251
|
Association between Systemic Immunity-Inflammation Index and Hyperlipidemia: A Population-Based Study from the NHANES (2015-2020). Nutrients 2023; 15:nu15051177. [PMID: 36904176 PMCID: PMC10004774 DOI: 10.3390/nu15051177] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
The systemic immunity-inflammation index (SII) is a novel inflammatory marker, and aberrant blood lipid levels are linked to inflammation. This study aimed to look at the probable link between SII and hyperlipidemia. The current cross-sectional investigation was carried out among people with complete SII and hyperlipidemia data from the 2015-2020 National Health and Nutrition Examination Survey (NHANES). SII was computed by dividing the platelet count × the neutrophil count/the lymphocyte count. The National Cholesterol Education Program standards were used to define hyperlipidemia. The nonlinear association between SII and hyperlipidemia was described using fitted smoothing curves and threshold effect analyses. A total of 6117 US adults were included in our study. A substantial positive correlation between SII and hyperlipidemia was found [1.03 (1.01, 1.05)] in a multivariate linear regression analysis. Age, sex, body mass index, smoking status, hypertension, and diabetes were not significantly correlated with this positive connection, according to subgroup analysis and interaction testing (p for interaction > 0.05). Additionally, we discovered a non-linear association between SII and hyperlipidemia with an inflection point of 479.15 using a two-segment linear regression model. Our findings suggest a significant association between SII levels and hyperlipidemia. More large-scale prospective studies are needed to investigate the role of SII in hyperlipidemia.
Collapse
|
252
|
Daniels MA, Luera D, Teixeiro E. NFκB signaling in T cell memory. Front Immunol 2023; 14:1129191. [PMID: 36911729 PMCID: PMC9998984 DOI: 10.3389/fimmu.2023.1129191] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Memory T cells play an essential role in protecting against infectious diseases and cancer and contribute to autoimmunity and transplant rejection. Understanding how they are generated and maintained in the context of infection or vaccination holds promise to improve current immune-based therapies. At the beginning of any immune response, naïve T cells are activated and differentiate into cells with effector function capabilities. In the context of infection, most of these cells die once the pathogenic antigen has been cleared. Only a few of them persist and differentiate into memory T cells. These memory T cells are essential to host immunity because they are long-lived and can perform effector functions immediately upon re-infection. How a cell becomes a memory T cell and continues being one for months and even years past the initial infection is still not fully understood. Recent reviews have thoroughly discussed the transcriptional, epigenomic, and metabolic mechanisms that govern T cell memory differentiation. Yet much less is known of how signaling pathways that are common circuitries of multiple environmental signals regulate T cell outcome and, precisely, T cell memory. The function of the NFκB signaling system is perhaps best understood in innate cells. Recent findings suggest that NFκB signaling plays an essential and unique role in generating and maintaining CD8 T cell memory. This review aims to summarize these findings and discuss the remaining questions in the field.
Collapse
Affiliation(s)
- Mark A. Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Dezzarae Luera
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
253
|
Nathan N, Griese M, Michel K, Carlens J, Gilbert C, Emiralioglu N, Torrent-Vernetta A, Marczak H, Willemse B, Delestrain C, Epaud R. Diagnostic workup of childhood interstitial lung disease. Eur Respir Rev 2023; 32:32/167/220188. [PMID: 36813289 PMCID: PMC9945877 DOI: 10.1183/16000617.0188-2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/18/2022] [Indexed: 02/24/2023] Open
Abstract
Childhood interstitial lung diseases (chILDs) are rare and heterogeneous diseases with significant morbidity and mortality. An accurate and quick aetiological diagnosis may contribute to better management and personalised treatment. On behalf of the European Respiratory Society Clinical Research Collaboration for chILD (ERS CRC chILD-EU), this review summarises the roles of the general paediatrician, paediatric pulmonologists and expert centres in the complex diagnostic workup. Each patient's aetiological chILD diagnosis must be reached without prolonged delays in a stepwise approach from medical history, signs, symptoms, clinical tests and imaging, to advanced genetic analysis and specialised procedures including bronchoalveolar lavage and biopsy, if necessary. Finally, as medical progress is fast, the need to revisit a diagnosis of "undefined chILD" is stressed.
Collapse
Affiliation(s)
- Nadia Nathan
- AP-HP, Sorbonne Université, Pediatric Pulmonology Department and Reference Center for Rare Lung Disease RespiRare, Armand Trousseau Hospital, Paris, France .,Sorbonne Université, Inserm UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Paris, France
| | - Matthias Griese
- Department of Paediatric Pneumology, Dr von Hauner Children's Hospital, German Centre for Lung Research, University of Munich, Munich, Germany
| | - Katarzyna Michel
- Department of Paediatric Pneumology, Dr von Hauner Children's Hospital, German Centre for Lung Research, University of Munich, Munich, Germany
| | - Julia Carlens
- Clinic for Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - Carlee Gilbert
- Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alba Torrent-Vernetta
- Pediatric Allergy and Pulmonology Section, Department of Pediatrics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Honorata Marczak
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Brigitte Willemse
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Céline Delestrain
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France,Centre des Maladies Respiratoires Rares (RESPIRARE®), CRCM, Créteil, France
| | - Ralph Epaud
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France,Centre des Maladies Respiratoires Rares (RESPIRARE®), CRCM, Créteil, France,University Paris Est Créteil, INSERM, IMRB, Créteil, France
| |
Collapse
|
254
|
Pyclik M, Durslewicz J, Papinska JA, Deshmukh US, Bagavant H. STING Agonist-Induced Skin Inflammation Is Exacerbated with Prior Systemic Innate Immune Activation. Int J Mol Sci 2023; 24:4128. [PMID: 36835537 PMCID: PMC9960435 DOI: 10.3390/ijms24044128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Activation of the Stimulator of Interferon Genes (STING) protein has paradoxical outcomes in skin disease. STING activation exacerbates psoriatic skin disease and delays wound healing in diabetic mice, yet it also facilitates wound healing in normal mice. To address the role of localized STING activation in the skin, mice were injected subcutaneously with a STING agonist, diamidobenzimidazole STING Agonist-1 (diAbZi). The effect of a prior inflammatory stimulus on STING activation was addressed by pre-treating mice intraperitoneally with poly (I:C). The skin at the injection site was evaluated for local inflammation, histopathology, immune cell infiltration, and gene expression. Serum cytokine levels were measured to assess systemic inflammatory responses. Localized diABZI injection induced severe skin inflammation with erythema, scaling, and induration. However, the lesions were self-limiting and resolved within 6 weeks. At the peak of inflammation, the skin showed epidermal thickening, hyperkeratosis, and dermal fibrosis. Neutrophils, CD3 T cells, and F4/80 macrophages were present in the dermis and subcutaneous layers. Gene expression was consistent with increased local interferon and cytokine signaling. Interestingly, the poly (I:C)-pre-treated mice showed higher serum cytokine responses and developed worse inflammation with delayed wound resolution. Our study demonstrates that prior systemic inflammation amplifies STING-mediated inflammatory responses and skin disease.
Collapse
Affiliation(s)
- Marcelina Pyclik
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Justyna Durslewicz
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Joanna A. Papinska
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Umesh S. Deshmukh
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Harini Bagavant
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
255
|
Marcos-Jubilar M, Lecumberri R, Páramo JA. Immunothrombosis: Molecular Aspects and New Therapeutic Perspectives. J Clin Med 2023; 12:1399. [PMID: 36835934 PMCID: PMC9958829 DOI: 10.3390/jcm12041399] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Thromboinflammation or immunothrombosis is a concept that explains the existing link between coagulation and inflammatory response present in many situations, such as sepsis, venous thromboembolism, or COVID-19 associated coagulopathy. The purpose of this review is to provide an overview of the current data regarding the mechanisms involved in immunothrombosis in order to understand the new therapeutic strategies focused in reducing thrombotic risk by controlling the inflammation.
Collapse
Affiliation(s)
- María Marcos-Jubilar
- Hematology and Hemotherapy Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ramón Lecumberri
- Hematology and Hemotherapy Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER-CV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José A. Páramo
- Hematology and Hemotherapy Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
256
|
Wen Z, He X, Wang J, Wang H, Li T, Wen S, Ren Z, Cai N, Yang J, Li M, Ai H, Lu Y, Zhu Y, Shi G, Chen Y. Hyperlipidemia induces proinflammatory responses by activating STING pathway through IRE1α-XBP1 in retinal endothelial cells. J Nutr Biochem 2023; 112:109213. [PMID: 36370931 DOI: 10.1016/j.jnutbio.2022.109213] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022]
Abstract
Diabetic retinopathy (DR) is one of the most prevalent microvascular complications caused by diabetes mellitus. Previous studies demonstrate that microvascular endothelial inflammation caused by chronic hyperglycemia and hyperlipidemia plays a key role in the pathogenesis of DR. However, the detailed mechanisms on how endothelial inflammation contributes to DR are not fully understood. The STING pathway is an important innate immune signaling pathway. Although STING has been implicated in multiple autoimmune and metabolic diseases, it is not clear whether STING is involved in the pathogenesis of DR. Thus, re-analysis of the public single cell RNA sequencing (sc-RNAseq) data demonstrated that STING was highly expressed in mouse retinal vessels. Moreover, our results demonstrated that STING and p-TBK1 protein levels in retinal endothelial cells are significantly increased in mice fed with high fat diet compared with chow diet. In vitro, palmitic acid treatment on HRVECs induced mitochondrial DNA leakage into the cytosol, and augmented p-TBK1 protein and IFN-β mRNA levels. As STING is localized to the ER, we analyzed the relation between STING activation and ER stress. In HRVECs, STING pathway was shown to be activated under chemical-induced ER stress, but attenuated when IRE1α was abolished by genetic deletion or pharmacological inhibition. Taken together, our findings revealed that STING signaling plays an important role in mediating lipotoxicity-induced endothelial inflammatory and injury, and IRE1α-XBP1 signaling potentiated STING signaling. Thus, targeting the IRE1α or STING pathways to alleviate endothelial inflammation provides candidate therapeutic target for treating DR as well as other microvascular complications.
Collapse
Affiliation(s)
- Zheyao Wen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Multidisciplinary Team for Obesity, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Heting Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siying Wen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhitao Ren
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nan Cai
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jifeng Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mei Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Multidisciplinary Team for Obesity, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Heying Ai
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Lu
- Multidisciplinary Team for Obesity, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanhua Zhu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Multidisciplinary Team for Obesity, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Multidisciplinary Team for Obesity, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yanming Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Multidisciplinary Team for Obesity, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
257
|
Nayir Buyuksahin H, Basaran O, Balık Z, Bilginer Y, Ozen S, Dogru D. Interstitial lung disease in autoinflammatory disease in childhood: A systematic review of the literature. Pediatr Pulmonol 2023; 58:367-373. [PMID: 36314652 DOI: 10.1002/ppul.26220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND/OBJECTIVES The lung is one of the target organs in the systemic involvement of autoinflammatory disease (AID), and interstitial lung disease (ILD) is the primary phenotype of lung involvement in AID. In this review, we aimed to conduct a systematic review of the available literature to highlight ILD in AID. METHODS We conducted a systematic literature search in PubMed/MEDLINE and Scopus from the inception of the databases to January 2022. References were first screened by title and then by abstract by two authors. Eighteen original papers were selected for full-text review. RESULTS During the literature search, we identified 18 relevant articles describing 52 cases of AID and ILD. Of those, 44 patients had stimulator of interferon genes-associated vasculopathy with onset in infancy (SAVI), six had coatomer protein complex (COPA) syndrome, one had haploinsufficiency of A20, and one had mevalonate kinase deficiency. Pulmonary fibrosis, cyst formation, and ground glass areas were the most common findings in chest tomography of patients with COPA syndrome and SAVI. Janus kinase inhibitors were used to treat most of the patients with SAVI, which stabilized ILD. CONCLUSIONS ILD should be considered carefully in children with AID, especially those with interferonopathy.
Collapse
Affiliation(s)
- Halime Nayir Buyuksahin
- Department of Pediatrics, Division of Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ozge Basaran
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, and Hacettepe University Vasculitis Research Center, Ankara, Turkey
| | - Zeynep Balık
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, and Hacettepe University Vasculitis Research Center, Ankara, Turkey
| | - Yelda Bilginer
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, and Hacettepe University Vasculitis Research Center, Ankara, Turkey
| | - Seza Ozen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, and Hacettepe University Vasculitis Research Center, Ankara, Turkey
| | - Deniz Dogru
- Department of Pediatrics, Division of Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
258
|
Gao KM, Marshak-Rothstein A, Fitzgerald KA. Type-1 interferon-dependent and -independent mechanisms in cyclic GMP-AMP synthase-stimulator of interferon genes-driven auto-inflammation. Curr Opin Immunol 2023; 80:102280. [PMID: 36638547 DOI: 10.1016/j.coi.2022.102280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
The cyclic cyclic gaunosine monophosphate adenosine monophosphate (GMP-AMP) synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic dsDNA and initiates immune responses against pathogens. It is also implicated in several auto-inflammatory diseases known as monogenic interferonopathies, specifically Three prime repair exonuclease 1 (Trex1) loss-of-function (LOF), Dnase2 LOF, and stimulator of interferon genes-associated-vasculopathy-with-onset-in-infancy (SAVI). Although monogenic interferonopathies have diverse clinical presentations, they are distinguished by the elevation of type-1 interferons (T1IFNs). However, animal models have demonstrated that T1IFNs contribute to only some disease outcomes and that cGAS-STING activation also promotes T1IFN-independent pathology. For example, while T1IFNs drive the immunopathology associated with Trex1 LOF, disease in Dnase2 LOF is partially independent of T1IFNs, while disease in SAVI appears to occur entirely independent of T1IFNs. Additionally, while the cGAS-STING pathway is well characterized in hematopoietic cells, these animal models point to important roles for STING activity in nonhematopoietic cells in disease. Together, these models illustrate the complex role that cGAS-STING-driven responses play in the pathogenesis of inflammatory diseases across tissues.
Collapse
Affiliation(s)
- Kevin Mj Gao
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ann Marshak-Rothstein
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
259
|
Jeltema D, Abbott K, Yan N. STING trafficking as a new dimension of immune signaling. J Exp Med 2023; 220:213837. [PMID: 36705629 PMCID: PMC9930166 DOI: 10.1084/jem.20220990] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
The cGAS-STING pathway is an evolutionarily conserved immune signaling pathway critical for microbial defense. Unlike other innate immune pathways that largely rely on stationary cascades of signaling events, STING is highly mobile in the cell. STING is activated on the ER, but only signals after it arrives on the Golgi, and then it is quickly degraded by the lysosome. Each step of STING trafficking through the secretory pathway is regulated by host factors. Homeostatic STING trafficking via COPI-, COPII-, and clathrin-coated vesicles is important for maintaining baseline tissue and cellular immunity. Aberrant vesicular trafficking or lysosomal dysfunction produces an immune signal through STING, which often leads to tissue pathology in mice and humans. Many trafficking-mediated diseases of STING signaling appear to impact the central nervous system, leading to neurodegeneration. Therefore, STING trafficking introduces a new dimension of immune signaling that likely has broad implications in human disease.
Collapse
Affiliation(s)
- Devon Jeltema
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kennady Abbott
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA,Correspondence to Nan Yan:
| |
Collapse
|
260
|
Gao Z, Gao Z, Zhang H, Hou S, Zhou Y, Liu X. Targeting STING: From antiviral immunity to treat osteoporosis. Front Immunol 2023; 13:1095577. [PMID: 36741390 PMCID: PMC9891206 DOI: 10.3389/fimmu.2022.1095577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
The cGAS-STING signaling pathway can trigger innate immune responses by detecting dsDNA from outside or within the host. In addition, the cGAS-STING signaling pathway has emerged as a critical mediator of the inflammatory response and a new target for inflammatory diseases. STING activation leads to dimerization and translocation to the endoplasmic reticulum Golgi intermediate compartment or Golgi apparatus catalyzed by TBK1, triggers the production of IRF3 and NF-κB and translocates to the nucleus to induce a subsequent interferon response and pro-inflammatory factor production. Osteoporosis is a degenerative bone metabolic disease accompanied by chronic sterile inflammation. Activating the STING/IFN-β signaling pathway can reduce bone resorption by inhibiting osteoclast differentiation. Conversely, activation of STING/NF-κB leads to the formation of osteoporosis by increasing bone resorption and decreasing bone formation. In addition, activation of STING inhibits the generation of type H vessels with the capacity to osteogenesis, thereby inhibiting bone formation. Here, we outline the mechanism of action of STING and its downstream in osteoporosis and discuss the role of targeting STING in the treatment of osteoporosis, thus providing new ideas for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongguo Gao
- Department of Medical Laboratory Technology, School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hao Zhang
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shoubo Hou
- Department of General Practice, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Yunhua Zhou, ; Xiangjie Liu,
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Yunhua Zhou, ; Xiangjie Liu,
| |
Collapse
|
261
|
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023; 44:183-218. [PMID: 36579404 PMCID: PMC9841179 DOI: 10.24272/j.issn.2095-8137.2022.464] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
262
|
Ladoux C, Pasquet M, Crow YJ, Frémond ML, Roditis L. STING-Associated Vasculopathy with Onset in infancy (SAVI) Presenting as Massive Intra Alveolar Hemorrhage. J Clin Immunol 2023; 43:699-702. [PMID: 36648577 DOI: 10.1007/s10875-023-01431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023]
Affiliation(s)
- Clara Ladoux
- Medical School, Pediatric Residency, University of Toulouse, Toulouse, France
| | - Marlène Pasquet
- Department of Pediatric Hematology and Immunology, Children's Hospital, University Hospital, Toulouse, France
| | - Yanick J Crow
- Inserm UMR 1163, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Université Paris Cité, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marie Louise Frémond
- Inserm UMR 1163, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Université Paris Cité, Paris, France
- Pediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, AP-HP.Centre - Université Paris Cité, Paris, France
| | - Léa Roditis
- Department of Pediatric Pulmonology and Allergology, Children's Hospital, University Hospital, Toulouse, France.
| |
Collapse
|
263
|
STING controls T cell memory fitness during infection through T cell-intrinsic and IDO-dependent mechanisms. Proc Natl Acad Sci U S A 2023; 120:e2205049120. [PMID: 36634134 PMCID: PMC9934307 DOI: 10.1073/pnas.2205049120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stimulator of interferon genes (STING) signaling has been extensively studied in inflammatory diseases and cancer, while its role in T cell responses to infection is unclear. Using Listeria monocytogenes strains engineered to induce different levels of c-di-AMP, we found that high STING signals impaired T cell memory upon infection via increased Bim levels and apoptosis. Unexpectedly, reduction of TCR signal strength or T cell-STING expression decreased Bim expression, T cell apoptosis, and recovered T cell memory. We found that TCR signal intensity coupled STING signal strength to the unfolded protein response (UPR) and T cell survival. Under strong STING signaling, Indoleamine-pyrrole 2,3-dioxygenase (IDO) inhibition also reduced apoptosis and led to a recovery of T cell memory in STING sufficient CD8 T cells. Thus, STING signaling regulates CD8 T cell memory fitness through both cell-intrinsic and extrinsic mechanisms. These studies provide insight into how IDO and STING therapies could improve long-term T cell protective immunity.
Collapse
|
264
|
Jneid B, Bochnakian A, Hoffmann C, Delisle F, Djacoto E, Sirven P, Denizeau J, Sedlik C, Gerber-Ferder Y, Fiore F, Akyol R, Brousse C, Kramer R, Walters I, Carlioz S, Salmon H, Malissen B, Dalod M, Piaggio E, Manel N. Selective STING stimulation in dendritic cells primes antitumor T cell responses. Sci Immunol 2023; 8:eabn6612. [PMID: 36638189 DOI: 10.1126/sciimmunol.abn6612] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
T cells that recognize tumor antigens are crucial for mounting antitumor immune responses. Induction of antitumor T cells in immunogenic tumors depends on STING, the intracellular innate immune receptor for cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) and related cyclic dinucleotides (CDNs). However, the optimal way to leverage STING activation in nonimmunogenic tumors is still unclear. Here, we show that cGAMP delivery by intratumoral injection of virus-like particles (cGAMP-VLP) led to differentiation of circulating tumor-specific T cells, decreased tumor regulatory T cells (Tregs), and antitumoral responses that synergized with PD1 blockade. By contrast, intratumoral injection of the synthetic CDN ADU-S100 led to tumor necrosis and systemic T cell activation but simultaneously depleted immune cells from injected tumors and induced minimal priming of circulating tumor-specific T cells. The antitumor effects of cGAMP-VLP required type 1 conventional dendritic cells (cDC1), whereas ADU-S100 eliminated cDC1 from injected tumors. cGAMP-VLP preferentially targeted STING in dendritic cells at a 1000-fold smaller dose than ADU-S100. Subcutaneous administration of cGAMP-VLP showed synergy when combined with PD1 blockade or a tumor Treg-depleting antibody to elicit systemic tumor-specific T cells and antitumor activity, leading to complete and durable tumor eradication in the case of tumor Treg depletion. These findings show that cell targeting of STING stimulation shapes the antitumor T cell response and identify a therapeutic strategy to enhance T cell-targeted immunotherapy.
Collapse
Affiliation(s)
- Bakhos Jneid
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Aurore Bochnakian
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Stimunity, Paris, France
| | - Caroline Hoffmann
- Institut Curie, INSERM U932 Immunity and Cancer, Department of Surgical Oncology, PSL University, Paris, France
| | - Fabien Delisle
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Emeline Djacoto
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Philémon Sirven
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Jordan Denizeau
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Christine Sedlik
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | - Frédéric Fiore
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Ramazan Akyol
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Carine Brousse
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | | | | | | | - Hélène Salmon
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| |
Collapse
|
265
|
Zhu Z, Zhou X, Du H, Cloer EW, Zhang J, Mei L, Wang Y, Tan X, Hepperla AJ, Simon JM, Cook JG, Major MB, Dotti G, Liu P. STING Suppresses Mitochondrial VDAC2 to Govern RCC Growth Independent of Innate Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203718. [PMID: 36445063 PMCID: PMC9875608 DOI: 10.1002/advs.202203718] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/10/2022] [Indexed: 05/02/2023]
Abstract
STING is an innate immune sensor for immune surveillance of viral/bacterial infection and maintenance of an immune-friendly microenvironment to prevent tumorigenesis. However, if and how STING exerts innate immunity-independent function remains elusive. Here, the authors report that STING expression is increased in renal cell carcinoma (RCC) patients and governs tumor growth through non-canonical innate immune signaling involving mitochondrial ROS maintenance and calcium homeostasis. Mitochondrial voltage-dependent anion channel VDAC2 is identified as a new STING binding partner. STING depletion potentiates VDAC2/GRP75-mediated MERC (mitochondria-ER contact) formation to increase mitochondrial ROS/calcium levels, impairs mitochondria function, and suppresses mTORC1/S6K signaling leading to RCC growth retardation. STING interaction with VDAC2 occurs through STING-C88/C91 palmitoylation and inhibiting STING palmitoyl-transferases ZDHHCs by 2-BP significantly impedes RCC cell growth alone or in combination with sorafenib. Together, these studies reveal an innate immunity-independent function of STING in regulating mitochondrial function and growth in RCC, providing a rationale to target the STING/VDAC2 interaction in treating RCC.
Collapse
Affiliation(s)
- Zhichuan Zhu
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Xin Zhou
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Hongwei Du
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Erica W. Cloer
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jiaming Zhang
- Department of Oral MedicineInfection and ImmunityHarvard School of Dental MedicineBostonMA02115USA
| | - Liu Mei
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Ying Wang
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Xianming Tan
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of BiostatisticsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Austin J. Hepperla
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Carolina Institute for Developmental DisabilitiesThe University of North Carolina at Chapel HillChapel HillNC27599USA
- UNC Neuroscience CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jeremy M. Simon
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Carolina Institute for Developmental DisabilitiesThe University of North Carolina at Chapel HillChapel HillNC27599USA
- UNC Neuroscience CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of GeneticsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jeanette Gowen Cook
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Michael B. Major
- Department of Cell Biology and PhysiologyDepartment of OtolaryngologyWashington University in St. LouisSt. LouisMO63130USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
266
|
Bin Khathlan Y, Almutairi S, Albadr FB, Alangari AA, Alsultan A. Case report: Durable response to ruxolitinib in a child with TREX1-related disorder. Front Pediatr 2023; 11:1178919. [PMID: 37187582 PMCID: PMC10175768 DOI: 10.3389/fped.2023.1178919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Background JAK inhibitors are useful in treating interferonopathies, presumably because they downregulate the JAK/STAT signaling. There are limited studies about the safety and effectiveness of using JAK inhibitors in children with TREX1-related disorders. Case presentation We report an 8-year-old female who presented at five years of age with features suggestive of hemophagocytic lymphohistiocytosis (HLH)-like disorder. The infectious disease workup was negative. Neurological assessment was normal. A brain CT scan was performed because of headache. It showed a faint subcortical calcification at right frontal lobe and almost symmetrical calcification within the basal ganglia. Brain MRI showed bilateral symmetrical globus pallidus, high T1 signal intensities, and a few scattered nonspecific FLAIR hyperintensities in subcortical and deep white matter. IVIG as an immune modulating agent was administered initially which led to the resolution of fever, improvement of blood count parameters, inflammatory markers, and normalization of liver enzymes. The child remained afebrile with no significant events for several months, then had disease flare up. The patient was started on pulse methylprednisolone 30 mg/kg for three days, then continued on 2 mg/kg. Whole exome sequencing revealed a novel heterozygous missense TREX1 mutation NM_016381.3:c.223G > A p.(Glu75Lys). The child was started on ruxolitinib, 5 mg orally twice daily. The child has prolonged, durable remission after initiating ruxolitinib with no adverse effects. Steroids were tapered off and the patient is no longer on IVIG. The patient is still on ruxolitinib for more than two years. Conclusion This case highlights the potential role of ruxolitinib in the treatment of TREX1-related disorders. A longer follow-up period is required to evaluate the long-term outcome.
Collapse
Affiliation(s)
- Yasir Bin Khathlan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sajdi Almutairi
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad B. Albadr
- Department of Radiology and Medical Imaging, King Saud University Medical City and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alangari
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alsultan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Oncology Center, King Saud University Medical City, Riyadh, Saudi Arabia
- Correspondence: Abdulrahman Alsultan
| |
Collapse
|
267
|
[Interstitial lung diseases in children of genetic origin]. Rev Mal Respir 2023; 40:38-46. [PMID: 36564324 DOI: 10.1016/j.rmr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Interstitial lung diseases in children of genetic origin. Interstitial lung disease (ILD) in children (chILD) encompasses a heterogeneous group of rare respiratory disorders, most of which are chronic and severe. In more and more of these cases, a genetic cause has been identified. As of now, the main mutations have been localized in the genes encoding the surfactant proteins (SP)-C (SFTPC), SP-B (SFTPB), their transporter ATP-binding cassette, family 1, member 3 (ABCA3), transcription factor NK2 homeobox 1 (NKX2-1) and, more rarely, SP-A1 (SFTPA1) or SP-A2 (SFTPA2). Pediatric pulmonary alveolar proteinosis (PAP) is associated with mutations in CSF2RA, CSF2RB, and MARS; more recently, mutations in STING1 and COPA have been associated with specific auto-inflammatory disorders including ILD manifestations. The relationships between the molecular abnormalities and the phenotypic expressions generally remain poorly understood. In the coming years, it is expected that newly identified molecular defects will help to more accurately predict disease courses and to produce individualized targeted therapies.
Collapse
|
268
|
Zheng H, Wu L, Xiao Q, Meng X, Hafiz A, Yan Q, Lu R, Cao J. Epigenetically suppressed tumor cell intrinsic STING promotes tumor immune escape. Biomed Pharmacother 2023; 157:114033. [PMID: 36436495 PMCID: PMC9826630 DOI: 10.1016/j.biopha.2022.114033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022] Open
Abstract
DNA sensing through the cGAS-STING pathway plays an important role in cancer immunosurveillance. Pharmaceutical activation of STING in the tumor environment is considered an attractive approach to induce anti-tumor immunity, but had limited efficacy in the clinic. Several studies have found that STING is epigenetically silenced in many tumors, including colon cancer. This suggests that STING silencing in tumor cells contributes to immune escape and may limit the application of STING agonists. We previously found that inhibition of the KDM5 family histone demethylases restored STING expression in human breast cancer cells and activated the cGAS-STING pathway. In this study, we used MC38 and CT26 syngeneic mouse colorectal cancer models to show that loss of STING in tumor cells accelerates tumor growth. KDM5 inhibitors activate STING expression in mouse colorectal cancer cells and suppress colon cancer growth in immune competent mice in a STING-dependent manner. This study highlights KDM5 inhibitors as novel immune modulators in cancer therapies.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Lizhen Wu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Qian Xiao
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Xin Meng
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Alex Hafiz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
269
|
Gao X, Michel K, Griese M. Interstitial Lung Disease in Immunocompromised Children. Diagnostics (Basel) 2022; 13:diagnostics13010064. [PMID: 36611354 PMCID: PMC9818431 DOI: 10.3390/diagnostics13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The range of pulmonary complications beyond infections in pediatric immunocompromised patients is broad but not well characterized. Our goal was to assess the spectrum of disorders with a focus on interstitial lung diseases (ILD) in immunodeficient patients. METHODS We reviewed 217 immunocompromised children attending a specialized pneumology service during a period of 23 years. We assigned molecular diagnoses where possible and categorized the underlying immunological conditions into inborn errors of immunity or secondary immunodeficiencies according to the IUIS and the pulmonary conditions according to the chILD-EU classification system. RESULTS Among a wide array of conditions, opportunistic and chronic infections were the most frequent. ILD had a 40% prevalence. Of these children, 89% had a CT available, and 66% had a lung biopsy, which supported the diagnosis of ILD in 95% of cases. Histology was often lymphocyte predominant with the histo-pattern of granulomatous and lymphocytic interstitial lung disease (GLILD), follicular bronchiolitis or lymphocytic interstitial pneumonitis. Of interest, DIP, PAP and NSIP were also diagnosed. ILD was detected in several immunological disorders not yet associated with ILD. CONCLUSIONS Specialized pneumological expertise is necessary to manage the full spectrum of respiratory complications in pediatric immunocompromised patients.
Collapse
Affiliation(s)
| | | | - Matthias Griese
- Correspondence: ; Tel.: +49-89-4400-57870; Fax: +49-89-4400-57872
| |
Collapse
|
270
|
Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduct Target Ther 2022; 7:394. [PMID: 36550103 PMCID: PMC9780328 DOI: 10.1038/s41392-022-01252-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of Stimulator of Interferon Genes (STING) as an important pivot for cytosolic DNA sensation and interferon (IFN) induction, intensive efforts have been endeavored to clarify the molecular mechanism of its activation, its physiological function as a ubiquitously expressed protein, and to explore its potential as a therapeutic target in a wide range of immune-related diseases. With its orthodox ligand 2'3'-cyclic GMP-AMP (2'3'-cGAMP) and the upstream sensor 2'3'-cGAMP synthase (cGAS) to be found, STING acquires its central functionality in the best-studied signaling cascade, namely the cGAS-STING-IFN pathway. However, recently updated research through structural research, genetic screening, and biochemical assay greatly extends the current knowledge of STING biology. A second ligand pocket was recently discovered in the transmembrane domain for a synthetic agonist. On its downstream outputs, accumulating studies sketch primordial and multifaceted roles of STING beyond its cytokine-inducing function, such as autophagy, cell death, metabolic modulation, endoplasmic reticulum (ER) stress, and RNA virus restriction. Furthermore, with the expansion of the STING interactome, the details of STING trafficking also get clearer. After retrospecting the brief history of viral interference and the milestone events since the discovery of STING, we present a vivid panorama of STING biology taking into account the details of the biochemical assay and structural information, especially its versatile outputs and functions beyond IFN induction. We also summarize the roles of STING in the pathogenesis of various diseases and highlight the development of small-molecular compounds targeting STING for disease treatment in combination with the latest research. Finally, we discuss the open questions imperative to answer.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, 430022, Wuhan, China.
- Clinical Research Center of Cancer Immunotherapy, 430022, Hubei, Wuhan, China.
| |
Collapse
|
271
|
Takahama S, Ishige K, Nogimori T, Yasutomi Y, Appay V, Yamamoto T. Model for predicting age-dependent safety and immunomodulatory effects of STING ligands in non-human primates. Mol Ther Methods Clin Dev 2022; 28:99-115. [PMID: 36620070 PMCID: PMC9813482 DOI: 10.1016/j.omtm.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Stimulator of interferon genes (STING) is a cytoplasmic dinucleotide sensor used as an immunomodulatory agent for cancer treatment. The efficacy of the STING ligand (STING-L) against various tumors has been evaluated in mouse models; however, its safety and efficacy in non-human primates have not been reported. We examined the effects of escalating doses of cyclic-di-adenosine monophosphate (c-di-AMP) or cyclic [G (3',5')pA (3',5'p] (3'-3'-cGAMP) administered intramuscularly or intravenously to cynomolgus macaques. Both ligands induced transient local and systemic inflammatory responses and systemic immunomodulatory responses, including the upregulation of interferon-α (IFN-α) and IFN-γ expression and the activation of multiple immunocompetent cell subsets. Better immunological responses were observed in animals that received c-di-AMP compared with those that received 3'-3'-cGAMP. Multi-parameter analysis using a dataset obtained before administering the ligands predicted the efficacy outcome partially. Importantly, the efficacy of these ligands was reduced in older macaques. We propose that 0.5 mg/kg c-di-AMP via intramuscular administration should be the optimal starting point for clinical studies. Our study is the first to demonstrate the age-dependent safety and efficacy of STING-L in non-human primates and supports the potential of STING-L use as a direct immunomodulator in vivo.
Collapse
Affiliation(s)
- Shokichi Takahama
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Kazuya Ishige
- Biochemicals Division, Yamasa Corporation, Chiba 288-0056, Japan
| | - Takuto Nogimori
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan
| | - Victor Appay
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan,Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan,Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan,Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan,Laboratory of Translational Cancer Immunology and Biology, Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka 541-8567, Japan,Corresponding author: Takuya Yamamoto, Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan.
| |
Collapse
|
272
|
Salah E. TEN mimics: Classification and practical approach to toxic epidermal necrolysis-like dermatoses. Indian J Dermatol Venereol Leprol 2022; 89:337-346. [PMID: 36688885 DOI: 10.25259/ijdvl_244_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
Toxic epidermal necrolysis (TEN) is an acute life-threatening dermatologic emergency. However, many dermatoses can present with a TEN-like eruption. Those "TEN-mimics" are a true diagnostic challenge and an alarming differential diagnosis to such a serious condition. Herein, we will expose and classify the landscape of TEN-mimics. Also, the key differentiating clinical and/or laboratory points will be highlighted to help an accurate diagnosis of either a TEN or a TEN-like presentation.
Collapse
Affiliation(s)
- Eman Salah
- Department of Dermatology, Venereology & Andrology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
273
|
Structural insights into a shared mechanism of human STING activation by a potent agonist and an autoimmune disease-associated mutation. Cell Discov 2022; 8:133. [PMID: 36513640 DOI: 10.1038/s41421-022-00481-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022] Open
Abstract
Stimulator of interferon gene (STING) is increasingly exploited for the potential in cancer immunotherapy, yet its mechanism of activation remains not fully understood. Herein, we designed a novel STING agonist, designated as HB3089 that exhibits robust and durable anti-tumor activity in tumor models across various cancer types. Cryo-EM analysis reveals that HB3089-bound human STING has structural changes similar to that of the STING mutant V147L, a constitutively activated mutant identified in patients with STING-associated vasculopathy with onset in infancy (SAVI). Both structures highlight the conformational changes of the transmembrane domain (TMD), but without the 180°-rotation of the ligand binding domain (LBD) previously shown to be required for STING activation. Further structure-based functional analysis confirmed a new STING activation mode shared by the agonist and the SAVI-related mutation, in which the connector linking the LBD and the TMD senses the activation signal and controls the conformational changes of the LBD and the TMD for STING activation. Together, our findings lead to a new working model for STING activation and open a new avenue for the rationale design of STING-targeted therapies either for cancer or autoimmune disorders.
Collapse
|
274
|
Lee PY, Batu ED, Ozen S. Editorial: DADA2 and other monogenic vasculitides. Front Immunol 2022; 13:1108853. [PMID: 36569902 PMCID: PMC9773834 DOI: 10.3389/fimmu.2022.1108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Pui Y. Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States,*Correspondence: Pui Y. Lee,
| | - Ezgi D. Batu
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Türkiye
| | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
275
|
Liu Y, Li Y, Xue L, Xiao J, Li P, Xue W, Li C, Guo H, Chen Y. The effect of the cyclic GMP-AMP synthase-stimulator of interferon genes signaling pathway on organ inflammatory injury and fibrosis. Front Pharmacol 2022; 13:1033982. [PMID: 36545321 PMCID: PMC9762484 DOI: 10.3389/fphar.2022.1033982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes signal transduction pathway is critical in innate immunity, infection, and inflammation. In response to pathogenic microbial infections and other conditions, cyclic GMP-AMP synthase (cGAS) recognizes abnormal DNA and initiates a downstream type I interferon response. This paper reviews the pathogenic mechanisms of stimulator of interferon genes (STING) in different organs, including changes in fibrosis-related biomarkers, intending to systematically investigate the effect of the cyclic GMP-AMP synthase-stimulator of interferon genes signal transduction in inflammation and fibrosis processes. The effects of stimulator of interferon genes in related auto-inflammatory and neurodegenerative diseases are described in this article, in addition to the application of stimulator of interferon genes-related drugs in treating fibrosis.
Collapse
Affiliation(s)
- Yuliang Liu
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yihui Li
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Xue
- The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Xiao
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Pengyong Li
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wanlin Xue
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chen Li
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haipeng Guo
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,*Correspondence: Haipeng Guo, ; Yuguo Chen,
| | - Yuguo Chen
- The Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,*Correspondence: Haipeng Guo, ; Yuguo Chen,
| |
Collapse
|
276
|
Shen D, Fan X, Zhou Q, Xu X, Lu M. Use of Tofacitinib for infant-onset STING-associated vasculopathy: A case report from China. Medicine (Baltimore) 2022; 101:e31832. [PMID: 36482559 PMCID: PMC9726360 DOI: 10.1097/md.0000000000031832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Stimulator of interferon gene (STING)-associated vasculopathy with onset in infancy (SAVI), caused by gain-of-function mutations in human transmembrane protein 173 (TMEM173), is characterized by widespread chronic inflammation primarily affecting the skin and lungs. Although SAVI is an inflammatory disease, typical anti-inflammatory agents have limited or no effect. METHODS AND RESULTS A 1-year-old boy presented with recurrent facial rashes since he was 8 months. Moreover, he suffered from recurrent oral ulcers, chronic cough, and failure to thrive. Laboratory parameters showed elevated erythrocyte sedimentation rate (ESR) and immunoglobulin levels. Chest high-resolution computed tomography (HRCT) showed interstitial lung disease (ILD). Whole-exome sequencing revealed a heterozygous mutation in the TMEM173 gene (c.463G > A, p.V155M). Ultimately, the patient was diagnosed with SAVI. Tofacitinib was initiated at the age of 19 months, resulting in the alleviation of facial rashes and improvement of ILD within 3 months. CONCLUSION SAVI is a difficult-to-treat type I interferonopathy. We hope that JAKi treatment will prove valuable for SAVI patients.
Collapse
Affiliation(s)
- Danping Shen
- Department of Rheumatology Immunology and Allergy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaorui Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuefeng Xu
- Department of Rheumatology Immunology and Allergy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Meiping Lu
- Department of Rheumatology Immunology and Allergy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- * Correspondence: Meiping Lu, Department of Rheumatology Immunology and Allergy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 57, Zhugan Lane, Hangzhou 310003, China (e-mail: )
| |
Collapse
|
277
|
The cGAS-STING pathway and cancer. NATURE CANCER 2022; 3:1452-1463. [PMID: 36510011 DOI: 10.1038/s43018-022-00468-w] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has emerged as a critical innate immune pathway that, following engagement by DNA, promotes distinct immune effector responses that can impact virtually all aspects of tumorigenesis, from malignant cell transformation to metastasis. Here we address how natural tumor-associated processes and traditional cancer therapies are shaped by cGAS-STING signaling, and how this contributes to beneficial or detrimental outcomes of cancer. We consider current efforts to target the cGAS-STING axis in tumors and highlight new frontiers in cGAS-STING biology to inspire thinking about their connection to cancer.
Collapse
|
278
|
Mansouri S, Gogoi H, Patel S, Katikaneni DS, Singh A, Aybar-Torres A, de Lartigue G, Jin L. MPYS Modulates Fatty Acid Metabolism and Immune Tolerance at Homeostasis Independent of Type I IFNs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2114-2132. [PMID: 36261171 PMCID: PMC9679991 DOI: 10.4049/jimmunol.2200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023]
Abstract
MPYS/STING (stimulator of IFN genes) senses cyclic dinucleotides (CDNs), generates type I IFNs, and plays a critical role in infection, inflammation, and cancer. In this study, analyzing genotype and haplotype data from the 1000 Genomes Project, we found that the R71H-G230A-R293Q (HAQ) MPYS allele frequency increased 57-fold in East Asians compared with sub-Saharan Africans. Meanwhile, the G230A-R293Q (AQ) allele frequency decreased by 98% in East Asians compared with sub-Saharan Africans. We propose that the HAQ and AQ alleles underwent a natural selection during the out-of-Africa migration. We used mouse models of HAQ and AQ to investigate the underlying mechanism. We found that the mice carrying the AQ allele, which disappeared in East Asians, had normal CDN-type I IFN responses. Adult AQ mice, however, had less fat mass than did HAQ or wild-type mice on a chow diet. AQ epididymal adipose tissue had increased regulatory T cells and M2 macrophages with protein expression associated with enhanced fatty acid oxidation. Conditional knockout mice and adoptive cell transfer indicate a macrophage and regulatory T cell-intrinsic role of MPYS in fatty acid metabolism. Mechanistically, AQ/IFNAR1-/- mice had a similar lean phenotype as for the AQ mice. MPYS intrinsic tryptophan fluorescence revealed that the R71H change increased MPYS hydrophilicity. Lastly, we found that the second transmembrane (TM) and the TM2-TM3 linker region of MPYS interact with activated fatty acid, fatty acyl-CoA. In summary, studying the evolution of the human MPYS gene revealed an MPYS function in modulating fatty acid metabolism that may be critical during the out-of-Africa migration.
Collapse
Affiliation(s)
- Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Seema Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Divya S. Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL; and
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL
| | - Alexandra Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL; and
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
279
|
Daoud F, Arévalo Martínez M, Holst J, Holmberg J, Albinsson S, Swärd K. Role of smooth muscle YAP and TAZ in protection against phenotypic modulation, inflammation, and aneurysm development. Biochem Pharmacol 2022; 206:115307. [DOI: 10.1016/j.bcp.2022.115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
|
280
|
Song J, Liu Y, Guo Y, Qu Z, Liu P, Li F, Yang C, Fan F, Chen Z. TMEM173 rs7447927 genetic polymorphism and susceptibility to severe enterovirus 71 infection in Chinese children. Immun Inflamm Dis 2022; 10:e742. [PMID: 36444630 PMCID: PMC9695089 DOI: 10.1002/iid3.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION This study was designed to explore the association between the TMEM173 polymorphism (rs7447927) and the severity of enterovirus 71 (EV71) infection among Chinese children. METHODS The TMEM173 polymorphism was identified in EV71-infected patients (n = 497) and healthy controls (n = 535) using the improved multiplex ligation detection reaction (iMLDR). The interferon-α (IFN-α) serum levels were detected using enzyme linked immunosorbent assay (ELISA). RESULTS The frequencies of the GG genotype and G allele of TMEM173 rs7447927 in the mild EV71 infection and severe EV71 infection groups were markedly higher than those in the control group. The GG genotype and G allele frequencies in severely infected EV71 patients were significantly higher than those in mildly infected EV71 patients. Severely infected EV71 patients with the GG genotype had higher white blood cell counts (WBC), and C-reactive proteins (CRP), and blood glucose (BG) levels, longer fever duration, higher vomiting frequency, spirit changes, and electroencephalography (EEG) abnormalities. IFN-α serum concentration in severely infected patients was significantly higher than in the mildly infected group. The IFN-α concentration in the GG genotype was significantly higher compared with those in the GC and CC genotypes in severe cases. CONCLUSIONS The TMEM173 rs7447927 polymorphism was associated with EV71 infection susceptibility and severity. The G allele and GG genotype are susceptibility factors in the development of severe EV71 infection in Chinese children.
Collapse
Affiliation(s)
- Jie Song
- Department of PediatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Yedan Liu
- Department of PediatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Ya Guo
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Zhenghai Qu
- Department of PediatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Peipei Liu
- Department of PediatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Fei Li
- Department of PediatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Chengqing Yang
- Department of PediatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Fan Fan
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Zongbo Chen
- Department of PediatricsThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| |
Collapse
|
281
|
Human induced pluripotent stem cells generated from STING-associated vasculopathy with onset in infancy (SAVI) patients with a heterozygous mutation in the STING gene. Stem Cell Res 2022; 65:102974. [PMID: 36399927 PMCID: PMC9799028 DOI: 10.1016/j.scr.2022.102974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
Abstract
We have successfully created induced pluripotent stem cells (iPSC) from patients carrying a heterozygous mutation in the gene encoding STING. The gain-of-function mutation leads to constitutive activation of STING which leads to the development of the disease STING-associated vasculopathy with onset in infancy (SAVI). The iPSC lines derived from the SAVI patitents are shown to be morphologically and phenotypically normal and have the potential to self renew and differentiate into the three germ layers. These iPSC provide a powerful tools to investigate the role of STING in the regulation of immune responses and vascular renegeration.
Collapse
|
282
|
Vila IK, Guha S, Kalucka J, Olagnier D, Laguette N. Alternative pathways driven by STING: From innate immunity to lipid metabolism. Cytokine Growth Factor Rev 2022; 68:54-68. [PMID: 36085258 DOI: 10.1016/j.cytogfr.2022.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023]
Abstract
The Stimulator of Interferon Genes (STING) is a major adaptor protein that is central to the initiation of type I interferon responses and proinflammatory signalling. STING-dependent signalling is triggered by the presence of cytosolic nucleic acids that are generated following pathogen infection or cellular stress. Beyond this central role in controlling immune responses through the production of cytokines and chemokines, recent reports have uncovered inflammation-independent STING functions. Amongst these, a rapidly growing body of evidence demonstrates a key role of STING in controlling metabolic pathways at several levels. Since immunity and metabolic homeostasis are tightly interconnected, these findings deepen our understanding of the involvement of STING in human pathologies. Here, we discuss these findings and reflect on their impact on our current understanding of how nucleic acid immunity controls homeostasis and promotes pathological outcomes.
Collapse
Affiliation(s)
- Isabelle K Vila
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France.
| | - Soumyabrata Guha
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France
| | - Joanna Kalucka
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - David Olagnier
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - Nadine Laguette
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
283
|
Mitrofanova A, Fontanella A, Tolerico M, Mallela S, Molina David J, Zuo Y, Boulina M, Kim JJ, Santos J, Ge M, Sloan A, Issa W, Gurumani M, Pressly J, Ito M, Kretzler M, Eddy S, Nelson R, Merscher S, Burke G, Fornoni A. Activation of Stimulator of IFN Genes (STING) Causes Proteinuria and Contributes to Glomerular Diseases. J Am Soc Nephrol 2022; 33:2153-2173. [PMID: 36198430 PMCID: PMC9731637 DOI: 10.1681/asn.2021101286] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/06/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The signaling molecule stimulator of IFN genes (STING) was identified as a crucial regulator of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-STING pathway, and this signaling pathway regulates inflammation and energy homeostasis under conditions of obesity, kidney fibrosis, and AKI. However, the role of STING in causing CKD, including diabetic kidney disease (DKD) and Alport syndrome, is unknown. METHODS To investigate whether STING activation contributes to the development and progression of glomerular diseases such as DKD and Alport syndrome, immortalized human and murine podocytes were differentiated for 14 days and treated with a STING-specific agonist. We used diabetic db/db mice, mice with experimental Alport syndrome, C57BL/6 mice, and STING knockout mice to assess the role of the STING signaling pathway in kidney failure. RESULTS In vitro, murine and human podocytes express all of the components of the cGAS-STING pathway. In vivo, activation of STING renders C57BL/6 mice susceptible to albuminuria and podocyte loss. STING is activated at baseline in mice with experimental DKD and Alport syndrome. STING activation occurs in the glomerular but not the tubulointerstitial compartment in association with autophagic podocyte death in Alport syndrome mice and with apoptotic podocyte death in DKD mouse models. Genetic or pharmacologic inhibition of STING protects from progression of kidney disease in mice with DKD and Alport syndrome and increases lifespan in Alport syndrome mice. CONCLUSION The activation of the STING pathway acts as a mediator of disease progression in DKD and Alport syndrome. Targeting STING may offer a therapeutic option to treat glomerular diseases of metabolic and nonmetabolic origin or prevent their development, progression, or both.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Antonio Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Matthew Tolerico
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Shamroop Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Judith Molina David
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Yiqin Zuo
- Department of Pathology, University of Miami Medical Group, Miller School of Medicine, Miami, Florida
| | - Marcia Boulina
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Javier Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Wadih Issa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Margaret Gurumani
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jeffrey Pressly
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Marie Ito
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Matthias Kretzler
- Division of Nephrology, Departments of Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Sean Eddy
- Division of Nephrology, Departments of Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Robert Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - George Burke
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
284
|
Papiris SA, Kannengiesser C, Borie R, Kolilekas L, Kallieri M, Apollonatou V, Ba I, Nathan N, Bush A, Griese M, Dieude P, Crestani B, Manali ED. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics (Basel) 2022; 12:2928. [PMID: 36552935 PMCID: PMC9777433 DOI: 10.3390/diagnostics12122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Unraveling the genetic background in a significant proportion of patients with both sporadic and familial IPF provided new insights into the pathogenic pathways of pulmonary fibrosis. AIM The aim of the present study is to overview the clinical significance of genetics in IPF. PERSPECTIVE It is fascinating to realize the so-far underestimated but dynamically increasing impact that genetics has on aspects related to the pathophysiology, accurate and early diagnosis, and treatment and prevention of this devastating disease. Genetics in IPF have contributed as no other in unchaining the disease from the dogma of a "a sporadic entity of the elderly, limited to the lungs" and allowed all scientists, but mostly clinicians, all over the world to consider its many aspects and "faces" in all age groups, including its co-existence with several extra pulmonary conditions from cutaneous albinism to bone-marrow and liver failure. CONCLUSION By providing additional evidence for unsuspected characteristics such as immunodeficiency, impaired mucus, and surfactant and telomere maintenance that very often co-exist through the interaction of common and rare genetic variants in the same patient, genetics have created a generous and pluralistic yet unifying platform that could lead to the understanding of the injurious and pro-fibrotic effects of many seemingly unrelated extrinsic and intrinsic offending factors. The same platform constantly instructs us about our limitations as well as about the heritability, the knowledge and the wisdom that is still missing.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Caroline Kannengiesser
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
- INSERM UMR 1152, Université de Paris, 75018 Paris, France
| | - Raphael Borie
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Lykourgos Kolilekas
- 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Apollonatou
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ibrahima Ba
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
| | - Nadia Nathan
- Peditric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, 75012 Paris, France
| | - Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, 80337 Munich, Germany
| | - Philippe Dieude
- Department of Rheumatology, INSERM U1152, APHP Hôpital Bichat-Claude Bernard, Université de Paris, 75018 Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
285
|
Liu W, Alameh MG, Yang JF, Xu JR, Lin PJC, Tam YK, Weissman D, You J. Lipid Nanoparticles Delivering Constitutively Active STING mRNA to Stimulate Antitumor Immunity. Int J Mol Sci 2022; 23:14504. [PMID: 36498833 PMCID: PMC9739380 DOI: 10.3390/ijms232314504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Treating immunosuppressive tumors represents a major challenge in cancer therapies. Activation of STING signaling has shown remarkable potential to invigorate the immunologically "cold" tumor microenvironment (TME). However, we have shown that STING is silenced in many human cancers, including pancreatic ductal adenocarcinoma (PDAC) and Merkel cell carcinoma (MCC). In this study, we demonstrated that mRNA-lipid nanoparticle (LNP) technology could be used to efficiently deliver naturally occurring constitutively active STING mutant STINGR284S into these cancer cells to reactivate STING antitumor immunity and trigger robust killing of tumor cells. STING agonists are being actively pursued as cancer immunotherapies. However, traditional STING agonists can induce T cell cytotoxicity, counteracting the desired antitumor immune response. In addition, the antitumor efficacy of traditional STING agonists obligatorily depends on STING expression and does not work in STING-silenced cancers. Importantly, we found that STINGR284S mRNA-LNP does not introduce T cell cytotoxicity. Our studies demonstrated that mRNA-LNP delivery of STINGR284S can reactivate the antitumor response without introducing antiproliferative effects in lymphocytic immune cells, overcoming the toxicity and limitations of conventional STING agonists. Our work therefore identifies a novel therapeutic tool for reactivating antitumor immunity in an array of STING-silenced immunologically "cold" tumors that are refractory to current therapies.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - June F. Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan R. Xu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ying K. Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
286
|
Molecular Function of cGAS-STING in SARS-CoV-2: A Novel Approach to COVID-19 Treatment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6189254. [PMID: 36457340 PMCID: PMC9708357 DOI: 10.1155/2022/6189254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus illness 2019 is a significant worldwide health danger that began with severe acute respiratory syndrome coronavirus two infections. It is the largest pandemic of our lifetime to date, affecting millions of people and crippling economies globally. There is currently no viable therapy for this devastating condition. The fast spread of SARS-CoV-2 underlines the critical need for favorable treatments to prevent SARS-CoV-2 infection and dissemination. Regulating the upstream cytokine release might be a possible method for COVID-19 therapy. We propose that more consideration be paid to the dysregulated IFN-I release in COVID-19 and that cGAS and STING be considered therapeutic targets for avoiding cytokine storms and as critical components in host antiviral defense mechanisms.
Collapse
|
287
|
Karki R, Kanneganti TD. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. J Transl Med 2022; 20:542. [PMID: 36419185 PMCID: PMC9682745 DOI: 10.1186/s12967-022-03767-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
The innate immune system serves as the first line of defense against invading pathogens; however, dysregulated innate immune responses can induce aberrant inflammation that is detrimental to the host. Therefore, careful innate immune regulation is critical during infections. The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in global morbidity and mortality as well as socio-economic stresses. Innate immune sensing of SARS-CoV-2 by multiple host cell pattern recognition receptors leads to the production of various pro-inflammatory cytokines and the induction of inflammatory cell death. These processes can contribute to cytokine storm, tissue damage, and acute respiratory distress syndrome. Here, we discuss the sensing of SARS-CoV-2 to induce innate immune activation and the contribution of this innate immune signaling in the development and severity of COVID-19. In addition, we provide a conceptual framework for innate immunity driving cytokine storm and organ damage in patients with severe COVID-19. A better understanding of the molecular mechanisms regulated by innate immunity is needed for the development of targeted modalities that can improve patient outcomes by mitigating severe disease.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, MS #351, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, MS #351, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA.
| |
Collapse
|
288
|
Gong LK, Yang X, Yang J, Wu S, Chen Y, Zhang JT, Wang ZH, Chen LH, Xing C, Liu T. Low-dose ganciclovir ameliorates dextran sulfate sodium-induced ulcerative colitis through inhibiting macrophage STING activation in mice. Front Pharmacol 2022; 13:1020670. [PMID: 36467059 PMCID: PMC9714675 DOI: 10.3389/fphar.2022.1020670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 10/03/2023] Open
Abstract
Ganciclovir (GCV) is a prodrug nucleoside analogue and is clinically used as antiviral drug for the treatment of cytomegalovirus (CMV) and other infections. Based on the potential anti-inflammatory activity of GCV, this study aimed to investigate the therapeutic effects of ganciclovir on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC), which may involve cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathways. Our results demonstrated that incubation of GCV (50 μM) inhibited cGAS-STING pathway in macrophage RAW264.7 cells. Then, it was found that intestinal cGAS-STING pathways were upregulated in UC patients, Crohn's disease colitis (CD) patients, and DSS-induced colitis mice. Intraperitoneal injection of low-dose GCV (10 mg/kg/day) attenuated DSS-induced colitis and abdominal pain in mice. GCV treatment significantly inhibited the upregulation of cGAS-STING pathway in DSS-induced colitis mice. Moreover, DSS-induced colitis and gut dysbiosis was markedly attenuated in STING deficient mice compared with that of wild-type (WT) mice. Finally, there was lacking therapeutic effect of GCV on DSS-induced colitis in STING deficient mice. Together, our results indicated that low-dose GCV ameliorated DSS-induced UC in mice, possibly through inhibiting STING signaling in colonic macrophages, indicating that GCV may be useful for the treatment of UC.
Collapse
Affiliation(s)
- Lin-Kong Gong
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shu Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Chen
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Zhi-Hong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Li-Hua Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- College of Life Sciences, Yanan University, Yanan, China
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou, China
| |
Collapse
|
289
|
Tu X, Chu TT, Jeltema D, Abbott K, Yang K, Xing C, Han J, Dobbs N, Yan N. Interruption of post-Golgi STING trafficking activates tonic interferon signaling. Nat Commun 2022; 13:6977. [PMID: 36379959 PMCID: PMC9666523 DOI: 10.1038/s41467-022-33765-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Activation of the cGAS-STING pathway is traditionally considered a "trigger-release" mechanism where detection of microbial DNA or cyclic di-nucleotides sets off the type I interferon response. Whether this pathway can be activated without pathogenic ligand exposure is less well understood. Here we show that loss of Golgi-to-lysosome STING cofactors, but not ER-to-Golgi cofactors, selectively activates tonic interferon signalling. Impairment of post-Golgi trafficking extends STING Golgi-dwell time, resulting in elevated immune signalling and protection against infection. Mechanistically, trans-Golgi coiled coil protein GCC2 and several RAB GTPases act as key regulators of STING post-Golgi trafficking. Genomic deletion of these factors potently activates cGAS-STING signalling without instigating any pathogenic trigger for cGAS. Gcc2-/- mice develop STING-dependent serologic autoimmunity. Gcc2-deleted or Rab14-deleted cancer cells induce T-cell and IFN-dependent anti-tumour immunity and inhibit tumour growth in mice. In summary, we present a "basal flux" mechanism for tonic cGAS-STING signalling, regulated at the level of post-Golgi STING trafficking, which could be exploited for cancer immunotherapy.
Collapse
Affiliation(s)
- Xintao Tu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ting-Ting Chu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Devon Jeltema
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kennady Abbott
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kun Yang
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cong Xing
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jie Han
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Dobbs
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
290
|
Song P, Yang W, Lou KF, Dong H, Zhang H, Wang B, Chen D. UNC13D inhibits STING signaling by attenuating its oligomerization on the endoplasmic reticulum. EMBO Rep 2022; 23:e55099. [PMID: 36125406 PMCID: PMC9638857 DOI: 10.15252/embr.202255099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 09/22/2023] Open
Abstract
Stimulator of interferon genes (STING) is an essential signaling protein that is located on the endoplasmic reticulum (ER) and triggers the production of type I interferons (IFN) and proinflammatory cytokines in response to pathogenic DNA. Aberrant activation of STING is linked to autoimmune diseases. The mechanisms underlying homeostatic regulation of STING are unclear. Here, we report that UNC13D, which is associated with familial hemophagocytic lymphohistiocytosis (FHL3), is a negative regulator of the STING-mediated innate immune response. UNC13D colocalizes with STING on the ER and inhibits STING oligomerization. Cellular knockdown and knockout of UNC13D promote the production of interferon-β (IFN-β) induced by DNA viruses, but not RNA viruses. Moreover, UNC13D deficiency also increases the basal level of proinflammatory cytokines. These effects are diminished by an inhibitor of STING signaling. Furthermore, the domains involved in the UNC13D/STING interaction on both proteins are mapped. Our findings provide insight into the regulatory mechanism of STING, the previously unknown cellular function of UNC13D and the potential pathogenesis of FHL3.
Collapse
Affiliation(s)
- Pu Song
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life SciencesPeking UniversityBeijingChina
| | - Weiwei Yang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life SciencesPeking UniversityBeijingChina
| | - Karen F Lou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life SciencesPeking UniversityBeijingChina
| | - Hao Dong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life SciencesPeking UniversityBeijingChina
| | - Heng Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life SciencesPeking UniversityBeijingChina
| | - Beiming Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life SciencesPeking UniversityBeijingChina
| | - Danying Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life SciencesPeking UniversityBeijingChina
| |
Collapse
|
291
|
de Moura Rodrigues D, Lacerda-Queiroz N, Couillin I, Riteau N. STING Targeting in Lung Diseases. Cells 2022; 11:3483. [PMID: 36359882 PMCID: PMC9657237 DOI: 10.3390/cells11213483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 01/30/2024] Open
Abstract
The cGAS-STING pathway displays important functions in the regulation of innate and adaptive immunity following the detection of microbial and host-derived DNA. Here, we briefly summarize biological functions of STING and review recent literature highlighting its important contribution in the context of respiratory diseases. Over the last years, tremendous progress has been made in our understanding of STING activation, which has favored the development of STING agonists or antagonists with potential therapeutic benefits. Antagonists might alleviate STING-associated chronic inflammation and autoimmunity. Furthermore, pharmacological activation of STING displays strong antiviral properties, as recently shown in the context of SARS-CoV-2 infection. STING agonists also elicit potent stimulatory activities when used as an adjuvant promoting antitumor responses and vaccines efficacy.
Collapse
Affiliation(s)
- Dorian de Moura Rodrigues
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| | | | - Isabelle Couillin
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| | - Nicolas Riteau
- Experimental and Molecular Immunology and Neurogenetics Laboratory, University of Orleans, Centre National de la Recherche Scientifique (CNRS), UMR7355, 45100 Orleans, France
| |
Collapse
|
292
|
Shindo R, Kuchitsu Y, Mukai K, Taguchi T. The activity of disease-causative STING variants can be suppressed by wild-type STING through heterocomplex formation. Front Cell Dev Biol 2022; 10:1037999. [PMID: 36438571 PMCID: PMC9682468 DOI: 10.3389/fcell.2022.1037999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 12/21/2023] Open
Abstract
Stimulator of interferon genes (STING) is essential for the type I interferon response induced by microbial DNA from viruses or self-DNA from mitochondria/nuclei. Recently, gain-of-function mutations in STING have been identified in patients with STING-associated vasculopathy with onset in infancy (SAVI). The SAVI patients exhibit complex systemic vascular inflammation and interstitial lung disease, resulting in pulmonary fibrosis and respiratory failure. SAVI mouse models have recently developed, harbouring common SAVI mutations, such as N153S and V154M, which correspond to the human N154S and V155M, respectively. Interestingly, crosses of heterozygous SAVI mice did not yield homozygous SAVI mice as of embryonic day 14, indicating that homozygous SAVI embryos were not viable and that wild-type (WT) allele would function dominantly over SAVI alleles in terms of viability. However, the molecular mechanism underlying the dominance has not been understood. In the present study, we show that STING (WT) and STING (SAVI) can form heterocomplex. The heterocomplex localized primarily in the endoplasmic reticulum (ER) and failed to reach the trans-Golgi network (TGN), where STING activates the downstream kinase TBK1. SURF4 is the essential protein functioning in the retrieval of STING from the Golgi to the ER. The amount of SURF4 bound to STING (SAVI) significantly increased in the presence of STING (WT). These results suggest that STING (WT) can suppress the activity of STING (SAVI) by tethering STING (SAVI) to the ER through heterocomplex formation. The dormant heterocomplex formation may underlie, at least in part, the dominance of STING WT allele over SAVI alleles in the STING-triggered inflammatory response.
Collapse
Affiliation(s)
| | | | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
293
|
Chen C, Xu P. Cellular functions of cGAS-STING signaling. Trends Cell Biol 2022:S0962-8924(22)00252-5. [DOI: 10.1016/j.tcb.2022.11.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
|
294
|
A 17-Year-Old Girl Diagnosed With STING-Associated Vasculopathy With Onset in Infancy (SAVI) After Lung Transplantation. Chest 2022; 162:e249-e252. [DOI: 10.1016/j.chest.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/06/2022] Open
|
295
|
Saulescu I, Ionescu R, Opris-Belinski D. Interferon in systemic lupus erythematosus-A halfway between monogenic autoinflammatory and autoimmune disease. Heliyon 2022; 8:e11741. [PMID: 36468094 PMCID: PMC9708627 DOI: 10.1016/j.heliyon.2022.e11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Although perceived as an adaptative immune disorder, mainly related to Lymphocyte B and T, last years focus on Systemic Lupus Erythematosus (SLE) pathogeny emphasised the important role of innate immunity. This should not take us by surprise since the lupus cell described by Hargraves and colleagues in 1948 was a neutrophil or macrophage with specific aspect after coloration with haematoxylin related to cell detritus engulfment (Hargraves et al., 1948) [1] (Presentation of two bone marrow elements; the tart. Hargraves M, Ricmond H, Morton R. 1948, Proc Staff Meet Mayo Clinic, pp. 23:25-28). Normal immune system maintains homeostasis through innate and adaptative response that are working together to prevent both infection and autoimmunity. Failure of the immune mechanisms to preserve the balance between these two will initiate and propagate autoinflammation and/or autoimmunity. It is well known now that autoinflammation and autoimmunity are the two extremes of different pathologic conditions marked with multiple overlaps in many diseases. Recent findings in SLE demonstrated that innate immune system initiates the abnormal autoimmunity and starts the continuous inflammatory reaction after that, interferon being one of the key cytokines in innate immunity and SLE. Understanding this mechanism might offer a better clue for an efficient treatment in SLE patients. The purpose of this review is to highlight the enormous impact of innate immunity and mostly interferons in SLE.
Collapse
Affiliation(s)
- Ioana Saulescu
- University of Medicine and Pharmacy Carol Davila, Dionisie Lupu Street, Number 37, Postal Code 020021, Bucharest, Romania
- Sfanta Maria Hospital, Internal Medicine and Rheumatology Department, Ion Mihalache Boulevard, Number 37-39, Postal Code 011172, Bucharest, Romania
| | - Ruxandra Ionescu
- University of Medicine and Pharmacy Carol Davila, Dionisie Lupu Street, Number 37, Postal Code 020021, Bucharest, Romania
- Sfanta Maria Hospital, Internal Medicine and Rheumatology Department, Ion Mihalache Boulevard, Number 37-39, Postal Code 011172, Bucharest, Romania
| | - Daniela Opris-Belinski
- University of Medicine and Pharmacy Carol Davila, Dionisie Lupu Street, Number 37, Postal Code 020021, Bucharest, Romania
- Sfanta Maria Hospital, Internal Medicine and Rheumatology Department, Ion Mihalache Boulevard, Number 37-39, Postal Code 011172, Bucharest, Romania
| |
Collapse
|
296
|
Shen A, Chen M, Chen Q, Liu Z, Zhang A. Recent advances in the development of STING inhibitors: an updated patent review. Expert Opin Ther Pat 2022; 32:1131-1143. [PMID: 36332188 DOI: 10.1080/13543776.2022.2144220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION STING is at the center of the cGAS-STING signaling and acts as the hub of the innate immune system. Hyper-activation of STING has been observed in various severe autoimmune diseases, such as AGS, SLE, and many other diseases including neurological and metabolic disorders. Therefore, STING has been considered as a promising target. In recent years, several STING inhibitors have been claimed in patents. AREAS COVERED Small-molecule STING inhibitors reported in patents (disclosed before May 2022 through the public database at https://worldwide.espacenet.com) were summarized in this review and the available structure-activity relationships (SARs) and molecular mechanisms of action were presented. EXPERT OPINION Compared with STING agonists, the development of STING inhibitors is still in its infancy and no candidates have entered clinical investigation stage. Fortunately, patent applications are appearing at an increasing rate and a few of them have been validated in vivo, thus providing valuable insights for further structural optimization. More efforts are urgently needed since it is not clear yet that inhibitors targeting STING can solely exert sufficient therapeutic effects on autoimmune diseases, and the toxicity profile of such inhibitors is unknown as well. Therefore, it is extremely important to identify a selective and efficacious STING inhibitor for clinical evaluation to provide proof-of-concept for this approach.
Collapse
Affiliation(s)
- Ancheng Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Pharm-X Center, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjie Chen
- Pharm-X Center, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Qingxuan Chen
- Pharm-X Center, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ao Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Pharm-X Center, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
297
|
Szego EM, Malz L, Bernhardt N, Rösen-Wolff A, Falkenburger BH, Luksch H. Constitutively active STING causes neuroinflammation and degeneration of dopaminergic neurons in mice. eLife 2022; 11:81943. [PMID: 36314770 PMCID: PMC9767458 DOI: 10.7554/elife.81943] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/31/2022] [Indexed: 12/30/2022] Open
Abstract
Stimulator of interferon genes (STING) is activated after detection of cytoplasmic dsDNA by cGAS (cyclic GMP-AMP synthase) as part of the innate immunity defence against viral pathogens. STING binds TANK-binding kinase 1 (TBK1). TBK1 mutations are associated with familial amyotrophic lateral sclerosis, and the STING pathway has been implicated in the pathogenesis of further neurodegenerative diseases. To test whether STING activation is sufficient to induce neurodegeneration, we analysed a mouse model that expresses the constitutively active STING variant N153S. In this model, we focused on dopaminergic neurons, which are particularly sensitive to stress and represent a circumscribed population that can be precisely quantified. In adult mice expressing N153S STING, the number of dopaminergic neurons was smaller than in controls, as was the density of dopaminergic axon terminals and the concentration of dopamine in the striatum. We also observed alpha-synuclein pathology and a lower density of synaptic puncta. Neuroinflammation was quantified by staining astroglia and microglia, by measuring mRNAs, proteins and nuclear translocation of transcription factors. These neuroinflammatory markers were already elevated in juvenile mice although at this age the number of dopaminergic neurons was still unaffected, thus preceding the degeneration of dopaminergic neurons. More neuroinflammatory markers were blunted in mice deficient for inflammasomes than in mice deficient for signalling by type I interferons. Neurodegeneration, however, was blunted in both mice. Collectively, these findings demonstrate that chronic activation of the STING pathway is sufficient to cause degeneration of dopaminergic neurons. Targeting the STING pathway could therefore be beneficial in Parkinson's disease and further neurodegenerative diseases.
Collapse
Affiliation(s)
- Eva M Szego
- Department of Neurology, TU Dresden, Dresden, Germany
| | - Laura Malz
- Departments of Neurology & Pediatrics, TU Dresden, Dresden, Germany
| | | | | | - Björn H Falkenburger
- Department of Neurology, TU Dresden, Dresden, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Dresden, Germany
| | - Hella Luksch
- Department of Pediatrics, TU Dresden, Dresden, Germany
| |
Collapse
|
298
|
Wan R, Fänder J, Zakaraia I, Lee-Kirsch MA, Wolf C, Lucas N, Olfe LI, Hendrich C, Jonigk D, Holzinger D, Steindor M, Schmidt G, Davenport C, Klemann C, Schwerk N, Griese M, Schlegelberger B, Stehling F, Happle C, Auber B, Steinemann D, Wetzke M, von Hardenberg S. Phenotypic spectrum in recessive STING-associated vasculopathy with onset in infancy: Four novel cases and analysis of previously reported cases. Front Immunol 2022; 13:1029423. [PMID: 36275728 PMCID: PMC9583393 DOI: 10.3389/fimmu.2022.1029423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
Gain-of-function variants in the stimulator of interferon response cGAMP interactor 1 (STING1) gene cause STING-Associated Vasculopathy with onset in Infancy (SAVI). Previously, only heterozygous and mostly de novo STING1 variants have been reported to cause SAVI. Interestingly, one variant that only leads to SAVI when homozygous, namely c.841C>T p.(Arg281Trp), has recently been described. However, there are no entries in public databases regarding an autosomal recessive pattern of inheritance. Here, we report four additional unrelated SAVI patients carrying c.841C>T in homozygous state. All patients had interstitial lung disease and displayed typical interferon activation patterns. Only one child displayed cutaneous vasculitis, while three other patients presented with a relatively mild SAVI phenotype. Steroid and baricitinib treatment had a mitigating effect on the disease phenotype in two cases, but failed to halt disease progression. Heterozygous c.841C>T carriers in our analysis were healthy and showed normal interferon activation. Literature review identified eight additional cases with autosomal recessive SAVI caused by c.841C>T homozygosity. In summary, we present four novel and eight historic cases of autosomal recessive SAVI. We provide comprehensive clinical data and show treatment regimens and clinical responses. To date, SAVI has been listed as an exclusively autosomal dominant inherited trait in relevant databases. With this report, we aim to raise awareness for autosomal recessive inheritance in this rare, severe disease which may aid in early diagnosis and development of optimized treatment strategies.
Collapse
Affiliation(s)
- Rensheng Wan
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Johannes Fänder
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ia Zakaraia
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Wolf
- Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Lucas
- Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Lisa Isabel Olfe
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Corinna Hendrich
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hanover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease, Hannover, Germany
| | - Dirk Holzinger
- Department of Pediatric Haemato-Oncology, University of Duisburg-Essen, Essen, Germany
- Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Mathis Steindor
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Claudia Davenport
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Matthias Griese
- Dr. von Hauner Children’s Hospital, Department of Pediatrics, German Center for Lung Research, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Florian Stehling
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Martin Wetzke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- *Correspondence: Martin Wetzke, ; Sandra von Hardenberg,
| | - Sandra von Hardenberg
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- *Correspondence: Martin Wetzke, ; Sandra von Hardenberg,
| |
Collapse
|
299
|
MacLauchlan S, Fitzgerald KA, Gravallese EM. Intracellular Sensing of DNA in Autoinflammation and Autoimmunity. Arthritis Rheumatol 2022; 74:1615-1624. [PMID: 35656967 PMCID: PMC9529773 DOI: 10.1002/art.42256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022]
Abstract
Evidence has shown that DNA is a pathogen-associated molecular pattern, posing a unique challenge in the discrimination between endogenous and foreign DNA. This challenge is highlighted by certain autoinflammatory diseases that arise from monogenic mutations and result in periodic flares of inflammation, typically in the absence of autoantibodies or antigen-specific T lymphocytes. Several autoinflammatory diseases arise due to mutations in genes that normally prevent the accrual of endogenous DNA or are due to mutations that cause activation of intracellular DNA-sensing pathway components. Evidence from genetically modified murine models further support an ability of endogenous DNA and DNA sensing to drive disease pathogenesis, prompting the question of whether endogenous DNA can also induce inflammation in human autoimmune diseases. In this review, we discuss the current understanding of intracellular DNA sensing and downstream signaling pathways as they pertain to autoinflammatory disease, including the development of monogenic disorders such as Stimulator of interferon genes-associated vasculopathy with onset in infancy and Aicardi-Goutières syndrome. In addition, we discuss systemic rheumatic diseases, including certain forms of systemic lupus erythematosus, familial chilblain lupus, and other diseases with established links to intracellular DNA-sensing pathways, and highlight the lessons learned from these examples as they apply to the development of therapies targeting these pathways.
Collapse
Affiliation(s)
- Susan MacLauchlan
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School
| | - Ellen M. Gravallese
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
300
|
Zhong B, Shu HB. MITA/STING-mediated antiviral immunity and autoimmunity: the evolution, mechanism, and intervention. Curr Opin Immunol 2022; 78:102248. [PMID: 36193584 DOI: 10.1016/j.coi.2022.102248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/27/2022] [Indexed: 01/29/2023]
Abstract
Mediator of IRF3 activation (MITA, also known as stimulator of interferon genes (STING) and endoplasmic reticulum interferon stimulator (ERIS)) is an ER-associated protein that senses cellular and bacterium-derived cyclic dinucleotide (CDN), leading to induction of type-I interferons (IFNs) and innate immune responses against viruses and bacteria. Recently, it has become clear that sensing of CDN and induction of autophagy are two evolutionarily conserved functions of MITA, predating its role in mediating type-I IFN induction. Studies have shown that MITA-mediated signaling promotes a number of autoimmune disorders caused by gene mutations in human. Here, we summarize the most recent progress on MITA-mediated signaling in a view of evolution and highlight the roles of MITA in human inflammatory disorders caused by gene mutations and in genetically modified mouse models. We also briefly introduce the chemicals targeting MITA and discuss their potential in treatment of MITA-mediated inflammatory diseases. Finally, we propose several key questions that should be addressed for targeting MITA for treatment of related autoimmune diseases.
Collapse
Affiliation(s)
- Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Research Unit of Innate Immune and Inflammatory Diseases, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Research Unit of Innate Immune and Inflammatory Diseases, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China.
| |
Collapse
|