251
|
Wen R, Zhang TN, Yang N. [Recent research on pyroptosis in sepsis-induced myocardial depression]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:774-781. [PMID: 39014956 PMCID: PMC11562036 DOI: 10.7499/j.issn.1008-8830.2312039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Sepsis-induced myocardial depression (SIMD), a common complication of sepsis, is one of the main causes of death in patients with sepsis. The pathogenesis of SIMD is complicated, and the process of SIMD remains incompletely understood, with no single or definitive mechanism fully elucidated. Notably, pyroptosis, as a pro-inflammatory programmed cell death, is characterized by Gasdermin-mediated formation of pores on the cell membrane, cell swelling, and cell rupture accompanied by the release of large amounts of inflammatory factors and other cellular contents. Mechanistically, pyroptosis is mainly divided into the canonical pathway mediated by caspase-1 and the non-canonical pathway mediated by caspase-4/5/11. Pyroptosis has been confirmed to participate in various inflammation-associated diseases. In recent years, more and more studies have shown that pyroptosis is also involved in the occurrence and development of SIMD. This article reviews the molecular mechanisms of pyroptosis and its research progress in SIMD, aiming to provide novel strategies and targets for the treatment of SIMD.
Collapse
Affiliation(s)
- Ri Wen
- Department of Pediatric Intensive Care Unit, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatric Intensive Care Unit, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatric Intensive Care Unit, Shengjing Hospital, China Medical University, Shenyang 110004, China
| |
Collapse
|
252
|
Yang K, Wang X, Pan H, Wang X, Hu Y, Yao Y, Zhao X, Sun T. The roles of AIM2 in neurodegenerative diseases: insights and therapeutic implications. Front Immunol 2024; 15:1441385. [PMID: 39076969 PMCID: PMC11284019 DOI: 10.3389/fimmu.2024.1441385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
AIM2, a cytosolic innate immune receptor, has the capability to recognize double-stranded DNA (dsDNA). This paper delineates the structural features of AIM2 and its mechanisms of activation, emphasizing its capacity to detect cytosolic DNA and initiate inflammasome assembly. Additionally, we explore the diverse functions of AIM2 in different cells. Insights into AIM2-mediated neuroinflammation provide a foundation for investigating novel therapeutic strategies targeting AIM2 signaling pathways. Furthermore, we present a comprehensive review of the roles of AIM2 in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we discuss its therapeutic implications. In conclusion, a profound understanding of AIM2 in neurodegenerative diseases may facilitate the development of effective interventions to mitigate neuronal damage and slow disease progression.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xi Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Hanyu Pan
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xinqing Wang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunhan Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Yihe Yao
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, China
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
253
|
Mo D, Wang M, Zhang P, Dai H, Guan J. Factors predicting the recurrence of atrial fibrillation after catheter ablation: A review. Heliyon 2024; 10:e34205. [PMID: 39071658 PMCID: PMC11277434 DOI: 10.1016/j.heliyon.2024.e34205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/26/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Atrial fibrillation (AF) is the most common and clinically significant type of cardiac arrhythmia. Although catheter ablation (CA) can restore sinus rhythm in patients with AF, some patients experience recurrence after the procedure. This requires us to find a simple and effective way to identify patients at a high risk of recurrence and to intervene early in the high-risk population to improve patient prognosis. The mechanism of AF recurrence is unclear, but it involves several aspects including patient history, inflammation, myocardial fibrosis, and genes. This article summarizes the current predictors of AF recurrence after CA, including myocardial fibrosis markers, inflammatory markers, MicroRNAs, Circular RNAs, AF recurrence scores, and imaging indicators. Each predictor has its own scope of application, and the predictive capacity and joint application of multiple predictors may improve the predictive power. In addition, we summarize the mechanisms involved in AF recurrence. We hope that this review will assist researchers understand the current predictors of AF recurrence and help them conduct further related studies.
Collapse
Affiliation(s)
- Degang Mo
- Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China
| | - Mengmeng Wang
- Department of Cardiology, Qingdao University, Qingdao, 266011, China
| | - Peng Zhang
- Department of Cardiology, Qingdao University, Qingdao, 266011, China
| | - Hongyan Dai
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Jun Guan
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, 266011, China
| |
Collapse
|
254
|
Shippy DC, Evered AH, Ulland TK. Ketone body metabolism and the NLRP3 inflammasome in Alzheimer's disease. Immunol Rev 2024. [PMID: 38989642 DOI: 10.1111/imr.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder and the most common form of dementia. AD pathology is characterized by senile plaques and neurofibrillary tangles (NFTs) composed of amyloid-β (Aβ) and hyperphosphorylated tau, respectively. Neuroinflammation has been shown to drive Aβ and tau pathology, with evidence suggesting the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as a key pathway in AD pathogenesis. NLRP3 inflammasome activation in microglia, the primary immune effector cells of the brain, results in caspase-1 activation and secretion of IL-1β and IL-18. Recent studies have demonstrated a dramatic interplay between the metabolic state and effector functions of immune cells. Microglial metabolism in AD is of particular interest, as ketone bodies (acetone, acetoacetate (AcAc), and β-hydroxybutyrate (BHB)) serve as an alternative energy source when glucose utilization is compromised in the brain of patients with AD. Furthermore, reduced cerebral glucose metabolism concomitant with increased BHB levels has been demonstrated to inhibit NLRP3 inflammasome activation. Here, we review the role of the NLRP3 inflammasome and microglial ketone body metabolism in AD pathogenesis. We also highlight NLRP3 inflammasome inhibition by several ketone body therapies as a promising new treatment strategy for AD.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Abigail H Evered
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Cellular and Molecular Pathology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
255
|
Li S, Hou Z, Ye T, Song X, Hu X, Chen J. Saponin components in Polygala tenuifolia as potential candidate drugs for treating dementia. Front Pharmacol 2024; 15:1431894. [PMID: 39050746 PMCID: PMC11266144 DOI: 10.3389/fphar.2024.1431894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Objective This study aims to elucidate the intervention effects of saponin components from Polygala tenuifolia Willd (Polygalaceae) on dementia, providing experimental evidence and new insights for the research and application of saponins in the field of dementia. Materials and Methods This review is based on a search of the PubMed, NCBI, and Google Scholar databases from their inception to 13 May 2024, using terms such as "P. tenuifolia," "P. tenuifolia and saponins," "toxicity," "dementia," "Alzheimer's disease," "Parkinson's disease dementia," and "vascular dementia." The article summarizes the saponin components of P. tenuifolia, including tenuigenin, tenuifolin, polygalasaponins XXXII, and onjisaponin B, as well as the pathophysiological mechanisms of dementia. Importantly, it highlights the potential mechanisms by which the active components of P. tenuifolia prevent and treat diseases and relevant clinical studies. Results The saponin components of P. tenuifolia can reduce β-amyloid accumulation, exhibit antioxidant effects, regulate neurotransmitters, improve synaptic function, possess anti-inflammatory properties, inhibit neuronal apoptosis, and modulate autophagy. Therefore, P. tenuifolia may play a role in the prevention and treatment of dementia. Conclusion The saponin components of P. tenuifolia have shown certain therapeutic effects on dementia. They can prevent and treat dementia through various mechanisms.
Collapse
Affiliation(s)
- Songzhe Li
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhitao Hou
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ting Ye
- The Second Hospital Affiliated Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaochen Song
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinying Hu
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Chen
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
256
|
D’Silva NJ, Pandiyan P. Neuroimmune cell interactions and chronic infections in oral cancers. Front Med (Lausanne) 2024; 11:1432398. [PMID: 39050547 PMCID: PMC11266022 DOI: 10.3389/fmed.2024.1432398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammation is a process that is associated with the activation of distal immunosuppressive pathways that have evolved to restore homeostasis and prevent excessive tissue destruction. However, long-term immunosuppression resulting from systemic and local inflammation that may stem from dysbiosis, infections, or aging poses a higher risk for cancers. Cancer incidence and progression dramatically increase with chronic infections including HIV infection. Thus, studies on pro-tumorigenic effects of microbial stimulants from resident microbiota and infections in the context of inflammation are needed and underway. Here, we discuss chronic infections and potential neuro-immune interactions that could establish immunomodulatory programs permissive for tumor growth and progression.
Collapse
Affiliation(s)
- Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Center for AIDS Research, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
257
|
Benkő S, Dénes Á. Microglial Inflammatory Mechanisms in Stroke: The Jury Is Still Out. Neuroscience 2024; 550:43-52. [PMID: 38364965 DOI: 10.1016/j.neuroscience.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Microglia represent the main immune cell population in the CNS with unique homeostatic roles and contribution to broad neurological conditions. Stroke is associated with marked changes in microglial phenotypes and induction of inflammatory responses, which emerge as key modulators of brain injury, neurological outcome and regeneration. However, due to the limited availability of functional studies with selective targeting of microglia and microglia-related inflammatory pathways in stroke, the vast majority of observations remain correlative and controversial. Because extensive review articles discussing the role of inflammatory mechanisms in different forms of acute brain injury are available, here we focus on some specific pathways that appear to be important for stroke pathophysiology with assumed contribution by microglia. While the growing toolkit for microglia manipulation increasingly allows targeting inflammatory pathways in a cell-specific manner, reconsideration of some effects devoted to microglia may also be required. This may particularly concern the interpretation of inflammatory mechanisms that emerge in response to stroke as a form of sterile injury and change markedly in chronic inflammation and common stroke comorbidities.
Collapse
Affiliation(s)
- Szilvia Benkő
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest H-1083, Hungary.
| |
Collapse
|
258
|
Hiller-Vallina S, Mondejar-Ruescas L, Caamaño-Moreno M, Cómitre-Mariano B, Alcivar-López D, Sepulveda JM, Hernández-Laín A, Pérez-Núñez Á, Segura-Collar B, Gargini R. Sexual-biased necroinflammation is revealed as a predictor of bevacizumab benefit in glioblastoma. Neuro Oncol 2024; 26:1213-1227. [PMID: 38411438 PMCID: PMC11226871 DOI: 10.1093/neuonc/noae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly malignant brain tumor that affects men more often than women. In addition, the former shows a poorer survival prognosis. To date, the reason for this sex-specific aggressiveness remains unclear. Therefore, the aim of this study is to investigate tumor processes that explain these sex differences. METHODS This was a retrospective study of GBM patients which was stratified according to sex. A cohort with 73 tumors was analyzed with immunohistochemistry, RNA-seq and RT-qPCR to characterize differences in vascular and immunological profiles. Transcriptomic profiling, gene set enrichment analysis, and pathway enrichment analysis were used for discovering molecular pathways predominant in each group. We further investigated the therapeutic effect of bevacizumab (vascular endothelial growth factor A (VEGFA) blocking antibody) in a retrospective GBM cohort (36 tumors) based on sex differences. RESULTS We found that under hypoxic tumor conditions, 2 distinct tumor immuno-angiogenic ecosystems develop linked to sex differences and ESR1 expression is generated. One of these subgroups, which includes male patients with low ESR1 expression, is characterized by vascular fragility associated with the appearance of regions of necrosis and high inflammation (called necroinflamed tumors). This male-specific tumor subtype shows high inflammation related to myeloid-derived suppressor cells infiltration. Using this stratification, we identified a possible group of patients who could respond to bevacizumab (BVZ) and revealed a genetic signature that may find clinical applications as a predictor of those who may benefit most from this treatment. CONCLUSIONS This study provides a stratification based on the sexual differences in GBM, which associates the poor prognosis with the presence of immunosuppressive myeloid cells in the necrotic areas. This new stratification could change the current prognosis of GBM and identifies those who respond to BVZ treatment.
Collapse
Affiliation(s)
- Sara Hiller-Vallina
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Lucia Mondejar-Ruescas
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Caamaño-Moreno
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Blanca Cómitre-Mariano
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Denisse Alcivar-López
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan M Sepulveda
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Aurelio Hernández-Laín
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ángel Pérez-Núñez
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Neurosurgery, 12 de Octubre University Hospital (i+12), Madrid, Spain
| | - Berta Segura-Collar
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ricardo Gargini
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
259
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
260
|
Sandys O, Stokkers PCF, Te Velde AA. DAMP-ing IBD: Extinguish the Fire and Prevent Smoldering. Dig Dis Sci 2024:10.1007/s10620-024-08523-5. [PMID: 38963463 DOI: 10.1007/s10620-024-08523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.
Collapse
Affiliation(s)
- Oliver Sandys
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
261
|
Liu H, Wu C, Hu S, Leng B, Lou X, Liu Z, Su X, Huang D. Lutein Modulates Cellular Functionalities and Regulates NLRP3 Inflammasome in a H 2O 2-Challenged Three-Dimensional Retinal Pigment Epithelium Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14701-14712. [PMID: 38897610 DOI: 10.1021/acs.jafc.4c01537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Excessive hydrogen peroxide (H2O2) generated during retinal cell metabolic activity could lead to oxidative degeneration of retinal pigment epithelium (RPE) tissue, a specific pathological process implicated in various retinal diseases resulting in blindness, which can be mitigated by taking dietary antioxidants to prevent inflammation and impaired cellular dysfunction. This study tested the hypothesis that damages induced by oxidative stresses can be mitigated by lutein in a H2O2-challenged model, which was based on an ARPE-19 cell monolayer cultured on three-dimensional (3D)-printed fibrous scaffolds. Pretreating these models with lutein (0.5 μM) for 24 h can significantly lower the oxidative stress and maintain phagocytosis and barrier function. Moreover, lutein can modulate the NLRP3 inflammasome, leading to a ∼40% decrease in the pro-inflammatory cytokine (IL-1β and IL-18) levels. Collectively, this study suggests that the 3D RPE model is an effective tool to examine the capability of lutein to modulate cellular functionalities and regulate NLRP3 inflammation.
Collapse
Affiliation(s)
- Hang Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Chushan Wu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Shiyin Hu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Bin Leng
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Xiaowei Lou
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Zengping Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Xinyi Su
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
262
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
263
|
Li H, Zhao J, Cao L, Luo Q, Zhang C, Zhang L. The NLRP3 inflammasome in burns: a novel potential therapeutic target. BURNS & TRAUMA 2024; 12:tkae020. [PMID: 38957662 PMCID: PMC11218784 DOI: 10.1093/burnst/tkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 07/04/2024]
Abstract
Burns are an underestimated serious injury negatively impacting survivors physically, psychologically and economically, and thus are a considerable public health burden. Despite significant advancements in burn treatment, many burns still do not heal or develop serious complications/sequelae. The nucleotide-binding oligomerization domain-like receptors (NLRs) family pyrin domain-containing 3 (NLRP3) inflammasome is a critical regulator of wound healing, including burn wound healing. A better understanding of the pathophysiological mechanism underlying the healing of burn wounds may help find optimal therapeutic targets to promote the healing of burn wounds, reduce complications/sequelae following burn, and maximize the restoration of structure and function of burn skin. This review aimed to summarize current understanding of the roles and regulatory mechanisms of the NLRP3 inflammasome in burn wound healing, as well as the preclinical studies of the involvement of NLRP3 inhibitors in burn treatment, highlighting the potential application of NLRP3-targeted therapy in burn wounds.
Collapse
Affiliation(s)
- Haihong Li
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Junhong Zhao
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei Province, China
| | - Leilei Cao
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Qizhi Luo
- Department of Burns and Plastic Surgery, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Beijing 100048, China
| | - Lei Zhang
- Department of Psychiatry and Clinical Psychology, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| |
Collapse
|
264
|
Adu-Amankwaah J, Adekunle AO, Tang Z, Bushi A, Tan R, Fu L, Gong Z, Ma Z, Mprah R, Ndzie Noah ML, Wowui PI, Ong'achwa Machuki J, Pan X, Li T, Sun H. Estradiol contributes to sex differences in resilience to sepsis-induced metabolic dysregulation and dysfunction in the heart via GPER-1-mediated PPARδ/NLRP3 signaling. Metabolism 2024; 156:155934. [PMID: 38762141 DOI: 10.1016/j.metabol.2024.155934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND AIM Clinically, septic males tend to have higher mortality rates, but it is unclear if this is due to sex differences in cardiac dysfunction, possibly influenced by hormonal variations. Cardiac dysfunction significantly contributes to sepsis-related mortality, primarily influenced by metabolic imbalances. Peroxisome proliferator-activated receptor delta (PPARδ) is a key player in cardiac metabolism and its activation has been demonstrated to favor sepsis outcomes. While estradiol (E2) is abundant and beneficial in females, its impact on PPARδ-mediated metabolism in the heart with regards to sex during sepsis remains unknown. METHODS AND RESULTS Here, we unveil that while sepsis diminishes PPARδ nuclear translocation and induces metabolic dysregulation, oxidative stress, apoptosis and dysfunction in the heart thereby enhancing mortality, these effects are notably more pronounced in males than females. Mechanistic experiments employing ovariectomized(OVX) mice, E2 administration, and G protein-coupled estrogen receptor 1(GPER-1) knockout (KO) mice revealed that under lipopolysaccharide (LPS)-induced sepsis, E2 acting via GPER-1 enhances cardiac electrical activity and function, promotes PPARδ nuclear translocation, and subsequently ameliorates cardiac metabolism while mitigating oxidative stress and apoptosis in females. Furthermore, PPARδ specific activation using GW501516 in female GPER-1-/- mice reduced oxidative stress, ultimately decreasing NLRP3 expression in the heart. Remarkably, targeted GPER-1 activation using G1 in males mirrors these benefits, improving cardiac electrical activity and function, and ultimately enhancing survival rates during LPS challenge. By employing NLRP3 KO mice, we demonstrated that the targeted GPER-1 activation mitigated injury, enhanced metabolism, and reduced apoptosis in the heart of male mice via the downregulation of NLRP3. CONCLUSION Our findings collectively illuminate the sex-specific cardiac mechanisms influencing sepsis mortality, offering insights into physiological and pathological dimensions. From a pharmacological standpoint, this study introduces specific GPER-1 activation as a promising therapeutic intervention for males under septic conditions. These discoveries advance our understanding of the sex differences in sepsis-induced cardiac dysfunction and also present a novel avenue for targeted interventions with potential translational impact.
Collapse
Affiliation(s)
- Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | | | - Ziqing Tang
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zheng Gong
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ziyu Ma
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | | | | | | | - Xiuhua Pan
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Tao Li
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
265
|
Fu J, Schroder K, Wu H. Mechanistic insights from inflammasome structures. Nat Rev Immunol 2024; 24:518-535. [PMID: 38374299 PMCID: PMC11216901 DOI: 10.1038/s41577-024-00995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
Inflammasomes are supramolecular complexes that form in the cytosol in response to pathogen-associated and damage-associated stimuli, as well as other danger signals that perturb cellular homoeostasis, resulting in host defence responses in the form of cytokine release and programmed cell death (pyroptosis). Inflammasome activity is closely associated with numerous human disorders, including rare genetic syndromes of autoinflammation, cardiovascular diseases, neurodegeneration and cancer. In recent years, a range of inflammasome components and their functions have been discovered, contributing to our knowledge of the overall machinery. Here, we review the latest advances in inflammasome biology from the perspective of structural and mechanistic studies. We focus on the most well-studied components of the canonical inflammasome - NAIP-NLRC4, NLRP3, NLRP1, CARD8 and caspase-1 - as well as caspase-4, caspase-5 and caspase-11 of the noncanonical inflammasome, and the inflammasome effectors GSDMD and NINJ1. These structural studies reveal important insights into how inflammasomes are assembled and regulated, and how they elicit the release of IL-1 family cytokines and induce membrane rupture in pyroptosis.
Collapse
Affiliation(s)
- Jianing Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
266
|
Li Y, Guo M, Wang Q, Zhou H, Wu W, Lin H, Fan H. Glaesserella parasuis serotype 5 induces pyroptosis via the RIG-I/MAVS/NLRP3 pathway in swine tracheal epithelial cells. Vet Microbiol 2024; 294:110127. [PMID: 38797057 DOI: 10.1016/j.vetmic.2024.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Glaesserella parasuis (G. parasuis) is a common Gram-negative commensal bacterium in the upper respiratory tract of swine that can cause Glässer's disease under stress conditions. Pyroptosis is an important immune defence mechanism of the body that plays a crucial role in clearing pathogen infections and endogenous danger signals. This study aimed to investigate the mechanism of G. parasuis serotype 5 SQ (GPS5-SQ)-induced pyroptosis in swine tracheal epithelial cells (STECs). The results of the present study demonstrated that GPS5-SQ infection induces pyroptosis in STECs by enhancing the protein level of the N-terminal domain of gasdermin D (GSDMD-N) and activating the NOD-like receptor protein 3 (NLRP3) inflammasome. Furthermore, the levels of pyroptosis-related proteins, including GSDMD-N and cleaved caspase-1 were considerably decreased in STECs after the knockdown of retinoic acid inducible gene-I (RIG-I) and mitochondrial antiviral signaling protein (MAVS). These results indicated that GPS5-SQ might trigger pyroptosis through the activation of the RIG-I/MAVS/NLRP3 signaling pathway. More importantly, the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) repressed the activation of the RIG-I/MAVS/NLRP3 signaling and rescued the decrease in Occludin and zonula occludens-1 (ZO-1) after GPS5-SQ infection. Overall, our findings show that GPS5-SQ can activate RIG-I/MAVS/NLRP3 signaling and destroy the integrity of the epithelial barrier by inducing ROS generation in STECs, shedding new light on G. parasuis pathogenesis.
Collapse
Affiliation(s)
- Yuhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengru Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenda Wu
- Joint Research Center for Foodborne Functional Factors and Green Preparation, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China.
| |
Collapse
|
267
|
Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med 2024; 56:1488-1500. [PMID: 38945951 PMCID: PMC11297159 DOI: 10.1038/s12276-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Proinflammatory cytokines and chemokines play a crucial role in regulating the inflammatory response, which is essential for the proper functioning of our immune system. When infections or threats to the body's defense mechanisms are detected, the innate immune system takes the lead. However, an excessive inflammatory response can lead to the production of high concentrations of cytotoxic molecules, resulting in tissue damage. Inflammasomes are significant contributors to innate immunity, and one of the most extensively studied inflammasome complexes is NOD-like receptor 3 (NLRP3). NLRP3 has a wide range of recognition mechanisms that streamline immune activation and eliminate pathogens. These cytosolic multiprotein complexes are composed of effector, adaptor, and sensor proteins, which are crucial for identifying intracellular bacterial breakdown products and initiating an innate immune cascade. To understand the diverse behavior of NLRP3 activation and its significance in the development of lifestyle-related diseases, one must delve into the study of the immune response and apoptosis mediated by the release of proinflammatory cytokines. In this review, we briefly explore the immune response in the context of lifestyle associated disorders such as obesity, hyperlipidemia, diabetes, chronic respiratory disease, oral disease, and cardiovascular disease.
Collapse
Affiliation(s)
- Rajath Ramachandran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Jei Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea.
| |
Collapse
|
268
|
Khair M, Khair M, Vangaveti VN, Malabu UH. The role of the NLRP3 inflammasome in atherosclerotic disease: Systematic review and meta-analysis. J Cardiol 2024; 84:14-21. [PMID: 38521117 DOI: 10.1016/j.jjcc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Atherosclerosis is a chronic, progressive cardiovascular disease characterized by cholesterol deposition within blood vessel walls. Recent literature has suggested that the NLRP3 [NOD (nucleotide oligomerization domain)-, LRR (leucine-rich repeat)-, and PYD (pyrin domain)-containing protein 3] inflammasome is a key mediator in the development, progression, and destabilization of atherosclerotic plaques. This review aims to evaluate the current literature on the role of NLRP3 in human atherosclerosis. This systematic review was registered on the PROSPERO database (ID = CRD42022340039) and involved the search of a total of 8 databases. Records were screened in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A total of 20 studies were included and quality assessed using the NIH: NHLBI tool. Six were eligible for meta-analysis using RevMan 5.4.1. We identified 20 relevant articles representing 3388 participants. NLRP3 mRNA levels and downstream cytokines, interleukin (IL)-1β and IL-18 were found to be associated with atherosclerotic disease. Fold changes in NLRP3 mRNA levels were most strongly associated with high risk atherosclerotic disease, compared to controls [0.84 (95 % CI: 0.41-1.28)]. IL-1β mRNA fold change was more robustly associated with high-risk atherosclerotic disease [0.61 (95 % CI: 0.10-1.13)] than IL-18 [0.47 (95 % CI: 0.02-0.91)]. NLRP3, IL-1β, and IL-18 are associated with high-risk atherosclerotic disease. However, given the scope of this review, the role of this inflammasome and its cytokine counterparts in acting as prognosticators of coronary artery disease severity is unclear. Several upstream activators such as cholesterol crystals are involved in the canonical or non-canonical activation of the NLRP3 inflammasome and its downstream cytokines. These findings highlight the necessity for further research to delineate the exact mechanisms of NLRP3 inflammasome activation and potential drug targets.
Collapse
Affiliation(s)
- Marina Khair
- College of Medicine and Dentistry, James Cook University, Douglas, Queensland, Australia.
| | - Mark Khair
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Venkat N Vangaveti
- College of Medicine and Dentistry, James Cook University, Douglas, Queensland, Australia
| | - Usman H Malabu
- College of Medicine and Dentistry, James Cook University, Douglas, Queensland, Australia; Department of Endocrinology, Townsville University Hospital, Douglas, Queensland, Australia
| |
Collapse
|
269
|
Kiełbowski K, Bakinowska E, Bratborska AW, Pawlik A. The role of adipokines in the pathogenesis of psoriasis - a focus on resistin, omentin-1 and vaspin. Expert Opin Ther Targets 2024; 28:587-600. [PMID: 38965991 DOI: 10.1080/14728222.2024.2375373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin condition with several types of manifestation, including psoriatic arthritis. In recent years, studies have demonstrated multiple molecules and mechanisms that play important roles in the pathophysiology of psoriasis. Studies have been conducted to determine the role of adipokines, bioactive peptides secreted by the adipose tissue, in the pathogenesis of inflammatory diseases. These studies have shown that adipokines are dysregulated in psoriasis and their abnormal expression profile could contribute to the inflammatory mechanisms observed in psoriasis. AREAS COVERED In this review, we discuss the immunomodulatory features of resistin, omentin-1, and vaspin, and discuss their potential involvement in the pathogenesis of psoriasis. EXPERT OPINION The adipokines resistin, omentin, and vaspin appear to be promising therapeutic targets in psoriasis. It is important to seek to block the action of resistin, either by blocking its receptors or by blocking its systemic effects with antibodies. In the case of omentin and vaspin, substances that are receptor mimetics of these adipokines should be sought and studies conducted of their analogues for the treatment of psoriasis. To introduce these therapies into clinical practice, multicentre clinical trials are required to confirm their efficacy and safety after initial studies in animal models.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
270
|
Li T, Li J, Qin Y, Liu R, Xu X, Li X, Li L, Feng B, Yang L, Yang C. 4-Octyl itaconate inhibits inflammation via the NLRP3 pathway in neuromyelitis optica spectrum disorders. Ann Clin Transl Neurol 2024; 11:1732-1749. [PMID: 38738556 PMCID: PMC11251478 DOI: 10.1002/acn3.52080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
OBJECTIVE Neuromyelitis optica spectrum disorders (NMOSD) are rare inflammatory astrocytic diseases of the central nervous system (CNS). The roles of immune response gene-1 (IRG1) and the IRG1-itaconic acid-NLRP3 inflammatory pathway in the pathogenesis of NMOSD and the effects of 4-octyl itaconate (4-OI) on the NLRP3 inflammatory pathway in NMOSD are unclear. This study aimed to determine the role of IRG1 and the activation status of the NLRP3 inflammatory pathway in acute-onset NMOSD and to investigate the inhibitory effects of 4-OI on NLRP3 inflammasome activation via the IRG1-itaconic acid-NLRP3 pathway in monocytes and macrophages by using in vitro models. METHODS Peripheral blood mononuclear cells (PBMCs) and serum were collected from patients with acute NMOSDs and healthy controls (HC), followed by monocyte typing and detection of the expression of NLRP3-related inflammatory factors. Subsequently, the effects of 4-OI on the IRG1-itaconic acid-NLRP3 pathway were investigated in peripheral monocytes from patients with NMOSD and in macrophages induced by human myeloid leukemia mononuclear cells (THP-1 cells) via in vitro experiments. RESULTS Patients with acute NMOSD exhibited upregulated IRG1 expression. In particular, the upregulation of the expression of the NLRP3 inflammasome and proinflammatory factors was notable in monocytes in acute NMOSD patients. 4-OI inhibited the activation of the IRG1-itaconic acid-NLRP3 inflammatory pathway in the PBMCs of patients with NMOSD. INTERPRETATION 4-OI could effectively inhibit NLRP3 signaling, leading to the inhibition of proinflammatory cytokine production in patients with NMOSD-derived PBMCs and in a human macrophage model. Thus, 4-OI and itaconate could have important therapeutic value for the treatment of NMOSD in the future.
Collapse
Affiliation(s)
- Ting Li
- Department of NeurologyInstitute of Neuroimmunology, Tianjin Medical University General HospitalTianjin300052China
| | - Jia‐Wen Li
- Department of NeurologyInstitute of Neuroimmunology, Tianjin Medical University General HospitalTianjin300052China
| | - Ying‐Hui Qin
- Department of NeurologyInstitute of Neuroimmunology, Tianjin Medical University General HospitalTianjin300052China
| | - Riu Liu
- Department of NeurologyInstitute of Neuroimmunology, Tianjin Medical University General HospitalTianjin300052China
| | - Xiao‐Na Xu
- Department of NeurologyInstitute of Neuroimmunology, Tianjin Medical University General HospitalTianjin300052China
| | - Xiao Li
- Department of NeurologyInstitute of Neuroimmunology, Tianjin Medical University General HospitalTianjin300052China
| | - Li‐Min Li
- Department of NeurologyInstitute of Neuroimmunology, Tianjin Medical University General HospitalTianjin300052China
| | - Bin Feng
- Department of NeurologyInstitute of Neuroimmunology, Tianjin Medical University General HospitalTianjin300052China
| | - Li Yang
- Department of NeurologyInstitute of Neuroimmunology, Tianjin Medical University General HospitalTianjin300052China
| | - Chun‐Sheng Yang
- Department of NeurologyInstitute of Neuroimmunology, Tianjin Medical University General HospitalTianjin300052China
| |
Collapse
|
271
|
Ahn JH, Jung DH, Kim DY, Lee TS, Kim YJ, Lee YJ, Seo IS, Kim WG, Cho YJ, Shin SJ, Park JH. Impact of IL-1β on lung pathology caused by Mycobacterium abscessus infection and its association with IL-17 production. Microbes Infect 2024; 26:105351. [PMID: 38724000 DOI: 10.1016/j.micinf.2024.105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Mycobacterium abscessus (MAB), a non-tuberculous mycobacterium (NTM), causes chronic pulmonary inflammation in humans. The NLRP3 inflammasome is a multi-protein complex that triggers IL-1β maturation and pyroptosis through the cleavage of caspase-1. In this study, we investigated the roles of NLRP3 and IL-1β in the host's defense against MAB. The IL-1β production by MAB was completely abolished in NLRP3, but not NLRC4, deficient macrophages. The NLRP3 inflammasome components, which are ASC and caspase-1 were also found to be essential for IL-1β production in response to MAB. NLRP3 and IL-1β deficiency did not affect the intracellular growth of MAB in macrophages, and the bacterial burden in lungs of NLRP3- and IL-1β-deficient mice was also comparable to the burden observed in WT mice. In contrast, IL-1β deficiency ameliorated lung pathology in MAB-infected mice. Notably, the lung homogenates of IL-1β-deficient mice had reduced levels of IL-17, but not IFN-γ and IL-4 when compared with WT counterparts. Furthermore, in vitro co-culture analysis showed that IL-1β signaling was essential for IL-17 production in response to MAB. Finally, we observed that the anti-IL-17 antibody administration moderately mitigated MAB-induced lung pathology. These findings indicated that IL-1β production contribute to MAB-induced lung pathology via the elevation of IL-17 production.
Collapse
Affiliation(s)
- Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Yeon Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeong-Jun Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yun-Ji Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Su Seo
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Wan-Gyu Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young Jin Cho
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea; NODCURE, INC., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
272
|
Kaneko N, Kurata M, Yamamoto T, Sakamoto A, Takada Y, Kosako H, Takeda H, Sawasaki T, Masumoto J. CANE, a Component of the NLRP3 Inflammasome, Promotes Inflammasome Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:86-95. [PMID: 38787200 DOI: 10.4049/jimmunol.2300175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3, also called cryopyrin) inflammasome is an intracellular innate immune complex, which consists of the pattern-recognition receptor NLRP3, the adaptor apoptosis-assciated speck-like protein containing a caspase recruitment domain, and procaspase-1. Aberrant activation of the NLRP3 inflammasome causes an autoinflammatory disease called cryopyrin-associated periodic syndrome (CAPS). CAPS is caused by gain-of-function mutations in the NLRP3-encoding gene CIAS1; however, the mechanism of CAPS pathogenesis has not been fully understood. Thus, unknown regulators of the NLRP3 inflammasome, which are associated with CAPS development, are being investigated. To identify novel components of the NLRP3 inflammasome, we performed a high-throughput screen using a human protein array, with NLRP3 as the bait. We identified a NLRP3-binding protein, which we called the cryopyrin-associated nano enhancer (CANE). We demonstrated that CANE increased IL-1β secretion after NLRP3 inflammasome reconstitution in human embryonic kidney 293T cells and formed a "speck" in the cytosol, a hallmark of NLRP3 inflammasome activity. Reduced expression of endogenous CANE decreased IL-1β secretion upon stimulation with the NLRP3 agonist nigericin. To investigate the role of CANE in vivo, we developed CANE-transgenic mice. The PBMCs and bone marrow-derived macrophages of CANE-transgenic mice exhibited increased IL-1β secretion. Moreover, increased autoinflammatory neutrophil infiltration was observed in the s.c. tissue of CANE-transgenic versus wild-type mice; these phenotypes were consistent with those of CAPS model mice. These findings suggest that CANE, a component of the NLRP3 inflammasome, is a potential modulator of the inflammasome and a contributor to CAPS pathogenesis.
Collapse
Affiliation(s)
- Naoe Kaneko
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Mie Kurata
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Akimasa Sakamoto
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- Department of Hepatobiliary Pancreatic and Transplantation Surgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yasutsugu Takada
- Department of Hepatobiliary Pancreatic and Transplantation Surgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Junya Masumoto
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| |
Collapse
|
273
|
Shan W, Cui J, Song Y, Yan D, Feng L, Jian Y, Yi W, Sun Y. Itaconate as a key player in cardiovascular immunometabolism. Free Radic Biol Med 2024; 219:64-75. [PMID: 38604314 DOI: 10.1016/j.freeradbiomed.2024.04.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, resulting in a major health burden. Thus, an urgent need exists for exploring effective therapeutic targets to block progression of CVDs and improve patient prognoses. Immune and inflammatory responses are involved in the development of atherosclerosis, ischemic myocardial damage responses and repair, calcification, and stenosis of the aortic valve. These responses can involve both large and small blood vessels throughout the body, leading to increased blood pressure and end-organ damage. While exploring potential avenues for therapeutic intervention in CVDs, researchers have begun to focus on immune metabolism, where metabolic changes that occur in immune cells in response to exogenous or endogenous stimuli can influence immune cell effector responses and local immune signaling. Itaconate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, is related to pathophysiological processes, including cellular metabolism, oxidative stress, and inflammatory immune responses. The expression of immune response gene 1 (IRG1) is upregulated in activated macrophages, and this gene encodes an enzyme that catalyzes the production of itaconate from the TCA cycle intermediate, cis-aconitate. Itaconate and its derivatives have exerted cardioprotective effects through immune modulation in various disease models, such as ischemic heart disease, valvular heart disease, vascular disease, heart transplantation, and chemotherapy drug-induced cardiotoxicity, implying their therapeutic potential in CVDs. In this review, we delve into the associated signaling pathways through which itaconate exerts immunomodulatory effects, summarize its specific roles in CVDs, and explore emerging immunological therapeutic strategies for managing CVDs.
Collapse
Affiliation(s)
- Wenju Shan
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dongxu Yan
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Linqi Feng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
274
|
Ding X, Fan S. Purple sweet potato polysaccharide ameliorates concanavalin A-induced hepatic injury by inhibiting inflammation and oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155652. [PMID: 38663118 DOI: 10.1016/j.phymed.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is a prevalent liver disease that can potentially lead to hepatic fibrosis and cirrhosis. The prolonged administration of immunosuppressive medications carries significant risks for patients. Purple sweet potato polysaccharide (PSPP), a macromolecule stored in root tubers, exhibits anti-inflammatory, antioxidant, immune-enhancing, and intestinal flora-regulating properties. Nevertheless, investigation into the role and potential mechanisms of PSPP in AIH remains notably scarce. PURPOSE Our aim was to explore the possible protective impacts of PSPP against concanavalin A (Con A)-induced liver injury in mice. METHODS Polysaccharide was isolated from purple sweet potato tubers using water extraction and alcohol precipitation, followed by purification through DEAE-52 cellulose column chromatography and Sephadex G-100 column chromatography. A highly purified component was obtained, and its monosaccharide composition was characterized by high performance liquid chromatography (HPLC). Mouse and cellular models induced by Con A were set up to investigate the impacts of PSPP on hepatic histopathology, apoptosis, as well as inflammation- and oxidative stress-related proteins in response to PSPP treatment. RESULTS The administration of PSPP significantly reduced hepatic pathological damage, suppressed elevation of ALT and AST levels, and attenuated hepatic apoptosis in Con A-exposed mice. PSPP was found to mitigate Con A-induced inflammation by suppressing the TLR4-P2X7R/NLRP3 signaling pathway in mice. Furthermore, PSPP alleviated Con A-induced oxidative stress by activating the PI3K/AKT/mTOR signaling pathway in mice. Additionally, PSPP demonstrated the ability to reduce inflammation and oxidative stress in RAW264.7 cells induced by Con A in vitro. CONCLUSION PSPP has the potential to ameliorate hepatic inflammation via the TLR4-P2X7R/NLRP3 pathway and inhibit hepatic oxidative stress through the PI3K/AKT/mTOR pathway during the progression of Con A-induced hepatic injury. The results of this study have unveiled the potential hepatoprotective properties of purple sweet potato and its medicinal value for humans. Moreover, this study serves as a valuable reference, highlighting the potential of PSPP-1 as a drug candidate for the treatment of immune liver injury.
Collapse
Affiliation(s)
- Xiao Ding
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Shaohua Fan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China.
| |
Collapse
|
275
|
Wang C, Cui C, Xie X, Chen B, Feng L, Jiang P. Calcitriol attenuates lipopolysaccharide-induced neuroinflammation and depressive-like behaviors by suppressing the P2X7R/NLRP3/caspase-1 pathway. Psychopharmacology (Berl) 2024; 241:1329-1343. [PMID: 38411637 DOI: 10.1007/s00213-024-06565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
RATIONALE Microglia-mediated neuroinflammation is a vital hallmark in progression of depression, while calcitriol exerts anti-inflammatory effects in the brain. The activation of the P2X7 receptor has an important link to neuroinflammation. However, it is unclear whether calcitriol treatment exerts anti-inflammatory effects in association with P2X7R activation. OBJECTIVE In this study, we assessed the antidepressive and neuroprotective effects of calcitriol on lipopolysaccharide (LPS)-mediated depressive-like behavior, neuroinflammation, and neuronal damage. METHODS In in vitro experiments, the BV2 cells were exposed to LPS, and the protective effects of calcitriol were assessed. For in vivo experiment, thirty-two male C57BL/6 mice were divided into four groups of control, calcitriol, LPS and LPS + calcitriol. Calcitriol was administered at 1 µg/kg for 14 days and LPS at 1 mg/kg once every other day for 14 days. The control group mice were given equal volumes of vehicles. All treatments were delivered intraperitoneally. RESULTS The in vitro experiments showed calcitriol inhibited the release of inflammatory mediators induced by LPS in BV2 cells. The in vivo experiments revealed that calcitriol alleviated LPS-induced behavioral abnormalities and spatial learning impairments. Moreover, calcitriol treatment reduced the mRNA levels of pro-inflammatory cytokines, while increasing anti-inflammatory cytokine levels in the hippocampus. Our results further revealed that calcitriol administration attenuated LPS-induced microglia activation by suppressing P2X7R/NLRP3/caspase-1 signaling. Moreover, calcitriol inhibited apoptosis of neurons in the hippocampus as evidenced by expression of apoptosis-related proteins and TUNEL assay. CONCLUSIONS Collectively, our findings demonstrated that calcitriol exerts antidepressive and neuroprotective effects through the suppression of the P2X7R/NLRP3/caspase-1 pathway both in LPS-induced inflammation models in vitro and in vivo.
Collapse
Affiliation(s)
- Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Xin Xie
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Beibei Chen
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, China.
| | - Pei Jiang
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China.
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, China.
| |
Collapse
|
276
|
Chen J, Singh N, Ye X, Theune EV, Wang K. Gut microbiota-mediated activation of GSDMD ignites colorectal tumorigenesis. Cancer Gene Ther 2024; 31:1007-1017. [PMID: 38898209 PMCID: PMC11257976 DOI: 10.1038/s41417-024-00796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Activation of Gasdermin D (GSDMD) results in its cleavage, oligomerization, and subsequent formation of plasma membrane pores, leading to a form of inflammatory cell death denoted as pyroptosis. The roles of GSDMD in inflammation and immune responses to infection are well documented. However, whether GSDMD also plays a role in sporadic cancer development, especially that in the gut epithelium, remains unknown. Here, we show that GSDMD is activated in colorectal tumors of both human and mouse origins. Ablation of GSDMD in a mouse model of sporadic colorectal cancer resulted in reduced tumor formation in the colon and rectum, suggesting a tumor-promoting role of the protein in the gut. Both antibiotic-mediated depletion of gut microbiota and pharmacological inhibition of NLRP3 inflammasome reduced the activation of GSDMD. Loss of GSDMD resulted in reduced infiltration of immature myeloid cells, and increased numbers of macrophages in colorectal tumors. Activation of GSDMD is also accompanied by the aggregation of the endosomal sorting complex required for transport (ESCRT) membrane repair proteins on the membrane of colorectal tumor cells, suggesting that active membrane repairment may prevent pyroptosis induced by the formation of GSDMD pore in tumor cells. Our results show that gut microbiota/NLRP3-mediated activation of GSDMD promotes the development of colorectal tumors, and supports the use of NLRP3 inhibitors to treat colon cancer.
Collapse
Affiliation(s)
- Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, 528000, China
| | - Neha Singh
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Xiaoyang Ye
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Eileen Victoria Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA.
| |
Collapse
|
277
|
Ni H, Hu X, Yang N, Liu X, Cai W, Zhong R, Wang T, Yu M, Tang S. Roundup ® induces premature senescence of mouse granulosa cells via mitochondrial ROS-triggered NLRP3 inflammasome activation. Toxicol Res 2024; 40:377-387. [PMID: 38911547 PMCID: PMC11187041 DOI: 10.1007/s43188-024-00229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/27/2024] [Accepted: 02/23/2024] [Indexed: 06/25/2024] Open
Abstract
Roundup, a glyphosate-based herbicide widely used in agriculture, has raised concerns regarding its potential impact on human health due to the detection of its residues in human urine and serum. Granulosa cells are essential for oocyte growth and follicle development. Previous research has shown that Roundup could affect steroid synthesis, increases oxidative stress, and induces apoptosis in granulosa cells. However, little is known about the effects of Roundup on NLRP3 (nucleotide binding oligomerization domain-like receptor family pyrin-containing domain protein 3) inflammasome activation and cellular senescence in granulosa cells. Here, we provided evidence that exposure to Roundup induced premature senescence in mouse granulosa cells through the activation of NLRP3 inflammasome triggered by mitochondrial ROS. Our findings demonstrated that Roundup significantly reduced the viability of granulosa cells under in vitro culture conditions. It also disrupted mitochondrial function and induced oxidative stress in these cells. Subsequent investigations showed that NLRP3 inflammasome was activated in treated granulosa cells, as evidenced by the upregulation of inflammasome-related genes and the processing of inflammatory cytokines IL-1β and IL-1α into their mature forms. Consequently, premature cellular senescence occurred in response to the challenge posed by Roundup. Notably, direct inhibition of NLRP3 inflammasome with MCC950 does not alleviate mitochondrial damage and oxidative stress. However, supplementation of resveratrol, which has been known to attenuate mitochondrial damage and oxidative stress, effectively mitigated the inflammatory response and the expression of senescence-related markers, and prevented the senescence in granulosa cells. These results suggested that mitochondrial function and oxidative homeostasis might play pivotal roles as upstream regulators of NLRP3 inflammasome. In summary, our findings indicated that the premature senescence of granulosa cells caused by mitochondrial ROS-triggered NLRP3 inflammasome activation might contribute to the ovarian toxicity of Roundup, in addition to its known effects on steroidogenesis and apoptosis. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00229-0.
Collapse
Affiliation(s)
- Heliang Ni
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866 Liaoning China
| | - Xiangdong Hu
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866 Liaoning China
| | - Nannan Yang
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866 Liaoning China
| | - Xiaoyang Liu
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866 Liaoning China
| | - Wenyang Cai
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866 Liaoning China
| | - Rui Zhong
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866 Liaoning China
| | - Tiancheng Wang
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866 Liaoning China
| | - Mingxi Yu
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866 Liaoning China
| | - Shuang Tang
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866 Liaoning China
| |
Collapse
|
278
|
Alipour S, Mardi A, Shajari N, Kazemi T, Sadeghi MR, Ahmadian Heris J, Masoumi J, Baradaran B. Unmasking the NLRP3 inflammasome in dendritic cells as a potential therapeutic target for autoimmunity, cancer, and infectious conditions. Life Sci 2024; 348:122686. [PMID: 38710282 DOI: 10.1016/j.lfs.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
279
|
Nenasheva VV, Stepanenko EA, Tarantul VZ. Multi-Directional Mechanisms of Participation of the TRIM Gene Family in Response of Innate Immune System to Bacterial Infections. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1283-1299. [PMID: 39218025 DOI: 10.1134/s0006297924070101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/30/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
The multigene TRIM family is an important component of the innate immune system. For a long time, the main function of the genes belonging to this family was believed to be an antiviral defense of the host organism. The issue of their participation in the immune system response to bacterial invasion has been less studied. This review is the first comprehensive analysis of the mechanisms of functioning of the TRIM family genes in response to bacterial infections, which expands our knowledge about the role of TRIM in the innate immune system. When infected with different types of bacteria, individual TRIM proteins regulate inflammatory, interferon, and other responses of the immune system in the cells, and also affect autophagy and apoptosis. Functioning of TRIM proteins in response to bacterial infection, as well as viral infection, often includes ubiquitination and various protein-protein interactions with both bacterial proteins and host cell proteins. At the same time, some TRIM proteins, on the contrary, contribute to the infection development. Different members of the TRIM family possess similar mechanisms of response to viral and bacterial infection, and the final impact of these proteins could vary significantly. New data on the effect of TRIM proteins on bacterial infections make an important contribution to a more detailed understanding of the innate immune system functioning in animals and humans when interacting with pathogens. This data could also be used for the search of new targets for antibacterial defense.
Collapse
|
280
|
Liu Z, Dang B, Li Z, Wang X, Liu Y, Wu F, Cao X, Wang C, Lin C. Baicalin attenuates acute skin damage induced by ultraviolet B via inhibiting pyroptosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112937. [PMID: 38743989 DOI: 10.1016/j.jphotobiol.2024.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
As the outermost layer of the human body, the skin suffers from various external factors especially light damage, among which ultraviolet B (UVB) irradiation is common and possesses a relatively high biological damage capacity. Pyroptosis is a newly discovered type of programmed cell death, which can induce cell rupture and induce local inflammatory response. However, the molecular mechanisms of pyroptosis in photodamaged skin is poorly understood. Baicalin, a flavonoid extracted from the desiccated root of Scutellaria baicalensis Georgi (Huang Qin). Despite its antioxidant abilities, whether baicalin protects skin by attenuating UVB-induced pyroptosis remains unclear, which was the aim of this study. The UVB-induced acute skin damage model was established by using human immortalized keratinocytes (HaCaT cells) and Kunming (KM) strain mice. The protective dose selection for baicalin is 50 μM in vitro and 100 mg/kg in vivo. In in vitro study, UVB irradiation significantly decreased cell viability, increased cell death and oxidative stress in HaCaT cells, while pretreatment with baicalin improved these phenomena. Furthermore, the baicalin pretreatment notably suppressed nuclear factor kappa B (NF-κB) translocation, the NLRP3 inflammasome activation and gasdermin D (GSDMD) maturation, thus effectively attenuating UVB-induced pyroptosis. In in vivo study, the baicalin pretreatment mitigated epidermal hyperplasia, collagen fiber fragmentation, oxidative stress and pyroptosis in UVB-irradiated mouse skin. In a nutshell, this study suggests that baicalin could be a potential protective agent to attenuate acute skin damage induced by UVB irradiation through decreasing oxidative stress and suppressing NF-κB/NLRP3/GSDMD-involved pyroptosis.
Collapse
Affiliation(s)
- Zuohao Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhen Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xingsheng Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuhan Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fen Wu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinhui Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
281
|
Cheng Y, Xiao X, Fu J, Zong X, Lu Z, Wang Y. Escherichia coli K88 activates NLRP3 inflammasome-mediated pyroptosis in vitro and in vivo. Biochem Biophys Rep 2024; 38:101665. [PMID: 38419757 PMCID: PMC10900769 DOI: 10.1016/j.bbrep.2024.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Pyroptosis induced by lipopolysaccharide (LPS) has an obvious impact on intestinal inflammation and immune regulation. Enterotoxigenic Escherichia coli (ETEC) K88 has been proved to induce inflammatory responses in several models, but whether E. coli K88 participates in the same process of pyroptotic cell death as LPS remains to be identified. We conducted a pilot experiment to confirm that E. coli K88, instead of Escherichia coli O157 and Salmonella typhimurium, promotes the secretion of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18) in macrophages. Further experiments were carried out to dissect the molecular mechanism both in vitro and in vivo. The Enzyme-Linked Immunosorbent Assay (ELISA) results suggested that E. coli K88 treatment increased the expression of pro-inflammatory cytokines IL-18 and IL-1β in both C57BL/6 mice and the supernatant of J774A.1 cells. Intestinal morphology observations revealed that E. coli K88 treatment mainly induced inflammation in the colon. Real-time PCR and Western blot analysis showed that the mRNA and protein expressions of pyroptosis-related factors, such as NLRP3, ASC, and Caspase1, were significantly upregulated by E. coli K88 treatment. The RNA-seq results confirmed that the effect was associated with the activation of NLRP3, ASC, Caspase1, GSDMD, IL-18, and IL-1β, and might also be related to inflammatory bowel disease and the tumor necrosis factor pathway. The pyroptosis-activated effect of E. coli K88 was significantly blocked by NLRP3 siRNA. Our data suggested that E. coli K88 caused inflammation by triggering pyroptosis, which provides a theoretical basis for the prevention and treatment of ETEC in intestinal infection.
Collapse
Affiliation(s)
- Yuanzhi Cheng
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Xiao Xiao
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| |
Collapse
|
282
|
Liang S, Zhou J, Cao C, Liu Y, Ming S, Liu X, Shang Y, Lao J, Peng Q, Yang J, Wu M. GITR exacerbates lysophosphatidylcholine-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. Cell Mol Immunol 2024; 21:674-688. [PMID: 38740925 PMCID: PMC11214634 DOI: 10.1038/s41423-024-01170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The NLRP3 inflammasome functions as an inflammatory driver, but its relationship with lipid metabolic changes in early sepsis remains unclear. Here, we found that GITR expression in monocytes/macrophages was induced by lysophosphatidylcholine (LPC) and was positively correlated with the severity of sepsis. GITR is a costimulatory molecule that is mainly expressed on T cells, but its function in macrophages is largely unknown. Our in vitro data showed that GITR enhanced LPC uptake by macrophages and specifically enhanced NLRP3 inflammasome-mediated macrophage pyroptosis. Furthermore, in vivo studies using either cecal ligation and puncture (CLP) or LPS-induced sepsis models demonstrated that LPC exacerbated sepsis severity/lethality, while conditional knockout of GITR in myeloid cells or NLRP3/caspase-1/IL-1β deficiency attenuated sepsis severity/lethality. Mechanistically, GITR specifically enhanced inflammasome activation by regulating the posttranslational modification (PTM) of NLRP3. GITR competes with NLRP3 for binding to the E3 ligase MARCH7 and recruits MARCH7 to induce deacetylase SIRT2 degradation, leading to decreasing ubiquitination but increasing acetylation of NLRP3. Overall, these findings revealed a novel role of macrophage-derived GITR in regulating the PTM of NLRP3 and systemic inflammatory injury, suggesting that GITR may be a potential therapeutic target for sepsis and other inflammatory diseases. GITR exacerbates LPC-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. According to the model, LPC levels increase during the early stage of sepsis, inducing GITR expression on macrophages. GITR not only competes with NLRP3 for binding to the E3 ligase MARCH7 but also recruits MARCH7 to induce the degradation of the deacetylase SIRT2, leading to decreasing ubiquitination but increasing acetylation of NLRP3 and therefore exacerbating LPC-induced NLRP3 inflammasome activation, macrophage pyroptosis and systemic inflammatory injury.
Collapse
Affiliation(s)
- Siping Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jinyu Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Can Cao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yiting Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siqi Ming
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yuqi Shang
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Juanfeng Lao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Qin Peng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiahui Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
283
|
Shen J, Xu J, Wen Y, Tang Z, Li J, Sun J. Carnosine ameliorates postoperative cognitive dysfunction of aged rats by limiting astrocytes pyroptosis. Neurotherapeutics 2024; 21:e00359. [PMID: 38664193 PMCID: PMC11301240 DOI: 10.1016/j.neurot.2024.e00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 07/15/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common postoperative complication in elderly patients, and neuroinflammation is a key hallmark. Recent studies suggest that the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-mediated astrocytes pyroptosis is involved in the regulation of neuroinflammation in many neurocognitive diseases, while its role in POCD remains obscure. Carnosine is a natural endogenous dipeptide with anti-inflammatory and neuroprotective effects. To explore the effect of carnosine on POCD and its mechanism, we established a POCD model by exploratory laparotomy in 24-month-old male Sprague-Dawley rats. We found that the administrated of carnosine notably attenuated surgery-induced NLRP3 inflammasome activation and pyroptosis in astrocytes, central inflammation, and neuronal damage in the hippocampus of aged rats. In addition, carnosine dramatically ameliorated the learning and memory deficits of surgery-induced aged rats. Then in the in vitro experiments, we stimulated primary astrocytes with lipopolysaccharide (LPS) after carnosine pretreatment. The results also showed that the application of carnosine alleviated the activation of the NLRP3 inflammasome, pyroptosis, and inflammatory response in astrocytes stimulated by LPS. Taken together, these findings suggest that carnosine improves POCD in aged rats via inhibiting NLRP3-mediated astrocytes pyroptosis and neuroinflammation.
Collapse
Affiliation(s)
- Jiahong Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jiawen Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yuxin Wen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zili Tang
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jianliang Sun
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China; Zhejiang University School of Medicine, Hangzhou, China; Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
284
|
Chen P, Wang Y, Xie J, Lei J, Zhou B. Methylated urolithin A, mitigates cognitive impairment by inhibiting NLRP3 inflammasome and ameliorating mitochondrial dysfunction in aging mice. Neuropharmacology 2024; 252:109950. [PMID: 38636727 DOI: 10.1016/j.neuropharm.2024.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Effective therapeutic interventions for elderly patients are lacking, despite advances in pharmacotherapy. Methylated urolithin A (mUro A), a modified ellagitannin (ET)-derived metabolite, exhibits anti-inflammatory, antioxidative, and anti-apoptotic effects. Current research has primarily investigated the neuroprotective effects of mUroA in aging mice and explored the underlying mechanisms. Our study used an in vivo aging model induced by d-galactose (D-gal) to show that mUro A notably improved learning and memory, prevented synaptic impairments by enhancing synaptic protein expression and increasing EPSCs, and reduced oxidative damage in aging mice. mUro A alleviated the activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome, leading to reduced glial cell activity and neuroinflammation in both accelerated aging and naturally senescent mouse models. Moreover, mUroA enhanced the activity of TCA cycle enzymes (PDH, CS, and OGDH), decreased 8-OHdG levels, and raised ATP and NAD+ levels within the mitochondria. At the molecular level, mUro A decreased phosphorylated p53 levels and increased the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), thus enhancing mitochondrial function. In conclusion, mUro A alleviates cognitive impairment in aging mice by suppressing neuroinflammation through NLRP3 inflammasome inhibition and restoring mitochondrial function via the p53-PGC-1α pathway. This suggests its potential therapeutic agent for brain aging and aging-related diseases.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435099, PR China
| | - Jing Xie
- Department of Pharmacy, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| |
Collapse
|
285
|
Wu Z, Takigawa H, Maruyama H, Nambu T, Mashimo C, Okinaga T. TLR2-dependent and independent pyroptosis in dTHP-1 cells induced by Actinomyces oris MG-1. Biochem Biophys Rep 2024; 38:101680. [PMID: 38455593 PMCID: PMC10918485 DOI: 10.1016/j.bbrep.2024.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
In the immune system, the detection of pathogens through various mechanisms triggers immune responses. Several types of specific programmed cell deaths play a role in the inflammatory reaction. This study emphasizes the inflammatory response induced by Actinomycetes. Actinomyces spp. are resident bacteria in human oral plaque and often serve as a bridge for pathogenic bacteria, which lack affinity to the tooth surface, aiding their colonization of the plaque. We aim to investigate the potential role of Actinomyces oris in the early stages of oral diseases from a new perspective. Actinomyces oris MG-1 (A. oris) was chosen for this research. Differentiated THP-1 (dTHP-1) cells were transiently treated with A. oris to model the inflammatory reaction. Cell viability, as well as relative gene and protein expression levels of dTHP-1 cells, were assessed using CCK-8, quantitative real-time polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and Western blot assay. The treatment decreased cell viability and increased the expression of inflammatory genes such as IL-1R1 and NLRP3. It was also observed to significantly enhance the release of IL-1β/IL-18 into the supernatant. Immunoblot analysis revealed a notable increase in the expression of N-gasdermin D persisting up to 24 h. Conversely, in models pre-treated with TLR2 inhibitors, N-gasdermin D was detectable only 12 h post-treatment and absent at 24 h. These results suggest that Actinomyces oris MG-1 induces pyroptosis in dTHP-1 cells via TLR2, but the process is not solely dependent on TLR2.
Collapse
Affiliation(s)
- Zixin Wu
- Department of Bacteriology, Graduate School of Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka, 573-1121, Japan
| | - Hiroki Takigawa
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka, 573-1121, Japan
| | - Hugo Maruyama
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka, 573-1121, Japan
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka, 573-1121, Japan
| | - Chiho Mashimo
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka, 573-1121, Japan
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka, 573-1121, Japan
| |
Collapse
|
286
|
Yan R, Sun Y, Yang Y, Zhang R, Jiang Y, Meng Y. Mitochondria and NLRP3 inflammasome in cardiac hypertrophy. Mol Cell Biochem 2024; 479:1571-1582. [PMID: 37589860 DOI: 10.1007/s11010-023-04812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
Cardiac hypertrophy is the main adaptive response of the heart to chronic loads; however, prolonged or excessive hypertrophy promotes myocardial interstitial fibrosis, systolic dysfunction, and cardiomyocyte death, especially aseptic inflammation mediated by NLRP3 inflammasome, which can aggravate ventricular remodeling and myocardial damage, which is an important mechanism for the progression of heart failure. Various cardiac overloads can cause mitochondrial damage. In recent years, the mitochondria have been demonstrated to be involved in the inflammatory response during the development of cardiac hypertrophy in vitro and in vivo. As the NLRP3 inflammasome and mitochondria are regulators of inflammation and cardiac hypertrophy, we explored the potential functions of the NLRP3 inflammasome and mitochondrial dysfunction in cardiac hypertrophy. In particular, we proposed that the induction of mitochondrial dysfunction in cardiomyocytes may promote NLRP3-dependent inflammation during myocardial hypertrophy. Further in-depth studies could prompt valuable discoveries regarding the underlying molecular mechanisms of cardiac hypertrophy, reveal novel anti-inflammatory therapies for cardiac hypertrophy, and provide more desirable therapeutic outcomes for patients with cardiac hypertrophy.
Collapse
Affiliation(s)
- Ruyu Yan
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, NO.990 Qinghua Street, Changchun, Jilin, China
- Department of Pathology, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Yuxin Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yifan Yang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, NO.990 Qinghua Street, Changchun, Jilin, China
| | - Rongchao Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yujiao Jiang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, NO.990 Qinghua Street, Changchun, Jilin, China
| | - Yan Meng
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, NO.990 Qinghua Street, Changchun, Jilin, China.
| |
Collapse
|
287
|
Rodrigues FDS, Newton WR, Tassinari ID, da Cunha Xavier FH, Marx A, de Fraga LS, Wright K, Guedes RP, Bambini-Jr V. Cannabidiol prevents LPS-induced inflammation by inhibiting the NLRP3 inflammasome and iNOS activity in BV2 microglia cells via CB2 receptors and PPARγ. Neurochem Int 2024; 177:105769. [PMID: 38761855 DOI: 10.1016/j.neuint.2024.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Neuroinflammation stands as a critical player in the pathogenesis of diverse neurological disorders, with microglial cells playing a central role in orchestrating the inflammatory landscape within the central nervous system. Cannabidiol (CBD) has gained attention for its potential to elicit anti-inflammatory responses in microglia, offering promising perspectives for conditions associated with neuroinflammation. Here we investigated whether the NLRP3 inflammasome and inducible nitric oxide synthase (iNOS) are involved in the protective effects of CBD, and if their modulation is dependent on cannabinoid receptor 2 (CB2) and PPARγ signalling pathways. We found that treatment with CBD attenuated pro-inflammatory markers in lipopolysaccharide (LPS)-challenged BV2 microglia in a CB2- and PPARγ-dependent manner. At a molecular level, CBD inhibited the LPS-induced pro-inflammatory responses by suppressing iNOS and NLRP3/Caspase-1-dependent signalling cascades, resulting in reduced nitric oxide (NO), interleukin-1β (IL-1β), and tumour necrosis factor-alpha (TNF-α) concentrations. Notably, the protective effects of CBD on NLRP3 expression, Caspase-1 activity, and IL-1β concentration were partially hindered by the antagonism of both CB2 receptors and PPARγ, while iNOS expression and NO secretion were dependent exclusively on PPARγ activation, with no CB2 involvement. Interestingly, CBD exhibited a protective effect against TNF-α increase, regardless of CB2 or PPARγ activation. Altogether, these findings indicate that CB2 receptors and PPARγ mediate the anti-inflammatory effects of CBD on the NLRP3 inflammasome complex, iNOS activity and, ultimately, on microglial phenotype. Our results highlight the specific components responsible for the potential therapeutic applications of CBD on neuroinflammatory conditions.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom.
| | - William Robert Newton
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom; MRC Centre for Medical Mycology, Exeter University, Exeter, United Kingdom.
| | - Isadora D'Ávila Tassinari
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom; Graduate Program in Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | | | - Adél Marx
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom.
| | - Luciano Stürmer de Fraga
- Graduate Program in Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Karen Wright
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom.
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Victorio Bambini-Jr
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, Lancashire, United Kingdom.
| |
Collapse
|
288
|
Khoshnavay Foumani M, Amirshahrokhi K, Namjoo Z, Niapour A. Carvedilol attenuates inflammatory reactions of lipopolysaccharide-stimulated BV2 cells and modulates M1/M2 polarization of microglia via regulating NLRP3, Notch, and PPAR-γ signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4727-4736. [PMID: 38133658 DOI: 10.1007/s00210-023-02914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Microglial cells coordinate immune responses in the central nervous system. Carvedilol (CVL) is a non-selective β-blocker with anti-inflammatory and anti-oxidant effects. This study aims to investigate the anti-inflammatory effects and the underlying mechanisms of CVL on lipopolysaccharide (LPS)-induced inflammation in microglial BV2 cells. BV2 cells were stimulated with LPS, and the protective effects of CVL were investigated via measurement of cell viability, reactive oxygen species (ROS), and interleukin (IL)-1β liberation. The protein levels of some inflammatory cascade, Notch, and peroxisome proliferator-activated receptor (PPAR)-γ pathways and relative markers of M1/M2 microglial phenotypes were assessed. Neuroblastoma SH-SY5Y cells were cultured with a BV2-conditioned medium (CM), and the capacity of CVL to protect cell viability was evaluated. CVL displayed a protective effect against LPS stress through reducing ROS and down-regulating of nuclear factor kappa B (NF-κB) p65, NLR family pyrin domain containing-3 (NLRP3), and IL-1β proteins. LPS treatment significantly increased the levels of the M1 microglial marker inducible nitric oxide synthase (iNOS) and M1-associated cleaved-NOTCH1 and hairy and enhancer of split-1 (HES1) proteins. Conversely, LPS treatment reduced the levels of the M2 marker arginase-1 (Arg-1) and PPAR-γ proteins. CVL pre-treatment reduced the protein levels of iNOS, cleaved-NOTCH1, and HES1, while increased Arg-1 and PPAR-γ. CM of CVL-primed BV2 cells significantly improved SH-SY5Y cell viability as compared with the LPS-induced cells. CVL suppressed ROS production and alleviated the expression of inflammatory markers in LPS-stimulated BV2 cells. Our results demonstrated that targeting Notch and PPAR-γ pathways as well as directing BV2 cell polarization toward the M2 phenotype may provide a therapeutic strategy to suppress neuroinflammation by CVL.
Collapse
Affiliation(s)
- Mohammadjavad Khoshnavay Foumani
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zeinab Namjoo
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
289
|
Antar SA, Abdo W, Helal AI, Abduh MS, Hakami ZH, Germoush MO, Alsulimani A, Al-Noshokaty TM, El-Dessouki AM, ElMahdy MK, Elgebaly HA, Al-Karmalawy AA, Mahmoud AM. Coenzyme Q10 mitigates cadmium cardiotoxicity by downregulating NF-κB/NLRP3 inflammasome axis and attenuating oxidative stress in mice. Life Sci 2024; 348:122688. [PMID: 38710284 DOI: 10.1016/j.lfs.2024.122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Coenzyme Q10 (CoQ10) occurs naturally in the body and possesses antioxidant and cardioprotective effects. Cardiotoxicity has emerged as a serious effect of the exposure to cadmium (Cd). This study investigated the curative potential of CoQ10 on Cd cardiotoxicity in mice, emphasizing the involvement of oxidative stress (OS) and NF-κB/NLRP3 inflammasome axis. Mice received a single intraperitoneal dose of CdCl2 (6.5 mg/kg) and a week after, CoQ10 (100 mg/kg) was supplemented daily for 14 days. Mice that received Cd exhibited cardiac injury manifested by the elevated circulating cardiac troponin T (cTnT), CK-MB, LDH and AST. The histopathological and ultrastructural investigations supported the biochemical findings of cardiotoxicity in Cd-exposed mice. Cd administration increased cardiac MDA, NO and 8-oxodG while suppressed GSH and antioxidant enzymes. CoQ10 decreased serum CK-MB, LDH, AST and cTnT, ameliorated histopathological and ultrastructural changes in the heart of mice, decreased cardiac MDA, NO, and 8-OHdG and improved antioxidants. CoQ10 downregulated NF-κB p65, NLRP3 inflammasome, IL-1β, MCP-1, JNK1, and TGF-β in the heart of Cd-administered mice. Moreover, in silico molecular docking revealed the binding potential between CoQ10 and NF-κB, ASC1 PYD domain, NLRP3 PYD domain, MCP-1, and JNK. In conclusion, CoQ10 ameliorated Cd cardiotoxicity by preventing OS and inflammation and modulating NF-κB/NLRP3 inflammasome axis in mice. Therefore, CoQ10 exhibits potent therapeutic benefits in safeguarding cardiac tissue from the harmful consequences of exposure to Cd.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Azza I Helal
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakakah 72388, Saudi Arabia
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed M El-Dessouki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6th of October, Giza 12566, Egypt
| | - Mohamed Kh ElMahdy
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Hassan A Elgebaly
- Biology Department, College of Science, Jouf University, Sakakah 72388, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October, Giza 12566, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
290
|
Guo J, Zhang X, Xu Y, Li B, Min M. BPOZ-2-deficient mice exhibit aggravated inflammation-associated tissue damage after acute dextran sodium sulfate or diethylnitrosamine exposure. Toxicol Lett 2024; 398:49-54. [PMID: 38866194 DOI: 10.1016/j.toxlet.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
An excessive inflammatory response plays an important role in pathological tissue damage associated with pathogen infection and tumorigenesis. Blood POZ-containing gene type 2 (BPOZ-2), an adaptor protein for the E3 ubiquitin ligase scaffold protein CUL3, is a negative regulator of the inflammatory response. In this study, we investigated the pathophysiological functions of BPOZ-2 in dextran sodium sulfate (DSS)-induced colon injury and diethylnitrosamine (DEN)-induced liver damage. Our results indicated that BPOZ-2 deficiency increased IL-1β induction after DSS and DEN treatment. In addition, BPOZ-2-deficient mice were more susceptible to DSS-induced colitis. Notably, BPOZ-2 deficiency aggravated DEN-induced acute liver injury. These results revealed that BPOZ-2 protected against pathological tissue damage with a dysregulated inflammatory response.
Collapse
Affiliation(s)
- Jiayi Guo
- Department of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xueting Zhang
- Department of Gastroenterology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China
| | - Yang Xu
- Department of Gastroenterology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China
| | - Bo Li
- Department of Clinical Laboratory, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing 100071, PR China
| | - Min Min
- Department of Gastroenterology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, PR China.
| |
Collapse
|
291
|
Li J, Dong M, Yao Q, Dong X, Chen Y, Wen J, Xu Y, Wu Z, Zhao X, Xiu Y, Zhan X, Bai Z, Xiao X. Amplifying protection against acute lung injury: Targeting both inflammasome and cGAS-STING pathway by Lonicerae Japonicae Flos-Forsythiae Fructus drug pair. CHINESE HERBAL MEDICINES 2024; 16:422-434. [PMID: 39072201 PMCID: PMC11283229 DOI: 10.1016/j.chmed.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Acute lung injury (ALI) is characterized by inflammation and currently lacks an efficacious pharmacological intervention. The medicine combination of Lonicerae Japonicae Flos (LJF) and Forsythiae Fructus (FF) demonstrates combined properties in its anti-infective, anti-inflammatory, and therapeutic effects, particularly in alleviating respiratory symptoms. In previous studies, Chinese medicine has shown promising efficacy in lipopolysaccharides (LPS)-induced ALI. However, there have been no reports of LJF and FF pairing for lung injury. The aim of this study is to compare the efficacy of herb pair Lonicerae Japonicae Flos-Forsythiae Fructus (LF) with LJF or FF alone in the treatment of ALI, and to explore whether LJF and FF have a combined effect in the treatment of lung injury, along with the underlying mechanism involved. Methods A total of 36 mice were divided into six groups (control, model, LJF, FF, LF, dexamethasone) based on the treatments they received after undergoing sham-operation/LPS tracheal instillation. H&E staining and pulmonary edema indexes were used to evaluate lung injury severity. Alveolar exudate cells (AECs) were counted based on cell count in bronchoalveolar lavage fluid (BALF), and neutrophil percentage in BALF was measured using flow cytometry. Myeloperoxidase (MPO) activity in BALF was measured using enzyme-linked immunosorbent assay (ELISA), while the production of IL-1β, TNF-α, and IL-6 in the lung and secretion level of them in BALF were detected by quantitative polymerase chain reaction (qPCR) and ELISA. The effect of LJF, FF, and LF on the expression of Caspase-1 and IL-1β proteins in bone marrow derived macrophages (BMDMs) supernatant was assessed using Western blot method under various inflammasome activation conditions. In addition, the concentration of IL-1β and changes in lactatedehydrogenase (LDH) release levels in BMDMs supernatant after LJF, FF, and LF administration, respectively, were measured using ELISA. Furthermore, the effects of LJF, FF and LF on STING and IRF3 phosphorylation in BMDMs were detected by Western blot, and the mRNA changes of IFN-β, TNF-α, IL-6 and CXCL10 in BMDMs were detected by qPCR. Results LF significantly attenuated the damage to alveolar structures, pulmonary hemorrhage, and infiltration of inflammatory cells induced by LPS. This was evidenced by a decrease in lung index score and wet/dry weight ratio. Treatment with LF significantly reduced the total number of neutrophil infiltration by 75% as well as MPO activity by 88%. The efficacy of LF in reducing inflammatory factors IL-1β, TNF-α, and IL-6 in the lungs surpasses that of LJF or FF, approaching the effectiveness of dexamethasone. In BMDMs, the co-administration of 0.2 mg/mL of LJF and FF demonstrated superior inhibitory effects on the expression of nigericin-stimulated Caspase-1 and IL-1β, as well as the release levels of LDH, compared to individual treatments. Similarly, the combination of 0.5 mg/mL LJF and FF could better inhibit the phosphorylation levels of STING and IRF3 and the production of IFN-β, TNF-α, IL-6, and CXCL10 in response to ISD stimulation. Conclusion The combination of LJF and FF increases the therapeutic effect on LPS-induced ALI, which may be mechanistically related to the combined effect inhibition of cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and NOD-like receptor family protein 3 (NLRP3) inflammasomes pathways by LJF and FF. Our study provides new medicine candidates for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Junjie Li
- Chengde Medical University, Chengde 067000, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- National Key Laboratory of Kidney Diseases, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ming Dong
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi 154007, China
| | - Qing Yao
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- Southern Medical University, Guangzhou 510515, China
| | - Xu Dong
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yuanyuan Chen
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yingjie Xu
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Zhixin Wu
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xiaomei Zhao
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ye Xiu
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- National Key Laboratory of Kidney Diseases, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- National Key Laboratory of Kidney Diseases, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Chengde Medical University, Chengde 067000, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- National Key Laboratory of Kidney Diseases, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
292
|
Dou Y, Fei X, He X, Huan Y, Wei J, Wu X, Lyu W, Fei Z, Li X, Fei F. Homer1a reduces inflammatory response after retinal ischemia/reperfusion injury. Neural Regen Res 2024; 19:1608-1617. [PMID: 38051906 PMCID: PMC10883521 DOI: 10.4103/1673-5374.386490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/25/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00042/figure1/v/2023-11-20T171125Z/r/image-tiff
Elevated intraocular pressure (IOP) is one of the causes of retinal ischemia/reperfusion injury, which results in NLRP3 inflammasome activation and leads to visual damage. Homer1a is reported to play a protective role in neuroinflammation in the cerebrum. However, the effects of Homer1a on NLRP3 inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown. In our study, animal models were constructed using C57BL/6J and Homer1flox/
–/Homer1a+/
–/Nestin-Cre+/
– mice with elevated IOP-induced retinal ischemia/reperfusion injury. For in vitro experiments, the oxygen-glucose deprivation/reperfusion injury model was constructed with Müller cells. We found that Homer1a overexpression ameliorated the decreases in retinal thickness and Müller cell viability after ischemia/reperfusion injury. Furthermore, Homer1a knockdown promoted NF-κB P65Ser536 activation via caspase-8, NF-κB P65 nuclear translocation, NLRP3 inflammasome formation, and the production and processing of interleukin-1β and interleukin-18. The opposite results were observed with Homer1a overexpression. Finally, the combined administration of Homer1a protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1flox/
–/Homer1a+/
–/Nestin-Cre+/
– mice and apoptosis in Müller cells after ischemia/reperfusion injury. Taken together, these studies demonstrate that Homer1a exerts protective effects on retinal tissue and Müller cells via the caspase-8/NF-κB P65/NLRP3 pathway after I/R injury.
Collapse
Affiliation(s)
- Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Weihao Lyu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
293
|
Hirai K, Kimura T, Suzuki Y, Shimoshikiryo T, Shirai T, Itoh K. Gene Polymorphisms of NLRP3 Associated With Plasma Levels of 4β-Hydroxycholesterol, an Endogenous Marker of CYP3A Activity, in Patients With Asthma. Clin Pharmacol Ther 2024; 116:147-154. [PMID: 38482940 DOI: 10.1002/cpt.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 06/18/2024]
Abstract
Inflammation decreases the activity of cytochrome P450 3A (CYP3A). Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) is responsible for regulating the inflammatory response, and its genetic polymorphisms have been linked to inflammatory diseases such as asthma. However, there have been few studies on the effect of NLRP3 on CYP3A activity. We aimed to investigate the association between polymorphisms in the NLRP3 gene and plasma 4β-hydroxycholesterol (4βOHC), an endogenous marker of CYP3A activity, in patients with asthma. In this observational study including 152 adult asthma patients, we analyzed 10 NLRP3 gene single-nucleotide polymorphisms (SNPs). Plasma 4βOHC levels were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results showed that five SNPs were associated with significantly lower plasma 4βOHC concentrations. Among these SNPs, rs3806265, rs4612666, rs1539019, and rs10733112 contributed to a significant increase in plasma IL-6 concentrations. Moreover, a multivariate regression model showed that the rs3806265 TT, rs4612666 CC, rs1539019 AA, and rs10733112 TT genotypes were significant factors for decreased plasma 4βOHC, even after including patient background factors and CYP3A5*3 (rs776746) gene polymorphisms as covariates. These results were also observed when plasma 4βOHC concentrations were corrected for cholesterol levels. We conclude that NLRP3 gene polymorphisms are involved in increasing plasma IL-6 concentrations and decreasing plasma 4βOHC concentrations in patients with asthma. Therefore, NLRP3 gene polymorphisms may be a predictive marker of CYP3A activity in inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Keita Hirai
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Department of Pharmacy, Shinshu University Hospital, Nagano, Japan
- Department of Clinical Pharmacology and Therapeutics, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Tomoki Kimura
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuya Suzuki
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takayuki Shimoshikiryo
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshihiro Shirai
- Department of Respiratory Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Kunihiko Itoh
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
- Laboratory of Clinical Pharmacogenomics, Shizuoka General Hospital, Shizuoka, Japan
| |
Collapse
|
294
|
Xia XM, Duan Y, Wang YP, Han RX, Dong YF, Jiang SY, Zheng Y, Qiao C, Cao L, Lu X, Lu M. Vagus nerve stimulation as a promising neuroprotection for ischemic stroke via α7nAchR-dependent inactivation of microglial NLRP3 inflammasome. Acta Pharmacol Sin 2024; 45:1349-1365. [PMID: 38504011 PMCID: PMC11192746 DOI: 10.1038/s41401-024-01245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Ischemic stroke is a major cause of disability and death worldwide, and its management requires urgent attention. Previous studies have shown that vagus nerve stimulation (VNS) exerts neuroprotection in ischemic stroke by inhibiting neuroinflammation and apoptosis. In this study, we evaluated the timing for VNS intervention in ischemic stroke, and the underlying mechanisms of VNS-induced neuroprotection. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min. The left vagus nerve at cervical level was exposed and attached to an electrode connected to a low-frequency electrical stimulator. Vagus nerve stimulation (VNS) was given for 60 min before, during and after tMCAO (Pre-VNS, Dur-VNS, Post-VNS). Neurological function was assessed 24 h after reperfusion. We found that all the three VNS significantly protected against the tMCAO-induced injury evidenced by improved neurological function and reduced infarct volume. Moreover, the Pre-VNS was the most effective against the ischemic injury. We found that tMCAO activated microglia in the ischemic core and penumbra regions of the brain, followed by the NLRP3 inflammasome activation-induced neuroinflammation, which finally triggered neuronal death. VNS treatment preserved α7nAChR expression in the penumbra regions, inhibited NLRP3 inflammasome activation and ensuing neuroinflammation, rescuing cerebral neurons. The role of α7nAChR in microglial NLRP3 inflammasome activation in ischemic stroke was further validated using genetic manipulations, including Chrna7 knockout mice and microglial Chrna7 overexpression mice, as well as pharmacological interventions using the α7nAChR inhibitor methyllycaconitine and agonist PNU-282987. Collectively, this study demonstrates the potential of VNS as a safe and effective strategy to treat ischemic stroke, and presents a new approach targeting microglial NLRP3 inflammasome, which might be therapeutic for other inflammation-related diseases.
Collapse
Affiliation(s)
- Xiao-Mei Xia
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Rehabilitation Medicine, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Yu Duan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yue-Ping Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Rui-Xue Han
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Yin-Feng Dong
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Si-Yuan Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chen Qiao
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Lei Cao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ming Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
295
|
Pang Y, Tao X, Qin Z, Jiang M, Song E, Song Y. Chiral silver nanoparticles with surface-anchored L(D)-Cys exhibit dissimilar biological characteristics in vitro but not in vivo. Toxicol Lett 2024; 398:28-37. [PMID: 38851367 DOI: 10.1016/j.toxlet.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
This work investigated the influence of surface chirality on cellular internalization, cytotoxicity, and tissue distribution of silver nanoparticles (AgNPs). D-cysteine and L-cysteine are chiral forms of the amino acid cysteine. These enantiomers exhibit distinct spatial arrangements, with D-cysteine having a different configuration from L-cysteine. This structural dissimilarity can lead to variations in how these forms interact with biological systems, potentially impacting their cytotoxic responses. Four distinct types of AgNPs were synthesized, each possessing a unique surface coating: pristine AgNPs (pAgNPs), L-cysteine coated AgNPs (AgNPs@L-Cys), D-cysteine coated AgNPs (AgNPs@D-Cys), and racemic AgNPs coated with both L-Cys and D-Cys (AgNPs@L/D-Cys). We found chiral-dependent cytotoxicity of AgNPs on J774A.1 cells. Specifically, AgNPs@L-Cys exhibited the highest toxicity, and AgNPs@D-Cys exhibited the lowest toxicity. Meanwhile, the cellular uptake of the AgNPs correlated nicely with their cytotoxicity, with AgNPs@L-Cys being internalized to the greatest extent while AgNPs@D-Cys displays the least internalization. Scavenger receptors and clathrin predominantly mediate the cellular internalization of these AgNPs. Strikingly, the dissimilar cellular internalization and cytotoxicity of AgNPs with different chirality were eliminated upon protein corona coverage. Notably, following intravenous injection in mice, these four types of AgNPs showed similar patterns among various organs due to the inevitable protein adsorption in the bloodstream. These findings underscored the pivotal role of surface chirality in governing the biological interactions and toxicity of AgNPs.
Collapse
Affiliation(s)
- Yingxin Pang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China; Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, China.
| | - Zongmin Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Muran Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
| |
Collapse
|
296
|
Zhang J, Xie D, Jiao D, Zhou S, Liu S, Ju Z, Hu L, Qi L, Yao C, Zhao C. From inflammatory signaling to neuronal damage: Exploring NLR inflammasomes in ageing neurological disorders. Heliyon 2024; 10:e32688. [PMID: 38975145 PMCID: PMC11226848 DOI: 10.1016/j.heliyon.2024.e32688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
The persistence of neuronal degeneration and damage is a major obstacle in ageing medicine. Nucleotide-binding oligomerization domain (NOD)-like receptors detect environmental stressors and trigger the maturation and secretion of pro-inflammatory cytokines that can cause neuronal damage and accelerate cell death. NLR (NOD-like receptors) inflammasomes are protein complexes that contain NOD-like receptors. Studying the role of NLR inflammasomes in ageing-related neurological disorders can provide valuable insights into the mechanisms of neurodegeneration. This includes investigating their activation of inflammasomes, transcription, and capacity to promote or inhibit inflammatory signaling, as well as exploring strategies to regulate NLR inflammasomes levels. This review summarizes the use of NLR inflammasomes in guiding neuronal degeneration and injury during the ageing process, covering several neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, and peripheral neuropathies. To improve the quality of life and slow the progression of neurological damage, NLR-based treatment strategies, including inhibitor-related therapies and physical therapy, are presented. Additionally, important connections between age-related neurological disorders and NLR inflammasomes are highlighted to guide future research and facilitate the development of new treatment options.
Collapse
Affiliation(s)
- Jingwen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Xie
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuang Zhou
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
297
|
Zhong Y, Deng H, Zhao J, Luo G, Li H. Effects of acetate-producing Blautia wexlerae on oxidative stress and NLRP3 inflammasome in obesity-associated male infertility. Med Microbiol Immunol 2024; 213:11. [PMID: 38940844 DOI: 10.1007/s00430-024-00796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Obesity-associated male infertility is a common complication of obesity and has been increasing in prevalence. Blautia wexlerae has modulation effects on obesity. However, the action of B. wexlerae on obesity-associated male infertility is unclear. The nod-like receptor protein 3 (NLRP3) inflammasome has become a major target for addressing many diseases, including obesity-associated male infertility. This study aims to investigate the action of B. wexlerae on obesity-associated male infertility and the influence of B. wexlerae on NLRP3 inflammasome. MATERIALS AND METHODS The fecal samples were collected from 60 infertile men with or without obesity and 30 healthy men. The obesity mice model was established through high-fat diet (HFD) induction. The mating assays evaluated the male infertility of obese mice. A mouse-derived spermatogonia (GC-1 spg) cell viability was detected using the Cell Counting Kit-8 assay. The reactive oxygen species (ROS) were assessed using flow cytometry. Furthermore, immunofluorescence, enzyme-linked immunosorbent assay, and western blotting were applied to measure the gene expressions. RESULTS Blautia wexlerae was decreased and negatively correlated with interleukin-1 beta (IL-1β) or IL-18 levels in infertile men with obesity. On the other hand, B. wexlerae improved the mating capability of obese male mice and suppressed oxidative stress and NLRP3 inflammasome via the activation of the acetate receptor. Furthermore, sodium acetate regulated oxidative stress and NLRP3 inflammasome via the activation of the acetate receptor in GC-1 spg cells in vitro. CONCLUSION The administration of Blautia wexlerae improved obesity-associated male infertility and regulated oxidative stress and NLRP3 inflammasome activities. In general, its administration may be an effective strategy for the treatment of obesity-associated male infertility.
Collapse
Affiliation(s)
- Yucheng Zhong
- Assisted Reproductive Technology Center, Foshan Women and Children Hospital, No.11 Renmin West Road, Chancheng District, Foshan, 528000, China
| | - Hao Deng
- Assisted Reproductive Technology Center, Foshan Women and Children Hospital, No.11 Renmin West Road, Chancheng District, Foshan, 528000, China
| | - Jun Zhao
- Assisted Reproductive Technology Center, Foshan Women and Children Hospital, No.11 Renmin West Road, Chancheng District, Foshan, 528000, China
| | - Guoqun Luo
- Assisted Reproductive Technology Center, Foshan Women and Children Hospital, No.11 Renmin West Road, Chancheng District, Foshan, 528000, China.
| | - Huan Li
- Assisted Reproductive Technology Center, Foshan Women and Children Hospital, No.11 Renmin West Road, Chancheng District, Foshan, 528000, China.
| |
Collapse
|
298
|
Hoel H, Dahl TB, Yang K, Skeie LG, Michelsen AE, Ueland T, Damås JK, Dyrhol-Riise AM, Fevang B, Yndestad A, Aukrust P, Trøseid M, Sandanger Ø. Chronic HIV Infection Increases Monocyte NLRP3 Inflammasome-Dependent IL-1α and IL-1β Release. Int J Mol Sci 2024; 25:7141. [PMID: 39000248 PMCID: PMC11240952 DOI: 10.3390/ijms25137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Antiretroviral treatment (ART) has converted HIV from a lethal disease to a chronic condition, yet co-morbidities persist. Incomplete immune recovery and chronic immune activation, especially in the gut mucosa, contribute to these complications. Inflammasomes, multi-protein complexes activated by innate immune receptors, appear to play a role in these inflammatory responses. In particular, preliminary data indicate the involvement of IFI16 and NLRP3 inflammasomes in chronic HIV infection. This study explores inflammasome function in monocytes from people with HIV (PWH); 22 ART-treated with suppressed viremia and 17 untreated PWH were compared to 33 HIV-negative donors. Monocytes were primed with LPS and inflammasomes activated with ATP in vitro. IFI16 and NLRP3 mRNA expression were examined in a subset of donors. IFI16 and NLRP3 expression in unstimulated monocytes correlated negatively with CD4 T cell counts in untreated PWH. For IFI16, there was also a positive correlation with viral load. Monocytes from untreated PWH exhibit increased release of IL-1α, IL-1β, and TNF compared to treated PWH and HIV-negative donors. However, circulating monocytes in PWH are not pre-primed for inflammasome activation in vivo. The findings suggest a link between IFI16, NLRP3, and HIV progression, emphasizing their potential role in comorbidities such as cardiovascular disease. The study provides insights into inflammasome regulation in HIV pathogenesis and its implications for therapeutic interventions.
Collapse
Affiliation(s)
- Hedda Hoel
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
- Department of Internal Medicine, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
| | - Linda Gail Skeie
- Department of Infectious Diseases, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (L.G.S.); (A.M.D.-R.)
| | - Annika Elisabet Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Jan Kristian Damås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7034 Trondheim, Norway;
- Department of Infectious Diseases, St. Olavs Hospital, 7030 Trondheim, Norway
| | - Anne Ma Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Ullevål, 0450 Oslo, Norway; (L.G.S.); (A.M.D.-R.)
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Børre Fevang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (H.H.); (T.B.D.); (K.Y.); (A.E.M.); (T.U.); (B.F.); (A.Y.); (P.A.); (M.T.)
- Section of Dermatology, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| |
Collapse
|
299
|
Liao C, Xu F, Yu Z, Ding K, Jia Y. The Novel Role of the NLRP3 Inflammasome in Mycotoxin-Induced Toxicological Mechanisms. Vet Sci 2024; 11:291. [PMID: 39057975 PMCID: PMC11281663 DOI: 10.3390/vetsci11070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Mycotoxins are secondary metabolites produced by several fungi and moulds that exert toxicological effects on animals including immunotoxicity, genotoxicity, hepatotoxicity, teratogenicity, and neurotoxicity. However, the toxicological mechanisms of mycotoxins are complex and unclear. The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a multimeric cytosolic protein complex composed of the NLRP3 sensor, ASC adapter protein, and caspase-1 effector. Activation of the NLRP3 inflammasome plays a crucial role in innate immune defence and homeostatic maintenance. Recent studies have revealed that NLRP3 inflammasome activation is linked to tissue damage and inflammation induced by mycotoxin exposure. Thus, this review summarises the latest advancements in research on the roles of NLRP3 inflammasome activation in the pathogenesis of mycotoxin exposure. The effects of exposure to multiple mycotoxins, including deoxynivalenol, aflatoxin B1, zearalenone, T-2 toxin, ochratoxin A, and fumonisim B1, on pyroptosis-related factors and inflammation-related factors in vitro and in vivo and the pharmacological inhibition of specific and nonspecific NLRP3 inhibitors are summarized and examined. This comprehensive review contributes to a better understanding of the role of the NLRP3 inflammasome in toxicity induced by mycotoxin exposure and provides novel insights for pharmacologically targeting NLRP3 as a novel anti-inflammatory agent against mycotoxin exposure.
Collapse
Affiliation(s)
- Chengshui Liao
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Fengru Xu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Yanyan Jia
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
300
|
Hu Y, Tang J, Xie Y, Xu W, Zhu W, Xia L, Fang J, Yu D, Liu J, Zheng Z, Zhou Q, Shou Q, Zhang W. Gegen Qinlian decoction ameliorates TNBS-induced ulcerative colitis by regulating Th2/Th1 and Tregs/Th17 cells balance, inhibiting NLRP3 inflammasome activation and reshaping gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117956. [PMID: 38428658 DOI: 10.1016/j.jep.2024.117956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine Gegen Qinlian Decoction (GQD) has been clinically shown to be an effective treatment of ulcerative colitis (UC) in China. However, the underlying mechanism of GQD's anti-ulcerative colitis properties and its effect on gut microbiota still deserve further exploration. AIM OF THE STUDY This study observed the regulatory effects of GQD on Th2/Th1 and Tregs/Th17 cells balance, the NOD-like receptor family pyrin domain containing 3 (NLRP3) infammasome and gut microbiota in TNBS-induced UC in BALB/c mice. MATERIALS AND METHODS 61 main chemical compounds in the GQD were determined by UPLC-Q-TOF/MS. The UC BALB/c model was established by intrarectal administration of trinitrobenzene sulfonic acid (TNBS), and GQD was orally administered at low and high dosages of 2.96 and 11.83 g/kg/day, respectively. The anti-inflammatory effects of GQD for ulcerative colitis were evaluated by survival rate, body weight, disease activity index (DAI) score, colonic weight and index, spleen index, hematoxylin-eosin (HE) staining and histopathological scores. Flow cytometry was used to detect the percentage of CD4, Th1, Th2, Th17 and Tregs cells. The levels of Th1-/Th2-/Th17-/Tregs-related inflammatory cytokines and additional proinflammatory cytokines (IL-1β, IL-18) were detected by CBA, ELISA, and RT-PCR. The expressions of GATA3, T-bet, NLRP3, Caspase-1, IL-Iβ, Occludin and Zonula occludens-1 (ZO-1) on colon tissues were detected by Western blot and RT-PCR. Transcriptome sequencing was performed using colon tissue and 16S rRNA gene sequencing was performed on intestinal contents. Fecal microbiota transplantation (FMT) was employed to assess the contribution of intestinal microbiota and its correlation with CD4 T cells and the NLRP3 inflammasome. RESULTS GQD increased the survival rate of TNBS-induced UC in BALB/c mice, and significantly improved their body weight, DAI score, colonic weight and index, spleen index, and histological characteristics. The intestinal barrier dysfunction was repaired after GQD administration through promoting the expression of tight junction proteins (Occludin and ZO-1). GQD restored the balance of Th2/Th1 and Tregs/Th17 cells immune response of colitis mice, primarily inhibiting the increase in Th2/Th1 ratio and their transcription factor production (GATA3 and T-bet). Morever, GQD changed the secretion of Th1-/Th2-/Th17-/Tregs-related cytokines (IL-2, IL-12, IL-5, IL-13, IL-6, IL-10, and IL-17A) and reduced the expressions of IL-1β, IL-18. Transcriptome results suggested that GQD could also remodel the immune inflammatory response of colitis by inhibiting NOD-like receptor signaling pathway, and Western blot, immunohistochemistry and RT-PCR further revealed that GQD exerted anti-inflammatory effects by inhibiting the NLRP3 inflammasome, such as down-regulating the expression of NLRP3, Caspase-1 and IL-1β. More interestingly, GQD regulated gut microbiota dysbiosis, suppressed the overgrowth of conditional pathogenic gut bacteria like Helicobacter, Proteobacteria, and Mucispirillum, while the probiotic gut microbiota, such as Lactobacillus, Muribaculaceae, Ruminiclostridium_6, Akkermansia, and Ruminococcaceae_unclassified were increased. We further confirmed that GQD-treated gut microbiota was sufficient to relieve TNBS-induced colitis by FMT, involving the modulation of Th2/Th1 and Tregs/Th17 balance, inhibition of NLRP3 inflammasome activation, and enhancement of colonic barrier function. CONCLUSIONS GQD might alleviate TNBS-induced UC via regulating Th2/Th1 and Tregs/Th17 cells Balance, inhibiting NLRP3 inflammasome and reshaping gut microbiota, which may provide a novel strategy for patients with colitis.
Collapse
Affiliation(s)
- Yingnan Hu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingyi Tang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongfeng Xie
- Department of Burn Plastic Surgery, Huai'an Hospital Affiliated to Xuzhou Medical University, Jiangsu, 223001, China
| | - Wenjun Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weihan Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Linying Xia
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jintao Fang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dian Yu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingjing Liu
- Department of General Surgery, Haining City Central Hospital, Jiaxing, 314408, China
| | - Zhipeng Zheng
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Qiujing Zhou
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Qiyang Shou
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| | - Wei Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|