251
|
Hariharan R, Pillai MR. Structure-function relationship of inhibitory Smads: Structural flexibility contributes to functional divergence. Proteins 2008; 71:1853-62. [PMID: 18175316 DOI: 10.1002/prot.21869] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Smads are a small family of eukaryotic transcription regulators that play key roles in the transforming growth factor-beta signaling cascade. Smad6 and Smad7, the inhibitory or I-Smads, inhibit signaling downstream of TGF-beta type I receptors, thereby acting as negative regulators of signaling mediated by TGF-beta superfamily of ligands. Smad6 is known to specifically inhibit BMP type I receptor mediated signaling, while Smad7 is a more general inhibitor, able to block signaling mediated by a set of related TGF-beta type I receptors, including type I receptors for BMP and TGF-beta/Activin. In this study we have sought to understand the structural basis for this functional divergence of I-Smads. We have created homology-based models for the MH1 and MH2 domains of the two I-Smads and have carried out detailed molecular dynamics (MD) simulations of these proteins in explicit solvent to investigate the flexibility of the domains. The molecular models show that the I-Smads have lost many of the secondary structural elements found in the R-Smads, giving rise to longer loops in the tertiary structure of Smad6 and Smad7. Detailed analysis of the structural models and the MD trajectories clearly reveal that compared to Smad6, Smad7 has a more flexible overall folding, marked by the presence of highly flexible amino acid residues in functionally important regions of the protein. Interestingly, three of these residues-Phe411, Lys401, and Cys406, map to L3 loop of Smad7 MH2 domain, which is a critical structural determinant in Smad-type I receptor interactions. The increased structural flexibility of Smad7, arising out of longer, more flexible loops in its MH2 domain, might enable Smad7 to interact with a set of related yet structurally diverse type I receptors. Taken together with experimental evidence published in recent literature that hint at structural factors underlying the generic nature of inhibition by Smad7, our results strongly suggest that structural flexibility could be a prime contributor to the functional differences between Smad6 and Smad7. Additionally, we have been able to use the Smad7 structural model to successfully rationalize the results of in vitro site-specific mutagenesis experiments in published literature. This also provides biological validation for our model. Apart from this, analysis of the MH1 molcular model of Smad6 delineates a basic patch on the surface of the domain that might take part in nonspecific DNA binding by Smad6. This finding is consistent with earlier experimental data and is relevant since the characteristic beta-hairpin DNA binding element of R-Smads is completely absent in the I-Smads. Finally, the molecular models described here can serve to guide future biochemical and genetic studies on I-Smads.
Collapse
Affiliation(s)
- Ramkumar Hariharan
- Department of Molecular Medicine, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | |
Collapse
|
252
|
Akool ES, Doller A, Babelova A, Tsalastra W, Moreth K, Schaefer L, Pfeilschifter J, Eberhardt W. Molecular Mechanisms of TGFβ Receptor-Triggered Signaling Cascades Rapidly Induced by the Calcineurin Inhibitors Cyclosporin A and FK506. THE JOURNAL OF IMMUNOLOGY 2008; 181:2831-45. [DOI: 10.4049/jimmunol.181.4.2831] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
253
|
The Effect of Transforming Growth Factor β on Human Neuroendocrine Tumor BON Cell Proliferation and Differentiation Is Mediated through Somatostatin Signaling. Mol Cancer Res 2008; 6:1029-42. [DOI: 10.1158/1541-7786.mcr-07-2073] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
254
|
Hawse J, Subramaniam M, Ingle J, Oursler M, Rajamannan N, Spelsberg T. Estrogen-TGFbeta cross-talk in bone and other cell types: role of TIEG, Runx2, and other transcription factors. J Cell Biochem 2008; 103:383-92. [PMID: 17541956 PMCID: PMC3372922 DOI: 10.1002/jcb.21425] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is well established that E(2) and TGFbeta have major biological effects in multiple tissues, including bone. The signaling pathways through which these two factors elicit their effects are well documented. However, the interaction between these two pathways and the potential consequences of cross-talk between E(2) and TGFbeta continue to be elucidated. In this prospectus, we present known and potential roles of TIEG, Runx2, and other transcription factors as important mediators of signaling between these two pathways.
Collapse
Affiliation(s)
- J.R. Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - M. Subramaniam
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - J.N. Ingle
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - M.J. Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - N.M. Rajamannan
- Department of Cardiology, Northwestern University Medical School, Chicago, Illinois
| | - T.C. Spelsberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Correspondence to: T.C. Spelsberg, PhD, Department of Biochemistry and Molecular Biology, 1601 Guggenheim Bldg., Mayo Clinic, 200 First Street SW, Rochester, MN 55905.
| |
Collapse
|
255
|
Arnott JA, Zhang X, Sanjay A, Owen TA, Smock SL, Rehman S, DeLong WG, Safadi FF, Popoff SN. Molecular requirements for induction of CTGF expression by TGF-beta1 in primary osteoblasts. Bone 2008; 42:871-85. [PMID: 18314002 PMCID: PMC2430079 DOI: 10.1016/j.bone.2008.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/30/2007] [Accepted: 01/03/2008] [Indexed: 01/05/2023]
Abstract
Connective tissue growth factor (CTGF/CCN2) is a cysteine rich, extracellular matrix protein that acts as an anabolic growth factor to regulate osteoblast differentiation and function. In osteoblasts, CTGF is induced by TGF-beta1 where it acts as a downstream mediator of TGF-beta1 induced matrix production. The molecular mechanisms that control CTGF induction by TGF-beta1 in osteoblasts are not known. To assess the role of individual Smads in mediating the induction of CTGF by TGF-beta1, we used specific Smad siRNAs to block Smad expression. These studies demonstrated that Smads 3 and 4, but not Smad 2, are required for TGF-beta1 induced CTGF promoter activity and expression in osteoblasts. Since the activation of MAPKs (Erk, Jnk and p38) by TGF-beta1 is cell type specific, we were interested in determining the role of individual MAPKs in TGF-beta1 induction of CTGF promoter activity and expression. Using dominant negative (DN) mutants for Erk, Jnk and p38, we demonstrated that the expression of DN-Erk caused a significant inhibition of TGF-beta1 induced CTGF promoter activity. In contrast, the expression of DN-p38 or DN-Jnk failed to inhibit activation of CTGF promoter activity. To confirm the vital role of Erk, we used the Erk inhibitor (PD98059) to block its activation, demonstrating that it prevented TGF-beta1 activation of the CTGF promoter and up-regulation of CTGF expression in osteoblasts. Since Src can also act as a downstream signaling effector for TGF-beta in some cell types, we determined its role in TGF-beta1 induction of CTGF in osteoblasts. Treatment of osteoblasts with a Src family kinase inhibitor, PP2, or the expression of two independent kinase-dead Src mutant constructs caused significant inhibition of TGF-beta1 induced CTGF promoter activity and expression. Additionally, blocking Src activation prevented Erk activation by TGF-beta1 demonstrating a role for Src as an upstream mediator of Erk in regulating CTGF expression in osteoblasts. To investigate the involvement of the TGF-beta1 response element (TRE) and the SMAD binding element (SBE) in CTGF induction, we cloned the rat CTGF proximal promoter (-787 to +1) containing the TRE and SBE motifs into a pGL3-Luciferase reporter construct. Using a combination of CTGF promoter deletion constructs and site-directed mutants, we demonstrated the unique requirement of both the TRE and SBE for CTGF induction by TGF-beta1 in osteoblasts. Electro-mobility shift assays using specific probes containing the TRE, SBE or both showed TGF-beta1 inducible complexes that can be ablated by mutation of the respective motif, confirming their requirement for TGF-beta1 induced CTGF promoter activity. In conclusion, these studies demonstrate that CTGF induction by TGF-beta1 in osteoblasts involves Smads 3 and 4, the Erk and Src signaling pathways, and requires both the TRE and SBE motifs in the CTGF proximal promoter.
Collapse
Affiliation(s)
- J A Arnott
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Sphingosine kinases and sphingosine-1-phosphate are critical for transforming growth factor beta-induced extracellular signal-regulated kinase 1 and 2 activation and promotion of migration and invasion of esophageal cancer cells. Mol Cell Biol 2008; 28:4142-51. [PMID: 18426913 DOI: 10.1128/mcb.01465-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) plays a dual role in oncogenesis, acting as both a tumor suppressor and a tumor promoter. These disparate processes of suppression and promotion are mediated primarily by Smad and non-Smad signaling, respectively. A central issue in understanding the role of TGFbeta in the progression of epithelial cancers is the elucidation of the mechanisms underlying activation of non-Smad signaling cascades. Because the potent lipid mediator sphingosine-1-phosphate (S1P) has been shown to transactivate the TGFbeta receptor and activate Smad3, we examined its role in TGFbeta activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and promotion of migration and invasion of esophageal cancer cells. Both S1P and TGFbeta activate ERK1/2, but only TGFbeta activates Smad3. Both ligands promoted ERK1/2-dependent migration and invasion. Furthermore, TGFbeta rapidly increased S1P, which was required for TGFbeta-induced ERK1/2 activation, as well as migration and invasion, since downregulation of sphingosine kinases, the enzymes that produce S1P, inhibited these responses. Finally, our data demonstrate that TGFbeta activation of ERK1/2, as well as induction of migration and invasion, is mediated at least in part by ligation of the S1P receptor, S1PR2. Thus, these studies provide the first evidence that TGFbeta activation of sphingosine kinases and formation of S1P contribute to non-Smad signaling and could be important for progression of esophageal cancer.
Collapse
|
257
|
Hayashida T, Wu MH, Pierce A, Poncelet AC, Varga J, Schnaper HW. MAP-kinase activity necessary for TGFbeta1-stimulated mesangial cell type I collagen expression requires adhesion-dependent phosphorylation of FAK tyrosine 397. J Cell Sci 2008; 120:4230-40. [PMID: 18032789 DOI: 10.1242/jcs.03492] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The signals mediating transforming growth factor beta (TGFbeta)-stimulated kidney fibrogenesis are poorly understood. We previously reported TGFbeta-stimulated, Smad-mediated collagen production by human kidney mesangial cells, and that ERK MAP kinase activity optimizes collagen expression and enhances phosphorylation of the Smad3 linker region. Furthermore, we showed that disrupting cytoskeletal integrity decreases type I collagen production. Focal adhesion kinase (FAK, PTK2) activity could integrate these findings. Adhesion-dependent FAK Y397 phosphorylation was detected basally, whereas FAK Y925 phosphorylation was TGFbeta1-dependent. By immunocytochemistry, TGFbeta1 stimulated the merging of phosphorylated FAK with the ends of thickening stress fibers. Cells cultured on poly-L-lysine (pLL) to promote integrin-independent attachment spread less than those on control substrate and failed to demonstrate focal adhesion (FA) engagement with F-actin. FAK Y397 phosphorylation and ERK activity were also decreased under these conditions. In cells with decreased FAK Y397 phosphorylation from either plating on pLL or overexpressing a FAK Y397F point mutant, serine phosphorylation of the Smad linker region, but not of the C-terminus, was reduced. Y397F and Y925F FAK point mutants inhibited TGFbeta-induced Elk-Gal activity, but only the Y397F mutant inhibited TGFbeta-stimulated collagen-promoter activity. The inhibition by the Y397F mutant or by culture on pLL was prevented by co-transfection of constitutively active ERK MAP kinase kinase (MEK), suggesting that FAK Y397 phosphorylation promotes collagen expression via ERK MAP kinase activity. Finally, Y397 FAK phosphorylation, and both C-terminal and linker-region Smad3 phosphorylation were detected in murine TGFbeta-dependent kidney fibrosis. Together, these data demonstrate adhesion-dependent FAK phosphorylation promoting TGFbeta-induced responses to regulate collagen production.
Collapse
Affiliation(s)
- Tomoko Hayashida
- Division of Kidney Diseases, Department of Pediatrics, The Freinberg School Of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
258
|
Alcorn JF, Guala AS, van der Velden J, McElhinney B, Irvin CG, Davis RJ, Janssen-Heininger YMW. Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-beta1. J Cell Sci 2008; 121:1036-45. [PMID: 18334556 DOI: 10.1242/jcs.019455] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor beta1 (TGF-beta1) is a cardinal cytokine in the pathogenesis of airway remodeling, and promotes epithelial-to-mesenchymal transition (EMT). As a molecular interaction between TGF-beta1 and Jun N-terminal kinase (JNK) has been demonstrated, the goal of this study was to elucidate whether JNK plays a role in TGF-beta1-induced EMT. Primary cultures of mouse tracheal epithelial cells (MTEC) from wild-type, JNK1-/- or JNK2-/- mice were comparatively evaluated for their ability to undergo EMT in response to TGF-beta1. Wild-type MTEC exposed to TGF-beta1 demonstrated a prominent induction of mesenchymal mediators and a loss of epithelial markers, in conjunction with a loss of trans-epithelial resistance (TER). Significantly, TGF-beta1-mediated EMT was markedly blunted in epithelial cells lacking JNK1, while JNK2-/- MTEC underwent EMT in response to TGF-beta1 in a similar way to wild-type cells. Although Smad2/3 phosphorylation and nuclear localization of Smad4 were similar in JNK1-/- MTEC in response to TGF-beta1, Smad DNA-binding activity was diminished. Gene expression profiling demonstrated a global suppression of TGF-beta1-modulated genes, including regulators of EMT in JNK1-/- MTEC, in comparison with wild-type cells. In aggregate, these results illuminate the novel role of airway epithelial-dependent JNK1 activation in EMT.
Collapse
Affiliation(s)
- John F Alcorn
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
259
|
Luo X, Zhang Q, Liu V, Xia Z, Pothoven KL, Lee C. Cutting edge: TGF-beta-induced expression of Foxp3 in T cells is mediated through inactivation of ERK. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:2757-61. [PMID: 18292494 PMCID: PMC4289405 DOI: 10.4049/jimmunol.180.5.2757] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The peripheral induction of T regulatory cells can be accomplished by TGF-beta through an epigenetic regulation leading to the expression of Foxp3. However, the exact mechanism of such a TGF-beta-mediated action remains unclear. In the current study, we found that TGF-beta treatment of CD4+CD25- T cells during T cell activation led to a transient inhibition of the phosphorylation of ERK followed by the induction of Foxp3 expression in these cells. Direct treatment with a specific ERK inhibitor, UO126, during CD4+CD25- T cell activation also induced Foxp3 expression and conferred a suppressive function to the induced Foxp3+ T cells. Furthermore, treatment of T cells with either TGF-beta or UO126 significantly down-regulated the expression of DNMTs, a reaction normally elicited by demethylation agents, such as 5-Aza-2'-deoxycytidine. These results indicate that the epigenetic regulation of TGF-beta-induced expression of Foxp3 may be mediated through the inactivation of ERK.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/biosynthesis
- DNA Methylation
- DNA Methyltransferase 3A
- Down-Regulation/genetics
- Down-Regulation/immunology
- Enzyme Activation/immunology
- Forkhead Transcription Factors/biosynthesis
- Gene Expression Regulation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Transgenic
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/metabolism
- Phosphorylation
- Receptors, Antigen, T-Cell/physiology
- Resting Phase, Cell Cycle/immunology
- T-Lymphocytes, Regulatory/enzymology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Transforming Growth Factor beta1/physiology
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Xunrong Luo
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Qiang Zhang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Victoria Liu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Zhenbiao Xia
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Kathryn L. Pothoven
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Chung Lee
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
260
|
|
261
|
Romero D, Iglesias M, Vary CPH, Quintanilla M. Functional blockade of Smad4 leads to a decrease in beta-catenin levels and signaling activity in human pancreatic carcinoma cells. Carcinogenesis 2008; 29:1070-6. [PMID: 18310088 DOI: 10.1093/carcin/bgn054] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the last several years, many laboratories have tried to unravel the complex signaling mechanisms activated by TGF-beta(1) in transformed cells. Smad proteins are the principal mediators of the transforming growth factor beta (TGF-beta) response, but this factor can also activate Smad-independent pathways in different cell types. Our previous studies in murine keratinocytes led to the identification of a cooperation between oncogenic Ras and Smad4 inactivation during malignant progression. We further investigated the function of Smad4 in human pancreatic cancer, in which loss-of-function mutations affecting Smad4 occur with a 50% frequency. Expression of a dominant-negative Smad4 construct in the adenocarcinoma cell line PANC-1 led to increased ubiquitination and proteasomal degradation of beta-catenin. Moreover, loss of Smad4 abrogated beta-catenin-signaling activity and was associated with a reduction of the tumorigenic potential of PANC-1 cells in scid mice. Although the expression of the dominant-negative Smad4 blocked TGF-beta(1)/Smad2,3-signaling activity, the above-mentioned effects of Smad4 on beta-catenin stability were independent of the TGF-beta1/Smad2,3-signaling pathway. These findings provide evidence for a cross talk between Smad4 and the Wnt/beta-catenin pathway in pancreatic carcinoma cells, suggesting a new role for Smad4 as an attenuator of beta-catenin proteasomal degradation.
Collapse
Affiliation(s)
- Diana Romero
- Instituto de Investigaciones Biomedicas Alberto Sols, Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | | | |
Collapse
|
262
|
Matsui H, Sakabe M, Sakata H, Yanagawa N, Ikeda K, Yamagishi T, Nakajima Y. Induction of initial heart α-actin, smooth muscle α-actin, in chick pregastrula epiblast: The role of hypoblast and fibroblast growth factor-8. Dev Growth Differ 2008; 50:143-57. [DOI: 10.1111/j.1440-169x.2008.00987.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
263
|
Koli K, Myllärniemi M, Keski-Oja J, Kinnula VL. Transforming growth factor-beta activation in the lung: focus on fibrosis and reactive oxygen species. Antioxid Redox Signal 2008; 10:333-42. [PMID: 17961070 DOI: 10.1089/ars.2007.1914] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transforming growth factor-betas (TGF-beta) regulate a wide variety of cellular functions in normal development and are involved in both tissue homeostasis and disease pathogenesis. The regulation of the TGF-beta family of growth factors is unique because they are targeted to the extracellular matrix in a biologically inactive form. The release from pericellular matrices and the activation of TGF-beta are important mechanisms in several pathophysiologic conditions. Reactive oxygen species (ROS) can activate TGF-beta either directly or indirectly via the activation of proteases. In addition, TGF-beta itself induces ROS production as part of its signal-transduction pathway. The lung is a unique organ, because its structures act as boundaries between gaseous and aqueous phases, allowing the utilization of inhaled oxygen. However, this renders pulmonary tissues vulnerable to the toxic effects of inhaled air. The oxidant pathways are especially relevant in the lung, where TGF-beta is known to have a role in tissue repair and connective tissue turnover. In pulmonary fibrosis, TGF-beta activation is considered as a hallmark of disease progression. More recently, the oxidative effects of cigarette smoking have been found to activate TGF-beta in chronic obstructive pulmonary disease (COPD), a disease consisting of emphysema, airway fibrosis, and focal lung fibrosis.
Collapse
Affiliation(s)
- Katri Koli
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | |
Collapse
|
264
|
Cushing MC, Mariner PD, Liao JT, Sims EA, Anseth KS. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. FASEB J 2008; 22:1769-77. [PMID: 18218921 PMCID: PMC2493079 DOI: 10.1096/fj.07-087627] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study aimed to identify signaling pathways that oppose connective tissue fibrosis in the aortic valve. Using valvular interstitial cells (VICs) isolated from porcine aortic valve leaflets, we show that basic fibroblast growth factor (FGF-2) effectively blocks transforming growth factor-β1 (TGF-β1)-mediated myofibroblast activation. FGF-2 prevents the induction of α-smooth muscle actin (αSMA) expression and the exit of VICs from the cell cycle, both of which are hallmarks of myofibroblast activation. By blocking the activity of the Smad transcription factors that serve as the downstream nuclear effectors of TGF-β1, FGF-2 treatment inhibits fibrosis in VICs. Using an exogenous Smad-responsive transcriptional promoter reporter, we show that Smad activity is repressed by FGF-2, likely an effect of the fact that FGF-2 treatment prevents the nuclear localization of Smads in these cells. This appears to be a direct effect of FGF signaling through mitogen-activated protein kinase (MAPK) cascades as the treatment of VICs with the MAPK/extracellular regulated kinase (MEK) inhibitor U0126 acted to induce fibrosis and blocked the ability of FGF-2 to inhibit TGF-β1 signaling. Furthermore, FGF-2 treatment of VICs blocks the development of pathological contractile and calcifying phenotypes, suggesting that these pathways may be utilized in the engineering of effective treatments for valvular disease.—Cushing, M. C., Mariner, P. D., Liao, J. T., Sims, E. A., Anseth, K. S. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells.
Collapse
Affiliation(s)
- Melinda C Cushing
- University of Colorado, Department of Chemical and Biological Engineering, Boulder, CO 80309-0424, USA
| | | | | | | | | |
Collapse
|
265
|
Du J, Yang S, Wang Z, Zhai C, Yuan W, Lei R, Zhang J, Zhu T. Bone morphogenetic protein 6 inhibit stress-induced breast cancer cells apoptosis via both smad and P38 pathways. J Cell Biochem 2008; 103:1584-97. [PMID: 17879955 DOI: 10.1002/jcb.21547] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Breast carcinoma is one of the most common malignant tumors and has become a more common cancer in women. BMP6 was abnormally expressed in breast cancer specimens and cell lines. However, the contribution of BMP6 in promoting breast cancer progression remains unknown. The purpose of our study was to establish whether expression of BMP6 in breast cancer cells affect their proliferation or apoptosis and the mechanism. We found that BMP6 inhibited proliferation of MDA-MB-231 cells and blocked cell cycle at G(0)/G(1) stage. BMP6 also inhibited serum deprivation induced apoptosis in MDA-MB-231 cells. At the 4 days of serum starvation, BMP6 reduced the percentage of caspase-3 positive cells from 49% to 21%, BMP6 also reduced sub-G(1) peak induced by serum starvation. In contrast, BMP6 significantly enhanced survivin expression both at mRNA and protein levels. Dominant negative-survivin and Antisense-survivin impaired BMP6 induced antiapoptotic effect. BMP6 enhanced survivin expression at the transcription level in a Smad-dependent manner. BMP6 also played its antiapoptotic effect through activation p38 MAPK signal pathway, independent of smad/survivin pathway. These results suggested that BMP6 induced cell cycle arrest in estrogen-insensitive breast cancer cells. BMP6 inhibits stress-induced apoptosis via both Smad and p38 signal pathways.
Collapse
Affiliation(s)
- Jun Du
- Medical College of Nankai University, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Chen SH, Lin JK, Liu SH, Liang YC, Lin-Shiau SY. Apoptosis of Cultured Astrocytes Induced by the Copper and Neocuproine Complex through Oxidative Stress and JNK Activation. Toxicol Sci 2007; 102:138-49. [DOI: 10.1093/toxsci/kfm292] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
267
|
Abstract
The Dickkopf (Dkk) family is composed of four main members (Dkk1-4), which typically regulate Wnt/beta-catenin signaling. An exception is Dkk3, which does not affect Wnt/beta-catenin signaling and whose function is poorly characterized. Here, we describe the Xenopus dkk3 homolog and characterize its expression and function during embryogenesis. Dkk3 is maternally expressed and zygotically in the cement gland, head mesenchyme, and heart. We show that depletion of Dkk3 in Xenopus embryos by Morpholino antisense oligonucleotides induces axial defects as a result of Spemann organizer and mesoderm inhibition. Dkk3 depletion leads to down-regulation of Activin/Nodal signaling by reducing levels of Smad4 protein. Dkk3 overexpression can rescue phenotypic effects resulting from overexpression of the Smad4 ubiquitin ligase Ectodermin. Furthermore, depletion of Dkk3 up-regulates FGF signaling, while Dkk3 overexpression reduces it. These results indicate that Dkk3 modulates FGF and Activin/Nodal signaling to regulate mesoderm induction during early Xenopus development.
Collapse
Affiliation(s)
- Sonia Pinho
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | | |
Collapse
|
268
|
Dittmer A, Schunke D, Dittmer J. PTHrP promotes homotypic aggregation of breast cancer cells in three-dimensional cultures. Cancer Lett 2007; 260:56-61. [PMID: 18035481 DOI: 10.1016/j.canlet.2007.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 10/11/2007] [Accepted: 10/15/2007] [Indexed: 11/29/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) regulates growth and migration of adherent breast cancer cells. Here, we show that PTHrP also interferes with the ability of breast cancer cells to aggregate in suspension cultures. Cell colonies were significantly smaller when the expression of PTHrP or its target genes, integrin alpha6 or KISS-1, was suppressed by RNA interference. TGFbeta1, a stimulator of PTHrP transcription, abolished the effect of PTHrP and KISS-1 specific siRNAs and increased ERK1/2 phosphorylation, whereas inhibition of ERK1/2 phosphorylation by U0126 reduced colony size. PTHrP and KISS-1 may regulate colony formation in 3D by influencing ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Angela Dittmer
- Klinik für Gynäkologie, Universität Halle, Halle, Saale, Germany
| | | | | |
Collapse
|
269
|
Kipp JL, Kilen SM, Woodruff TK, Mayo KE. Activin regulates estrogen receptor gene expression in the mouse ovary. J Biol Chem 2007; 282:36755-65. [PMID: 17951260 DOI: 10.1074/jbc.m705143200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activin, a member of the transforming growth factor-beta superfamily, is an important modulator of follicle-stimulating hormone synthesis and secretion in the pituitary and plays autocrine/paracrine roles in the regulation of ovarian follicle development. From a microarray study on mouse ovarian granulosa cells, we discovered that the estrogen receptor beta (ERbeta) is inducible by activin. We previously demonstrated that estrogen suppresses activin gene expression, suggesting a feedback relationship between these two follicle-regulating hormones. The purpose of this study was to investigate fully activin A regulation of ER expression. Real time reverse transcription-PCR assays on cultured granulosa cells showed that both ERalpha and ERbeta mRNAs were induced by activin A at 4, 12, and 24 h in a dose-responsive manner. Western blots confirmed an increase in their protein levels. Consistent with increased ERalpha and ERbeta expression, activin A stimulated estradiol-induced estrogen response element promoter activity. Activin A stimulation of ER expression was a direct effect at the level of gene transcription, as it was not abolished by cycloheximide but was abolished by actinomycin D, and in transfected granulosa cells activin A stimulated ERalpha promoter activity. To investigate the effect of activin in vivo and, thus, its biological significance, we examined ER expression in inhibin transgenic mice that have decreased activin expression and discovered that these mice had decreased ERalpha and ERbeta expression in the ovary. We also found that ER mRNA levels were decreased in Müllerian inhibiting substance promoter (MIS)-Smad2 dominant negative mice that have impaired activin signaling through Smad2, and small interfering RNAs targeting Smad2 or Smad3 suppressed ERalpha promoter activation, suggesting that Smad2 and Smad3 are involved in regulating ER levels. Therefore, this study reveals an important role for activin in inducing the expression of ERs in the mouse ovary and suggests important interplay between activin and estrogen signaling.
Collapse
Affiliation(s)
- Jingjing L Kipp
- Department of Biochemistry, Molecular Biology and Cell Biology, and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
270
|
Vayalil PK, Iles KE, Choi J, Yi AK, Postlethwait EM, Liu RM. Glutathione suppresses TGF-beta-induced PAI-1 expression by inhibiting p38 and JNK MAPK and the binding of AP-1, SP-1, and Smad to the PAI-1 promoter. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1281-92. [PMID: 17890327 PMCID: PMC3686828 DOI: 10.1152/ajplung.00128.2007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor (TGF)-beta upregulates plasminogen activator inhibitor type 1 (PAI-1) in a variety of cell types, and PAI-1 is considered to be an essential factor for the development of fibrosis. Our previous studies demonstrated that TGF-beta decreased intracellular glutathione (GSH) content in murine embryonic fibroblasts (NIH/3T3 cells), whereas treatment of the cells with GSH, which restored intracellular GSH concentration, inhibited TGF-beta-induced collagen accumulation by blocking PAI-1 expression and enhancing collagen degradation. In the present study, we demonstrate that GSH blocks TGF-beta-induced PAI-1 promoter activity in NIH/3T3 cells, which is associated with an inhibition of TGF-beta-induced JNK and p38 phosphorylation. Interestingly, although exogenous GSH does not affect phosphorylation and/or nuclear translocation of Smad2/3 and Smad4, it completely eliminates TGF-beta-induced binding of transcription factors to not only AP-1 and SP-1 but also Smad cis elements in the PAI-1 promoter. Decoy oligonucleotides (ODN) studies further demonstrate that AP-1, SP-1, and Smad ODNs abrogate the inhibitory effect of GSH on TGF-beta-induced PAI-1 promoter activity and inhibit TGF-beta-induced expression of endogenous PAI-1. Furthermore, we show that GSH reduces TGF-beta-stimulated reactive oxygen species (ROS) signal. Blocking ROS production with diphenyleneiodonium or scavenging ROS with a superoxide dismutase and catalase mimetic MnTBaP dramatically reduces TGF-beta-induced p38 and JNK phosphorylation as well as PAI-1 gene expression. In composite, these findings suggest that GSH inhibits TGF-beta-stimulated PAI-1 expression in fibroblasts by blocking the JNK/p38 pathway, probably by reducing ROS, which leads to an inhibition of the binding of transcription factors to the AP-1, SP-1, and Smad cis elements in the PAI-1 promoter.
Collapse
Affiliation(s)
- Praveen K Vayalil
- Dept. of Environmental Health Sciences, School of Public Health, Univ. of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
271
|
Dennler S, André J, Alexaki I, Li A, Magnaldo T, ten Dijke P, Wang XJ, Verrecchia F, Mauviel A. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res 2007; 67:6981-6. [PMID: 17638910 DOI: 10.1158/0008-5472.can-07-0491] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hedgehog (Hh) and transforming growth factor-beta (TGF-beta) family members are involved in numerous overlapping processes during embryonic development, hair cycle, and cancer. Herein, we show that TGF-beta induces the expression of the Hh signaling molecules Gli1 and Gli2 in various human cell types, including normal fibroblasts and keratinocytes, as well as various cancer cell lines. Gli2 induction by TGF-beta is rapid, independent from Hh receptor signaling, and requires a functional Smad pathway. Gli1 expression is subsequently activated in a Gli2-dependent manner. In transgenic mice overexpressing TGF-beta1 in the skin, Gli1 and Gli2 expression is also elevated and depends on Smad3. In pancreatic adenocarcinoma cell lines resistant to Hh inhibition, pharmacologic blockade of TGF-beta signaling leads to repression of cell proliferation accompanied with a reduction in Gli2 expression. We thus identify TGF-beta as a potent transcriptional inducer of Gli transcription factors. Targeting the cooperation of Hh and TGF-beta signaling may provide new therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Sylviane Dennler
- INSERM U697, Hôpital Saint-Louis, Pavillon Bazin, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Blanco S, Santos C, Lazo PA. Vaccinia-related kinase 2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol 2007; 27:7273-83. [PMID: 17709393 PMCID: PMC2168905 DOI: 10.1128/mcb.00025-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypoxia represents a major stress that requires an immediate cellular response in which different signaling pathways participate. Hypoxia induces an increase in the activity of TAK1, an atypical mitogen-activated protein kinase kinase kinase (MAPKKK), which responds to oxidative stress by triggering cascades leading to the activation of c-Jun N-terminal kinase (JNK). JNK activation by hypoxia requires assembly with the JIP1 scaffold protein, which might also interact with other intracellular proteins that are less well known but that might modulate MAPK signaling. We report that TAK1 is able to form a stable complex with JIP1 and thus regulate the activation of JNK, which in turn determines the cellular stress response to hypoxia. This activation of TAK1-JIP1-JNK is suppressed by vaccinia-related kinase 2 (VRK2). VRK2A is able to interact with TAK1 by its C-terminal region, forming stable complexes. The kinase activity of VRK2 is not necessary for this interaction or the downregulation of AP1-dependent transcription. Furthermore, reduction of the endogenous VRK2 level with short hairpin RNA can increase the response induced by hypoxia, suggesting that the intracellular levels of VRK2 can determine the magnitude of this stress response.
Collapse
Affiliation(s)
- Sandra Blanco
- Programa de Oncología Translacional, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca E-37007, Spain
| | | | | |
Collapse
|
273
|
Du J, Zhu Y, Chen X, Fei Z, Yang S, Yuan W, Zhang J, Zhu T. Protective effect of bone morphogenetic protein-6 on neurons from H2O2 injury. Brain Res 2007; 1163:10-20. [PMID: 17628512 DOI: 10.1016/j.brainres.2007.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 05/30/2007] [Accepted: 06/02/2007] [Indexed: 11/27/2022]
Abstract
Bone morphogenetic protein-6 (BMP6) is a member of the TGF-beta superfamily. Expression of BMP6 and its receptors are increased when brain tissues of adult rats are injured, suggesting that BMP6 may have a neuroprotective function in the physiologic response to neurological damage. This research investigates the molecular mechanisms supporting a neuroprotective effect of BMP6 in neural cells traumatized by H(2)O(2). We demonstrate that presence of BMP6 either before or after H(2)O(2)-induced injury protects the cultured primary cortical cells from apoptosis. However, molecular mechanisms mediating the protective effects of either pre- or post-treatment with BMP6 are different. Cells pre-treated with BMP6 have attenuated MAPK activity induced by H(2)O(2), whereas the MAPK activity in cells post-treated with BMP6 remains unchanged. Further, pharmacological inhibitors of MAPKs, PD98059 and SB203580, block the protective effect of BMP6 in the cells pre-treated with BMP6 but not in the cells post-treated with BMP6. The protective effect of post-treatment with BMP6 appears to be mediated through regulation of p53 and Bax molecules, evidenced by decreased mRNA levels after BMP6 treatment. Taken together, these data suggest BMP6 protect cortical cells against oxidation stress induced by H(2)O(2) via two different mechanisms, where (1) pre-treatment with BMP6 acts through MAPK pathway and (2) post-treatment with BMP6 works by down-regulating p53 and Bax.
Collapse
Affiliation(s)
- Jun Du
- Medical College of Nankai University 94 Weijin Road, Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
274
|
Ahmed S, Nawshad A. Complexity in interpretation of embryonic epithelial-mesenchymal transition in response to transforming growth factor-beta signaling. Cells Tissues Organs 2007; 185:131-45. [PMID: 17587819 PMCID: PMC2043381 DOI: 10.1159/000101314] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a highly conserved and fundamental process that governs morphogenesis in development and may also contribute to cancer metastasis. Transforming growth factor (TGF-beta) is a potent inducer of EMT in various developmental and tumor systems. The analysis of TGF-beta signal transduction pathways is now considered a critically important area of biology, since many defects occur in these pathways in embryonic development. The complexity of TGF-beta signal transduction networks is overwhelming due to the large numbers of interacting constituents, complicated feedforward, feedback and crosstalk circuitry mechanisms that they involve in addition to the cellular kinetics and enzymatics that contribute to cell signaling. As a result of this complexity, apparently simple but highly important questions remain unanswered, that is, how do epithelial cells respond to such TGF-beta signals? System biology and cellular kinetics play a crucial role in cellular function; omissions of such a critical contributor may lead to inaccurate understanding of embryonic EMT. In this review, we identify and explain why certain conditions need to be considered for a true representation of TGF-beta signaling in vivo to better understand the controlled, yet delicate mechanism of embryonic EMT.
Collapse
Affiliation(s)
- Shaheen Ahmed
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebr. 68583, USA
| | | |
Collapse
|
275
|
Bian ZM, Elner SG, Elner VM. Thrombin-induced VEGF expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2007; 48:2738-46. [PMID: 17525207 PMCID: PMC2128055 DOI: 10.1167/iovs.06-1023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
PURPOSE The purpose of the present study was to investigate the effects of thrombin and thrombin in combination with other proangiogenic factors on VEGF expression in hRPE cells. METHODS hRPE cells were stimulated with thrombin TNF-alpha, monocytes, and TGF-beta2. After stimulation, conditioned medium and lysed cells were subjected to ELISA, Western blot analysis, immunocytochemistry, and RT-PCR analyses. Inhibitors specific for various signal transduction pathways were used to determine the signaling pathways involved. RESULTS Treatment of RPE cells with thrombin resulted in dose- and time-dependent increases in VEGF mRNA levels and protein production. hRPE VEGF expression is predominantly protease-activated receptor (PAR)-1 dependent. Approximately 80% of thrombin-induced VEGF secretion was abrogated by inhibitors of MAPK/ERK kinase (MEK), p38, c-Jun NH2-terminal kinase (JNK), protein tyrosine kinase (PTK), phosphatidylinositol 3-kinase (PI3K), protein kinase C (PKC), nuclear factor-kappaB (NF-kappaB), and reactive oxygen species (ROS). Analyses of VEGF protein production and mRNA synthesis revealed that VEGF induction by thrombin plus TNF-alpha or coculture with monocytes was additive, whereas that by co-incubation with TGF-beta2 was synergistic. The costimulated VEGF production by TGF-beta2 plus thrombin was an average of three times higher than the sum of that induced by each agent alone. Furthermore, BAPTA [bis-(o-aminophenoxy)ethane-N,N',N'-tetraacetic acid], a calcium chelator, blocked the VEGF secretion induced by thrombin and thrombin plus TGF-beta2 by 65% and 20%, respectively, but had no effect on that induced by TGF-beta2 alone. CONCLUSIONS Thrombin alone and in combination with TNF-alpha, monocytes, and TGF-beta2 potently stimulated VEGF expression in hRPE cells via multiple signaling pathways. The thrombin-induced calcium mobilization may play an important permissive role in maximizing TGF-beta2-induced VEGF expression in RPE cells.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | |
Collapse
|
276
|
Sebestyén A, Hajdu M, Kis L, Barna G, Kopper L. Smad4-independent, PP2A-dependent apoptotic effect of exogenous transforming growth factor beta 1 in lymphoma cells. Exp Cell Res 2007; 313:3167-74. [PMID: 17643425 DOI: 10.1016/j.yexcr.2007.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 04/10/2007] [Accepted: 05/30/2007] [Indexed: 11/20/2022]
Abstract
B-lymphoid tumor cells are often less sensitive than their normal counterparts or insensitive to transforming growth factor beta1 (TGFb) effects. We studied the apoptotic effect of exogenous TGFb in B-lymphoma cells, focusing on the activity and the role of Smad and protein phosphatase/kinase signals. Recombinant TGFb treatment and Smad4 siRNA transfection were used in HT58 B-NHL lymphoma cells in vitro. Gene expression and apoptosis were detected by RT-PCR, Western blot analysis and flow cytometry. The role of MEK1 kinase and PP2A activity--measured with a phosphatase assay--were assessed with the help of specific inhibitors. Smad4 siRNA treatment completely abolished TGFb-induced early gene upregulation, indicating the absence of the rapid activation of Smad signaling. Moreover, functional inhibition of Smad4 had no influence on TGFb-induced apoptosis, but it was dependent on PP2A phosphatase activation, ERK1/2 and JNK inactivation in lymphoma cells. The results prove that exogenous TGFb uses Smad4-independent, alternative (PP2A/PP2A-like dependent) signaling pathways for apoptosis induction in lymphoma cells. Further studies are needed to clarify the possible role and involvement of Smad4-independent effects of TGFb in normal and malignant lymphoid cells and in cells of the tumor microenvironment.
Collapse
Affiliation(s)
- Anna Sebestyén
- Semmelweis University, I. Department of Pathology and Experimental Cancer Research, 1085 Budapest, Ulloi út 26, Hungary.
| | | | | | | | | |
Collapse
|
277
|
Vepachedu R, Gorska MM, Singhania N, Cosgrove GP, Brown KK, Alam R. Unc119 Regulates Myofibroblast Differentiation through the Activation of Fyn and the p38 MAPK Pathway. THE JOURNAL OF IMMUNOLOGY 2007; 179:682-90. [PMID: 17579091 DOI: 10.4049/jimmunol.179.1.682] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Unc119 is an adaptor protein that is involved in the development of the vertebrate nervous system. We have shown that Unc119 stimulates the induction of alpha-smooth muscle actin (alpha-SMA) and myofibroblast differentiation by TGF-beta in human lung fibroblasts. Unc119 increases the kinase activity of Fyn and associates with it in coprecipitation and colocalization studies. Phosphorylation and activation of Fyn in response to TGF-beta and platelet-derived growth factor is delayed in Unc119-deficient cells. This delay translates into suppressed cell proliferation. In Src family kinase-deficient (SYF) cells, Unc119 knockdown does not affect cell proliferation. The result suggests that Unc119 interacts with Fyn in the early stages of signal generation and its presence is essential for conducive signal transduction. Unc119 overexpression does not stimulate alpha-SMA in SYF cells and this defect is restored upon reconstitution with Fyn indicating that Unc119 stimulation of alpha-SMA requires at least Fyn. Unc119 overexpression stimulated p38, but not JNK, phosphorylation. Blocking p38 MAPK resulted in reduced alpha-SMA expression by Unc119 suggesting that the p38 pathway regulates Unc119-induced myofibroblast differentiation. Unc119 stimulates the production of TGF-beta and IL-6, known inducers of myofibroblast differentiation. Thus, Unc119 regulates receptor-mediated signal transduction and myofibroblast differentiation by activating Fyn and the p38 MAPK pathway. Using primary lung fibroblasts from patients with fibrotic lung diseases and control subjects, we show that the expression of alpha-smooth muscle actin is highly correlated with that of Unc119. Taken together, our results suggest that Unc119 plays an important role in fibrotic processes through myofibroblast differentiation.
Collapse
Affiliation(s)
- Ramarao Vepachedu
- National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
278
|
Lee BH, Chen W, Stippec S, Cobb MH. Biological Cross-talk between WNK1 and the Transforming Growth Factor β-Smad Signaling Pathway. J Biol Chem 2007; 282:17985-17996. [PMID: 17392271 DOI: 10.1074/jbc.m702664200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WNKs (with no lysine (K)), unique serine/threonine protein kinases, have been best studied in the context of cell volume regulation and ion homeostasis. Here we describe a biological link between WNKs and transforming growth factor (TGF) beta-Smad signaling. Both WNK1 and WNK4 directly bind to and phosphorylate Smad2. Knockdown of WNK1 in HeLa cells using small interfering RNA reduces Smad2 protein expression; this decrease is at least partially due to down-regulation of Smad2 transcription. In contrast, phosphorylated Smad2 significantly accumulated in the nucleus as a consequence of depletion of WNK1, resulting in Smad-mediated transcriptional responses. In addition, TGFbeta-induced target gene transcripts were increased in WNK1 small interfering RNA cells. These findings suggest WNK1 as a dual modulator of TGFbeta-Smad signaling pathways.
Collapse
Affiliation(s)
- Byung-Hoon Lee
- Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9041
| | - Wei Chen
- Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9041
| | - Steve Stippec
- Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9041
| | - Melanie H Cobb
- Department of Pharmacology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9041.
| |
Collapse
|
279
|
Blaney Davidson EN, van der Kraan PM, van den Berg WB. TGF-beta and osteoarthritis. Osteoarthritis Cartilage 2007; 15:597-604. [PMID: 17391995 DOI: 10.1016/j.joca.2007.02.005] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 02/04/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage damage is a major problem in osteoarthritis (OA). Growth factors like transforming growth factor-beta (TGF-beta) have great potential in cartilage repair. In this review, we will focus on the potential therapeutic intervention in OA with TGF-beta, application of the growth factor TGF-beta in cartilage repair and on the side effects of TGF-beta treatment that could occur. METHODS This review summarizes peer-reviewed articles published in the PubMed database before November 2006. In addition, this review is supplemented with recent data of our own group on the use of TGF-beta as a cartilage reparative factor in OA. RESULTS TGF-beta is crucial for cartilage maintenance and lack there of results in OA-like changes. Moreover, TGF-beta supplementation can enhance cartilage repair and is therefore a potential therapeutic tool. However, application of TGF-beta supplementation provides problems in other tissues of the joint and results in fibrosis and osteophyte formation. This can potentially be overcome by local inhibition of TGF-beta at sites of unwanted side-effects or by blocking downstream mediators of TGF-beta that are important for the induction of fibrosis or osteophyte formation. CONCLUSION Current understanding of TGF-beta suggests that it essential for cartilage integrity and that it is a powerful tool to prevent or repair cartilage damage. The side-effects that occur with TGF-beta supplementation can be overcome by local inhibition of TGF-beta itself or downstream mediators.
Collapse
Affiliation(s)
- E N Blaney Davidson
- Experimental Rheumatology and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | |
Collapse
|
280
|
Shravage BV, Altmann G, Technau M, Roth S. The role of Dpp and its inhibitors during eggshell patterning in Drosophila. Development 2007; 134:2261-71. [PMID: 17507396 DOI: 10.1242/dev.02856] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila eggshell is patterned by the combined action of the epidermal growth factor [EGF; Gurken (Grk)] and transforming growth factor beta [TGF-beta; Decapentaplegic (Dpp)] signaling cascades. Although Grk signaling alone can induce asymmetric gene expression within the follicular epithelium, here we show that the ability of Grk to induce dorsoventral polarity within the eggshell strictly depends on Dpp. Dpp, however, specifies at least one anterior region of the eggshell in the absence of Grk. Dpp forms an anteriorposterior morphogen gradient within the follicular epithelium and synergizes with the dorsoventral gradient of Grk signaling. High levels of Grk and Dpp signaling induce the operculum, whereas lower levels of both pathways induce the dorsal appendages. We provide evidence that the crosstalk between both pathways occurs at least at two levels. First, Dpp appears to directly enhance the levels of EGF pathway activity within the follicular epithelium. Second, Dpp and EGF signaling collaborate in controlling the expression of Dpp inhibitors. One of these inhibitors is Drosophila sno (dSno), a homolog of the Ski/Sno family of vertebrate proto-oncogenes, which synergizes with daughters against dpp and brinker to set the posterior and lateral limits of the region, giving rise to dorsal follicle cells.
Collapse
Affiliation(s)
- Bhupendra V Shravage
- Institute of Developmental Biology, University of Cologne, Gyrhofstr.17, D-50931, Germany
| | | | | | | |
Collapse
|
281
|
Lackey J, Barnett J, Davidson L, Batty IH, Leslie NR, Downes CP. Loss of PTEN selectively desensitizes upstream IGF1 and insulin signaling. Oncogene 2007; 26:7132-42. [PMID: 17486056 PMCID: PMC2773499 DOI: 10.1038/sj.onc.1210520] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many tumors have chronically elevated activity of PI 3-kinase-dependent signaling pathways, caused largely by oncogenic mutation of PI 3-kinase itself or loss of the opposing tumor suppressor lipid phosphatase, PTEN. Several PI 3-kinase-dependent feedback mechanisms have been identified that may affect the sensitivity of upstream receptor signaling, but the events required to initiate an inhibited state have not been addressed. We show that in a variety of cell types, loss of PTEN via experimental knockdown or in tumor cell lines correlates with a block in insulin-like growth factor 1 (IGF1)/insulin signaling, without affecting the sensitivity of platelet-derived growth factor or epidermal growth factor signaling. These effects on IGF/insulin signaling include a reduction of up to five- to tenfold in IGF-stimulated PI 3-kinase activation, a failure to activate the ERK kinases and, in some cells, reduced expression of insulin receptor substrate 1, and both IGF1 and insulin receptors. These data indicate that chronically elevated PI 3-kinase-dependent signaling to the degree seen in many tumors causes a selective loss of sensitivity in IGF1/insulin signaling that could significantly reduce the selective advantage of deregulated activation of IGF1/IGF1-R signaling in tumor development.
Collapse
Affiliation(s)
| | | | | | | | - Nick R. Leslie
- Author for correspondence, Nick Leslie, Tel: 44-1382-386263 Fax: 44-1382-385507
| | | |
Collapse
|
282
|
Suzuki K, Wilkes MC, Garamszegi N, Edens M, Leof EB. Transforming Growth Factor β Signaling via Ras in Mesenchymal Cells Requires p21-Activated Kinase 2 for Extracellular Signal-Regulated Kinase-Dependent Transcriptional Responses. Cancer Res 2007; 67:3673-82. [PMID: 17440079 DOI: 10.1158/0008-5472.can-06-3211] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor beta (TGF-beta) signaling via Smad proteins occurs in various cell types. However, whereas the biological response to TGF-beta can be as distinct as growth promoting (i.e., mesenchymal cells) versus growth inhibiting (i.e., epithelial cells), few discernible differences in TGF-beta signaling have been reported. In the current study, we examined the role of Ras in the proliferative response to TGF-beta and how it might interface with Smad-dependent and Smad-independent TGF-beta signaling targets. TGF-beta stimulated Ras activity in a subset of mesenchymal, but not epithelial, cultures and was required for extracellular signal-regulated kinase (ERK)-dependent transcriptional responses. Although dominant negative Ras had no effect on TGF-beta internalization or Smad-dependent signaling (i.e., phosphorylation, nuclear translocation, or SBE-luciferase activity), it did prevent the hyperphosphorylation of the Smad transcriptional corepressor TG-interacting factor (TGIF). This was not sufficient, however, to overcome the mitogenic response stimulated by TGF-beta, which was dependent on signals downstream of p21-activated kinase 2 (PAK2). Moreover, although the initial activation of Ras and PAK2 are distinctly regulated, TGF-beta-stimulated PAK2 activity is required for Ras-dependent ERK phosphorylation and Elk-1 transcription. These findings show the requirement for crosstalk between two Smad-independent pathways in regulating TGF-beta proliferation and indicate that the mechanism(s) by which TGF-beta stimulates growth is not simply the opposite of its growth inhibitory actions.
Collapse
Affiliation(s)
- Kaori Suzuki
- Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
283
|
Black SA, Palamakumbura AH, Stan M, Trackman PC. Tissue-specific mechanisms for CCN2/CTGF persistence in fibrotic gingiva: interactions between cAMP and MAPK signaling pathways, and prostaglandin E2-EP3 receptor mediated activation of the c-JUN N-terminal kinase. J Biol Chem 2007; 282:15416-29. [PMID: 17428796 PMCID: PMC2443949 DOI: 10.1074/jbc.m610432200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin E(2) blocks transforming growth factor TGF beta1-induced CCN2/CTGF expression in lung and kidney fibroblasts. PGE(2) levels are high in gingival tissues yet CCN2/CTGF expression is elevated in fibrotic gingival overgrowth. Gingival fibroblast expression of CCN2/CTGF in the presence of PGE(2) led us to compare the regulation of CCN2/CTGF expression in fibroblasts cultured from different tissues. Data demonstrate that the TGFbeta1-induced expression of CCN2/CTGF in human lung and renal mesangial cells is inhibited by 10 nm PGE(2), whereas human gingival fibroblasts are resistant. Ten nm PGE(2) increases cAMP accumulation in lung but not gingival fibroblasts, which require 1 mum PGE(2) to elevate cAMP. Micromolar PGE(2) only slightly reduces the TGFbeta1-stimulated CCN2/CTGF levels in gingival cells. EP2 prostaglandin receptor activation with butaprost blocks the TGFbeta1-stimulated expression of CCN2/CTGF expression in lung, but not gingival, fibroblasts. In lung fibroblasts, inhibition of the TGFbeta1-stimulated CCN2/CTGF by PGE(2), butaprost, or forskolin is due to p38, ERK, and JNK MAP kinase inhibition that is cAMP-dependent. Inhibition of any two MAPKs completely blocks CCN2/CTGF expression stimulated by TGFbeta1. These data mimic the inhibitory effects of 10 nm PGE(2) and forskolin that were dependent on PKA activity. In gingival fibroblasts, the sole MAPK mediating the TGFbeta1-stimulated CCN2/CTGF expression is JNK. Whereas forskolin reduces TGFbeta1-stimulated expression of CCN2/CTGF by 35% and JNK activation in gingival fibroblasts, micromolar PGE(2)-stimulated JNK in gingival fibroblasts and opposes the inhibitory effects of cAMP on CCN2/CTGF expression. Stimulation of the EP3 receptor with sulprostone results in a robust increase in JNK activation in these cells. Taken together, data identify two mechanisms by which TGFbeta1-stimulated CCN2/CTGF levels in human gingival fibroblasts resist down-regulation by PGE(2): (i) cAMP cross-talk with MAPK pathways is limited in gingival fibroblasts; (ii) PGE(2) activation of the EP3 prostanoid receptor stimulates the activation of JNK.
Collapse
Affiliation(s)
- Samuel A Black
- Department of Periodontology and Oral Biology, Division of Oral Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
284
|
Liu S, Shi-wen X, Kennedy L, Pala D, Chen Y, Eastwood M, Carter DE, Black CM, Abraham DJ, Leask A. FAK is required for TGFbeta-induced JNK phosphorylation in fibroblasts: implications for acquisition of a matrix-remodeling phenotype. Mol Biol Cell 2007; 18:2169-78. [PMID: 17409352 PMCID: PMC1877111 DOI: 10.1091/mbc.e06-12-1121] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) plays a critical role in connective tissue remodeling by fibroblasts during development, tissue repair, and fibrosis. We investigated the molecular pathways in the transmission of TGFbeta signals that lead to features of connective tissue remodeling, namely formation of an alpha-smooth muscle actin (alpha-SMA) cytoskeleton, matrix contraction, and expression of profibrotic genes. TGFbeta causes the activation of focal adhesion kinase (FAK), leading to JNK phosphorylation. TGFbeta induces JNK-dependent actin stress fiber formation, matrix contraction, and expression of profibrotic genes in fak+/+, but not fak-/-, fibroblasts. Overexpression of MEKK1, a kinase acting upstream of JNK, rescues TGFbeta responsiveness of JNK-dependent transcripts and actin stress fiber formation in FAK-deficient fibroblasts. Thus we propose a FAK-MEKK1-JNK pathway in the transmission of TGFbeta signals leading to the control of alpha-SMA cytoskeleton reorganization, matrix contraction, and profibrotic gene expression and hence to the physiological and pathological effects of TGFbeta on connective tissue remodeling by fibroblasts.
Collapse
Affiliation(s)
- Shangxi Liu
- *Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | - Xu Shi-wen
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), London, United Kingdom NW3 2PF
| | - Laura Kennedy
- *Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | - Daphne Pala
- *Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | - Yunliang Chen
- School of Biosciences, University of Westminster, London, United Kingdom, W1W 6UW; and
| | - Mark Eastwood
- School of Biosciences, University of Westminster, London, United Kingdom, W1W 6UW; and
| | | | - Carol M. Black
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), London, United Kingdom NW3 2PF
| | - David J. Abraham
- Centre for Rheumatology, Department of Medicine, Royal Free and University College Medical School, University College London (Royal Free Campus), London, United Kingdom NW3 2PF
| | - Andrew Leask
- *Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 5C1
| |
Collapse
|
285
|
Fu J, Ding Y, Huang D, Li H, Chen X. The retinoid X receptor-selective ligand, LGD1069, inhibits tumor-induced angiogenesis via suppression of VEGF in human non-small cell lung cancer. Cancer Lett 2007; 248:153-63. [PMID: 17027148 DOI: 10.1016/j.canlet.2006.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/04/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
The present study determined the influence of a retinoid X receptor agonist LGD1069 on angiogenesis in non-small cell lung cancer. In A549 xenograft models, treatment with LGD1069 inhibited the growth and CD31 expression compared with control. In vivo angiogenesis assay utilizing hollow fiber, LGD1069 reduced density of capillary network induced by tumor cells. To determine the basis of these observations, we examined the expression of VEGF and activation of JNK and ERK in A549 cells exposed to LGD1069. Our data showed that LGD1069 decrease the VEGF expression of tumor cells in a dose-dependent manner. Furthermore, it was demonstrated that the decreasing expression of VEGF was consist with inhibition of JNK and ERK activation induced by LGD1069. Collectively, our results suggest a role of LGD1069 in treatment for non-small cell lung cancer by inhibition of tumor-induced angiogenesis.
Collapse
MESH Headings
- Animals
- Anticarcinogenic Agents/pharmacology
- Anticarcinogenic Agents/therapeutic use
- Bexarotene
- Blotting, Western
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/prevention & control
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- HT29 Cells
- Humans
- Immunohistochemistry
- JNK Mitogen-Activated Protein Kinases/metabolism
- Lung Neoplasms/blood supply
- Lung Neoplasms/metabolism
- Lung Neoplasms/prevention & control
- Mice
- Mice, Nude
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/prevention & control
- Platelet Endothelial Cell Adhesion Molecule-1/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Retinoid X Receptors/agonists
- Retinoid X Receptors/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tetrahydronaphthalenes/pharmacology
- Tetrahydronaphthalenes/therapeutic use
- Vascular Endothelial Growth Factor A/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jianjiang Fu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | | | | | | | | |
Collapse
|
286
|
Poncelet AC, Schnaper HW, Tan R, Liu Y, Runyan CE. Cell phenotype-specific down-regulation of Smad3 involves decreased gene activation as well as protein degradation. J Biol Chem 2007; 282:15534-40. [PMID: 17400544 DOI: 10.1074/jbc.m701991200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Signaling by transforming growth factor-beta (TGF-beta), a regulator of several biological processes, including renal fibrosis, is mediated, in part, by the Smad proteins. Tight control of Smad level and activity is critical for proper TGF-beta biological functions. Here, we have investigated the mechanisms involved in regulating Smad3 expression. In human glomerular mesangial cells, Smad3 protein levels were specifically reduced by 24 h of TGF-beta1 treatment, whereas Smad2 and Smad4 levels were not. TGF-beta1 increased endogenous Smad3 ubiquitination, and proteasome inhibitor treatment blocked TGF-beta1-mediated Smad3 down-regulation resulting in accumulation of ubiquitinated Smad3. These data support the concept that Smad3 down-regulation occurs via degradation by the ubiquitin/proteasome machinery. However, changes in Smad3 protein levels were also paralleled by changes in Smad3 mRNA expression. TGF-beta1 did not decrease Smad3 mRNA stability, but it significantly inhibited Smad3 promoter activity. In renal tubular epithelial cells, decreased Smad3 levels were observed only after exposure to TGF-beta1 for longer time periods (5-7 days) that paralleled epithelial-to-mesenchymal transition, as determined by increased expression of smooth muscle alpha-actin and decreased expression of E-cadherin. Decline in Smad3 expression also occurred in kidneys after unilateral ureteral obstruction, a model of tubulointerstitial fibrosis associated with TGF-beta up-regulation and epithelial-to-mesenchymal transition. Our data show for the first time that TGF-beta1 modulates the expression of a receptor-activated Smad at both the protein and transcriptional level. Smad3 down-regulation could represent a feedback loop controlling TGF-beta signaling in a cell phenotype-specific manner.
Collapse
Affiliation(s)
- Anne-Christine Poncelet
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, USA.
| | | | | | | | | |
Collapse
|
287
|
Sun K, Montana V, Chellappa K, Brelivet Y, Moras D, Maeda Y, Parpura V, Paschal BM, Sladek FM. Phosphorylation of a conserved serine in the deoxyribonucleic acid binding domain of nuclear receptors alters intracellular localization. Mol Endocrinol 2007; 21:1297-311. [PMID: 17389749 DOI: 10.1210/me.2006-0300] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear receptors (NRs) are a superfamily of transcription factors whose genomic functions are known to be activated by lipophilic ligands, but little is known about how to deactivate them or how to turn on their nongenomic functions. One obvious mechanism is to alter the nuclear localization of the receptors. Here, we show that protein kinase C (PKC) phosphorylates a highly conserved serine (Ser) between the two zinc fingers of the DNA binding domain of orphan receptor hepatocyte nuclear factor 4alpha (HNF4alpha). This Ser (S78) is adjacent to several positively charged residues (Arg or Lys), which we show here are involved in nuclear localization of HNF4alpha and are conserved in nearly all other NRs, along with the Ser/threonine (Thr). A phosphomimetic mutant of HNF4alpha (S78D) reduced DNA binding, transactivation ability, and protein stability. It also impaired nuclear localization, an effect that was greatly enhanced in the MODY1 mutant Q268X. Treatment of the hepatocellular carcinoma cell line HepG2 with PKC activator phorbol 12-myristate 13-acetate also resulted in increased cytoplasmic localization of HNF4alpha as well as decreased endogenous HNF4alpha protein levels in a proteasome-dependent fashion. We also show that PKC phosphorylates the DNA binding domain of other NRs (retinoic acid receptor alpha, retinoid X receptor alpha, and thyroid hormone receptor beta) and that phosphomimetic mutants of the same Ser/Thr result in cytoplasmic localization of retinoid X receptor alpha and peroxisome proliferator-activated receptor alpha. Thus, phosphorylation of this conserved Ser between the two zinc fingers may be a common mechanism for regulating the function of NRs.
Collapse
Affiliation(s)
- Kai Sun
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Abstract
Reactive oxygen species (ROS) are recently proposed to be involved in tumor metastasis which is a complicated processes including epithelial-mesenchymal transition (EMT), migration, invasion of the tumor cells and angiogenesis around the tumor lesion. ROS generation may be induced intracellularly, in either NADPH oxidase- or mitochondria-dependent manner, by growth factors and cytokines (such as TGFbeta and HGF) and tumor promoters (such as TPA) capable of triggering cell adhesion, EMT and migration. As a signaling messenger, ROS are able to oxidize the critical target molecules such as PKC and protein tyrosine phosphates (PTPs), which are relevant to tumor cell invasion. PKC contain multiple cysteine residues that can be oxidized and activated by ROS. Inactivation of multiple PTPs by ROS may relieve the tyrosine phosphorylation-dependent signaling. Two of the down-stream molecules regulated by ROS are MAPK and PAK. MAPKs cascades were established to be a major signal pathway for driving tumor cell metastasis, which are mediated by PKC, TGF-beta/Smad and integrin-mediated signaling. PAK is an effector of Rac-mediated cytoskeletal remodeling that is responsible for cell migration and angiogenesis. There are several transcriptional factors such as AP1, Ets, Smad and Snail regulating a lot of genes relevant to metastasis. AP-1 and Smad can be activated by PKC activator and TGF-beta1, respectively, in a ROS dependent manner. On the other hand, Est-1 can be upregulated by H2O2 via an antioxidant response element in the promoter. The ROS-regulated genes relevant to EMT and metastasis include E-cahedrin, integrin and MMP. Comprehensive understanding of the ROS-triggered signaling transduction, transcriptional activation and regulation of gene expressions will help strengthen the critical role of ROS in tumor progression and devising strategy for chemo-therapeutic interventions.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Department of Medical Technology, Tzu Chi University, No. 701, Chung Yang Rd, Sec 3, Hualien 970, Taiwan.
| |
Collapse
|
289
|
|
290
|
Benahmed M, Meresse B, Arnulf B, Barbe U, Mention JJ, Verkarre V, Allez M, Cellier C, Hermine O, Cerf-Bensussan N. Inhibition of TGF-beta signaling by IL-15: a new role for IL-15 in the loss of immune homeostasis in celiac disease. Gastroenterology 2007; 132:994-1008. [PMID: 17324400 DOI: 10.1053/j.gastro.2006.12.025] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 11/27/2006] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Interleukin (IL)-15 delivers signals that drive chronic inflammation in several diseases, including celiac disease. Smad3-transforming growth factor-beta (TGF-beta) signaling is instrumental to counteract proinflammatory signals and maintain immune homeostasis. Our goal has been to investigate why the proinflammatory effects of IL-15 cannot be efficiently controlled by TGF-beta in celiac disease. METHODS The impact of IL-15 on TGF-beta signaling in T cells and in the intestinal mucosa of celiac disease patients was analyzed by combining cell and organ cultures, immunohistochemistry, flow cytometry, real-time polymerase chain reaction, electromobility gel shift, and Western blot. RESULTS IL-15 impaired Smad3-dependent TGF-beta signaling in human T lymphocytes downstream from Smad3 nuclear translocation. IL-15-mediated inhibition was associated with a long-lasting activation of c-jun-N-terminal kinase and reversed by c-jun antisense oligonucleotides, consistent with the demonstrated inhibitory effect of phospho-c-jun on the formation of Smad3-DNA complexes. In active celiac disease, intestinal lymphocytes showed impaired TGF-beta-Smad3-dependent transcriptional responses and up-regulation of phospho-c-jun. Anti-IL-15 antibody and c-jun antisense both downmodulated phospho-c-jun expression and restored TGF-beta-Smad-dependent transcription in biopsies of active celiac disease. c-jun antisense decreased interferon gamma transcription. CONCLUSIONS Impairment of TGF-beta-mediated signaling by IL-15 might promote and sustain intestinal inflammation in celiac disease. More generally, our data provide a new rationale for the potent proinflammatory effects of IL-15, and further support the concept that IL-15 is a meaningful therapeutic target in inflammatory diseases associated with irreducible elevation of IL-15.
Collapse
|
291
|
Durand SH, Romeas A, Couble ML, Langlois D, Li JY, Magloire H, Bleicher F, Staquet MJ, Farges JC. Expression of the TGF-beta/BMP inhibitor EVI1 in human dental pulp cells. Arch Oral Biol 2007; 52:712-9. [PMID: 17328861 DOI: 10.1016/j.archoralbio.2007.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/12/2006] [Accepted: 01/07/2007] [Indexed: 12/19/2022]
Abstract
Members of the TGF-beta/BMP family of growth factors induce odontoblast differentiation and reparative dentin synthesis, and their use has been proposed to stimulate pulp healing during dental therapeutics in human. However, factors that modulate TGF-beta and/or BMP signalling during odontoblast differentiation and physiology remain largely unknown. To identify them, we compared expression profiles of TGF-beta/BMP-related genes in pulp fibroblast- and odontoblast-like cells cultured from human dental pulp explants using cDNA gene arrays. We evidenced that the gene encoding ecotropic viral integration site-1 (EVI1), a transcription factor that inhibits TGF-beta/BMP signalling, was under-expressed in odontoblast-like cells. This result was verified by real-time PCR and, at the protein level, by immunohistochemistry. In vivo, real-time PCR analysis revealed that EVI1 was expressed in the dental pulp, at a level similar to brain, but lower than in lung, kidney or trachea. The protein was localized in dental pulp samples in pulp core and subodontoblast cells. Staining intensity progressively decreased from the radicular to the coronal pulp where EVI1 staining was almost undetectable in odontoblasts. Our data suggest that fine regulation of the EVI1 level in the human dental pulp might be important in the TGF-beta/BMP-induced modulation of dental pulp cell kinetics and/or odontoblast differentiation.
Collapse
|
292
|
Schniewind B, Groth S, Sebens Müerköster S, Sipos B, Schäfer H, Kalthoff H, Fändrich F, Ungefroren H. Dissecting the role of TGF-beta type I receptor/ALK5 in pancreatic ductal adenocarcinoma: Smad activation is crucial for both the tumor suppressive and prometastatic function. Oncogene 2007; 26:4850-62. [PMID: 17297450 DOI: 10.1038/sj.onc.1210272] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present study, we have analysed the effects of transforming growth factor-beta (TGF-beta) signaling on the growth behavior of pancreatic carcinoma cells in vitro and on their tumorigenicity in vivo. Ectopic expression of dominant-negative mutants of the TGF-beta type II receptor or type I receptor/activin receptor-like kinase 5 (ALK5) in TGF-beta-sensitive pancreatic ductal adenocarcinoma PANC-1 cells prevented the TGF-beta-induced activation of transfected Smad-responsive reporter genes and growth arrest. The growth-inhibitory effect was mimicked by stable expression of kinase-active ALK5 (ALK5-T204D), and was dependent on ALK5's ability to activate Smad signaling, as a ALK5-derived mutant with an intact kinase domain but deficient in its ability to activate Smads (RImL45) failed to suppress proliferation in the absence of added TGF-beta. Moreover, this mutant often displayed opposite effects to those of ALK5-TD and blocked various ligand-induced responses in vitro, indicating that it acts in a dominant-negative fashion to inhibit endogenous wild-type receptors. ALK5-TD-, but not RImL45-TD-transduced cells underwent epithelial-to-mesenchymal transition, exhibited a higher ratio of thrombospondin-1 to vascular endothelial growth factor-A expression and upregulated various metastasis-associated genes. Upon orthotopic transplantation of PANC-1 clones into immunodeficient mice, ALK5-TD, but not RImL45-TD, greatly reduced tumor size and induced the formation of liver metastases in otherwise non-metastatic PANC-1 cells. These results suggest a causal, dominant role for the endogenous Smad2/3 signaling pathway in the tumor suppressor and prometastatic activities of TGF-beta in pancreatic tumor cells.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type I/physiology
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Female
- Gene Expression/drug effects
- Humans
- Immunoblotting
- Mice
- Mice, SCID
- Mutation
- Neoplasm Metastasis
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Phosphorylation/drug effects
- Protein Binding/drug effects
- Protein Serine-Threonine Kinases
- Rats
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Receptors, Transforming Growth Factor beta/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Smad Proteins/metabolism
- Transfection
- Transforming Growth Factor beta/pharmacology
- Tumor Burden
Collapse
Affiliation(s)
- B Schniewind
- Department of General Surgery and Thoracic Surgery, UKSH, Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
293
|
Bai X, Tang D, Zhu T, Sun L, Yan L, Lu Y, Zhou J, Ma D. Expression and bioinformatic analysis of lymphoma-associated novel gene KIAA0372. ACTA ACUST UNITED AC 2007; 1:93-8. [PMID: 24557625 DOI: 10.1007/s11684-007-0018-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
The purpose of this study was to explore the differentially expressed genes in lymph-node cells (LNC) of lymphomas and reactive lymph node hyperplasia, and to perform an initial bioinformatic analysis on a novel gene, KIAA0372, which is highly expressed in the LNC of lymphomas. mRNA extracted from LNC of lymphomas and reactive lymph node hyperplasia were respectively marked with biotin and hybridized with Gene Expression Chips, resulting in differentially expressed genes. Initial bioinformatic analysis was then performed on a novel gene named KIAA0372, whose function has not yet been explored. Its structure and genomic location, its product's physical and chemical properties, subcellular localization and functional domains, were also predicted. Further, a systematic evolution analysis was performed on similar proteins from among several species. Using Gene Expression Chips, many differentially expressed genes were uncovered. Efficient bioinformatic analysis has fundamentally determined that KIAA0372 is an extracellular protein which may be involved in TGF-β signaling. Microarray is an efficient and high throughput strategy for detection of differentially expressed genes. And KIAA0372 is thought to be a potential target for tumor research using bioinformatic analysis.
Collapse
Affiliation(s)
- Xiangyang Bai
- Center of Tumor Biological Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Buck A, Buchholz M, Wagner M, Adler G, Gress T, Ellenrieder V. The tumor suppressor KLF11 mediates a novel mechanism in transforming growth factor beta-induced growth inhibition that is inactivated in pancreatic cancer. Mol Cancer Res 2007; 4:861-72. [PMID: 17114344 DOI: 10.1158/1541-7786.mcr-06-0081] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
c-myc promoter silencing is a key step in epithelial cell growth inhibition by transforming growth factor beta (TGFbeta). During carcinogenesis, however, epithelial cells escape from c-myc repression and consequently become refractory to TGFbeta-mediated antiproliferation. Here, we assessed the role of the repressor, KLF11, in TGFbeta-induced growth inhibition in normal epithelial as well as pancreatic carcinoma cells. Endogenous KLF11 was stably down-regulated by RNA interference technology, and the functional consequences were studied by proliferation assays, reporter assays, DNA binding studies, and expression analyses. Coimmunoprecipitation and glutathione S-transferase pulldown assays were conducted to define KLF11-Smad3 interaction and U0126 was administered to examine the effects of the extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase on complex formation and c-myc promoter binding of KLF11 and Smad3 in pancreatic cancer cells. In TGFbeta-stimulated normal epithelial cells, nuclear KLF11, in concert with Smad3, binds to and represses transcription from the core region of the TGFbeta-inhibitory element (TIE) of the c-myc promoter. Disruption of KLF11-Smad3 interaction or small interfering RNA-mediated knockdown of endogenous KLF11 strongly diminishes Smad3-TIE promoter binding and repression, and consequently impairs TGFbeta-mediated growth inhibition. In pancreatic cancer cells with oncogenic Ras mutations, hyperactive ERK counteracts TGFbeta-induced c-myc repression and growth inhibition through at least two mechanisms, i.e., via disruption of KLF11-Smad3 complex formation and through inhibition of KLF11-Smad3 binding to the TIE element. Together, these results suggest a central role for KLF11 in TGFbeta-induced c-myc repression and antiproliferation and identifies a novel mechanism through which ERK signaling antagonizes the tumor suppressor activities of TGFbeta in pancreatic cancer cells with oncogenic Ras mutations.
Collapse
Affiliation(s)
- Anita Buck
- Department of Internal Medicine I, University of Ulm, Germany
| | | | | | | | | | | |
Collapse
|
295
|
Kita T, Hata Y, Kano K, Miura M, Nakao S, Noda Y, Shimokawa H, Ishibashi T. Transforming growth factor-beta2 and connective tissue growth factor in proliferative vitreoretinal diseases: possible involvement of hyalocytes and therapeutic potential of Rho kinase inhibitor. Diabetes 2007; 56:231-8. [PMID: 17192487 DOI: 10.2337/db06-0581] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The critical association of connective tissue growth factor (CTGF), which is thought to be one of the downstream mediators of transforming growth factor-beta (TGF-beta), with vitreoretinal diseases remains to be clarified. In the current study, we first demonstrated the correlation between the concentrations of TGF-beta2 as well as CTGF in the vitreous and CTGF gene regulation in cultured hyalocytes. Concentrations of TGF-beta2 and CTGF in the vitreous from patients with proliferative vitreoretinal diseases were significantly higher than in those with nonproliferative diseases, and there was a positive correlation between their concentrations (r = 0.320, P < 0.01). Cultured hyalocytes expressed CTGF mRNA, which was enhanced in the presence of TGF-beta2, associated with nuclear accumulation of Smad4. TGF-beta2-dependent Smad4 translocation and CTGF gene expression were mediated through Rho kinase and at least partially via p38 mitogen-activated protein kinase. Finally, fasudil, a Rho kinase inhibitor already in clinical use, inhibited both Smad4 translocation and CTGF gene expression. In conclusion, combined effects of TGF-beta2 and CTGF appear to be involved in the pathogenesis of proliferative vitreoretinal diseases. Hyalocytes may be a possible source of CTGF and thus might play a role in vitreoretinal interface diseases. Furthermore, Rho kinase inhibitors might have therapeutic potential to control fibrotic disorders in the eye.
Collapse
Affiliation(s)
- Takeshi Kita
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
296
|
Daniel C, Schroder O, Zahn N, Gaschott T, Steinhilber D, Stein JM. The TGFβ/Smad 3-signaling pathway is involved in butyrate-mediated vitamin D receptor (VDR)-expression. J Cell Biochem 2007; 102:1420-31. [PMID: 17471513 DOI: 10.1002/jcb.21361] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previously, we demonstrated the pivotal role of the vitamin D receptor (VDR) in mediating the butyrate-induced differentiation in colon cancer cells. Smad 3, a downstream component of transforming growth factor-beta (TGFbeta) signaling, has been shown to act as a coactivator of VDR and to possibly regulate the vitamin D signaling pathway. In this study, we demonstrate a distinct impact of the TGFbeta/Smad 3-signaling pathway in the butyrate-mediated VDR expression and induction of differentiation. Butyrate treatment resulted in a significant induction of the phosphorylation level of Smad 3, while the combination of butyrate and a specific TGFbeta1-antibody or a TGFbeta-receptor inhibitor considerably diminished the butyrate-induced upregulation of VDR expression. Using a specific inhibitor, we were also able to demonstrate an involvement of the p38 MAPK in the increase of Smad 3 phosphorylation following butyrate treatment, thus opening the view to further elucidate possible mechanisms mediating the upregulation of VDR expression following butyrate treatment in colon cancer cells.
Collapse
Affiliation(s)
- Carolin Daniel
- First Department of Internal Medicine, ZAFES, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
297
|
Nesti LJ, Caterson EJ, Li WJ, Chang R, McCann TD, Hoek JB, Tuan RS. TGF-β1 calcium signaling in osteoblasts. J Cell Biochem 2007; 101:348-59. [PMID: 17211850 DOI: 10.1002/jcb.21180] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) action is known to be initiated by its binding to multiple cell surface receptors containing serine/threonine kinase domains that act to stimulate a cascade of signaling events in a variety of cell types. We have previously shown that TGF-beta1 and BMP-2 treatment of primary human osteoblasts (HOBs) enhances cell-substrate adhesion. In this report, we demonstrate that TGF-beta1 elicits a rapid, transient, and oscillatory rise in the intracellular Ca(2+) concentration, [Ca(2+)](i), that is necessary for enhancement of cell adhesion in HOBs but does not alter the phosphorylation state of Smad proteins. This rise in [Ca(2+)](i) in HOB is not observed in the absence of extracellular calcium or when the cells are treated with the L-type Ca(2+) channel blocker, nifedipine, but is stimulated upon treatment with the L-type Ca(2+) channel agonist, Bay K 8644, or under high K(+) conditions. The rise in [Ca(2+)](i) is severely attenuated after treatment of the cells with thapsigargin, a selective endoplasmic reticulum Ca(2+) pump inhibitor. TGF-beta1 enhancement of HOB adhesion to tissue culture polystyrene is also inhibited in cells treated with nifedipine. These data suggest that intracellular Ca(2+) signaling is an important second messenger of the TGF-beta1 signal transduction pathway in osteoblast function.
Collapse
Affiliation(s)
- Leon J Nesti
- Department of Orthopaedics and Rehabilitation, Walter Reed Army Medical Center, Washington, DC 20307, USA
| | | | | | | | | | | | | |
Collapse
|
298
|
Leivonen SK, Kähäri VM. Transforming growth factor-β signaling in cancer invasion and metastasis. Int J Cancer 2007; 121:2119-24. [PMID: 17849476 DOI: 10.1002/ijc.23113] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-beta (TGF-beta) family members are polypeptides with dual tumor suppressive and oncogenic effects. They signal through serine/threonine kinase receptor complexes, which phosphorylate cytoplasmic mediators, the Smads. Upon phosphorylation, Smads translocate to the nucleus and associate with transcriptional coactivators or corepressors, and regulate the transcriptional activation of various TGF-beta responsive genes. In addition, TGF-beta activates cellular mitogen-activated protein kinase signaling pathways, which crosstalk with Smad signaling and regulate growth, survival and motility of cells. During tumorigenesis, malignantly transformed cells often lose the response to the tumor suppressive effects of TGF-beta, which, in turn, starts to act as an autocrine tumor promoting factor by enhancing cancer invasion and metastasis. In this review, we summarize current view on the role of TGF-beta signaling in tumorigenesis, with emphasis on cancer invasion and metastasis. On the basis of these recent observations, we discuss new therapeutic strategies targeting TGF-beta signaling at distinct levels as a basis for inhibiting tumor growth, angiogenesis, invasion and metastasis.
Collapse
|
299
|
Boon RA, Fledderus JO, Volger OL, van Wanrooij EJA, Pardali E, Weesie F, Kuiper J, Pannekoek H, ten Dijke P, Horrevoets AJG. KLF2 suppresses TGF-beta signaling in endothelium through induction of Smad7 and inhibition of AP-1. Arterioscler Thromb Vasc Biol 2006; 27:532-9. [PMID: 17194892 DOI: 10.1161/01.atv.0000256466.65450.ce] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The flow-responsive Kruppel-like factor 2 (KLF2) is crucial for maintaining endothelial cell quiescence. Here, we describe its detailed effects on transforming growth factor-beta (TGF-beta) signaling, which normally has proatherogenic effects on endothelium. METHODS AND RESULTS In-depth analysis of genome-wide expression data shows that prolonged lentiviral-mediated overexpression of KLF2 in human umbilical vein endothelial cells (HUVECs) diminishes the expression of a large panel of established TGF-beta-inducible genes. Both baseline and TGF-beta-induced expression levels of plasminogen activator inhibitor 1 (PAI-1) and thrombospondin-1 are greatly diminished by KLF2. Using a combination of ectopic expression, small interfering RNA-mediated knockdown, and promoter activity assays, we show that KLF2 partly inhibits the phosphorylation and subsequent nuclear accumulation of Smad2, thereby suppressing the TGF-beta-induced Smad4-mediated transcriptional activity. This is achieved through TGF-beta-independent induction of inhibitory Smad7. Additionally, a full inhibition of TGF-beta signaling is functionally achieved through a simultaneous suppression of activator protein 1 (AP-1), which is an essential cofactor for TGF-beta-dependent transcription of many genes. CONCLUSIONS The concerted mechanism by which KLF2 inhibits TGF-beta signaling through induction of inhibitory Smad7 and attenuation of AP-1 activity provides a novel mechanism by which KLF2 contributes to sustaining a quiescent, atheroprotective status of vascular endothelium.
Collapse
Affiliation(s)
- Reinier A Boon
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Xu L. Regulation of Smad activities. ACTA ACUST UNITED AC 2006; 1759:503-13. [PMID: 17182123 PMCID: PMC1805629 DOI: 10.1016/j.bbaexp.2006.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/27/2006] [Accepted: 11/07/2006] [Indexed: 01/15/2023]
Abstract
TGF-beta (Transforming Growth Factor-beta) cytokines employ Smad proteins as the intracellular mediator of signaling. Upon TGF-beta stimulation, the cytoplasmic Smads become phosphorylated and consequently accumulate in the nucleus to regulate target gene expression. The cytoplasm-to-nucleus redistribution of Smads, as well as the ability of Smads to activate or repress gene transcription, is under multiple layers of regulation by factors not limited to TGF-beta. With recent advance in the knowledge of regulatory factors impinged on Smads, we are beginning to understand the complexity in cellular responses to TGF-beta.
Collapse
Affiliation(s)
- Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Rm. 308, Worcester, MA 01605, USA.
| |
Collapse
|