed that apoptosis and ferroptosis inhibitors significantly weakened the anti-survival effect of alloimperatorin. Alloimperatorin clearly induced breast cancer cell apoptosis and increased the activities of Caspase-3, Caspase-8, Caspase-9 and PARP; it also caused significant mitochondrial shrinkage, promoted the accumulation of Fe2+, ROS and MDA, and significantly reduced mRNA and protein expression levels of SLC7A11 and GPX4, indicating that alloimperatorin induces ferroptosis. In addition, alloimperatorin significantly promoted Keap1 expression; although it did not affect the expression of PGAM5 and AIFM1, it significantly reduced the phosphorylation level of AIFM1. After downregulating the expression of Keap1, PGAM5 or AIFM1, the inhibitory effect of alloimperatorin on cell viability was significantly weakened, indicating that alloimperatorin regulates the Keap1/PGAM5/AIFM1 pathway to promote oxeiptosis. Alloimperatorin significantly inhibited the invasion of breast cancer cells, while Keap1 siRNA or GPX4 overexpression vectors significantly enhanced cell invasion and effectively reversed the anti-invasive effect of alloimperatorin. Therefore, alloimperatorin induces breast cancer cell apoptosis, ferroptosis and oxeiptosis, thereby inhibiting cell growth and invasion.
Collapse
Affiliation(s)
- Jing Zhang
- Shanxi Provincial People's Hospital, Department of General Surgery, 29# shuangtasi Street, Yingze District, Taiyuan 030012, Shanxi Province, PRC., Taiyuan, China;
| | - Run-Fang Gao
- Shanxi Provincial People's Hospital, Department of General Surgery, Taiyuan, China;
| | - Jie Li
- Shanxi Provincial People's Hospital, Department of General Surgery, Taiyuan, China;
| | - Ke-da Yu
- Fudan University Shanghai Cancer Center, 89667, Shanghai, Shanghai, China;
| | - Kai-Xin Bi
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| |
Collapse
|
266
|
Guo Y, Lu C, Hu K, Cai C, Wang W. Ferroptosis in Cardiovascular Diseases: Current Status, Challenges, and Future Perspectives. Biomolecules 2022; 12:biom12030390. [PMID: 35327582 PMCID: PMC8945958 DOI: 10.3390/biom12030390] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases (CVDs) are still a major cause of global mortality and disability, seriously affecting people’s lives. Due to the severity and complexity of these diseases, it is important to find new regulatory mechanisms to treat CVDs. Ferroptosis is a new kind of regulatory cell death currently being investigated. Increasing evidence showed that ferroptosis plays an important role in CVDs, such as in ischemia/reperfusion injury, heart failure, cardiomyopathy, and atherosclerosis. Protecting against CVDs by targeting ferroptosis is a promising approach; therefore, in this review, we summarized the latest regulatory mechanism of ferroptosis and the current studies related to each CVD, followed by critical perspectives on the ferroptotic treatment of CVDs and the future direction of this intriguing biology.
Collapse
Affiliation(s)
- Yi Guo
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
| | - Chanjun Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
| | - Ke Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
- Correspondence: ; Tel.: +86-180-7170-5166
| |
Collapse
|
267
|
Wang L, Chen X, Yan C. Ferroptosis: An emerging therapeutic opportunity for cancer. Genes Dis 2022; 9:334-346. [PMID: 35224150 PMCID: PMC8843872 DOI: 10.1016/j.gendis.2020.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis, a new form of non-apoptotic, regulated cell death characterized by iron dependency and lipid peroxidation, is involved in many pathological conditions such as neurodegenerative diseases, heart ischemia/reperfusion injury, acute renal failure, and cancer. While metabolic dysfunctions can lead to excessive lipid peroxidation culminating in ferroptotic cell death, glutathione peroxidase 4 (GPX4) resides in the center of a network that functions to prevent lipid hydroperoxides from accumulation, thereby suppressing ferroptosis. Indeed, RSL3 and other small-molecule GPX4 inhibitors can induce ferroptosis in not only cultured cancer cells but also tumor xenografts implanted in mice. Similarly, erastin and other system Xc- inhibitors can deplete intracellular glutathione required for GPX4 function, leading to lipid peroxidation and ferroptosis. As therapy-resistant cancer cells are sensitive to GPX4-targeted therapeutic regimens, the agents capable of inducing ferroptosis hold great promises to improve current cancer therapy. This review will outline the molecular basis of ferroptosis, but focus on the strategies and the agents developed in recent years for therapeutic induction of ferroptosis. The potentials of these ferroptosis-inducing agents, which include system Xc- inhibitors, GPX4 inhibitors, and iron-based nanoparticles, in cancer therapy will be subsequently discussed.
Collapse
Affiliation(s)
- Liyuan Wang
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoguang Chen
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
268
|
Guan D, Zhou W, Wei H, Wang T, Zheng K, Yang C, Feng R, Xu R, Fu Y, Li C, Li Y, Li C. Ferritinophagy-Mediated Ferroptosis and Activation of Keap1/Nrf2/HO-1 Pathway Were Conducive to EMT Inhibition of Gastric Cancer Cells in Action of 2,2'-Di-pyridineketone Hydrazone Dithiocarbamate Butyric Acid Ester. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3920664. [PMID: 35237380 PMCID: PMC8885181 DOI: 10.1155/2022/3920664] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 01/02/2023]
Abstract
In metastasis of cancer cells, the epithelial-mesenchymal transition (EMT) is prerequired. Ferroptosis is an iron-mediated cellular death process, but whether it involves EMT regulation remains elusive. In addition, how stress responders (Nrf2) respond to the redox alteration and cross-talking between them needs to be determined. Our data revealed that DpdtbA (2,2'-di-pyridineketone hydrazone dithiocarbamate butyric acid ester) resisted TGF-β1-induced EMT in gastric cancer lines (SGC-7901 and MGC-823) through ferritinophagy-mediated ROS production. Furthermore, the depletion of Gpx4 and xCT as well as enhanced lipid peroxidation indicated that DpdtbA acted as Erastin did in ferroptosis induction, which thus provided chance to explore the causal relationship between ferroptosis and EMT. Our data illustrated that ferritinophagy-mediated ferroptosis promoted the EMT inhibition. In addition, activated Nrf2 involved the regulation on both ferroptosis and EMT in response to the alteration in the cellular redox environment. In brief, ferritinophagy-mediated ferroptosis and activation of the Keap1/Nrf2/HO-1 pathway were conducive to the EMT inhibition.
Collapse
Affiliation(s)
- Deng Guan
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
- College of Basic Medical Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China 453003
| | - Wei Zhou
- College of Basic Medical Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Huiping Wei
- College of Basic Medical Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Ting Wang
- Experimental Teaching Center of Biology and Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Kangwei Zheng
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Chunjie Yang
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Rui Feng
- Experimental Teaching Center of Biology and Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Ruifang Xu
- Experimental Teaching Center of Biology and Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yun Fu
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China 453003
| | - Cuiping Li
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China 453003
| | - Yongli Li
- College of Basic Medical Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Changzheng Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China 453003
- Experimental Teaching Center of Biology and Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
269
|
Mitre AO, Florian AI, Buruiana A, Boer A, Moldovan I, Soritau O, Florian SI, Susman S. Ferroptosis Involvement in Glioblastoma Treatment. Medicina (B Aires) 2022; 58:medicina58020319. [PMID: 35208642 PMCID: PMC8876121 DOI: 10.3390/medicina58020319] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest brain tumors. Current standard therapy includes tumor resection surgery followed by radiotherapy and chemotherapy. Due to the tumors invasive nature, recurrences are almost a certainty, giving the patients after diagnosis only a 12–15 months average survival time. Therefore, there is a dire need of finding new therapies that could potentially improve patient outcomes. Ferroptosis is a newly described form of cell death with several implications in cancer, among which GBM. Agents that target different molecules involved in ferroptosis and that stimulate this process have been described as potentially adjuvant anti-cancer treatment options. In GBM, ferroptosis stimulation inhibits tumor growth, improves patient survival, and increases the efficacy of radiation and chemotherapy. This review provides an overview of the current knowledge regarding ferroptosis modulation in GBM.
Collapse
Affiliation(s)
- Andrei-Otto Mitre
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
| | - Alexandru Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department, of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Andrei Buruiana
- Department of Medical Oncology, Prof. Dr. I. Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania;
| | - Armand Boer
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
| | - Ioana Moldovan
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
| | - Olga Soritau
- Research Department, Prof. Dr. I. Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania;
| | - Stefan Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department, of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
- Department of Pathology, IMOGEN Research Center, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
270
|
Chen Y, Fan Z, Hu S, Lu C, Xiang Y, Liao S. Ferroptosis: A New Strategy for Cancer Therapy. Front Oncol 2022; 12:830561. [PMID: 35252001 PMCID: PMC8888853 DOI: 10.3389/fonc.2022.830561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/25/2022] [Indexed: 01/10/2023] Open
Abstract
Ferroptosis is a newly discovered form of iron-dependent cell death, which is different from other death forms. The main characteristics of ferroptosis are: (1) Amino acid metabolism. (2) Iron metabolism; (3) Lipid metabolism and Reactive oxygen species (ROS). Ferroptosis is related to the occurrence and development of a variety of cancers, especially in the drug resistance. This article reviews the research progress of iron death in tumors, and provides a theoretical reference for its further research and clinical application.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou, China
- *Correspondence: Yu Chen,
| | - Zhihua Fan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shen Hu
- Department of Obstetrics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengchao Lu
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yi Xiang
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shuzhi Liao
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
271
|
Hong M, Rong J, Tao X, Xu Y. The Emerging Role of Ferroptosis in Cardiovascular Diseases. Front Pharmacol 2022; 13:822083. [PMID: 35153792 PMCID: PMC8826236 DOI: 10.3389/fphar.2022.822083] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 01/31/2023] Open
Abstract
Ferroptosis is one type of programmed cell death discovered in recent years, which is characterized by iron-dependent lipid peroxidation and participating in iron, lipid and antioxidant metabolism. Ferroptosis is different from the traditional cell death types such as apoptosis, necroptosis and autophagy in morphology, biochemistry and genetics. Cardiovascular diseases are considered as an important cause of death from non-communicable diseases in the global population and poses a serious threat to human health. Apoptosis has long been thought to be the major type of cardiomyocyte death, but now ferroptosis has been shown to play a major role in cardiovascular diseases as well. This review will discuss related issues such as the mechanisms of ferroptosis and its effects on the occurrence and development of cardiovascular diseases, aiming to provide a novel target for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Min Hong
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiabing Rong
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinran Tao
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinchuan Xu
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
272
|
Chen C, Xie B, Li Z, Chen L, Chen Y, Zhou J, Ju S, Zhou Y, Zhang X, Zhuo W, Yang J, Mao M, Xu L, Wang L. Fascin enhances the vulnerability of breast cancer to erastin-induced ferroptosis. Cell Death Dis 2022; 13:150. [PMID: 35165254 PMCID: PMC8844358 DOI: 10.1038/s41419-022-04579-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 01/09/2023]
Abstract
Ferroptosis, which is characterized by intracellular iron accumulation and lipid peroxidation, is a newly described form of regulated cell death that may play a key role in tumour suppression. In the present study, we investigated the expression profiles and biological effects of fascin actin-bundling protein 1 (Fascin, gene name FSCN1) in breast cancer. In addition, bioinformatics analysis of the TCGA cancer database and gain- and loss-of-function studies showed that Fascin enhances sensitivity to erastin-induced ferroptosis. Mechanistically, Fascin directly interacts with cysteine/glutamate transporter (xCT, gene name SLC7A11) and decreases its stability via the ubiquitin-mediated proteasome degradation pathway. Furthermore, we observed that Fascin is substantially upregulated in tamoxifen-resistant breast cancer cell lines, and drug-resistant cells were also more vulnerable to erastin-induced ferroptosis. Taken together, our findings reveal a previously unidentified role of Fascin in ferroptosis by regulating xCT. Thus, ferroptosis activation in breast cancer with high Fascin level may serve as a potential treatment.
Collapse
Affiliation(s)
- Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Bojian Xie
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.,Department of Surgical Oncology, Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Wenying Zhuo
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
273
|
Liu X, Ma Y, Luo L, Zong D, Li H, Zeng Z, Cui Y, Meng W, Chen Y. Dihydroquercetin suppresses cigarette smoke induced ferroptosis in the pathogenesis of chronic obstructive pulmonary disease by activating Nrf2-mediated pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153894. [PMID: 34942457 DOI: 10.1016/j.phymed.2021.153894] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Dihydroquercetin (DHQ) is a flavonoid with strong anti-inflammatory and antioxidant effects. However, its protective activity against cigarette smoke-induced ferroptosis in the pathogenesis of chronic obstructive pulmonary disease and its underlying mechanisms remain unclear. PURPOSE The present study was conducted to investigate the protective role of DHQ in the pathogenesis of COPD in vivo and in vitro. METHODS A cigarette smoke-induced COPD mouse model was established by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). During the modeling process, the mice were intraperitoneally injected with DHQ daily. HBE cells were cultured with CSE with or without pretreatment with DHQ (40, 80 μM) or ML385 (10 μM). Cell viability was assessed by a cell counting kit 8 (CCK-8). The contents of malondialdehyde (MDA) and superoxide dismutase (SOD) were determined by MDA and SOD assay kits, respectively, and reactive oxygen species (ROS) generation was detected by DCFH-DA assays. Protein expression levels of solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPx4) and nuclear factor erythroid 2-related factor 2 (Nrf2) were measured by western blot. Lipid peroxidation was determined by C11-BODIPY staining. Transmission electron microscopy was used to observe the morphological features of the mitochondria. RESULTS Treatment with DHQ significantly elevated ferroptosis-related protein (SLC7A11 and GPx4) expression in vivo and in vitro. The mRNA levels of SLC7A11 and GPx4 were also increased after DHQ treatment. The excessive MDA and ROS production and depleted SOD activity induced by CSE were reversed by DHQ. DHQ notably reduced the increased lipid peroxidation induced by CSE in HBE cells. In addition, treatment with DHQ attenuated the morphological changes in the mitochondria caused by CSE. Moreover, we also found that DHQ increased the levels of Nrf2 in a concentration-dependent manner in the cigarette smoke-induced COPD mouse model and CSE-treated HBE cells. Additionally, after administering an Nrf2-specific inhibitor, ML385, to HBE cells, the elevated SLC7A11 and GPx4 mRNA and protein levels induced by DHQ were reversed. Moreover, ML385 treatment attenuated the protective effect of DHQ on lipid peroxidation. CONCLUSION Our results show that treatment with DHQ significantly reverses the ferroptosis induced by cigarette smoke both in vivo and in vitro via a Nrf2-dependent signaling pathway.
Collapse
Affiliation(s)
- Xiangming Liu
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Yiming Ma
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Lijuan Luo
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Dandan Zong
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Herui Li
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Zihang Zeng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Yanan Cui
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Weiwei Meng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
274
|
Lin L, Zhang MX, Zhang L, Zhang D, Li C, Li YL. Autophagy, Pyroptosis, and Ferroptosis: New Regulatory Mechanisms for Atherosclerosis. Front Cell Dev Biol 2022; 9:809955. [PMID: 35096837 PMCID: PMC8793783 DOI: 10.3389/fcell.2021.809955] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual buildup of plaques within the vessel wall of middle-sized and large arteries. The occurrence and development of atherosclerosis and the rupture of plaques are related to the injury of vascular cells, including endothelial cells, smooth muscle cells, and macrophages. Autophagy is a subcellular process that plays an important role in the degradation of proteins and damaged organelles, and the autophagy disorder of vascular cells is closely related to atherosclerosis. Pyroptosis is a proinflammatory form of regulated cell death, while ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Both of them exhibit distinct features from apoptosis, necrosis, and autophagy in morphology, biochemistry, and genetics. However, a growing body of evidence suggests that pyroptosis and ferroptosis interact with autophagy and participate in the development of cancers, degenerative brain diseases and cardiovascular diseases. This review updated the current understanding of autophagy, pyroptosis, and ferroptosis, finding potential links and their effects on atherogenesis and plaque stability, thus providing ways to develop new pharmacological strategies to address atherosclerosis and stabilize vulnerable, ruptured plaques.
Collapse
Affiliation(s)
- Lin Lin
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mu-Xin Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Zhang
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun-Lun Li
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
275
|
Pei Y, Qian Y, Wang H, Tan L. Epigenetic Regulation of Ferroptosis-Associated Genes and Its Implication in Cancer Therapy. Front Oncol 2022; 12:771870. [PMID: 35174081 PMCID: PMC8841808 DOI: 10.3389/fonc.2022.771870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is an evolutionarily conserved form of regulated cell death triggered by iron-dependent phospholipid peroxidation. Ferroptosis contributes to the maintenance of tissue homeostasis under physiological conditions while its aberration is tightly connected with lots of pathophysiological processes such as acute tissue injury, chronic degenerative disease, and tumorigenesis. Epigenetic regulation controls chromatin structure and gene expression by writing/reading/erasing the covalent modifications on DNA, histone, and RNA, without altering the DNA sequence. Accumulating evidences suggest that epigenetic regulation is involved in the determination of cellular vulnerability to ferroptosis. Here, we summarize the recent advances on the epigenetic mechanisms that control the expression of ferroptosis-associated genes and thereby the ferroptosis process. Moreover, the potential value of epigenetic drugs in targeting or synergizing ferroptosis during cancer therapy is also discussed.
Collapse
Affiliation(s)
- Yanzi Pei
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yujie Qian
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Li Tan, ; Hao Wang,
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- *Correspondence: Li Tan, ; Hao Wang,
| |
Collapse
|
276
|
Li L, Li WJ, Zheng XR, Liu QL, Du Q, Lai YJ, Liu SQ. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Mol Med 2022; 28:11. [PMID: 35093024 PMCID: PMC8800262 DOI: 10.1186/s10020-022-00442-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most common type of neurodegenerative disease in the contemporary era, and it is still clinically incurable. Eriodictyol, a natural flavonoid compound that is mainly present in citrus fruits and some Chinese herbal medicines, has been reported to exert anti-inflammatory, antioxidant, anticancer and neuroprotective effects. However, few studies have examined the anti-AD effect and molecular mechanism of eriodictyol. Methods APP/PS1 mice were treated with eriodictyol and the cognitive function of mice was assessed using behavioral tests. The level of amyloid-β (Aβ) aggregation and hyperphosphorylation of Tau in the mouse brain were detected by preforming a histological analysis and Western blotting. HT-22 cells induced by amyloid-β peptide (1–42) (Aβ1–42) oligomers were treated with eriodictyol, after which cell viability was determined and the production of p-Tau was tested using Western blotting. Then, the characteristics of ferroptosis, including iron aggregation, lipid peroxidation and the expression of glutathione peroxidase type 4 (GPX4), were determined both in vivo and in vitro using Fe straining, Western blotting and qPCR assays. Additionally, the expression level of vitamin D receptor (VDR) and the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway were tested using Western blotting and qPCR assays. Afterward, HT-22 cells with VDR knockout were used to explore the potential mechanisms, and the relationship between VDR and Nrf2 was further assessed by performing a coimmunoprecipitation assay and bioinformatics analysis. Results Eriodictyol obviously ameliorated cognitive deficits in APP/PS1 mice, and suppressed Aβ aggregation and Tau phosphorylation in the brains of APP/PS1 mice. Moreover, eriodictyol inhibited Tau hyperphosphorylation and neurotoxicity in HT-22 cells induced by Aβ1–42 oligomer. Furthermore, eriodictyol exerted an antiferroptosis effect both in vivo and in vitro, and its mechanism may be associated with the activation of the Nrf2/HO-1 signaling pathway. Additionally, further experiments explained that the activation of Nrf2/HO-1 signaling pathway by eriodictyol treatment mediated by VDR. Conclusions Eriodictyol alleviated memory impairment and AD-like pathological changes by activating the Nrf2/HO-1 signaling pathway through a mechanism mediated by VDR, which provides a new possibility for the treatment of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00442-3.
Collapse
|
277
|
The Role of Oxidative Stress in the Pathogenesis of Vitiligo: A Culprit for Melanocyte Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8498472. [PMID: 35103096 PMCID: PMC8800607 DOI: 10.1155/2022/8498472] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Vitiligo is a common chronic acquired pigmentation disorder characterized by loss of pigmentation. Among various hypotheses proposed for the pathogenesis of vitiligo, oxidative stress-induced immune response that ultimately leads to melanocyte death remains most widely accepted. Oxidative stress which causes elevated levels of reactive oxygen species (ROS) can lead to dysfunction of molecules and organelles, triggering further immune response, and ultimately melanocyte death. In recent years, a variety of cell death modes have been studied, including apoptosis, autophagy and autophagic cell death, ferroptosis, and other novel modes of death, which will be discussed in this review in detail. Oxidative stress is also strongly linked to these modes of death. Under oxidative stress, ROS could induce autophagy by activating the Nrf2 antioxidant pathway of melanocytes. However, persistent stimulation of ROS might eventually lead to excessive activation of Nrf2 antioxidant pathway, which in turn will inactivate autophagy. Moreover, ferroptosis may be triggered by oxidative-related transcriptional production, including ARE, the positive feedback loop related to p62, and the reduced activity and expression of GPX4. Therefore, it is reasonable to infer that these modes of death are involved in the oxidative stress response, and that oxidative stress also acts as an initiator for various modes of death through some complex mechanisms. In this study, we aim to summarize the role of oxidative stress in vitiligo and discuss the corresponding mechanisms of interaction between various modes of cell death and oxidative stress. These findings may provide new ideas for exploring the pathogenesis and potential therapeutic targets of vitiligo.
Collapse
|
278
|
Metabolic regulation of ferroptosis in the tumor microenvironment. J Biol Chem 2022; 298:101617. [PMID: 35065965 PMCID: PMC8892088 DOI: 10.1016/j.jbc.2022.101617] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death triggered by impaired redox and antioxidant machinery and propagated by the accumulation of toxic lipid peroxides. A compendium of experimental studies suggest that ferroptosis is tumor-suppressive. Sensitivity or resistance to ferroptosis can be regulated by cell-autonomous and non-cell-autonomous metabolic mechanisms. This includes a role for ferroptosis that extends beyond the tumor cells themselves, mediated by components of the tumor microenvironment, including T cells and other immune cells. Herein, we review the intrinsic and extrinsic factors that promote the sensitivity of cancer cells to ferroptosis and conclude by describing approaches to harness the full utility of ferroptotic agents as therapeutic options for cancer therapy.
Collapse
|
279
|
Ge C, Zhang S, Mu H, Zheng S, Tan Z, Huang X, Xu C, Zou J, Zhu Y, Feng D, Aa J. Emerging Mechanisms and Disease Implications of Ferroptosis: Potential Applications of Natural Products. Front Cell Dev Biol 2022; 9:774957. [PMID: 35118067 PMCID: PMC8804219 DOI: 10.3389/fcell.2021.774957] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 01/09/2023] Open
Abstract
Ferroptosis, a newly discovered form of regulatory cell death (RCD), has been demonstrated to be distinct from other types of RCD, such as apoptosis, necroptosis, and autophagy. Ferroptosis is characterized by iron-dependent lipid peroxidation and oxidative perturbation, and is inhibited by iron chelators and lipophilic antioxidants. This process is regulated by specific pathways and is implicated in diverse biological contexts, mainly including iron homeostasis, lipid metabolism, and glutathione metabolism. A large body of evidence suggests that ferroptosis is interrelated with various physiological and pathological processes, including tumor progression (neuro)degenerative diseases, and hepatic and renal failure. There is an urgent need for the discovery of novel effective ferroptosis-modulating compounds, even though some experimental reagents and approved clinical drugs have been well documented to have anti- or pro-ferroptotic properties. This review outlines recent advances in molecular mechanisms of the ferroptotic death process and discusses its multiple roles in diverse pathophysiological contexts. Furthermore, we summarize chemical compounds and natural products, that act as inducers or inhibitors of ferroptosis in the prevention and treatment of various diseases. Herein, it is particularly highlighted that natural products show promising prospects in ferroptosis-associated (adjuvant) therapy with unique advantages of having multiple components, multiple biotargets and slight side effects.
Collapse
Affiliation(s)
- Chun Ge
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sujie Zhang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Huiwen Mu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shaojun Zheng
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhaoyi Tan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xintong Huang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chen Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jianjun Zou
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Yubing Zhu, ; Dong Feng, ; Jiye Aa,
| | - Dong Feng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Nanjing Southern Pharmaceutical Technology Co., Ltd., Nanjing, China
- *Correspondence: Yubing Zhu, ; Dong Feng, ; Jiye Aa,
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- *Correspondence: Yubing Zhu, ; Dong Feng, ; Jiye Aa,
| |
Collapse
|
280
|
Zhang X, Li X. Abnormal Iron and Lipid Metabolism Mediated Ferroptosis in Kidney Diseases and Its Therapeutic Potential. Metabolites 2022; 12:58. [PMID: 35050181 PMCID: PMC8779729 DOI: 10.3390/metabo12010058] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a newly identified form of regulated cell death driven by iron-dependent phospholipid peroxidation and oxidative stress. Ferroptosis has distinct biological and morphology characteristics, such as shrunken mitochondria when compared to other known regulated cell deaths. The regulation of ferroptosis includes different molecular mechanisms and multiple cellular metabolic pathways, including glutathione/glutathione peroxidase 4(GPX4) signaling pathways, which are involved in the amino acid metabolism and the activation of GPX4; iron metabolic signaling pathways, which are involved in the regulation of iron import/export and the storage/release of intracellular iron through iron-regulatory proteins (IRPs), and lipid metabolic signaling pathways, which are involved in the metabolism of unsaturated fatty acids in cell membranes. Ferroptosis plays an essential role in the pathology of various kidneys diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), autosomal dominant polycystic kidney disease (ADPKD), and renal cell carcinoma (RCC). Targeting ferroptosis with its inducers/initiators and inhibitors can modulate the progression of kidney diseases in animal models. In this review, we discuss the characteristics of ferroptosis and the ferroptosis-based mechanisms, highlighting the potential role of the main ferroptosis-associated metabolic pathways in the treatment and prevention of various kidney diseases.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
281
|
Wang Y, Zhao Y, Ye T, Yang L, Shen Y, Li H. Ferroptosis Signaling and Regulators in Atherosclerosis. Front Cell Dev Biol 2022; 9:809457. [PMID: 34977044 PMCID: PMC8716792 DOI: 10.3389/fcell.2021.809457] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis (AS) is a major cause of cardiovascular diseases such as coronary heart disease, heart failure and stroke. Abnormal lipid metabolism, oxidative stress and inflammation are the main features of AS. Ferroptosis is an iron-driven programmed cell death characterized by lipid peroxidation, which have been proved to participate in the development and progression of AS by different signal pathways. NRF2-Keap1 pathway decreases ferroptosis associated with AS by maintaining cellular iron homeostasis, increasing the production glutathione, GPX4 and NADPH. The p53 plays different roles in ferroptosis at different stages of AS in a transcription-dependent and transcription- independent manner. The Hippo pathway is involved in progression of AS, which has been proved the activation of ferroptosis. Other transcription factors, such as ATF3, ATF4, STAT3, also involved in the occurrence of ferroptosis and AS. Certain proteins or enzymes also have a regulatory role in AS and ferroptosis. In this paper, we review the mechanism of ferroptosis and its important role in AS in an attempt to find a new relationship between ferroptosis and AS and provide new ideas for the future treatment of AS.
Collapse
Affiliation(s)
- Yuqin Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yajie Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ting Ye
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
282
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
283
|
Dahlmanns M, Yakubov E, Dahlmanns JK. Genetic Profiles of Ferroptosis in Malignant Brain Tumors and Off-Target Effects of Ferroptosis Induction. Front Oncol 2021; 11:783067. [PMID: 34926298 PMCID: PMC8671613 DOI: 10.3389/fonc.2021.783067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma represents the most devastating form of human brain cancer, associated with a very poor survival rate of patients. Unfortunately, treatment options are currently limited and the gold standard pharmacological treatment with the chemotherapeutic drug temozolomide only slightly increases the survival rate. Experimental studies have shown that the efficiency of temozolomide can be improved by inducing ferroptosis – a recently discovered form of cell death, which is different from apoptosis, necrosis, or necroptosis and, which is characterized by lipid peroxidation and reactive oxygen species accumulation. Ferroptosis can also be activated to improve treatment of malignant stages of neuroblastoma, meningioma, and glioma. Due to their role in cancer treatment, ferroptosis-gene signatures have recently been evaluated for their ability to predict survival of patients. Despite positive effects during chemotherapy, the drugs used to induce ferroptosis – such as erastin and sorafenib – as well as genetic manipulation of key players in ferroptosis – such as the cystine-glutamate exchanger xCT and the glutathione peroxidase GPx4 – also impact neuronal function and cognitive capabilities. In this review, we give an update on ferroptosis in different brain tumors and summarize the impact of ferroptosis on healthy tissues.
Collapse
Affiliation(s)
- Marc Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Eduard Yakubov
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
| | | |
Collapse
|
284
|
Zhou L, Jiang Z, Shi Z, Zhao W, Lu Z, Xie Y, Zhang B, Lu H, Tan G, Wang Z. New Autophagy-Ferroptosis Gene Signature Predicts Survival in Glioma. Front Cell Dev Biol 2021; 9:739097. [PMID: 34869322 PMCID: PMC8634656 DOI: 10.3389/fcell.2021.739097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Ferroptosis plays an important role in glioma and significantly affects the prognosis, but the specific mechanism has not yet been elucidated. Recent studies suggest that autophagy regulates the process of ferroptosis. This study aimed to find potential autophagy-ferroptosis genes and explore the prognostic significance in glioma. Methods: Ferroptosis and autophagy genes were obtained from two online databases (zhounan.org/ferrdb and autophagy.lu/). The RNAseq data and clinical information were obtained from the Chinese Glioma Genome Atlas (CGGA) database (http://www.cgga.org.cn/). Univariate, multivariate, lasso and Cox regression analysis screened out prognosis-related genes, and a risk model was constructed. Receiver operating characteristic (ROC) curve analysis evaluated the predictive efficiency of the model. Finally, a nomogram was constructed to more accurately predict the prognosis of glioma. Results: We developed a Venn diagram showing 23 autophagy-ferroptosis genes. A total of 660 cases (including RNA sequences and complete clinical information) from two different cohorts (training group n = 413, verification group n = 247) of the CGGA database was acquired. Cohorts were screened to include five prognosis-related genes (MTOR, BID, HSPA5, CDKN2A, GABARAPLA2). Kaplan-Meier curves showed that the risk model was a good prognostic indicator (p < 0.001). ROC analysis showed good efficacy of the risk model. Multivariate Cox analysis also revealed that the risk model was suitable for clinical factors related to prognosis, including type of disease (primary, recurrence), grade (III-IV), age, temozolomide treatment, and 1p19q state. Using the five prognosis-related genes and the risk score, we constructed a nomogram assessed by C-index (0.7205) and a calibration plot that could more accurately predict glioma prognosis. Conclusion: Using a current database of autophagy and ferroptosis genes, we confirmed the prognostic significance of autophagy-ferroptosis genes in glioma, and we constructed a prognostic model to help guide treatment for high grade glioma in the future.
Collapse
Affiliation(s)
- Liwei Zhou
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Zhengye Jiang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongjie Shi
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Wenpeng Zhao
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Zhenwei Lu
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Yuanyuan Xie
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Hanwen Lu
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Guowei Tan
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China.,The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China.,The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
285
|
Li JY, Liu SQ, Yao RQ, Tian YP, Yao YM. A Novel Insight Into the Fate of Cardiomyocytes in Ischemia-Reperfusion Injury: From Iron Metabolism to Ferroptosis. Front Cell Dev Biol 2021; 9:799499. [PMID: 34926476 PMCID: PMC8675329 DOI: 10.3389/fcell.2021.799499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemia-reperfusion injury (IRI), critically involved in the pathology of reperfusion therapy for myocardial infarction, is closely related to oxidative stress the inflammatory response, and disturbances in energy metabolism. Emerging evidence shows that metabolic imbalances of iron participate in the pathophysiological process of cardiomyocyte IRI [also termed as myocardial ischemia-reperfusion injury (MIRI)]. Iron is an essential mineral required for vital physiological functions, including cellular respiration, lipid and oxygen metabolism, and protein synthesis. Nevertheless, cardiomyocyte homeostasis and viability are inclined to be jeopardized by iron-induced toxicity under pathological conditions, which is defined as ferroptosis. Upon the occurrence of IRI, excessive iron is transported into cells that drive cardiomyocytes more vulnerable to ferroptosis by the accumulation of reactive oxygen species (ROS) through Fenton reaction and Haber–Weiss reaction. The increased ROS production in ferroptosis correspondingly leads cardiomyocytes to become more sensitive to oxidative stress under the exposure of excess iron. Therefore, ferroptosis might play an important role in the pathogenic progression of MIRI, and precisely targeting ferroptosis mechanisms may be a promising therapeutic option to revert myocardial remodeling. Notably, targeting inhibitors are expected to prevent MIRI deterioration by suppressing cardiomyocyte ferroptosis. Here, we review the pathophysiological alterations from iron homeostasis to ferroptosis together with potential pathways regarding ferroptosis secondary to cardiovascular IRI. We also provide a comprehensive analysis of ferroptosis inhibitors and initiators, as well as regulatory genes involved in the setting of MIRI.
Collapse
Affiliation(s)
- Jing-yan Li
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuang-qing Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ying-ping Tian
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ping Tian, ; Yong-ming Yao,
| | - Yong-ming Yao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- *Correspondence: Ying-ping Tian, ; Yong-ming Yao,
| |
Collapse
|
286
|
Meng X, Huang W, Mo W, Shu T, Yang H, Ning H. ADAMTS-13-regulated nuclear factor E2-related factor 2 signaling inhibits ferroptosis to ameliorate cisplatin-induced acute kidney injuy. Bioengineered 2021; 12:11610-11621. [PMID: 34666603 PMCID: PMC8810018 DOI: 10.1080/21655979.2021.1994707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/20/2023] Open
Abstract
ADAMTS-13 plays an important role in acute kidney injury (AKI), but the mechanism of cisplatin (CP) induced AKI remains unclear. Ferroptosis is increased in CP-induced AKI, and ADAMTS13 levels are associated with ferritin expression. In this article, we will explore the relationship between the three. After CP induction, mice were given 0.1 and 0.3 nmol/kg ADAMTS-13, and then serum creatinine (Scr) and blood urea nitrogen (BUN) were detected by the kits. The pathological changes of renal tissue were observed by staining with HE and PAS staining, and Western blot detected the expressions of KIM1 and NGAL in renal tissu. Perl's staining detected iron deposition in renal tissues, the kits detected iron levels, and western blot detected the expression of ferroptosis related proteins. Then the mechanism was further explored by adding ferroptosis inhibitors Ferrostatin 1 (Fer-1) and iron supplements Fe. The expression of Nrf2 pathway related proteins were detected by Western blot. We found that ADAMTS13 alleviated CP-induced ferroptosis in AKI mice with renal function impairment and tubular damage. Fer-1partially reversed CP-induced AKI, and Fe exacerbated this effect. ADAMTS13 alleviated CP-induced inflammatory response and oxidative stress in AKI mice, during which the Nrf2 signaling pathway was abnormal. Overall, ADAMTS-13-regulated Nrf2 signaling inhibits ferroptosis to ameliorate CP-induced AKI.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Nephrology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Wenjing Huang
- Department of Nephrology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Weiwei Mo
- Department of Nephrology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Tingting Shu
- Department of Nephrology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Haoqiang Yang
- Department of Nephrology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Haibo Ning
- Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
287
|
The Regulatory Effects and the Signaling Pathways of Natural Bioactive Compounds on Ferroptosis. Foods 2021; 10:foods10122952. [PMID: 34945503 PMCID: PMC8700948 DOI: 10.3390/foods10122952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Natural bioactive compounds abundantly presented in foods and medicinal plants have recently received a remarkable attention because of their various biological activities and minimal toxicity. In recent years, many natural compounds appear to offer significant effects in the regulation of ferroptosis. Ferroptosis is the forefront of international scientific research which has been exponential growth since the term was coined. This type of regulated cell death is driven by iron-dependent phospholipid peroxidation. Recent studies have shown that numerous organ injuries and pathophysiological processes of many diseases are driven by ferroptosis, such as cancer, arteriosclerosis, neurodegenerative disease, diabetes, ischemia-reperfusion injury and acute renal failure. It is reported that the initiation and inhibition of ferroptosis plays a pivotal role in lipid peroxidation, organ damage, neurodegeneration and cancer growth and progression. Recently, many natural phytochemicals extracted from edible plants have been demonstrated to be novel ferroptosis regulators and have the potential to treat ferroptosis-related diseases. This review provides an updated overview on the role of natural bioactive compounds and the potential signaling pathways in the regulation of ferroptosis.
Collapse
|
288
|
Contribution of Lipid Oxidation and Ferroptosis to Radiotherapy Efficacy. Int J Mol Sci 2021; 22:ijms222212603. [PMID: 34830482 PMCID: PMC8622791 DOI: 10.3390/ijms222212603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023] Open
Abstract
Radiotherapy promotes tumor cell death and senescence through the induction of oxidative damage. Recent work has highlighted the importance of lipid peroxidation for radiotherapy efficacy. Excessive lipid peroxidation can promote ferroptosis, a regulated form of cell death. In this review, we address the evidence supporting a role of ferroptosis in response to radiotherapy and discuss the molecular regulators that underlie this interaction. Finally, we postulate on the clinical implications for the intersection of ferroptosis and radiotherapy.
Collapse
|
289
|
Valashedi MR, Najafi-Ghalehlou N, Nikoo A, Bamshad C, Tomita K, Kuwahara Y, Sato T, Roushandeh AM, Roudkenar MH. Cashing in on ferroptosis against tumor cells: Usher in the next chapter. Life Sci 2021; 285:119958. [PMID: 34534562 DOI: 10.1016/j.lfs.2021.119958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023]
Abstract
Ferroptosis is a new type of non-apoptotic regulated cell death (RCD) driven by unrestricted lethal lipid peroxidation, which is totally distinct from other forms of RCD in genetic and biochemical characteristics. It is generally believed that iron dependency, malfunction of the redox system, and excessive lipid peroxidation are the main hallmarks of ferroptosis. Accumulating pieces of evidence over the past few years have shown that ferroptosis is tightly related to various types of diseases, especially cancers. Ferroptosis has recently attracted great attention in the field of cancer research. A plethora of evidence shows that employing ferroptosis as a powerful weapon can remarkably enhance the efficacy of tumor cell annihilation. Better knowledge of the ferroptosis mechanisms and their interplay with cancer biology would enable us to use this fashionable tool in the best way. Herein, we will briefly present the relevant mechanisms of ferroptosis, the multifaceted relation between ferroptosis and cancer, encompassing tumor immunity, overcoming chemoresistance, and epithelial to mesenchymal transition. In the end, we will also briefly discuss the potential approaches to ferroptosis-based cancer therapy, such as using drugs and small molecules, nanoparticles, mitochondrial targeting, and photodynamic therapy.
Collapse
Affiliation(s)
- Mehdi Rabiee Valashedi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirsadegh Nikoo
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Chia Bamshad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
290
|
Chen Z, Yan Y, Qi C, Liu J, Li L, Wang J. The Role of Ferroptosis in Cardiovascular Disease and Its Therapeutic Significance. Front Cardiovasc Med 2021; 8:733229. [PMID: 34765653 PMCID: PMC8576275 DOI: 10.3389/fcvm.2021.733229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide with regulated cell death playing an important role in cardiac pathophysiology. However, the classical mode of cell death cannot fully explain the occurrence and development of heart disease. In recent years, much research has been performed on ferroptosis, a new type of cell death that causes cell damage and contributes to the development of atherosclerosis, myocardial infarction, heart failure, and other diseases. In this review, we discuss the role of different organelles in ferroptosis and also focus on the relationship between autophagy and ferroptosis. Additionally, we describe the specific mechanism by which ferroptosis contributes to the development of CVD. Finally, we summarize the current research on ferroptosis-related pathway inhibitors and the applications of clinically beneficial cardiovascular drugs.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Youyou Yan
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Chao Qi
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Longbo Li
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
291
|
Comprehensive Analysis of Ferroptosis-Related Markers for the Clinical and Biological Value in Gastric Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7007933. [PMID: 34745421 PMCID: PMC8566081 DOI: 10.1155/2021/7007933] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022]
Abstract
Gastric cancer is a highly malignant tumor with poor survival rate. Ferroptosis, a newly defined regulated cell death, is closely related to several tumors. Introduction of ferroptosis is promising for cancer treatments. However, the predictive role of ferroptosis in GC remains elusive. In this study, we screened the ferroptosis-related genes which were differentially expressed between normal and GC tissues. Then, based on these differentially expressed genes (DEGs), the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regressions were applied to construct the 10-gene prognostic signature (SP1, MYB, ALDH3A2, KEAP1, AIFM2, ITGB4, TGFBR1, MAP1LC3B, NOX4, and ZFP36) in TCGA training dataset. Based on the median risk score, all GC patients in TCGA training dataset and GSE84437 testing dataset were classified into a high- or low-risk group. GC patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk group (P < 0.001). Combined with the clinical characteristics, the risk score was proven as an independent factor for predicting the OS of GC patients. Besides, the GC patients in the high- or low-risk group showed significantly different GO and KEGG functional enrichments, somatic mutation, fractions of immune cells, and immunotherapy response. Then, the expression levels of these genes in signature were further verified in the GC cell lines and our own GC samples (30-paired tumor/normal tissues). Furthermore, the effects of ferroptosis inducer Erastin on these 10 ferroptosis-related genes in GC cell lines were also explored in our study. In conclusion, our study constructed a prognostic signature of 10 ferroptosis-related genes, which could well predict the prognosis and immunotherapy for GC patients.
Collapse
|
292
|
Lu W, Wu Y, Huang S, Zhang D. A Ferroptosis-Related Gene Signature for Predicting the Prognosis and Drug Sensitivity of Head and Neck Squamous Cell Carcinoma. Front Genet 2021; 12:755486. [PMID: 34745224 PMCID: PMC8566369 DOI: 10.3389/fgene.2021.755486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 01/20/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide and has a high mortality. Ferroptosis, an iron-dependent form of programmed cell death, plays a crucial role in tumor suppression and chemotherapy resistance in cancer. However, the prognostic and clinical values of ferroptosis-related genes (FRGs) in HNSCC remain to be further explored. In the current study, we constructed a ferroptosis-related prognostic model based on the Cancer Genome Atlas database and then explored its prognostic and clinical values in HNSCC via a series of bioinformatics analyses. As a result, we built a four-gene prognostic signature, including FTH1, BNIP3, TRIB3, and SLC2A3. Survival analysis showed that the high-risk group presented significantly poorer overall survival than the low-risk group. Moreover, the ferroptosis-related signature was found to be an independent prognostic predictor with high accuracy in survival prediction for HNSCC. According to immunity analyses, we found that the low-risk group had higher anti-tumor immune infiltration cells and higher expression of immune checkpoint molecules and meanwhile corelated more closely with some anti-tumor immune functions. Meanwhile, all the above results were validated in the independent HSNCC cohort GSE65858. Besides, the signature was found to be remarkably correlated with sensitivity of common chemotherapy drugs for HNSCC patients and the expression levels of signature genes were also significantly associated with drug sensitivity to cancer cells. Overall, we built an effective ferroptosis-related prognostic signature, which could predict the prognosis and help clinicians to perform individualized treatment strategy for HNSCC patients.
Collapse
Affiliation(s)
- Wei Lu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yihua Wu
- Department of Oral Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
293
|
Cerezetti MB, González SM, Ferraz CR, Verri WA, Rabelo EA, Seneda MM, Morotti F. Impact of the antioxidant quercetin on morphological integrity and follicular development in the in vitro culture of Bos indicus female ovarian fragments. In Vitro Cell Dev Biol Anim 2021; 57:856-864. [PMID: 34748153 DOI: 10.1007/s11626-021-00629-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/17/2021] [Indexed: 11/26/2022]
Abstract
We evaluated the effect of quercetin on the in vitro culture of bovine ovarian fragments in relation to morphology, development, and oxidative stress. Ovaries (n = 12) from Nelore heifers (n = 6) were used. Each pair of ovaries was divided into nine fragments, and one fragment from each animal was fixed in Bouin solution for 24 h (histology control) or frozen (- 80°C; control for oxidative stress). Other ovarian fragments (n = 8) were distributed into concentrations of 0, 10, 25, and 50 μg/mL of quercetin added to the culture medium for 5 or 10 d. Data were analyzed by chi-square test or ANOVA followed by Tukey's test (P < 0.05). Treatment with 25 μg/mL quercetin resulted in the highest proportion of total intact follicles for 5 (67.3%) and 10 d (57.1%); the concentration of 25 μg/mL also presented the best proportion of developing follicles for 5 d (68.7%) and 10 d (62.8%). Treatment with 25 μg/mL quercetin resulted in significant ferric reduction for 10 d of culture, but not for 5 d. No difference (P > 0.1) was observed in the production of reactive oxygen species or in the oxidative degradation of lipids between treatments and non-cultivated controls. Treatment with 25 μg/mL quercetin preserved the morphological integrity of the developing follicles for 5 and 10 d of culture, in addition to promoting the best antioxidant potential after 10 d of culture in bovine ovarian fragments.
Collapse
Affiliation(s)
- Marcela Bortoletto Cerezetti
- Laboratory of Animal Reproduction (REPROA), State University of Londrina (UEL), Londrina, PR, Brazil
- Professional Master's in Veterinary Clinics, Laboratório de Biotecnologia da Reprodução Animal (REPROA), DCV, CCA, State University of Londrina (UEL), Londrina, PR, Cep: 86057-970, Brazil
| | - Suellen Miguez González
- Laboratory of Animal Reproduction (REPROA), State University of Londrina (UEL), Londrina, PR, Brazil
| | - Camila Rodrigues Ferraz
- Department of Pathology, Biological Sciences Center (CCB), State University of Londrina (UEL), Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathology, Biological Sciences Center (CCB), State University of Londrina (UEL), Londrina, PR, Brazil
| | | | - Marcelo Marcondes Seneda
- Laboratory of Animal Reproduction (REPROA), State University of Londrina (UEL), Londrina, PR, Brazil
| | - Fábio Morotti
- Laboratory of Animal Reproduction (REPROA), State University of Londrina (UEL), Londrina, PR, Brazil.
- Professional Master's in Veterinary Clinics, Laboratório de Biotecnologia da Reprodução Animal (REPROA), DCV, CCA, State University of Londrina (UEL), Londrina, PR, Cep: 86057-970, Brazil.
| |
Collapse
|
294
|
Zhang P, Gao K, Zhang L, Sun H, Zhao X, Liu Y, Lv Z, Shi Q, Chen Y, Jiao D, Li Y, Gu W, Wang C. CRL2-KLHDC3 E3 ubiquitin ligase complex suppresses ferroptosis through promoting p14 ARF degradation. Cell Death Differ 2021; 29:758-771. [PMID: 34743205 DOI: 10.1038/s41418-021-00890-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023] Open
Abstract
The cystine/glutamate antiporter SLC7A11 (commonly known as xCT) functions to import cystine for glutathione biosynthesis, thereby protecting cells from oxidative stress and ferroptosis, a regulated form of non-apoptotic cell death driven by the accumulation of lipid-based reactive oxygen species (ROS). p14ARF, a well-established tumor suppressor, promotes ferroptosis by inhibiting NRF2-mediated SLC7A11 transcription. Here, we demonstrate the crucial role of Cullin 2 RING E3 ligase (CRL2)-KLHDC3 E3 ubiquitin ligase complex in regulating p14ARF protein stability. KLHDC3 acts as a CRL2 adaptor that specifically recognizes a C-terminal degron in p14ARF and triggers p14ARF for ubiquitin-proteasomal degradation. This regulation mode is absent in the murine p14ARF homolog, p19arf which lacks the C-terminal degron. We also show that KLHDC3 suppresses ferroptosis in vitro and supports tumor growth in vivo by relieving p14ARF-mediated suppression of SLC7A11 transcription. Overall, these findings reveal that the protein stability and pro-ferroptotic function of p14ARF are controlled by a CRL2 E3 ubiquitin ligase complex, and suggest that suppression of the p14ARF-NRF2-SLC7A11 regulatory pathway by KLHDC3 overexpression likely contributes to cancer progression.
Collapse
Affiliation(s)
- Pingzhao Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China. .,Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Liang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Huiru Sun
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaying Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yajuan Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing Shi
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yingji Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Dongyue Jiao
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yao Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Chenji Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
295
|
Cai S, Fu S, Zhang W, Yuan X, Cheng Y, Fang J. SIRT6 silencing overcomes resistance to sorafenib by promoting ferroptosis in gastric cancer. Biochem Biophys Res Commun 2021; 577:158-164. [PMID: 34530350 DOI: 10.1016/j.bbrc.2021.08.080] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 02/09/2023]
Abstract
Sorafenib is a tyrosine kinase inhibitor that shows anti-tumour effects against various cancers including gastric cancer (GC). However, the clinical application of sorafenib is often hampered by drug resistance. Sirtuins 6 (SIRT6) is a member of the Sirtuin family of NAD (+)-dependent enzymes that are critically involved in various biological activities. This study presents that SIRT6 silencing overcomes sorafenib resistance by promoting ferroptosis, which is a novel form of cell death. Mechanistically, SIRT6 inhibition led to the inactivation of the Keap1/Nrf2 signalling pathway and downregulation of GPX4. The overexpression of GPX4 or activation of Keap1/Nrf2 reverses the effects of the downregulation of SIRT6 on sorafenib-induced ferroptosis. Thus, targeting the SIRT6/Keap1/Nrf2/GPX4 signalling pathway may be a potential strategy for overcoming sorafenib resistance in GC.
Collapse
Affiliation(s)
- Shunv Cai
- Department of Anaesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Shuang Fu
- Department of Anaesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Weikang Zhang
- Department of Anaesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Xiaohong Yuan
- Department of Anaesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yun Cheng
- Department of Anaesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Jun Fang
- Department of Anaesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.
| |
Collapse
|
296
|
Cui Y, Zhang Z, Zhou X, Zhao Z, Zhao R, Xu X, Kong X, Ren J, Yao X, Wen Q, Guo F, Gao S, Sun J, Wan Q. Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. J Neuroinflammation 2021; 18:249. [PMID: 34717678 PMCID: PMC8557003 DOI: 10.1186/s12974-021-02231-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Many neurological diseases involve neuroinflammation, during which overproduction of cytokines by immune cells, especially microglia, can aggregate neuronal death. Ferroptosis is a recently discovered cell metabolism-related form of cell death and RSL3 is a well-known inducer of cell ferroptosis. Here, we aimed to investigate the effects of RSL3 in neuroinflammation and sensitivity of different type of microglia and macrophage to ferroptosis. METHODS Here, we used quantitative RT-PCR analysis and ELISA analysis to analyze the production of proinflammatory cytokine production of microglia and macrophages after lipopolysaccharides (LPS) stimulation. We used CCK8, LDH, and flow cytometry analysis to evaluate the sensitivity of different microglia and macrophages to RSL3-induced ferroptosis. Western blot was used to test the activation of inflammatory signaling pathway and knockdown efficiency. SiRNA-mediated interference was conducted to knockdown GPX4 or Nrf2 in BV2 microglia. Intraperitoneal injection of LPS was performed to evaluate systemic inflammation and neuroinflammation severity in in vivo conditions. RESULTS We found that ferroptosis inducer RSL3 inhibited lipopolysaccharides (LPS)-induced inflammation of microglia and peritoneal macrophages (PMs) in a cell ferroptosis-independent manner, whereas cell ferroptosis-conditioned medium significantly triggered inflammation of microglia and PMs. Different type of microglia and macrophages showed varied sensitivity to RSL3-induced ferroptosis. Mechanistically, RSL3 induced Nrf2 protein expression to inhibit RNA Polymerase II recruitment to transcription start site of proinflammatory cytokine genes to repress cytokine transcription, and protect cells from ferroptosis. Furthermore, simultaneously injection of RSL3 and Fer-1 ameliorated LPS-induced neuroinflammation in in vivo conditions. CONCLUSIONS These data revealed the proinflammatory role of ferroptosis in microglia and macrophages, identified RSL3 as a novel inhibitor of LPS-induced inflammation, and uncovered the molecular regulation of microglia and macrophage sensitivity to ferroptosis. Thus, targeting ferroptosis in diseases by using RSL3 should consider both the pro-ferroptosis effect and the anti-inflammation effect to achieve optimal outcome.
Collapse
Affiliation(s)
- Yu Cui
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Zhaolong Zhang
- The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
| | - Xin Zhou
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Zhiyuan Zhao
- The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
| | - Rui Zhao
- The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
| | - Xiangyu Xu
- The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Jinyang Ren
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Xujin Yao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Qian Wen
- Department of Biomedical Center, Qingdao University, Qingdao, 266071, China
| | - Feifei Guo
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Shengli Gao
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Jiangdong Sun
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, Ningxia Road 308, Qingdao, 266071, China.
| |
Collapse
|
297
|
Wächter K, Navarrete Santos A, Großkopf A, Baldensperger T, Glomb MA, Szabó G, Simm A. AGE-Rich Bread Crust Extract Boosts Oxidative Stress Interception via Stimulation of the NRF2 Pathway. Nutrients 2021; 13:nu13113874. [PMID: 34836129 PMCID: PMC8622267 DOI: 10.3390/nu13113874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Advanced glycation end products (AGEs) result from a non-enzymatic reaction of proteins with reactive carbohydrates. Heat-processed food, such as bread, contains high amounts of AGEs. The activation of the NF-κB signaling pathway by bread crust extract (BCE) is well understood. However, it is largely unknown whether NRF2, the master regulator of oxidative stress resistance in mammalian cells, is affected by BCE. We have investigated the molecular mechanisms by which BCE induces antioxidant gene expression in cellular models. Our data showed that soluble extracts from bread crust are capable of stimulating the NRF2 signaling pathway. Furthermore, NRF2 pathway activation was confirmed by microarray and reporter-cell analyses. QRT-PCR measurements and Western blot analyses indicated an induction of antioxidative genes such as HMOX1, GCLM and NQO1 upon BCE treatment. Moreover, BCE pretreated cells had a survival advantage compared to control cells when exposed to oxidative stress. BCE induces phosphorylation of AKT and ERK kinase in EA.hy926 cells. By mass spectrometry, several new, potentially active modifications in BCE were identified. Our findings indicate that BCE activates NRF2-dependent antioxidant gene expression, thus provoking a protection mechanism against oxidative stress-mediated tissue injury. Hence, BCE can be considered as functional food with antioxidative and cardioprotective potential.
Collapse
Affiliation(s)
- Kristin Wächter
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.G.); (G.S.); (A.S.)
- Correspondence: ; Tel.: +49-345-557-7068
| | - Alexander Navarrete Santos
- Center for Medical Basic Research, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Anne Großkopf
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.G.); (G.S.); (A.S.)
| | - Tim Baldensperger
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany;
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Marcus A. Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Gábor Szabó
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.G.); (G.S.); (A.S.)
| | - Andreas Simm
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (A.G.); (G.S.); (A.S.)
- Center for Medical Basic Research, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| |
Collapse
|
298
|
Dong H, Xia Y, Jin S, Xue C, Wang Y, Hu R, Jiang H. Nrf2 attenuates ferroptosis-mediated IIR-ALI by modulating TERT and SLC7A11. Cell Death Dis 2021; 12:1027. [PMID: 34716298 PMCID: PMC8556385 DOI: 10.1038/s41419-021-04307-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
Acute lung injury (ALI) carries a mortality rate of ~50% and is a hot topic in the world of critical illness research. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical modulator of intracellular oxidative homeostasis and serves as an antioxidant. The Nrf2-related anti-oxidative stress is strongly associated with ferroptosis suppression. Meanwhile, telomerase reverse transcriptase (TERT), the catalytic portion of the telomerase protein, is reported to travel to the mitochondria to alleviate ROS. In our study, we found that TERT was significantly reduced in lung tissue of Nrf2-/- mice in the model of intestinal ischemia/reperfusion-induced acute lung injury (IIR-ALI). In addition, MDA levels showed marked increase, whereas GSH and GPX4 levels fell drastically in ALI models. Moreover, typical-related structural changes were observed in the type II alveolar epithelial cells in the IIR model. We further employed the scanning transmission X-ray microscopy (STXM) to examine Fe levels and distribution within cells. Based on our observations, massive aggregates of Fe were found in the MLE-12 cells upon OGD/R (oxygen and glucose deprivation/reperfusion) induction. Additionally, Nrf2 silencing dramatically reduced TERT and SLC7A11 levels, and further exacerbated cellular injuries. In contrast, TERT-overexpressing cells exhibited marked elevation in SLC7A11 levels and thereby inhibited ferroptosis. Collectively, these data suggest that Nrf2 can negatively regulate ferroptosis via modulation of TERT and SLC7A11 levels. The conclusion from this study brings insight into new candidates that can be targeted in future IIR-ALI therapy.
Collapse
Affiliation(s)
- Hui Dong
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Yangyang Xia
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Shanliang Jin
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Chaofan Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yanjun Wang
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Rong Hu
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China.
| | - Hong Jiang
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China.
| |
Collapse
|
299
|
Liu J, Wang Y, Meng H, Yin Y, Zhu H, Ni T. Identification of the Prognostic Signature Associated With Tumor Immune Microenvironment of Uterine Corpus Endometrial Carcinoma Based on Ferroptosis-Related Genes. Front Cell Dev Biol 2021; 9:735013. [PMID: 34692692 PMCID: PMC8526722 DOI: 10.3389/fcell.2021.735013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/13/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Uterine corpus endometrial carcinoma (UCEC) is the sixth most common cancer worldwide. Ferroptosis plays an important role in malignant tumors. However, the study of ferroptosis in the endometrial carcinoma remains blank. Methods: First, we constructed a ferroptosis-related signature based on the expression profiles from The Cancer Genome Atlas database. Then, patients were divided into the high-risk and low-risk groups based on this signature. The signature was evaluated by Kaplan–Meier analysis and receiver operating characteristic (ROC) analysis. We further investigated the relationship between this signature and immune microenvironment via CIBERSORT algorithm, ImmuCellAI, MAF, MSI sensor algorithm, GSEA, and GDSC. Results: This signature could be an independent prognostic factor based on multivariate Cox regression analysis. GSEA revealed that this signature was associated with immune-related phenotype. In addition, we indicated the different status of immune infiltration and response to the immune checkpoint between low-risk and high-risk groups. Patients in the low-risk group were more likely to present with a higher expression of immune checkpoint molecules and tumor mutation burden. Meanwhile, the low-risk patients showed sensitive responses to chemotherapy drugs. Conclusion: In summary, the six ferroptosis-related genes signature could be used in molecular subgrouping and accurately predict the prognosis of UCEC.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yin Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjun Zhu
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Tingting Ni
- Department of Oncology, Affiliated Tumor Hospital to Nantong University, Nantong, China
| |
Collapse
|
300
|
Lu J, Zhao Y, Liu M, Lu J, Guan S. Toward improved human health: Nrf2 plays a critical role in regulating ferroptosis. Food Funct 2021; 12:9583-9606. [PMID: 34542140 DOI: 10.1039/d1fo01036k] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferroptosis is a recently defined type of regulated cell death caused by an excess iron-dependent accumulation of lipid peroxides and is morphologically and biochemically distinct from other types of cell death. Notably, Nrf2 is identified to exquisitely modulate ferroptosis due to its ability to target a host of ferroptosis cascade genes, which places Nrf2 in the pivotal position of ferroptosis. This paper reviews the regulation effect of Nrf2 on ferroptosis, different activation mechanisms of Nrf2 as well as the relevance of the Nrf2-ferroptosis axis in diseases, and finally summarizes foods with beneficial effects in ferroptosis via the Nrf2 pathway and aims to serve as a reference for follow-up studies of food functions related to Nrf2, ferroptosis, and human health.
Collapse
Affiliation(s)
- Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China. .,Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yanan Zhao
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Jianing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China. .,Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|