251
|
Ekinci FJ, Linsley MD, Shea TB. Beta-amyloid-induced calcium influx induces apoptosis in culture by oxidative stress rather than tau phosphorylation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:389-95. [PMID: 10762716 DOI: 10.1016/s0169-328x(00)00025-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Beta-amyloid (betaA) toxicity in culture is accompanied by multiple events culminating in apoptosis. Calcium influx may represent the initial event, since calcium chelation prevents all subsequent events, while subsequent events include increased generation of reactive oxygen species (ROS) and hyperphosphorylation of tau. In the present study, we undertook to determine whether ROS generation or tau hyperphosphorylation mediate betaA-induced apoptosis. The anti-oxidant vitamin E or the kinase inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenslfonamide (W7) was added following brief treatment of differentiated SH-SY-5Y human neuroblastoma cells with 22 microM betaA. Under these conditions, vitamin E prevented ROS generation and apoptosis, but did not prevent intracellular calcium accumulation or tau phosphorylation. W7 prevented tau phosphorylation but did not block betaA-induced calcium influx, ROS generation or apoptosis. While these studies do not address the long-term consequences of PHF formation, they indicate that ROS generation, rather than tau hyperphosphorylation, leads to apoptosis following betaA-induced calcium influx into cultured cells.
Collapse
Affiliation(s)
- F J Ekinci
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | | | | |
Collapse
|
252
|
Kostrzewa RM. Review of apoptosis vs. necrosis of substantia nigra pars compacta in Parkinson's disease. Neurotox Res 2000; 2:239-50. [PMID: 16787844 DOI: 10.1007/bf03033797] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The discovery that melanized neurons of the pars compacta of substantia nigra (pcSN) degenerate in the midbrain of human Parkinsonians is nearly a century old, but only in this decade have we gained insights into mechanisms underlying this neuronal loss. Although it had long been assumed that pcSN neurons underwent necrosis, recent (1) in vitro studies on isolated neurons, (2) in vivo studies in animals treated with neurotoxins, and (3) postmortem study of human Parkinsonian brain provide strong evidence that pcSN cells may be lost more from apoptosis (i.e., cell suicide) than from necrosis. This paper gives some historical perspective, but focuses primarily on mechanisms involved in both necrosis and apoptosis of neurons, primarily dopaminergic, and reviews the recent literature relating to apoptosis and apoptotic factors now identified in neurons undergoing neurotoxin-induced death and in postmortem human Parkinsonian brain. The weight of evidence in favor of apoptosis and apoptotic factors in these neurons, provides us with tools needed to develop anti-apoptotic factors that can be targeted to proteins on genes, so that it may be possible to decelerate or prevent the progressive neuronal cell loss in human Parkinsonians or in humans with other neurodegenerative disorders.
Collapse
Affiliation(s)
- R M Kostrzewa
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
253
|
Segal JA, Skolnick P. Spermine-induced toxicity in cerebellar granule neurons is independent of its actions at NMDA receptors. J Neurochem 2000; 74:60-9. [PMID: 10617106 DOI: 10.1046/j.1471-4159.2000.0740060.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neurotoxic actions of polyamines such as spermine have been linked to their modulation of NMDA receptors, resulting in an excitotoxic cell death. Here, we demonstrate that chronic exposure to the polyamine spermine and acute exposure to the combination of spermine and glutamate result in significant toxicity to primary cultures of cerebellar granule neurons (CGNs). However, in both cases this cell death (a) lacks the characteristic cell swelling associated with the necrotic cell death induced by glutamate and (b) is characterized by the widespread formation of apoptotic nuclei. Whereas dizocilpine (MK-801) blocks the synergistic cell death resulting from acute exposure to spermine plus glutamate, neither MK-801 nor the calcium chelator EGTA appreciably attenuates CGN death resulting from chronic exposure to spermine. Consistent with previous reports, glutamate, both acute and chronic, causes CGN death that is characterized by cell swelling, sensitivity to MK-801 and EGTA, and only small numbers of apoptotic nuclei. Spermine-induced toxicity is not blocked by either the protein synthesis inhibitor cycloheximide or the pancaspase inhibitor tert-butoxycarbonyl-Asp-(O-methyl) fluoromethyl ketone. However, the antioxidant butylated hydroxyanisole is an effective blocker of spermine-induced CGN death, suggesting a free-radical component to this cell death. The intact spermine molecule, rather than a catabolic by-product, is required for cell death because the amine oxidase inhibitors N1,N2-bis(2,3-butadienyl)-1,4-butanediamine and aminoguanidine fail to block this toxicity. Thus, in CGNs, spermine-induced toxicity does not occur by its modulation of NMDA receptors, although, under some circumstances, NMDA receptor activation can modulate spermine-induced toxicity.
Collapse
Affiliation(s)
- J A Segal
- Lilly Research Laboratories, Neuroscience Discovery, Indianapolis, Indiana 46285-0510, USA.
| | | |
Collapse
|
254
|
Petersén A, Brundin P. Effects of ciliary neurotrophic factor on excitotoxicity and calcium-ionophore A23187-induced cell death in cultured embryonic striatal neurons. Exp Neurol 1999; 160:402-12. [PMID: 10619557 DOI: 10.1006/exnr.1999.7221] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ciliary neurotrophic factor (CNTF) has a protective effect on the striatum in animal models of Huntington's disease. However, the mechanism through which it exerts its effect is not clear. In this study, we show that there is a concentration-dependent direct protective effect of CNTF against N-methyl-D-aspartate-mediated excitotoxicity on striatal neurons in vitro. The CNTF has to be added more than half an hour before the insult for the effect to occur and its effect is eliminated by the presence of the protein synthesis inhibitor cycloheximide. This suggests that the protective mechanism of CNTF does not involve acute interference with the glutamate receptors, but probably requires gene/protein expression. We have also shown that the effect of CNTF against glutamate-induced excitotoxicity is dependent on the concentration of glutamate with a protective effect more evident at a low grade excitotoxic insult. Finally, we saw no effect of CNTF on calcium ionophore A23187-induced toxicity in striatal cultures, indicating that the growth factor does not promote survival by enhancing general defenses against raised intracellular levels of calcium.
Collapse
Affiliation(s)
- A Petersén
- Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, Sweden
| | | |
Collapse
|
255
|
Sagara Y, Hendler S, Khoh-Reiter S, Gillenwater G, Carlo D, Schubert D, Chang J. Propofol hemisuccinate protects neuronal cells from oxidative injury. J Neurochem 1999; 73:2524-30. [PMID: 10582614 DOI: 10.1046/j.1471-4159.1999.0732524.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxidative stress contributes to the neuronal death observed in neurodegenerative disorders and neurotrauma. Some antioxidants for CNS injuries, however, have yet to show mitigating effects in clinical trials, possibly due to the impermeability of antioxidants across the blood-brain barrier (BBB). Propofol (2,6-diisopropylphenol), the active ingredient of a commonly used anesthetic, acts as an antioxidant, but it is insoluble in water. Therefore, we synthesized its water-soluble prodrug, propofol hemisuccinate sodium salt (PHS), and tested for its protective efficacy in neuronal death caused by non-receptor-mediated, oxidative glutamate toxicity. Glutamate induces apoptotic death in rat cortical neurons and the mouse hippocampal cell line HT-22 by blocking cystine uptake and causing the depletion of intracellular glutathione, resulting in the accumulation of reactive oxygen species (ROS). PHS has minimal toxicity and protects both cortical neurons and HT-22 cells from glutamate. The mechanism of protection is attributable to the antioxidative property of PHS because PHS decreases the ROS accumulation caused by glutamate. Furthermore, PHS protects HT-22 cells from oxidative injury induced by homocysteic acid, buthionine sulfoximine, and hydrogen peroxide. For comparison, we also tested alpha-tocopherol succinate (TS) and methylprednisolone succinate (MPS) in the glutamate assay. Although TS is protective against glutamate at lower concentrations than PHS, TS is toxic to HT-22 cells. In contrast, MPS is nontoxic but also nonprotective against glutamate. Taken together, PHS, a water-soluble prodrug of propofol, is a candidate drug to treat CNS injuries owing to its antioxidative properties, low toxicity, and permeability across the BBB.
Collapse
Affiliation(s)
- Y Sagara
- Salk Institute for Biological Studies, La Jolla 92037, USA
| | | | | | | | | | | | | |
Collapse
|
256
|
Adler V, Yin Z, Tew KD, Ronai Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene 1999; 18:6104-11. [PMID: 10557101 DOI: 10.1038/sj.onc.1203128] [Citation(s) in RCA: 471] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stress-activated signaling cascades are affected by altered redox potential. Key contributors to altered redox potential are reactive oxygen species (ROS) which are formed, in most cases, by exogenous genotoxic agents including irradiation, inflammatory cytokines and chemical carcinogens. ROS and altered redox potential can be considered as the primary intracellular changes which regulate protein kinases, thereby serving as an important cellular component linking external stimuli with signal transduction in stress response. The mechanisms, which underlie the ROS-mediated response, involve direct alteration of kinases and transcription factors, and indirect modulation of cysteine-rich redox-sensitive proteins exemplified by thioredoxin and glutathione S-transferase. This review summarizes the current understanding of the mechanisms contributing to ROS-related changes in key stress activated signaling cascades.
Collapse
Affiliation(s)
- V Adler
- Ruttenberg Cancer Center, Mount Sinai School of Medicine, 1 Gustave Levy Place, Box 1130, New York, NY 10029, USA
| | | | | | | |
Collapse
|
257
|
Pillot T, Drouet B, Queillé S, Labeur C, Vandekerchkhove J, Rosseneu M, Pinçon-Raymond M, Chambaz J. The nonfibrillar amyloid beta-peptide induces apoptotic neuronal cell death: involvement of its C-terminal fusogenic domain. J Neurochem 1999; 73:1626-34. [PMID: 10501209 DOI: 10.1046/j.1471-4159.1999.0731626.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The toxicity of the nonaggregated amyloid beta-peptide (1-40) [A beta(1-40)] on the viability of rat cortical neurons in primary culture was investigated. We demonstrated that low concentrations of A beta peptide, in a nonfibrillar form, induced a time- and dose-dependent apoptotic cell death, including DNA condensation and fragmentation. We compared the neurotoxicity of the A beta(1-40) peptide with those of several A beta-peptide domains, comprising the membrane-destabilizing C-terminal domain of A beta peptide (e.g., amino acids 29-40 and 29-42). These peptides reproduced the effects of the (1-40) peptide, whereas mutant nonfusogenic A beta peptides and the central region of the A beta peptide (e.g., amino acids 13-28) had no effect on cell viability. We further demonstrated that the neurotoxicity of the nonaggregated A beta peptide paralleled a rapid and stable interaction between the A beta peptide and the plasma membrane of neurons, preceding apoptosis and DNA fragmentation. By contrast, the peptide in a fibrillar form induced a rapid and dramatic neuronal death mainly through a necrotic pathway, under our conditions. Taken together, our results suggest that A beta induces neuronal cell death by either apoptosis and necrosis and that an interaction between the nonfibrillar C-terminal domain of the A beta peptide and the plasma membrane of cortical neurons might represent an early event in a cascade leading to neurodegeneration.
Collapse
Affiliation(s)
- T Pillot
- INSERM U-505, Institut des Cordeliers, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
258
|
The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties. Proc Natl Acad Sci U S A 1999. [PMID: 10430862 DOI: 10.1073/pnas.96.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among the family of steroidal molecules, only estrogens have the capability of preventing neuronal cell death caused by increased oxidative burden. Employing neuronal cell lines, brain membrane, and low density lipoprotein oxidation assays, we show that the antioxidant and neuroprotective effects of estrogens are dependent not on their genomic properties as hormones but rather on their basic chemical properties as hydrophobic phenolic molecules. Concentrations of 17beta-estradiol of 0.1-500 nM, which confer maximum estrogen receptor-dependent gene transcription in vitro as well as maximum estrogen receptor binding, respectively, do not show antioxidant or neuroprotective effects. In contrast, phenolic compounds such as 2,4,6-trimethylphenol, N-acetylserotonin, and 5-hydroxyindole exhibit neuroprotective effects without any estrogenicity. Comparing various natural and synthetic mono- and polyphenolic compounds, no correlation between their antioxidant cytoprotective effect and their estrogenic potency can be seen. These results call into question the idea of a general correlation between the intended pharmacological effects of estrogens and phenolic compounds and their effect on estrogen receptor-dependent pathways. Furthermore, they may open the door toward the rational design of neuroprotective antioxidants with decreased hormonal side effects.
Collapse
|
259
|
Eriksson C, Van Dam AM, Lucassen PJ, Bol JG, Winblad B, Schultzberg M. Immunohistochemical localization of interleukin-1beta, interleukin-1 receptor antagonist and interleukin-1beta converting enzyme/caspase-1 in the rat brain after peripheral administration of kainic acid. Neuroscience 1999; 93:915-30. [PMID: 10473257 DOI: 10.1016/s0306-4522(99)00178-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The temporal and anatomical distribution of members of the interleukin-1 system in the rat brain following intraperitoneal kainic acid administration was studied in relation to neurodegeneration as detected with in situ end labelling. Kainic acid administration (10 mg/kg, i.p.) resulted in the induced expression of interleukin-1beta, interleukin- receptor antagonist and caspase-1p10 immunoreactivity in areas known to display neuronal and tissue damage upon excitotoxic lesions. The induction of these proteins was transient. Interleukin-1 immunoreactivity appeared at 5 h, and the interleukin-1 receptor antagonist-immunoreactive cells were first detected at 12 h, whereas the induction of caspase- 1p10 expression was first detected 24 h after kainic acid injection. Double labelling with the microglial marker Ox42 confirmed that both interleukin-1beta and interleukin-1 receptor antagonist were mainly localized in microglial cells. The regional distribution of in situ end-labelled neurons was similar to the distribution of cells expressing interleukin-1beta and interleukin-1 receptor antagonist, whereas the distribution of caspase-1 was more limited. The in situ end-labelled neurons, were, similarly to the interleukin-1beta-positive cells, first detected at 5 h, which is earlier than the induction of caspase-1. Our results show that the induction of IL-1beta and IL-1 receptor antagonist proteins after kainic acid are closely associated with the temporal as well as the anatomical distribution of in situ end-labelled neurons, whereas the induction of caspase-1 protein exhibited a delayed temporal profile and limited distribution. Since cytokine production occurs in activated microglial cells, the inflammatory component seems to be a strong mediator of this type of excitotoxic damage. The late onset of the caspase-1 expression would seem to indicate that this enzyme has no fundamental role in directly causing neuronal cell death induced by systemic kainic acid.
Collapse
Affiliation(s)
- C Eriksson
- Department of Clinical Neuroscience and Family Medicine, Karolinska Institute, Huddinge Hospital, Novum, Sweden
| | | | | | | | | | | |
Collapse
|
260
|
Cao W, Tombran-Tink J, Chen W, Mrazek D, Elias R, McGinnis J. Pigment epithelium-derived factor protects cultured retinal neurons against hydrogen peroxide-induced cell death. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990915)57:6%3c789::aid-jnr4%3e3.0.co;2-m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
261
|
Cao W, Tombran-Tink J, Chen W, Mrazek D, Elias R, McGinnis J. Pigment epithelium-derived factor protects cultured retinal neurons against hydrogen peroxide-induced cell death. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990915)57:6<789::aid-jnr4>3.0.co;2-m] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
262
|
Moosmann B, Behl C. The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties. Proc Natl Acad Sci U S A 1999; 96:8867-72. [PMID: 10430862 PMCID: PMC17699 DOI: 10.1073/pnas.96.16.8867] [Citation(s) in RCA: 310] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/1999] [Accepted: 06/02/1999] [Indexed: 02/06/2023] Open
Abstract
Among the family of steroidal molecules, only estrogens have the capability of preventing neuronal cell death caused by increased oxidative burden. Employing neuronal cell lines, brain membrane, and low density lipoprotein oxidation assays, we show that the antioxidant and neuroprotective effects of estrogens are dependent not on their genomic properties as hormones but rather on their basic chemical properties as hydrophobic phenolic molecules. Concentrations of 17beta-estradiol of 0.1-500 nM, which confer maximum estrogen receptor-dependent gene transcription in vitro as well as maximum estrogen receptor binding, respectively, do not show antioxidant or neuroprotective effects. In contrast, phenolic compounds such as 2,4,6-trimethylphenol, N-acetylserotonin, and 5-hydroxyindole exhibit neuroprotective effects without any estrogenicity. Comparing various natural and synthetic mono- and polyphenolic compounds, no correlation between their antioxidant cytoprotective effect and their estrogenic potency can be seen. These results call into question the idea of a general correlation between the intended pharmacological effects of estrogens and phenolic compounds and their effect on estrogen receptor-dependent pathways. Furthermore, they may open the door toward the rational design of neuroprotective antioxidants with decreased hormonal side effects.
Collapse
Affiliation(s)
- B Moosmann
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | |
Collapse
|
263
|
Megyeri P, Németh L, Pabst KM, Pabst MJ, Deli MA, Abrahám CS. 4-(2-Aminoethyl)benzenesulfonyl fluoride attenuates tumor-necrosis-factor-alpha-induced blood-brain barrier opening. Eur J Pharmacol 1999; 374:207-11. [PMID: 10422761 DOI: 10.1016/s0014-2999(99)00224-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF) was investigated on the prevention of tumor-necrosis-factor-alpha (TNF-alpha)-induced blood-brain barrier opening. TNF-alpha (10,000 IU) was injected intracarotidly to newborn pigs pretreated with 0, 2.4, 4.8, 9.6 and 19.2 mg/kg AEBSF (n = 6 in each group). AEBSF dose-dependently inhibited the TNF-alpha-induced increase in the blood-brain barrier permeability for sodium fluorescein (MW = 376) in all of the five brain regions examined, while only 19.2 mg/kg AEBSF could significantly (P < 0.05) decrease the change in Evan's blue-albumin (MW = 67,000) transport in two regions. In conclusion, AEBSF attenuates vasogenic brain edema formation.
Collapse
Affiliation(s)
- P Megyeri
- Department of Pediatrics, Albert Szent-Györgyi Medical University, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
264
|
Xiao N, Callaway CW, Lipinski CA, Hicks SD, DeFranco DB. Geldanamycin provides posttreatment protection against glutamate-induced oxidative toxicity in a mouse hippocampal cell line. J Neurochem 1999; 72:95-101. [PMID: 9886059 DOI: 10.1046/j.1471-4159.1999.0720095.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The benzoquinoid ansamycin geldanamycin interferes with many cell signaling pathways and is currently being evaluated as an anticancer agent. The main intracellular target of geldanamycin is the 90-kDa heat shock protein, hsp90. In this report we demonstrate that geldanamycin is effective at preventing glutamate-induced oxidative toxicity in the HT22 mouse hippocampal cell line, even if given 4 h after glutamate treatment. Geldanamycin prevents glutamate-induced internucleosomal DNA cleavage in the HT22 cells but does not reverse the depletion of glutathione levels brought about by glutamate treatment. Both anabolic and catabolic effects are generated by geldanamycin treatment of HT22 cells, as evidenced by the induction of hsp70 expression and degradation of c-Raf-1 protein, respectively. Thus, geldanamycin may provide an effective strategy for manipulating signaling pathways in neuronal cells that use hsp90 as they proceed through a programmed cell death pathway in response to oxidative stress.
Collapse
Affiliation(s)
- N Xiao
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|
265
|
The activation of metabotropic glutamate receptors protects nerve cells from oxidative stress. J Neurosci 1998. [PMID: 9712638 DOI: 10.1523/jneurosci.18-17-06662.1998] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) have been implicated in a variety of cellular responses to glutamic acid. The work described in this manuscript extends the role of mGluRs to include protection from oxidative stress-induced programmed cell death. Glutamate analogs regulate inositol-1,4,5 triphosphate mass accumulation in accordance with their ability to protect cells from oxidative glutamate toxicity, and protection appears to take place at the level of glutathione metabolism. Short-term exposure of cells to low concentrations of glutamate desensitizes cells to a subsequent challenge from glutamate. Glutamate exposure upregulates the expression of mGluR5 in hippocampal HT-22 cells and mGluR1 in cortical primary cultures. Finally, group I mGluR agonists also protect cells from death programs initiated by glucose starvation and cystine deprivation.
Collapse
|
266
|
Tan S, Sagara Y, Liu Y, Maher P, Schubert D. The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 1998; 141:1423-32. [PMID: 9628898 PMCID: PMC2132785 DOI: 10.1083/jcb.141.6.1423] [Citation(s) in RCA: 605] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1998] [Revised: 05/04/1998] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are thought to be involved in many forms of programmed cell death. The role of ROS in cell death caused by oxidative glutamate toxicity was studied in an immortalized mouse hippocampal cell line (HT22). The causal relationship between ROS production and glutathione (GSH) levels, gene expression, caspase activity, and cytosolic Ca2+ concentration was examined. An initial 5-10-fold increase in ROS after glutamate addition is temporally correlated with GSH depletion. This early increase is followed by an explosive burst of ROS production to 200-400-fold above control values. The source of this burst is the mitochondrial electron transport chain, while only 5-10% of the maximum ROS production is caused by GSH depletion. Macromolecular synthesis inhibitors as well as Ac-YVAD-cmk, an interleukin 1beta-converting enzyme protease inhibitor, block the late burst of ROS production and protect HT22 cells from glutamate toxicity when added early in the death program. Inhibition of intracellular Ca2+ cycling and the influx of extracellular Ca2+ also blocks maximum ROS production and protects the cells. The conclusion is that GSH depletion is not sufficient to cause the maximal mitochondrial ROS production, and that there is an early requirement for protease activation, changes in gene expression, and a late requirement for Ca2+ mobilization.
Collapse
Affiliation(s)
- S Tan
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|