251
|
Li M, Yu Y. Innate immune receptor clustering and its role in immune regulation. J Cell Sci 2021; 134:134/4/jcs249318. [PMID: 33597156 DOI: 10.1242/jcs.249318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The discovery of receptor clustering in the activation of adaptive immune cells has revolutionized our understanding of the physical basis of immune signal transduction. In contrast to the extensive studies of adaptive immune cells, particularly T cells, there is a lesser, but emerging, recognition that the formation of receptor clusters is also a key regulatory mechanism in host-pathogen interactions. Many kinds of innate immune receptors have been found to assemble into nano- or micro-sized domains on the surfaces of cells. The clusters formed between diverse categories of innate immune receptors function as a multi-component apparatus for pathogen detection and immune response regulation. Here, we highlight these pioneering efforts and the outstanding questions that remain to be answered regarding this largely under-explored research topic. We provide a critical analysis of the current literature on the clustering of innate immune receptors. Our emphasis is on studies that draw connections between the phenomenon of receptor clustering and its functional role in innate immune regulation.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
252
|
Loescher S, Walther A. Multivalency Pattern Recognition to Sort Colloidal Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005668. [PMID: 33448120 PMCID: PMC7612461 DOI: 10.1002/smll.202005668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/15/2020] [Indexed: 05/03/2023]
Abstract
Multivalent interaction is an important principle for self-assembly and has been widely used to assemble colloids. However, surface binding partners are statistically distributed, which falls short of the interaction possibilities arising from geometrically controlled multivalency patterns as seen in viruses. Herein, the precision provided by 3D DNA origami is exploited to introduce multivalency pattern recognition via designing geometrically precise interaction patterns at patches of patchy nanocylinders. This gives rise to self-sorting of colloidal assemblies despite having the same type and number of supramolecular binding motifs-solely based on the pattern located on a 20 × 20 nm2 cross-section. The degree of sorting can be modulated by the geometric overlap of patterns and homo; mixed and alternating supracolloidal polymerizations are demonstrated. Multivalency patterns are able to provide an additional information layer to organize soft matter, important towards engineering of biological responses and functional materials design.
Collapse
|
253
|
|
254
|
Dobrovolskaia MA, Bathe M. Opportunities and challenges for the clinical translation of structured DNA assemblies as gene therapeutic delivery and vaccine vectors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1657. [PMID: 32672007 PMCID: PMC7736207 DOI: 10.1002/wnan.1657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Gene therapeutics including siRNAs, anti-sense oligos, messenger RNAs, and CRISPR ribonucleoprotein complexes offer unmet potential to treat over 7,000 known genetic diseases, as well as cancer, through targeted in vivo modulation of aberrant gene expression and immune cell activation. Compared with viral vectors, nonviral delivery vectors offer controlled immunogenicity and low manufacturing cost, yet suffer from limitations in toxicity, targeting, and transduction efficiency. Structured DNA assemblies fabricated using the principle of scaffolded DNA origami offer a new nonviral delivery vector with intrinsic, yet controllable immunostimulatory properties and virus-like spatial presentation of ligands and immunogens for cell-specific targeting, activation, and control over intracellular trafficking, in addition to low manufacturing cost. However, the relative utilities and limitations of these vectors must clearly be demonstrated in preclinical studies for their clinical potential to be realized. Here, we review the major capabilities, opportunities, and challenges we foresee in translating these next-generation delivery and vaccine vectors to the clinic. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology ProgramFrederick National Laboratory for Cancer Research sponsored by National Cancer InstituteFrederickMaryland
| | - Mark Bathe
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
255
|
Cossette B, Kelly SH, Collier JH. Intranasal Subunit Vaccination Strategies Employing Nanomaterials and Biomaterials. ACS Biomater Sci Eng 2020; 7:1765-1779. [DOI: 10.1021/acsbiomaterials.0c01291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Benjamin Cossette
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Sean H. Kelly
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| |
Collapse
|
256
|
Li M, Wang H, Li W, Xu XG, Yu Y. Macrophage activation on "phagocytic synapse" arrays: Spacing of nanoclustered ligands directs TLR1/2 signaling with an intrinsic limit. SCIENCE ADVANCES 2020; 6:eabc8482. [PMID: 33268354 PMCID: PMC7821875 DOI: 10.1126/sciadv.abc8482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/19/2020] [Indexed: 05/02/2023]
Abstract
The activation of Toll-like receptor heterodimer 1/2 (TLR1/2) by microbial components plays a critical role in host immune responses against pathogens. TLR1/2 signaling is sensitive to the chemical structure of ligands, but its dependence on the spatial distribution of ligands on microbial surfaces remains unexplored. Here, we reveal the quantitative relationship between TLR1/2-triggered immune responses and the spacing of ligand clusters by designing an artificial "phagocytic synapse" nanoarray platform to mimic the cell-microbe interface. The ligand spacing dictates the proximity of receptor clusters on the cell surface and consequently the pro-inflammatory responses of macrophages. However, cell responses reach their maximum at small ligand spacings when the receptor nanoclusters become adjacent to one another. Our study demonstrates the feasibility of using spatially patterned ligands to modulate innate immunity. It shows that the receptor clusters of TLR1/2 act as a driver in integrating the spatial cues of ligands into cell-level activation events.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Wenqian Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
257
|
Wang W, Arias DS, Deserno M, Ren X, Taylor RE. Emerging applications at the interface of DNA nanotechnology and cellular membranes: Perspectives from biology, engineering, and physics. APL Bioeng 2020; 4:041507. [PMID: 33344875 PMCID: PMC7725538 DOI: 10.1063/5.0027022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
DNA nanotechnology has proven exceptionally apt at probing and manipulating biological environments as it can create nanostructures of almost arbitrary shape that permit countless types of modifications, all while being inherently biocompatible. Emergent areas of particular interest are applications involving cellular membranes, but to fully explore the range of possibilities requires interdisciplinary knowledge of DNA nanotechnology, cell and membrane biology, and biophysics. In this review, we aim for a concise introduction to the intersection of these three fields. After briefly revisiting DNA nanotechnology, as well as the biological and mechanical properties of lipid bilayers and cellular membranes, we summarize strategies to mediate interactions between membranes and DNA nanostructures, with a focus on programmed delivery onto, into, and through lipid membranes. We also highlight emerging applications, including membrane sculpting, multicell self-assembly, spatial arrangement and organization of ligands and proteins, biomechanical sensing, synthetic DNA nanopores, biological imaging, and biomelecular sensing. Many critical but exciting challenges lie ahead, and we outline what strikes us as promising directions when translating DNA nanostructures for future in vitro and in vivo membrane applications.
Collapse
Affiliation(s)
- Weitao Wang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - D. Sebastian Arias
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
258
|
Zeng Y, Nixon RL, Liu W, Wang R. The applications of functionalized DNA nanostructures in bioimaging and cancer therapy. Biomaterials 2020; 268:120560. [PMID: 33285441 DOI: 10.1016/j.biomaterials.2020.120560] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Deoxyribonucleic acid (DNA) is a molecular carrier of genetic information that can be fabricated into functional nanomaterials in biochemistry and engineering fields. Those DNA nanostructures, synthesized via Watson-Crick base pairing, show a wide range of attributes along with excellent applicability, precise programmability, and extremely low cytotoxicity in vitro and in vivo. In this review, the applications of functionalized DNA nanostructures in bioimaging and tumor therapy are summarized. We focused on approaches involving DNA origami nanostructures due to their widespread use in previous and current reports. Non-DNA origami nanostructures such as DNA tetrahedrons are also covered. Finally, the remaining challenges and perspectives regarding DNA nanostructures in the biomedical arena are discussed.
Collapse
Affiliation(s)
- Yun Zeng
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR China.
| | - Rachel L Nixon
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA; Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Risheng Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409, USA.
| |
Collapse
|
259
|
Rajwar A, Morya V, Kharbanda S, Bhatia D. DNA Nanodevices to Probe and Program Membrane Organization, Dynamics, and Applications. J Membr Biol 2020; 253:577-587. [DOI: 10.1007/s00232-020-00154-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
|
260
|
Rajwar A, Kharbanda S, Chandrasekaran AR, Gupta S, Bhatia D. Designer, Programmable 3D DNA Nanodevices to Probe Biological Systems. ACS APPLIED BIO MATERIALS 2020; 3:7265-7277. [PMID: 35019470 DOI: 10.1021/acsabm.0c00916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA nanotechnology is a unique field that provides simple yet robust design techniques for self-assembling nanoarchitectures with extremely high potential for biomedical applications. Though the field began to exploit DNA to build various nanoscale structures, it has now taken a different path, diverging from the creation of complex structures to functional DNA nanodevices that explore various biological systems and mechanisms. Here, we present a brief overview of DNA nanotechnology, summarizing the key strategies for construction of various DNA nanodevices, with special focus on three-dimensional (3D) nanocages or polyhedras. We then discuss biological applications of 3D DNA nanocages, particularly tetrahedral DNA cages, in their ability to program and modulate cellular systems, in biosensing, and as tools for targeted therapeutics. We conclude with a final discussion on challenges and perspectives of 3D DNA nanodevices in biomedical applications.
Collapse
Affiliation(s)
- Anjali Rajwar
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Sumit Kharbanda
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.,Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.,Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
261
|
Nano-based approaches in the development of antiviral agents and vaccines. Life Sci 2020; 265:118761. [PMID: 33189824 PMCID: PMC7658595 DOI: 10.1016/j.lfs.2020.118761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Outbreaks and the rapid transmission of viruses, such as coronaviruses and influenza viruses, are serious threats to human health. A major challenge in combating infectious diseases caused by viruses is the lack of effective methods for prevention and treatment. Nanotechnology has provided a basis for the development of novel antiviral strategies. Owing to their large modifiable surfaces that can be functionalized with multiple molecules to realize sophisticated designs, nanomaterials have been developed as nanodrugs, nanocarriers, and nano-based vaccines to effectively induce sufficient immunologic memory. From this perspective, we introduce various nanomaterials with diverse antiviral mechanisms and summarize how nano-based antiviral agents protect against viral infection at the molecular, cellular, and organismal levels. We summarize the applications of nanomaterials for defense against emerging viruses by trapping and inactivating viruses and inhibiting viral entry and replication. We also discuss recent progress in nano-based vaccines with a focus on the mechanisms by which nanomaterials contribute to immunogenicity. We further describe how nanotechnology may improve vaccine efficacy by delivering large amounts of antigens to target immune cells and enhancing the immune response by mimicking viral structures and activating dendritic cells. Finally, we provide an overview of future prospects for nano-based antiviral agents and vaccines.
Collapse
|
262
|
Suleiman E, Mayer J, Lehner E, Kohlhauser B, Katholnig A, Batzoni M, Damm D, Temchura V, Wagner A, Überla K, Vorauer-Uhl K. Conjugation of Native-Like HIV-1 Envelope Trimers onto Liposomes Using EDC/Sulfo-NHS Chemistry: Requirements and Limitations. Pharmaceutics 2020; 12:E979. [PMID: 33081278 PMCID: PMC7589475 DOI: 10.3390/pharmaceutics12100979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
The display of native-like human immunodeficiency virus type 1 envelope (HIV-1 Env) trimers on liposomes has gained wide attention over the last few years. Currently, available methods have enabled the preparation of Env-liposome conjugates of unprecedented quality. However, these protocols require the Env trimer to be tagged and/or to carry a specific functional group. For this reason, we have investigated N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide/N-Hydroxysulfosuccinimide (EDC/Sulfo-NHS) chemistry for its potential to covalently conjugate tag-free, non-functionalized native-like Env trimers onto the surface of carboxyl-functionalized liposomes. The preservation of the liposome's physical integrity and the immunogen's conformation required a fine-tuned two-step approach based on the controlled use of β-mercaptoethanol. The display of Env trimers was strictly limited to activated liposomes of positive charge, i.e., liposomes with a positive zeta potential that carry amine-reactive Sulfo-NHS esters on their surface. In agreement with that, conjugation was found to be highly ionic strength- and pH-dependent. Overall, we have identified electrostatic pre-concentration (i.e., close proximity between negatively charged Env trimers and positively charged liposomes established through electrostatic attraction) to be crucial for conjugation reactions to proceed. The present study highlights the requirements and limitations of potentially scalable EDC/Sulfo-NHS-based approaches and represents a solid basis for further research into the controlled conjugation of tag-free, non-functionalized native-like Env trimers on the surface of liposomes, and other nanoparticles.
Collapse
Affiliation(s)
- Ehsan Suleiman
- Polymun Scientific Immunbiologische Forschung GmbH, 3400 Klosterneuburg, Austria;
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| | - Julia Mayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| | - Elisabeth Lehner
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| | - Bianca Kohlhauser
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
- University of Vienna, 1010 Vienna, Austria
| | - Alexandra Katholnig
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| | - Mirjam Batzoni
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
- FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Dominik Damm
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (D.D.); (V.T.); (K.Ü.)
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (D.D.); (V.T.); (K.Ü.)
| | - Andreas Wagner
- Polymun Scientific Immunbiologische Forschung GmbH, 3400 Klosterneuburg, Austria;
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (D.D.); (V.T.); (K.Ü.)
| | - Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| |
Collapse
|
263
|
Afonin KA, Dobrovolskaia MA, Church G, Bathe M. Opportunities, Barriers, and a Strategy for Overcoming Translational Challenges to Therapeutic Nucleic Acid Nanotechnology. ACS NANO 2020; 14:9221-9227. [PMID: 32706238 PMCID: PMC7731581 DOI: 10.1021/acsnano.0c04753] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recent clinical successes using therapeutic nucleic acids (TNAs) have accelerated the transition of nucleic acid nanotechnology toward therapeutic applications. Significant progress in the development, production, and characterization of nucleic acid nanomaterials and nucleic acid nanoparticles (NANPs), as well as abundant proof-of-concept data, are paving the way toward biomedical applications of these materials. This recent progress has catalyzed the development of new strategies for biosensing, imaging, drug delivery, and immunotherapies with previously unrecognized opportunities and identified some barriers that may impede the broader clinical translation of NANP technologies. A recent workshop sponsored by the Kavli Foundation and the Materials Research Society discussed the future directions and current challenges for the development of therapeutic nucleic acid nanotechnology. Herein, we communicate discussions on the opportunities, barriers, and strategies for realizing the clinical grand challenge of TNA nanotechnology, with a focus on ways to overcome barriers to advance NANPs to the clinic.
Collapse
Affiliation(s)
- Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
- Harvard Graduate Program in Biological and Biomedical Sciences, Boston, Massachusetts 02115, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
264
|
Zhang L, Guo H. Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2020; 2:1-23. [PMID: 33511330 PMCID: PMC7435336 DOI: 10.1016/j.abst.2020.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Due to the unprecedented public health crisis caused by COVID-19, our first contribution to the newly launching journal, Advances in Biomarker Sciences and Technology, has abruptly diverted to focus on the current pandemic. As the number of new COVID-19 cases and deaths continue to rise steadily around the world, the common goal of healthcare providers, scientists, and government officials worldwide has been to identify the best way to detect the novel coronavirus, named SARS-CoV-2, and to treat the viral infection - COVID-19. Accurate detection, timely diagnosis, effective treatment, and future prevention are the vital keys to management of COVID-19, and can help curb the viral spread. Traditionally, biomarkers play a pivotal role in the early detection of disease etiology, diagnosis, treatment and prognosis. To assist myriad ongoing investigations and innovations, we developed this current article to overview known and emerging biomarkers for SARS-CoV-2 detection, COVID-19 diagnostics, treatment and prognosis, and ongoing work to identify and develop more biomarkers for new drugs and vaccines. Moreover, biomarkers of socio-psychological stress, the high-technology quest for new virtual drug screening, and digital applications are described.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- ACEI, Angiotensin-converting enzyme inhibitor
- AI, Artificial intelligence
- AIOD-CRISPR, All-In-One Dual CRISPR-Cas12a
- ARB, Angiotensin receptor blocker
- ARDS, Acute respiratory distress syndrome
- COVID
- COVID-19, Coronavirus disease 2019
- CQ, Chloroquine
- CT, Computed tomography
- Coronavirus
- DC, Dendritic cell
- Detection
- Diagnosis
- ELISA, Enzyme-linked immunosorbent assay
- EUA, Emergency use authorization
- FDA, U.S. Food and Drug Administration
- GenOMICC, Genetics of Mortality in Critical Care
- HCQ, Hydroxychloroquine
- LFAs, Lateral flow assays
- LSPR, Localized surface plasmon resonance
- MERS, Middle East respiratory syndrome
- ML, Machine learning
- NIAID, U.S. National Institute of Allergy and Infectious Diseases
- NIH, National Institutes of Health
- PAC-MAN, Prophylactic Antiviral CRISPR in huMAN cells
- PCR, Polymerase chain reaction
- PCT, Procalcitonin
- Prevention
- Prognosis
- RT-PCR, Reverse transcription polymerase chain reaction
- SARS, Severe acute respiratory syndrome
- SARS-CoV-2, SARS coronavirus type 2
- SaaS, Software as a Service
- TCM, Traditional Chinese medicine
- Treatment
- UCB, University of California Berkeley
- UCSF, University of California San Francisco
- cDNA, Complementary DNA
- mAb, Monoclonal antibody
Collapse
Affiliation(s)
- Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Helen Guo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
265
|
Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies. Molecules 2020; 25:molecules25153386. [PMID: 32722650 PMCID: PMC7435391 DOI: 10.3390/molecules25153386] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
DNA origami nanocarriers have emerged as a promising tool for many biomedical applications, such as biosensing, targeted drug delivery, and cancer immunotherapy. These highly programmable nanoarchitectures are assembled into any shape or size with nanoscale precision by folding a single-stranded DNA scaffold with short complementary oligonucleotides. The standard scaffold strand used to fold DNA origami nanocarriers is usually the M13mp18 bacteriophage’s circular single-stranded DNA genome with limited design flexibility in terms of the sequence and size of the final objects. However, with the recent progress in automated DNA origami design—allowing for increasing structural complexity—and the growing number of applications, the need for scalable methods to produce custom scaffolds has become crucial to overcome the limitations of traditional methods for scaffold production. Improved scaffold synthesis strategies will help to broaden the use of DNA origami for more biomedical applications. To this end, several techniques have been developed in recent years for the scalable synthesis of single stranded DNA scaffolds with custom lengths and sequences. This review focuses on these methods and the progress that has been made to address the challenges confronting custom scaffold production for large-scale DNA origami assembly.
Collapse
|
266
|
Abbott RK, Crotty S. Factors in B cell competition and immunodominance. Immunol Rev 2020; 296:120-131. [PMID: 32483855 PMCID: PMC7641103 DOI: 10.1111/imr.12861] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The majority of all vaccines work by inducing protective antibody responses. The mechanisms by which the B cells responsible for producing protective antibodies are elicited to respond are not well understood. Interclonal B cell competition to complex antigens, particularly in germinal centers, has emerged as an important hurdle in designing effective vaccines. This review will focus on recent advances in understanding the roles of B cell precursor frequency, B cell receptor affinity for antigen, antigen avidity, and other factors that can substantially alter the outcomes of B cell responses to complex antigens. Understanding the interdependence of these fundamental factors that affect B cell responses can inform current vaccine design efforts for pathogens with complex proteins as candidate immunogens such as HIV, influenza, and coronaviruses.
Collapse
Affiliation(s)
- Robert K. Abbott
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037 USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|