251
|
Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol 2021; 14:173. [PMID: 34674757 PMCID: PMC8529570 DOI: 10.1186/s13045-021-01187-y] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, neutrophils have attracted increasing attention because of their cancer-promoting effects. An elevated neutrophil-to-lymphocyte ratio is considered a prognostic indicator for patients with cancer. Neutrophils are no longer regarded as innate immune cells with a single function, let alone bystanders in the pathological process of cancer. Their diversity and plasticity are being increasingly recognized. This review summarizes previous studies assessing the roles and mechanisms of neutrophils in cancer initiation, progression, metastasis and relapse. Although the findings are controversial, the fact that neutrophils play a dual role in promoting and suppressing cancer is undeniable. The plasticity of neutrophils allows them to adapt to different cancer microenvironments and exert different effects on cancer. Given the findings from our own research, we propose a reasonable hypothesis that neutrophils may be reprogrammed into a cancer-promoting state in the cancer microenvironment. This new perspective indicates that neutrophil reprogramming in the course of cancer treatment is a problem worthy of attention. Preventing or reversing the reprogramming of neutrophils may be a potential strategy for adjuvant cancer therapy.
Collapse
Affiliation(s)
- Shumin Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liaoliao Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
252
|
Complete loss of miR-200 family induces EMT associated cellular senescence in gastric cancer. Oncogene 2021; 41:26-36. [PMID: 34667277 PMCID: PMC8724006 DOI: 10.1038/s41388-021-02067-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023]
Abstract
The EMT (epithelial-to-mesenchymal-transition) subtype of gastric cancer (GC) is associated with poor treatment responses and unfavorable clinical outcomes. Despite the broad physiological roles of the micro-RNA (miR)-200 family, they largely serve to maintain the overall epithelial phenotype. However, during late-stage gastric tumorigenesis, members of the miR-200 family are markedly suppressed, resulting in the transition to the mesenchymal state and the acquisition of invasive properties. As such, the miR-200 family represents a robust molecular marker of EMT, and subsequently, disease severity and prognosis. Most reports have studied the effect of single miR-200 family member knockdown. Here, we employ a multiplex CRISPR/Cas9 system to generate a complete miR-200 family knockout (FKO) to investigate their collective and summative role in regulating key cellular processes during GC pathogenesis. Genetic deletion of all miR-200s in the human GC cell lines induced potent morphological alterations, G1/S cell cycle arrest, increased senescence-associated β-galactosidase (SA-β−Gal) activity, and aberrant metabolism, collectively resembling the senescent phenotype. Coupling RNA-seq data with publicly available datasets, we revealed a clear separation of senescent and non-senescent states amongst FKO cells and control cells, respectively. Further analysis identified key senescence-associated secretory phenotype (SASP) components in FKO cells and a positive feedback loop for maintenance of the senescent state controlled by activation of TGF-β and TNF-α pathways. Finally, we showed that miR-200 FKO associated senescence in cancer epithelial cells significantly recruited stromal cells in the tumor microenvironment. Our work has identified a new role of miR-200 family members which function as an integrated unit serving to link senescence with EMT, two major conserved biological processes.
Collapse
|
253
|
Hedetoft M, Hansen MB, Madsen MB, Johansen JS, Hyldegaard O. Associations between YKL-40 and markers of disease severity and death in patients with necrotizing soft-tissue infection. BMC Infect Dis 2021; 21:1046. [PMID: 34627195 PMCID: PMC8502346 DOI: 10.1186/s12879-021-06760-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background Necrotizing soft-tissue infection (NSTI) is a severe and fast-progressing bacterial infection. Prognostic biomarkers may provide valuable information in treatment guidance and decision-making, but none have provided sufficient robustness to have a clinical impact. YKL-40 may reflect the ongoing pathological inflammatory processes more accurately than traditional biomarkers as it is secreted by the activated immune cells, but its prognostic yields in NSTI remains unknown. For this purpose, we investigated the association between plasma YKL-40 and 30-day mortality in patients with NSTI, and assessed its value as a marker of disease severity. Methods We determined plasma YKL-40 levels in patients with NSTI (n = 161) and age-sex matched controls (n = 65) upon admission and at day 1, 2 and 3. Results Baseline plasma YKL-40 was 1191 ng/mL in patients with NSTI compared with 40 ng/mL in controls (p < 0.001). YKL-40 was found to be significantly higher in patients with septic shock (1942 vs. 720 ng/mL, p < 0.001), and in patients receiving renal-replacement therapy (2382 vs. 1041 ng/mL, p < 0.001). YKL-40 correlated with Simplified Acute Physiology Score II (Rho 0.33, p < 0.001). Baseline YKL-40 above 1840 ng/mL was associated with increased risk of 30-day mortality in age-sex-comorbidity adjusted analysis (OR 3.77, 95% CI; 1.59–9.24, p = 0.003), but after further adjustment for Simplified Acute Physiology Score II no association was found between YKL-40 and early mortality. Conclusion High plasma YKL-40 to be associated with disease severity, renal-replacement therapy and risk of death in patients with NSTI. However, YKL-40 is not an independent predictor of 30-day mortality. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06760-x.
Collapse
Affiliation(s)
- Morten Hedetoft
- Department of Anaesthesia, Centre of Head and Orthopaedics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Marco Bo Hansen
- Department of Anaesthesia, Centre of Head and Orthopaedics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Konduto ApS, Sani nudge, Copenhagen, Denmark
| | - Martin Bruun Madsen
- Department of Intensive Care 4131, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Julia Sidenius Johansen
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Centre of Head and Orthopaedics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
254
|
Huang J, Gu Z, Xu Y, Jiang L, Zhu W, Wang W. CHI3L1 (Chitinase 3 Like 1) upregulation is associated with macrophage signatures in esophageal cancer. Bioengineered 2021; 12:7882-7892. [PMID: 34612767 PMCID: PMC8806503 DOI: 10.1080/21655979.2021.1974654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chitinase-3 like-protein-1 (CHI3L1) has been found to be overexpressed in many cancers and increased CHI3L1 level in serum seems to correlate with a poor prognosis in patients with metastatic cancer. However, the expression of CHI3L1 and its potential role in esophageal cancer remains unclear. We retrieved publicly available RNA-seq datasets of esophageal cancer tissues and normal esophageal tissues. We analyzed the correlation between CHI3L1 expression with different clinical parameters (such as T stages, N stage, response to treatment and tumor residues after treatment), the relationship between CHI3L1 expression level and prognosis, and the relationship between CHI3L1 expression and different immune cell signatures in esophageal cancer tissues. A transgenic mouse model of esophageal carcinoma was used to validate CHI3L1 expression and its association with macrophage signature gene expression. The effect of recombinant CHI3L1 on macrophage polarization was assessed in cell model. We showed the upregulation of CHI3L1 in esophageal cancer tissues in comparison to normal esophageal tissues, and its upregulation was positively associated with tumor size. The analysis of immunological signatures and CHI3L1 expression indicated that CHI3L1 level was highly correlated with increased expression of macrophage signature genes in esophageal tumor tissues. CHI3L1 was also upregulated in the esophagus dysplasia tissues in a transgenic mouse model. Recombinant CHI3L1 treatment favored M2 gene expression in LPS-stimulated RAW 264.7 macrophage cell line. CHI3L1 overexpression may favor macrophage recruitment in esophageal tumor tissues. Future studies are needed to delineate the mechanisms of CHI3L1-mediated macrophage recruitment and polarization in tumor tissues.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Zhenlin Gu
- Department of Vascular Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Yingying Xu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Lei Jiang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Weiguo Zhu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Wanwei Wang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
255
|
Böckelmann LC, Felix T, Calabrò S, Schumacher U. YKL-40 protein expression in human tumor samples and human tumor cell line xenografts: implications for its use in tumor models. Cell Oncol (Dordr) 2021; 44:1183-1195. [PMID: 34432260 PMCID: PMC8516773 DOI: 10.1007/s13402-021-00630-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND YKL-40, also known as non-enzymatic chitinase-3 like-protein-1 (CHI3L1), is a glycoprotein expressed and secreted mainly by inflammatory cells and tumor cells. Accordingly, several studies demonstrated elevated YKL-40 serum levels in cancer patients and found YKL-40 to be correlated with a poor prognosis and disease severity in some tumor entities. YKL-40 was suggested to be involved in angiogenesis and extracellular matrix remodeling. As yet, however, its precise biological function remains elusive. METHODS As YKL-40 protein expression has only been investigated in few malignancies, we employed immunohistochemical detection in a large multi-tumor tissue microarray consisting of 2,310 samples from 72 different tumor entities. In addition, YKL-40 protein expression was determined in primary mouse xenograft tumors derived from human cancer cell lines. RESULTS YKL-40 could be detected in almost all cancer entities and was differently expressed depending on tumor stage and subtype (e.g., thyroid cancer, colorectal cancer, gastric cancer and ovarian cancer). While YKL-40 was absent in in vitro grown human cancer cell lines, YKL-40 expression was upregulated in xenograft tumor tissues in vivo. CONCLUSIONS These data provide new insights into YKL-40 expression at the protein level in various tumor entities and its regulation in tumor models. Our data suggest that upregulation of YKL-40 expression is a common feature in vivo and is finely regulated by tumor cell-microenvironment interactions.
Collapse
Affiliation(s)
- Lukas Clemens Böckelmann
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Theresa Felix
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simona Calabrò
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
256
|
Sell SL, Prough DS, Weisz HA, Widen SG, Hellmich HL. Leveraging publicly available coronavirus data to identify new therapeutic targets for COVID-19. PLoS One 2021; 16:e0257965. [PMID: 34587192 PMCID: PMC8480897 DOI: 10.1371/journal.pone.0257965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023] Open
Abstract
Many important questions remain regarding severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the viral pathogen responsible for COVID-19. These questions include the mechanisms explaining the high percentage of asymptomatic but highly infectious individuals, the wide variability in disease susceptibility, and the mechanisms of long-lasting debilitating effects. Bioinformatic analysis of four coronavirus datasets representing previous outbreaks (SARS-CoV-1 and MERS-CoV), as well as SARS-CoV-2, revealed evidence of diverse host factors that appear to be coopted to facilitate virus-induced suppression of interferon-induced innate immunity, promotion of viral replication and subversion and/or evasion of antiviral immune surveillance. These host factors merit further study given their postulated roles in COVID-19-induced loss of smell and brain, heart, vascular, lung, liver, and gut dysfunction.
Collapse
Affiliation(s)
- Stacy L. Sell
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Harris A. Weisz
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Steve G. Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
257
|
Shi G, Chen W, Gong P, Wang M, Zhou J, Wang X, Guo M, Lu J, Li Y, Feng H, Fu X, Zhou R, Xue S. The Relationship Between Serum YKL-40 Levels on Admission and Stroke-Associated Pneumonia in Patients with Acute Ischemic Stroke. J Inflamm Res 2021; 14:4361-4369. [PMID: 34511972 PMCID: PMC8422031 DOI: 10.2147/jir.s329612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background Stroke-associated pneumonia (SAP) is a standout complication after acute ischemic stroke (AIS), with a prevalence of 7–38%. The aim of this prospective study was to investigate the relationship between serum YKL-40 levels at admission and SAP. Methods Between August 2020 and February 2021, consecutive AIS patients from two centers were enrolled prospectively. Serum YKL-40 concentrations were measured via enzyme-linked immunosorbent assay. We performed logistic regression analyses to explore the relationship between YKL-40 and SAP. Receiver operating characteristic curve was also used to assess the predictive ability of YKL-40 in predicting SAP. Results Ultimately, a total of 511 AIS patients were recruited. Multivariate logistic regression analysis showed that YKL-40 was independently related to SAP, whether as a continuous variable or as quartiles (P=0.001). The area under curve of YKL-40 to predict SAP was 0.765. The optimal cutoff value of YKL-40 as a predictor of SAP was determined to be 206.4 ng/mL, where the sensitivity was 63.1% and the specificity was 82.0%. Conclusion Our study demonstrated that YKL-40 might be considered as a useful biomarker to predict SAP in AIS patients.
Collapse
Affiliation(s)
- Guomei Shi
- Department of Neurology, The Taixing People's Hospital, Taixing, Jiangsu, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Wenxiu Chen
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Pengyu Gong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Meng Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaorong Wang
- Department of Neurology, The Taixing People's Hospital, Taixing, Jiangsu, People's Republic of China
| | - Minwang Guo
- Department of Neurology, The Taixing People's Hospital, Taixing, Jiangsu, People's Republic of China
| | - Jingye Lu
- Department of Neurology, The Taixing People's Hospital, Taixing, Jiangsu, People's Republic of China
| | - Yan Li
- Department of Neurology, The Taixing People's Hospital, Taixing, Jiangsu, People's Republic of China
| | - Hongxuan Feng
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, People's Republic of China
| | - Xuetao Fu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Rujuan Zhou
- Department of Neurology, The Taixing People's Hospital, Taixing, Jiangsu, People's Republic of China
| | - Shouru Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
258
|
Inflammatory Biomarker Score Identifies Patients with Six-Fold Increased Risk of One-Year Mortality after Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13184599. [PMID: 34572824 PMCID: PMC8466571 DOI: 10.3390/cancers13184599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary For 20 years, the CA 19-9 blood test has been the only broadly used biomarker of pancreatic ductal adenocarcinoma (PDAC). We lack easily available biomarkers to help differentiate patients between good, intermediate and poor survivors at the time of PDAC diagnosis. Using one of the largest studies of patients with PDAC, we found that a simple combination of blood tests, namely CRP, CA 19-9 and IL-6, into a single biomarker score was a better marker of one-year survival than the currently recommended CA 19-9 alone or any other combination of the four inflammatory biomarkers examined (CRP, CA 19-9, IL-6 and YKL-40). However, since this is the first study examining this inflammatory biomarker score, future validation studies are needed. Moreover, CRP outperformed CA 19-9 in the majority of patients, thus questioning the routine use of CA 19-9 in patients with PDAC. Abstract We examined whether elevated plasma C-reactive protein (CRP), carbohydrate antigen (CA) 19-9, interleukin-6 (IL-6) and YKL-40, individually or combined, can identify poor survivors among patients with pancreatic ductal adenocarcinoma (PDAC). We measured CRP, CA 19-9, IL-6 and YKL-40 in 993 patients at the time of PDAC diagnosis. The biomarker score was the sum of biomarker categories, coded 0, 1 and 2 for low, intermediate and high plasma concentrations, respectively. High vs. low levels of CRP, CA 19-9 and IL-6 were each independently associated with a two-fold increased risk of one-year mortality. CRP performed best in patients with advanced and CA 19-9 in patients with low cancer stages. YKL-40 was not associated with mortality and, therefore, was not included in the biomarker score. Compared to the biomarker score = 0, the multifactorially adjusted hazard ratios for one-year mortality were 1.56 (95% confidence interval: 0.99–2.44) for score = 1, 2.22 (1.41–3.49) for score = 2, 3.44 (2.20–5.38) for score = 3, 5.13 (3.21–8.17) for score = 4 and 6.32 (3.84–10.41) for score = 5–6 (p-value for trend = 3 × 10−31). This score performed better than any single biomarker or combination of biomarkers when examined in similarly sized or other categories. In conclusion, a combination score of elevated CRP, CA 19-9 and IL-6 identified patients with six-fold higher one-year mortality.
Collapse
|
259
|
Shantha Kumara HMC, Miyagaki H, Herath SA, Pettke E, Yan X, Cekic V, Whelan RL. Plasma MMP-2 and MMP-7 levels are elevated first month after surgery and may promote growth of residual metastases. World J Gastrointest Oncol 2021; 13:879-892. [PMID: 34457193 PMCID: PMC8371512 DOI: 10.4251/wjgo.v13.i8.879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MMP-2 also known as gelatinase A and MMP-7 (matrilysin) are members of the zinc-dependent family of MMPs (Matrix metalloproteinase). MMP-2 and MMP-7 are remodeling enzymes that digest extracellular matrix; MMP-2 is extensively expressed during development and is upregulated at sites of tissue damage, inflammation, and in stromal cells of metastatic tumors. MMP-7 is expressed in the epithelial cells and in a variety of cancers including colon tumors. Plasma MMP-2 and MMP-7 levels were assessed before and after minimally invasive colorectal resection for cancer pathology.
AIM To determine plasma MMP-2 and MMP-7 levels before and after minimally invasive colorectal resection for cancer pathology.
METHODS Patients enrolled in a plasma bank for whom plasma was available were eligible. Plasma obtained from preoperative (Preop) and postoperative blood samples was used. Only colorectal cancer (CRC) patients who underwent elective minimally invasive cancer resection with preop, post-operative day (POD) 1, 3 and at least 1 late postop sample (POD 7-34) were included. Late samples were bundled into 7 d blocks (POD 7-13, 14-20, etc.) and treated as single time points. Plasma MMP-2 and MMP-7 levels were determined via enzyme-linked immunosorbent assay in duplicate.
RESULTS Total 88 minimally invasive CRC resection CRC patients were studied (right colectomy, 37%; sigmoid, 24%; and LAR/AR 18%). Cancer stages were: 1, 31%; 2, 30%; 3, 34%; and 4, 5%. Mean Preop MMP-2 plasma level (ng/mL) was 179.3 ± 40.9 (n = 88). Elevated mean levels were noted on POD1 (214.3 ± 51.2, n = 87, P < 0.001), POD3 (258.0 ± 63.9, n = 80, P < 0.001), POD7-13 (229.9 ± 62.3, n = 65, P < 0.001), POD 14-20 (234.9 ± 47.5, n = 25, P < 0.001), POD 21-27 (237.0 ± 63.5, n = 17, P < 0.001,) and POD 28-34 (255.4 ± 59.7, n = 15, P < 0.001). Mean Preop MMP-7 level was 3.9 ± 1.9 (n = 88). No significant differences were noted on POD 1 or 3, however, significantly elevated levels were noted on POD 7-13 (5.7 ± 2.5, n = 65, P < 0.001), POD 14-20 (5.9 ± 2.5, n = 25, P < 0.001), POD 21-27 (6.1 ± 3.6, n = 17, P = 0.002) and on POD 28-34 (6.8 ± 3.3, n = 15 P < 0.001,) vs preop levels.
CONCLUSION MMP-2 levels are elevated for 5 wk and MMP-7 levels elevated for weeks 2-6. The etiology of these changes in unclear, trauma and wound healing likely play a role. These changes may promote residual tumor growth and metastasis.
Collapse
Affiliation(s)
- HMC Shantha Kumara
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
| | - Hiromichi Miyagaki
- Department of Gastroenterological Surgery, Osaka University, Suita 565-0862, Osaka, Japan
| | - Sajith A Herath
- Analytic Department, Novartis, Morris Plains, NJ 07905, United States
| | - Erica Pettke
- Department of Surgery, Swedish Medical Center, Seattle, WA 98122, United States
| | - Xiaohong Yan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
| | - Vesna Cekic
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
| | - Richard L Whelan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10028, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States
| |
Collapse
|
260
|
Behring M, Ye Y, Elkholy A, Bajpai P, Agarwal S, Kim H, Ojesina AI, Wiener HW, Manne U, Shrestha S, Vazquez AI. Immunophenotype-associated gene signature in ductal breast tumors varies by receptor subtype, but the expression of individual signature genes remains consistent. Cancer Med 2021; 10:5712-5720. [PMID: 34189853 PMCID: PMC8366080 DOI: 10.1002/cam4.4095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/25/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In silico deconvolution of invasive immune cell infiltration in bulk breast tumors helps characterize immunophenotype, expands treatment options, and influences survival endpoints. In this study, we identify the differential expression (DE) of the LM22 signature to classify immune-rich and -poor breast tumors and evaluate immune infiltration by receptor subtype and lymph node metastasis. METHODS Using publicly available data, we applied the CIBERSORT algorithm to estimate immune cells infiltrating the tumor into immune-rich and immune-poor groups. We then tested the association of receptor subtype and nodal status with immune-rich/poor phenotype. We used DE to test individual signature genes and over-representation analysis for related pathways. RESULTS CCL19 and CXCL9 expression differed between rich/poor signature groups regardless of subtype. Overexpression of CHI3L2 and FES was observed in triple negative breast cancers (TNBCs) relative to other subtypes in immune-rich tumors. Non-signature genes, LYZ, C1QB, CORO1A, EVI2B, GBP1, PSMB9, and CD52 were consistently overexpressed in immune-rich tumors, and SCUBE2 and GRIA2 were associated with immune-poor tumors. Immune-rich tumors had significant upregulation of genes/pathways while none were identified in immune-poor tumors. CONCLUSIONS Overall, the proportion of immune-rich/poor tumors differed by subtype; however, a subset of 10 LM22 genes that marked immune-rich status remained the same across subtype. Non-LM22 genes differentially expressed between the phenotypes suggest that the biologic processes responsible for immune-poor phenotype are not yet well characterized.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/pathology
- Datasets as Topic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunophenotyping
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Michael Behring
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamALUSA
- Department of Pathology and SurgeryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Yuanfan Ye
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Amr Elkholy
- Department of Pathology and SurgeryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Prachi Bajpai
- Department of Pathology and SurgeryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Sumit Agarwal
- Department of Pathology and SurgeryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Hyung‐Gyoon Kim
- Department of Pathology and SurgeryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Akinyemi I. Ojesina
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamALUSA
- Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamALUSA
| | - Howard W Wiener
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Upender Manne
- Department of Pathology and SurgeryUniversity of Alabama at BirminghamBirminghamALUSA
- Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamALUSA
| | - Sadeep Shrestha
- Department of EpidemiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Ana I. Vazquez
- Department of Epidemiology and BiostatisticsMichigan State UniversityEast LansingMIUSA
- Institute for Quantitative Health Science & EngineeringEast LansingMIUSA
| |
Collapse
|
261
|
Kokot I, Piwowar A, Jędryka M, Kratz EM. Is There a Balance in Oxidative-Antioxidant Status in Blood Serum of Patients with Advanced Endometriosis? Antioxidants (Basel) 2021; 10:antiox10071097. [PMID: 34356330 PMCID: PMC8301022 DOI: 10.3390/antiox10071097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
Can redox homeostasis indicators be potential non-invasive markers, crucial in the diagnosis and treatment of endometriosis? We checked if the differences in levels of serum oxidative-antioxidant balance parameters (TAS, FRAP, albumin, total bilirubin, uric acid, iron, SIRT3, SIRT5, SIRT6, telomerase, AOPP) are significant between patients with advanced endometriosis (E), healthy women (control group, C) and non-endometriosis women, but with other gynecological disorders (NE). The FRAP concentrations were significantly higher in E and NE group than in the control group (p = 0.015 and p = 0.017, respectively). The telomerase concentrations were significantly higher in the endometriosis group than in the control group (p = 0.004). Significantly higher concentrations of AOPP were observed in E (p < 0.001) and NE groups (p = 0.028) in comparison to the control subjects. Between stages III and IV of endometriosis, a significant difference existed only in concentration of iron (p = 0.013). There were no significant differences between the studied groups in the values of the remaining parameters. Based on the results of ROC curve analysis, we can conclude that the levels of serum FRAP, telomerase and AOPP may be taken into account as promising diagnostics markers that reflect the degree of oxidative stress accompanying advanced endometriosis.
Collapse
Affiliation(s)
- Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-0160
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland;
| | - Marcin Jędryka
- Department of Oncology, Gynecological Oncology Clinic, Faculty of Medicine, Wroclaw Medical University, Hirszfeld Square 12, 53-413 Wroclaw, Poland;
- Department of Oncological Gynecology, Wroclaw Comprehensive Cancer Center, Hirszfeld Square 12, 53-413 Wroclaw, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
262
|
Sørensen MS, Colding-Rasmussen T, Horstmann PF, Hindsø K, Dehlendorff C, Johansen JS, Petersen MM. Pretreatment Plasma IL-6 and YKL-40 and Overall Survival after Surgery for Metastatic Bone Disease of the Extremities. Cancers (Basel) 2021; 13:cancers13112833. [PMID: 34200156 PMCID: PMC8201042 DOI: 10.3390/cancers13112833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Estimating postoperative survival in patients undergoing surgery for metastatic bone disease of the extremities is important in order to choose an implant that will outlive the patient. The present study suggests that plasma IL-6, reflecting the inflammatory state of the patient, is predictive for postoperative overall survival (OS). Abstract Background: Plasma IL-6 and YKL-40 are prognostic biomarkers for OS in patients with different types of solid tumors, but they have not been studied in patients before surgery of metastatic bone disease (MBD) of the extremities. The aim was to evaluate the prognostic value of plasma IL-6 and YKL-40 in patients undergoing surgery for MBD of the extremities. Patients and Methods: A prospective study included all patients undergoing surgery for MBD in the extremities at a tertiary referral center during the period 2014–2018. Preoperative blood samples from index surgery were included. IL-6 and YKL-40 concentrations in plasma were determined by commercial ELISA. A total of 232 patients (median age 66 years, IQR 58–74; female 51%) were included. Results: Cox regression analysis was performed to identify independent prognostic factors for OS. IL-6 correlated with YKL-40 (rho = 0.46, p < 0.01). In univariate analysis (log2 continuous variable) IL-6 (HR = 1.26, 95% CI 1.16–1.37), CRP (HR = 1.20, 95% CI 1.12–1.29) and YKL-40 (HR = 1.25, 95% CI 1.15–1.37) were associated with short OS. In multivariable analysis, adjusted for known risk factors for survival, only log2(IL-6) was independently associated with OS (HR = 1.24, 95% CI 1.08–1.43), whereas CRP and YKL-40 were not. Conclusion: High preoperative plasma IL-6 is an independent biomarker of short OS in patients undergoing surgery for MBD.
Collapse
Affiliation(s)
- Michala Skovlund Sørensen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (T.C.-R.); (P.F.H.); (M.M.P.)
- Correspondence: or
| | - Thomas Colding-Rasmussen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (T.C.-R.); (P.F.H.); (M.M.P.)
| | - Peter Frederik Horstmann
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (T.C.-R.); (P.F.H.); (M.M.P.)
| | - Klaus Hindsø
- Pediatric Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
| | - Christian Dehlendorff
- Statistics and Data Analysis Danish Cancer Society Research Center, 2100 Copenhagen Ø, Denmark;
| | - Julia Sidenius Johansen
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark;
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2730 Herlev, Denmark
| | - Michael Mørk Petersen
- Musculoskeletal Tumor Section, Department of Orthopedic Surgery, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (T.C.-R.); (P.F.H.); (M.M.P.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
263
|
Comparison between galectin-3 and YKL-40 levels for the assessment of liver fibrosis in cirrhotic patients. Arab J Gastroenterol 2021; 22:187-192. [PMID: 34088622 DOI: 10.1016/j.ajg.2021.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/22/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND STUDY AIMS The circulatory levels of Galectin-3 and YKL-40 are considered as candidate biomarkers for the noninvasive assessment of liver fibrosis. This study aimed to evaluate the plasma protein profiles of Galectin-3 and YKL-40 in patients with cirrhosis (with and without hepatocellular carcinoma [HCC]) who underwent deceased-donor liver transplantation (LT), before and after surgery. PATIENTS AND METHODS The plasma levels of Galectin-3 and YKL-40 were assessed in 46 subjects, including 24 liver graft recipients (before, 1 day after, and 1 month after LT) and 22 healthy controls using enzyme-linked immunosorbent assays. RESULTS The levels of Galectin-3 and YKL-40 in the LT recipients before the transplant were significantly higher than those in the healthy controls (p < 0.001 and p < 0.01, respectively). YKL-40 levels returned to normal within 1 day after LT, whereas those of Galectin-3 decreased 1 day after LT and returned to normal levels after 1 month. The levels of both proteins did not differ between patients with and without HCC. Unlike YKL-40, the pre-transplant levels of Galectin-3 were directly correlated to that of aspartate aminotransferase (AST; r = 0.473, p = 0.01), alanine aminotransferase (r = 0.395, p = 0.04), total bilirubin (r = 0.545, p = 0.003), and lactate dehydrogenase (r = 0.452, p = 0.02) and to the AST to platelet ratio index (APRI; r = 0.411, p = 0.03) and Child-Pugh score (r = 0.601, p < 0.001). Galectin-3 levels increased significantly according to the severity of cirrhosis (25.9 ± 2.7; 57.4 ± 29.6; and 81 ± 27 ng/mL in Class A, B, and C cirrhosis, respectively), whereas those of YKL-40 tended to be higher in the Class C patients compared to the Class A patients (8.9 ± 2.6 vs. 7.4 ± 0.8 ng/mL). CONCLUSION Circulating levels of Galectin-3 could be an indicator of liver damage and inflammation that are correlated with fibrosis.
Collapse
|
264
|
Khalaf K, Hana D, Chou JTT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021; 12:656364. [PMID: 34122412 PMCID: PMC8190405 DOI: 10.3389/fimmu.2021.656364] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and ever-changing "rogue organ" composed of its own blood supply, lymphatic and nervous systems, stroma, immune cells and extracellular matrix (ECM). These complex components, utilizing both benign and malignant cells, nurture the harsh, immunosuppressive and nutrient-deficient environment necessary for tumor cell growth, proliferation and phenotypic flexibility and variation. An important aspect of the TME is cellular crosstalk and cell-to-ECM communication. This interaction induces the release of soluble factors responsible for immune evasion and ECM remodeling, which further contribute to therapy resistance. Other aspects are the presence of exosomes contributed by both malignant and benign cells, circulating deregulated microRNAs and TME-specific metabolic patterns which further potentiate the progression and/or resistance to therapy. In addition to biochemical signaling, specific TME characteristics such as the hypoxic environment, metabolic derangements, and abnormal mechanical forces have been implicated in the development of treatment resistance. In this review, we will provide an overview of tumor microenvironmental composition, structure, and features that influence immune suppression and contribute to treatment resistance.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Doris Hana
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadzia Tin-Tsen Chou
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Chandpreet Singh
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
265
|
Li ZX, Yang DJ, Huo ZK, Wen PH, Hu BW, Wang ZH, Guo WZ, Zhang SJ. Effects of chitinase-3-like protein 1 on brain death-induced hepatocyte apoptosis via PAR2-JNK-caspase-3. Biochem Biophys Res Commun 2021; 552:150-156. [PMID: 33744763 DOI: 10.1016/j.bbrc.2021.03.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Hepatocyte apoptosis is a crucial factor affecting liver quality in brain-dead donors. The identification of key molecular proteins involved in brain-death (BD)-induced hepatocyte apoptosis may help determine an effective method for improving the quality of livers from brain-dead donors. In this study, we used in vivo and in vitro models to investigate the role of chitinase-3-like protein 1 (CHI3L1) in promoting liver cell apoptosis after BD. Chitin was used to inhibit CHI3L1 in a rat model of BD. Macrophage polarization of THP-1 cells and hypoxia/reoxygenation (H/R) of LO-2 cells were used to mimic BD-induced cell stress in liver. We found that CHI3L1 played a vital role in promoting liver cell apoptosis. Six hours after BD, CHI3L1 expression was significantly upregulated in liver macrophages and was associated with BD-induced M1 polarization of these cells. In liver cells cultured under H/R conditions, recombinant CHI3L1 activated the protease-activated receptor 2 (PAR2)/c-June N-terminal kinase (JNK) apoptotic pathway and aggravated apoptosis. Compared with the control group, chitin particles inhibited the expression of CHI3L1 in the liver of brain dead rats, thereby reducing activation of the hepatocyte surface receptor, PAR2, and its downstream JNK/caspase-3 signaling pathway, ultimately reducing hepatocyte apoptosis. In conclusion, our results indicate that CHI3L1 relies on a PAR2/JNK-mediated mechanism to promote BD-induced hepatocyte apoptosis.
Collapse
Affiliation(s)
- Ze-Xin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Medical Engineering and Technology Center of Organ Transplantation, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Dong-Jing Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Medical Engineering and Technology Center of Organ Transplantation, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Zhong-Kun Huo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Medical Engineering and Technology Center of Organ Transplantation, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Pei-Hao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Medical Engineering and Technology Center of Organ Transplantation, Zhengzhou, Henan, China
| | - Bo-Wen Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Medical Engineering and Technology Center of Organ Transplantation, Zhengzhou, Henan, China
| | - Zhi-Hui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Medical Engineering and Technology Center of Organ Transplantation, Zhengzhou, Henan, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Medical Engineering and Technology Center of Organ Transplantation, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Medical Engineering and Technology Center of Organ Transplantation, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China.
| |
Collapse
|
266
|
Cremades-Jimeno L, de Pedro MÁ, López-Ramos M, Sastre J, Mínguez P, Fernández IM, Baos S, Cárdaba B. Prioritizing Molecular Biomarkers in Asthma and Respiratory Allergy Using Systems Biology. Front Immunol 2021; 12:640791. [PMID: 33936056 PMCID: PMC8081895 DOI: 10.3389/fimmu.2021.640791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/15/2021] [Indexed: 01/29/2023] Open
Abstract
Highly prevalent respiratory diseases such as asthma and allergy remain a pressing health challenge. Currently, there is an unmet need for precise diagnostic tools capable of predicting the great heterogeneity of these illnesses. In a previous study of 94 asthma/respiratory allergy biomarker candidates, we defined a group of potential biomarkers to distinguish clinical phenotypes (i.e. nonallergic asthma, allergic asthma, respiratory allergy without asthma) and disease severity. Here, we analyze our experimental results using complex algorithmic approaches that establish holistic disease models (systems biology), combining these insights with information available in specialized databases developed worldwide. With this approach, we aim to prioritize the most relevant biomarkers according to their specificity and mechanistic implication with molecular motifs of the diseases. The Therapeutic Performance Mapping System (Anaxomics’ TPMS technology) was used to generate one mathematical model per disease: allergic asthma (AA), non-allergic asthma (NA), and respiratory allergy (RA), defining specific molecular motifs for each. The relationship of our molecular biomarker candidates and each disease was analyzed by artificial neural networks (ANNs) scores. These analyses prioritized molecular biomarkers specific to the diseases and to particular molecular motifs. As a first step, molecular characterization of the pathophysiological processes of AA defined 16 molecular motifs: 2 specific for AA, 2 shared with RA, and 12 shared with NA. Mechanistic analysis showed 17 proteins that were strongly related to AA. Eleven proteins were associated with RA and 16 proteins with NA. Specificity analysis showed that 12 proteins were specific to AA, 7 were specific to RA, and 2 to NA. Finally, a triggering analysis revealed a relevant role for AKT1, STAT1, and MAPK13 in all three conditions and for TLR4 in asthmatic diseases (AA and NA). In conclusion, this study has enabled us to prioritize biomarkers depending on the functionality associated with each disease and with specific molecular motifs, which could improve the definition and usefulness of new molecular biomarkers.
Collapse
Affiliation(s)
- Lucía Cremades-Jimeno
- Immunology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Ángeles de Pedro
- Immunology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María López-Ramos
- Immunology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Joaquín Sastre
- Allergy Department, Fundación Jiménez Díaz, Madrid, Spain.,Center for Biomedical Network of Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | | | - Selene Baos
- Immunology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Blanca Cárdaba
- Immunology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Center for Biomedical Network of Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| |
Collapse
|
267
|
Calu V, Ionescu A, Stanca L, Geicu OI, Iordache F, Pisoschi AM, Serban AI, Bilteanu L. Key biomarkers within the colorectal cancer related inflammatory microenvironment. Sci Rep 2021; 11:7940. [PMID: 33846436 PMCID: PMC8041790 DOI: 10.1038/s41598-021-86941-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
Therapeutic approaches focused on the inflammatory microenvironment are currently gaining more support, as biomolecules involved in the inflammatory colorectal cancer (CRC) tumor microenvironment are being explored. We analyzed tumor and paired normal tissue samples from CRC patients (n = 22) whom underwent tumor resection surgery. We assessed 39 inflammation-involved biomolecules (multiplex magnetic bead-based immunoassay), CEA and CA19-9 (ELISA assay) and the tissue expression levels of occludin and also pErk, STAT1 and STAT3 transcriptional factors (western blot). Tumor staging has been established by histopathological evaluation of HE stained tumor tissue sections. We report 32 biomarkers displaying statistically significant differences in tumor vs. control. Additionally, positive statistical biomarker correlations were found between MMP2–IL8 and BAFF–IL8 (Pearson correlation coefficients > 0.751), while APRIL–MMP2, APRIL–BAFF and APRIL–IL8 were negatively correlated (correlation coefficients < − 0.650). While APRIL, BAFF, IL8 and MMP2 did not modulate with tumor stage, they were inversely related to the immune infiltrate level and CD163 tissue expression. We conclude that the significantly decreased APRIL and increased BAFF, IL8 and MMP2 expression were tumor-specific and deserve consideration in the development of new treatments. Also, the positive correlation between Chitinase 3-like 1 and IL8 (0.57) or MMP2 (0.50) suggest a role in tumor growth and metastasis pathways.
Collapse
Affiliation(s)
- Valentin Calu
- Department of General Surgery, University of Medicine and Pharmacy "Carol Davila" Bucharest, 8 Blvd., Eroii Sanitari, 050474, Bucharest, Romania.,Department of Surgery, "Elias" Emergency University Hospital, 17 Marasti Blvd., 01146, Bucharest, Romania
| | - Adriana Ionescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Blvd. Splaiul Independentei, 050095, Bucharest, Romania
| | - Loredana Stanca
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania.,Taxon Solutions SRL, 7 Semilunei Str, 020797, Bucharest, Romania
| | - Florin Iordache
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Aurelia Magdalena Pisoschi
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Andreea Iren Serban
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Blvd. Splaiul Independentei, 050095, Bucharest, Romania. .,Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania.
| | - Liviu Bilteanu
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania.,National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| |
Collapse
|
268
|
Xavier CPR, Castro I, Caires HR, Ferreira D, Cavadas B, Pereira L, Santos LL, Oliveira MJ, Vasconcelos MH. Chitinase 3-like-1 and fibronectin in the cargo of extracellular vesicles shed by human macrophages influence pancreatic cancer cellular response to gemcitabine. Cancer Lett 2021; 501:210-223. [PMID: 33212158 DOI: 10.1016/j.canlet.2020.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/25/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Tumour-associated macrophages have been implicated in pancreatic ductal adenocarcinoma (PDAC) therapy response and Extracellular vesicles (EVs) shed by macrophages might have a role in this process. Here, we demonstrated that large EVs released by anti-inflammatory human macrophages decreased PDAC cellular sensitivity to gemcitabine. Using proteomic analysis, chitinase 3-like-1 (CHI3L1) and fibronectin (FN1) were identified as two of the most abundant proteins in the cargo of macrophages-derived EVs. Overexpression of CHI3L1 and FN1, using recombinant human proteins, induced PDAC cellular resistance to gemcitabine through ERK (extracellular-signal-regulated kinase) activation. Inhibition of CHI3L1 and FN1 by pentoxifylline and pirfenidone, respectively, partially reverted gemcitabine resistance. In PDAC patient samples, CHI3L1 and FN1 were expressed in the stroma, associated with the high presence of macrophages. The Cancer Genome Atlas analysis revealed an association between CHI3L1 and FN1 gene expression, overall survival of PDAC patients, gemcitabine response, and macrophage infiltration. Altogether, our data identifies CHI3L1 and FN1 as potential targets for pharmacological inhibition in PDAC. Further pre-clinical in vivo work is warranted to study the possibility of repurposing pentoxifylline and pirfenidone as adjuvant therapies for PDAC treatment.
Collapse
Affiliation(s)
- Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Inês Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Hugo R Caires
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Dylan Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Experimental Pathology and Therapeutics Group, IPO - Instituto Português de Oncologia, Porto, Portugal
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Genetic Diversity Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Luisa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Genetic Diversity Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Lúcio L Santos
- Experimental Pathology and Therapeutics Group, IPO - Instituto Português de Oncologia, Porto, Portugal; ICBAS - Biomedical Sciences Institute Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal; Tumour and Microenvironment Interactions Group, INEB - Instituto Nacional de Engenharia Biomédica, Porto, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal.
| |
Collapse
|
269
|
Zhang S, Sousa A, Lin M, Iwano A, Jain R, Ma B, Lee CM, Park JW, Kamle S, Carlson R, Lee GG, Elias JA, Wands JR. Role of Chitinase 3-Like 1 Protein in the Pathogenesis of Hepatic Insulin Resistance in Nonalcoholic Fatty Liver Disease. Cells 2021; 10:201. [PMID: 33498326 PMCID: PMC7909438 DOI: 10.3390/cells10020201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 02/08/2023] Open
Abstract
A recently discovered human glycoprotein, chitinase 3-like 1 (Chi3L1), may play a role in inflammation, tissue remodeling, and visceral fat accumulation. We hypothesize that Chi3L1 gene expression is important in the development of hepatic insulin resistance characterized by the generation of pAKT, pGSK, and pERK in wild type and Chi3L1 knockout (KO) murine liver following insulin stimulation. The Chi3L1 gene and protein expression was evaluated by Real Time PCR and ELISA; lipid accumulation in hepatocytes was also assessed. To alter Chi3L1 function, three different anti-Chi3L1 monoclonal antibodies (mAbs) were administered in vivo and effects on the insulin signaling cascade and hepatic lipid deposition were determined. Transmission of the hepatic insulin signal was substantially improved following KO of the CHi3L1 gene and there was reduced lipid deposition produced by a HFD. The HFD-fed mice exhibited increased Chi3L1 expression in the liver and there was impaired insulin signal transduction. All three anti-Chi3L1 mAbs partially restored hepatic insulin sensitivity which was associated with reduced lipid accumulation in hepatocytes as well. A KO of the Chi3L1 gene reduced lipid accumulation and improved insulin signaling. Therefore, Chi3L1 gene upregulation may be an important factor in the generation of NAFLD/NASH phenotype.
Collapse
Affiliation(s)
- Songhua Zhang
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| | - Aryanna Sousa
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| | - Mengqui Lin
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| | - Ayako Iwano
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| | - Rishubh Jain
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| | - Bing Ma
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; (B.M.); (C.M.L.); (J.W.P.); (S.K.); (G.G.L.); (J.A.E.)
| | - Chang Min Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; (B.M.); (C.M.L.); (J.W.P.); (S.K.); (G.G.L.); (J.A.E.)
| | - Jin Wook Park
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; (B.M.); (C.M.L.); (J.W.P.); (S.K.); (G.G.L.); (J.A.E.)
| | - Suchitra Kamle
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; (B.M.); (C.M.L.); (J.W.P.); (S.K.); (G.G.L.); (J.A.E.)
| | - Rolf Carlson
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| | - Ghun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; (B.M.); (C.M.L.); (J.W.P.); (S.K.); (G.G.L.); (J.A.E.)
| | - Jack A. Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; (B.M.); (C.M.L.); (J.W.P.); (S.K.); (G.G.L.); (J.A.E.)
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Jack R. Wands
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| |
Collapse
|
270
|
Nie X, Qian L, Sun R, Huang B, Dong X, Xiao Q, Zhang Q, Lu T, Yue L, Chen S, Li X, Sun Y, Li L, Xu L, Li Y, Yang M, Xue Z, Liang S, Ding X, Yuan C, Peng L, Liu W, Yi X, Lyu M, Xiao G, Xu X, Ge W, He J, Fan J, Wu J, Luo M, Chang X, Pan H, Cai X, Zhou J, Yu J, Gao H, Xie M, Wang S, Ruan G, Chen H, Su H, Mei H, Luo D, Zhao D, Xu F, Li Y, Zhu Y, Xia J, Hu Y, Guo T. Multi-organ proteomic landscape of COVID-19 autopsies. Cell 2021; 184:775-791.e14. [PMID: 33503446 PMCID: PMC7794601 DOI: 10.1016/j.cell.2021.01.004] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/22/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
The molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report a proteomic analysis of 144 autopsy samples from seven organs in 19 COVID-19 patients. We quantified 11,394 proteins in these samples, in which 5,336 were perturbed in the COVID-19 patients compared to controls. Our data showed that cathepsin L1, rather than ACE2, was significantly upregulated in the lung from the COVID-19 patients. Systemic hyperinflammation and dysregulation of glucose and fatty acid metabolism were detected in multiple organs. We also observed dysregulation of key factors involved in hypoxia, angiogenesis, blood coagulation, and fibrosis in multiple organs from the COVID-19 patients. Evidence for testicular injuries includes reduced Leydig cells, suppressed cholesterol biosynthesis, and sperm mobility. In summary, this study depicts a multi-organ proteomic landscape of COVID-19 autopsies that furthers our understanding of the biological basis of COVID-19 pathology.
Collapse
Affiliation(s)
- Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liujia Qian
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Rui Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaochuan Dong
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Xiao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Qiushi Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Tian Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Liang Yue
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shuo Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaoting Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lu Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Luang Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yan Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangzhi Xue
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shuang Liang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xuan Ding
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Chunhui Yuan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Li Peng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xiao Yi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Mengge Lyu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Guixiang Xiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xia Xu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weigang Ge
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Jiale He
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junhua Wu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meng Luo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huaxiong Pan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xue Cai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Junjie Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Yu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Huanhuan Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sihua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guan Ruan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hao Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dashi Zhao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Xu
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yan Li
- Department of Anatomy and Physiology, College of Basic Medical Sciences, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yi Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tiannan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.
| |
Collapse
|
271
|
Wilczyńska K, Maciejczyk M, Zalewska A, Waszkiewicz N. Serum Amyloid Biomarkers, Tau Protein and YKL-40 Utility in Detection, Differential Diagnosing, and Monitoring of Dementia. Front Psychiatry 2021; 12:725511. [PMID: 34589009 PMCID: PMC8473887 DOI: 10.3389/fpsyt.2021.725511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/23/2021] [Indexed: 02/02/2023] Open
Abstract
Introduction: The diagnosis and treatment of dementia is one of the greatest challenges in contemporary health care. The widespread use of dementia biomarkers would improve the quality of life of patients and reduce the economic costs of the disease. The aim of the study was to evaluate the usefulness of proteins related to the Alzheimer's disease pathogenesis-amyloid beta isoform (Aβ) and total tau protein (t-tau), as well as the quite recently discovered marker YKL-40 in the most common types of dementia. Methods: 60 dementia (AD-Alzheimer's disease, VaD-vascular dementia, MxD-mixed dementia) and 20 cognitively normal subjects over 60 years old were examined. Subjects with dementia of etiology different than AD or VaD and with neoplastic or chronic inflammatory diseases were excluded. Concentrations of Aβ40, Aβ42, t-tau, and YKL-40 were measured in serum using ELISA kits on admission and after 4 weeks of inpatient treatment. ANOVA and Tukey's test or Dunn's test were used to perform comparison tests between groups. Correlations were measured using Pearson's coefficient. Biomarker diagnostic utility was assessed with ROC analysis. Results: YKL-40 differentiates between cognitively normal and mild dementia patients with 85% sensitivity and specificity and t-tau with 72% sensitivity and 70% specificity. YKL-40 and t-tau concentrations correlate with each other and with the severity of clinically observed cognitive decline. Conclusions: YKL-40 is a sensitive and specific biomarker of early dementia and, to a lesser extent, of dementia progression, however, many comorbidities may influence its levels. In such conditions, less specific but still reliable t-tau may serve as an alternative marker. Obtained results did not confirm the diagnostic utility of amyloid biomarkers.
Collapse
Affiliation(s)
- Karolina Wilczyńska
- Department of Psychiatry, Medical University of Białystok, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Białystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Białystok, Białystok, Poland
| | | |
Collapse
|